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Macroscopic Theory of Non-Linear Circuits 
(Received Dec. 8, 1954) 

Teruo SUEZAKI* 

Abstract 

The author has developed the theory of electric circuits considering 

a non-linear character of a source. 

From the macroscopic point of view, the author has obtained the relations 

which must be satisfied by the active and reactive pmver of the systems_ 

In this paper the oscillation problems, such as the hard and s~ft oscillations, 

locked oscillations and fractional harmonic synchronization, have been discuss­

ed as the examples from the above relations. 

I . Preliminaries 

Sinusoidal electromotive force and current, flowing in a circuit, are represented 

by the vector E and I. and their fundamental relation is Kirchhoff's law, namely: 

E=ZI (1) 

where Z is a linear impedance of the complete circuit. 

* From the above relation, multiplying the conjugate vector l, the following 

relation is readily obtained: 

* * -E I+Z I I=O (2) 

where * denotes a conjugate vector, that is 

* 1=1 e-Je 1=1 eJ0 (3) 

First term of the left hand side of (2) denotes the generated vector power and 

the second term denotes the absorbed vector power in the complete circuit and (2) 

shows the equilibrium of the total power. 

These are the familiar basis of th~ treatment of linear electric circuits, in which 
we have assumed that the source of power has a linear infinite character. 

However, in many electrical devices, notably thermionic valve, current is not 
directly proportional to the voltage. Such kind of characters may be called a non­
linear character. 

There are a number of cases where the source has a non-linear character and 

supplies alternating current which is not far from the sinusoidal waveform. 

Non-linear oscillation of a valve oscillator is the most interesting and important 

in the whole cases mentioned above. 

Even under these conditions where the distortion is slight mathematical treatment 

* ;fJ~:!Jlt&l: Professor at Keio University 
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11 Macroscopic Theory of Non-Linear Circuits 

is very difficult and we must be satisfied only with the approximate solution. 
This paper endeavors to show a more straight forward and facilitated treatment 

of non-linear oscillations. 
In these problems, it is convenient to express the current and the voltage by 

the rotating vector. For example, the current flowing in a circuit fed from a source 

which has a non-linear character may best be expressed as 
I(t) =l(t) e-J(J(t). ( 4) 

Both I and 8 are considered as functions of time t and their rate of change is 

assumed to be small enough. In this treatment we must introduce a fictitious 
electromotive force additionally, 

a 
-2L~ I(t) dt (5) 

where L is the resultant inductance in a closed circmt which has a circulating 
current l(t). 

Appearance of this fictitious electromotive force (5) has been postulated at the 
beginning, but it will be seen in the next section that the discussion on the equilibri­
um of power and its stability, which give the physical reality to the steady state 

of the oscillation, is greatly facilitated by introducing the term (5). 

Let us show some examples taking the simple linear oscillatory circuits. 

We will consider the current flowing in the simple linear series tuning circuit 
fed from a source which has a linear infinite character. Circuit and notations of 
its elements are shown in Fig. 1. 

By virtue of the preceding remarks the following relation will be obtained : 

E-2Lftl(t)={R+j(wL- lc)}I(t). (6) 

This is the fundamental relation in the treatment that will be developed in 
this paper. 

* Multiplying the above relation by I, the following relation will be obtained; 

* d * { ( 1 )} * -2LI(t) d{I(t)= -E I(t)+ R+j wL- wC l(t) I(t)' 

and using the expression ( 4), the next 

two relations may be obtained readily : 

-2LI ~: =-EI cos 8+ RP 

2Lf2 ~~= -E/sin 8+( wL-w~)J2. 
(8) 

Steady state of the system will be cor-

E 

L 

) 

related with 

d/=0 

Fig. I. A Series tuning circuit 

dt ' 
dO 
dt =O. 

c 11 ) 
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Teruo SUEZAKI 12 

Under these conditions 1 and e become constant and the right hand side of 

the first equation (8) expresses the equilibrium of the total active power and 

the second denotes the equilibrium of reactive power. 

In the transient state if we reject E for the sake of simplicity, following relation 
will be obtained at once, namely 

(9) 

that is, the amplitude of the oscillation will diminish with the lapse of time and 

if the rate of the change of amplitude is small enough the frequency of this 

dal(.lped ocjllation will coincide with the natural frequency of the circuit, which is 
given by the second equation of (8). 

Thus, the results obtained by the treatment in which the fictitious e.m.f. is 

introduced will be quite evident. The relation (7) may be called a "vector power 
relation". 

Next, let us consider the case where a parallel tuning circuit is connected to 

an alternating current source and is excited by another sinusoidal electromotive 

force of the same frequency in the tank circuit. 
Circuit is shown in Fig. 2 and all the circuit elements have a linear character. 

Current l1 circulates in the tank circuit, I is fed from the source and E is 
another e. m. f. as shown in Fig. 2. 

The fundamental relation concerning the circulating current I1 will be expressed 

as, 

and 

E-2L-ft Il(t)={R+J( wL-w
1
c)}Il(t)-(R+jwL)I, 

I1(t)=jwCV(t). 

(10) 

(11) 

The fundamental relation (10) may be rewritten in terms of the voltage 
introduced by (11) in the following form: 

d {CR ·( 1 )} E ( R ) -20--V(t)= -+J wC--- V(t)- .-- 1+-.- I dt L roL JroL JwL (12) 

where V(t)= V(t) eJB(t), E=E, I=l. (13) 

* It will be easily verified from (12) that V(t) satisfies the following relation: 

d * {CR ( 1 )} * E ( R ) -2Cdt V(t)= ~z-j roC- ~L V(t) + jroL- l-jwL I 

where * V(t) = V(t) e-JB<t) • 

(14) 

(15) 

From (14), multiplying both sides of this equation with V(t) and through use 
of the approximation 

( 12 ) 



13 Macroscopic Theory of Non-Linear Circuits 

1--;R_-:1 
JWL , 

we can get the expression which may be called the "vector power relation", 

-2CV(t)ft V(t)={~J -j( roC-~z) }v(t)V(t) +7~f)-V(t)l . (16) 

Substituting V and V from (13) and (15) into (16) and equating the real and 

imaginary parts of both sides of this equation, we obtain the following relations: 

dV (} l!}V . () CRV2 -2CVdt=-VIcos +wL sin +y , 

dB EV ( I ) 2CV2 dt=-VI sin 0-wL cos 0- mC-~L V 2 

(17) 
.;)'> 

Fig. 2. A parallel tuning circuit 

with sinusoidal e.m.f. 

Steady state of the system will be 

correlated with 
dV 
dT=O 

and under these conditions V and 0 
are constant. 

Then right hand side of the first 

equation of (17) yields the total "active 

power. In detail, the first term denotes 

the active power fed from the source, 

the second the exciting active power 

of the external periodic force, and the last the absorbed active power in the 

circuit. 
And each term of the right hand side of the second equation (17) represents the 

reactive power of the same meaning as mentioned above with the active power. 

Before concluding this section something about the active and reactive power 

must be added. 

Absorbed instantaneous power P in a linear electric circuit is expressed by the 

product of the terminal voltage v and current i flowing into the circuit, that is, 

where 

P=v i=2VI (sin T cos e+ccs T sin{}) sin T 

i=.../2-I sin T , 

v=v--2-Vsin (T+B) 

(18) 

(19) 

From these relations absorbed active and reactive power may be expressed 

respectively : 

1!21! 
Pa =VI cos(} = 2n 0 vi dT ' 

1 !21! di R =VI sin(}=- v--- dT 
/J 27t 0 dT . 

(20) 

( 13 ) 



Teruo SUEZAKI 14 

II. Equilibrium of Vector Power and its Stability 

In the preceding chapter, the relations which must be satisfied by the active 

and reactive power have been presented taking as the examples the simple tuning 

circuits. 

By virtue of these relations the discussion of the equilibrium of power which 

yields the steady states of the 03cillation and its stability will be greatly facilitated. 
In the preceding examples, on account of the linear character of the source and 

the circuit elements, there were no question about the stability of the steady state. 

But if the source has a non-linear character, the question on the stability about 

a steady state will become very important and difficult problem. 
Now let us express the character of an electric two pole : 

v = f(i) (21) 

where v is the terminal voltage of the two pole, i is the current flowing into 
this two pole and f(i) is a polynomial. Equivalent active and reactive power will 

be calculated in terms of i=vl-:;f[sinT through use of (20) and (21): 

Pa= 2~J:1lf(v-2I sin T)V-2~ I sin T dT, 

Pb=2~J:1lf(v-~2-1 sin Th/2 j cosT dT. 

Next, let us express the character of an electric two pole by 

i = g(v) 

where g( v) is a polynomial. 

(22) 

(23) 

Equivalent active and reactive power will be expressed in terms of v = j 2 -V sin T 

instead of i, because in a steady state the relation : 

dp = v di + i dv = 0 

should be satisfied. 

So, we can obtain the following expression of the equivalent active and reactive 
power from (20) and (23) using -i dv instead of v di: 

Pa=2~J:1lg(v'-2-VsinT)v' 2~ VsinT dT, 

Pb=~; J:'llg(.../-2 Vsin T)V 2- V cosT dT. 

(24) 

When the active power that is expressed by Pa in (22) or Pa in (24) takes 
a positive value, it denotes an absorbed active power in an electric two pole. 

( 14 ) 



15 Macroscopic Theory of Non-Linear Circuits 

On the other hand if they take a negative value under any condition, they 

express a generated active power from the electric two pole, and in these cases 

Pb and Pb~ denote the generated reactive power. Under these conditions, such an 
electric two pole may be regarded as a power source. 

If the source in the first example in the preceding chapter feeds the power 
which is expressed by (22) with the conditions mentioned above, the expressions 

- EI cos 8 and - EI sin 8 in (8) must be replaced by Pa and Pb in (22) respectively. 

In the same way, if the source in the second example in the preceding chapter 

feeds the power expressed by (24) the terms -VI cos 8 and -VI sin 8 in (17) must 

be replaced by Pa and F; in (24) respectively. 

Consequently these two examples may be expressed in more general forms, such as 

and 

di 
-2LI dt=A(I,8) 

d8 . 
2LP dt =B(I,8) 

dV­
-2CVd{ =A(V,8) 

2CV2 ~~ =B(V,8) 

(25) 

(26) 

where A(/,8) is the total active power of a system expressed by the current and 
resistance, B(/,8) is the total reactive power expressed by the current and reactance, 

A( V,8) denotes the total active power of a system expressed by the voltage and 

conductance, and If( V,8) denotes the total reactive power expressed by the voltage 

and susceptance. 
Let us consider the equation (25) further in detail. 

The steady state of the oscillation will be expressed by 

B(Vo,8o)=O . (27) 

In order to test its stability we will suppose the small variation 

Vo+oV , (28) 

and replace V and 8 in (26) by (28), develop the right hand side of (26) in powers 
of oV and o8, and reject all but the linear term in oV and 88. 

Thus we shall obtain the following variational equations: 

d (aA) (aA) -2CVo dtoV= av oV+ fJ() o8 
0.0 0.0 ' (29) 

2 d (fiB) (a 13) 
2CVo dtoB= av o.ooV+ ae o.ooe . 

It must be considered that the equilibrium will be stable if oV and 88 approach 

( 15 ) 
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zero with laps of time t. These conditions are readily obtained from (29) 

(30) 

and (31) 

We have assumed that C>O and V0 >0 in deriving these conditions. 
In the similar way, the equilibrium of power and its stability will be dicussed 

from ( 25) too. 
It will be seen clearly that not only the active power but also the reactive 

power play important roles in testing the stability of the equilibrium of powers. 

And as we have seen from these treatment, the discussion on the equilibrium 
and its stability are greatly facilitated by the introduction of the fictitious electro­
motive force described in chapter 1. 

Stability conditions described in (30) and (31) are the basis of the treatments 

that will be developed in the following chapters. 

III. Self Oscillations 

Self oscillations of the grid tuned valve oscillator will be considered as an 

example of the treatment developed in the preceding chapter. 

The essential feature of the oscillator circuit is shown in Fig. 3. 

Using the notations which are shown in Fig. 3, fundamental relations will be 
readily obtained as, 

l1(t)= jmCV(t) (33) 

Replacing It by V through 

use of (33) the fundamental 

relation (32) will become 

Fig. 3 • A feedback Circuit 

d {CR ·( 1 )} M -2CdtV(t)= L +J wC-i.oL V(t)--y;I, 

and from (34) we get the conjugate relation, 

d * { CR ( 1 )} * M * -2Cdt V(t)= y- j wC-~L V(t)- z.- I. 

( 16 ) 

(32) 

(34) 

(35) 
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Multiplying V on both sides of this equation the vector power relation will be 

obtained, 

d * {CR ( 1 )} * M * -2CV(t)dt V(t)= --r--j roC-roL V(t)V(t)- L V(t) I . (36) 

In the equilibrium of the power, the first term of the right hand side of (36) 
denotes the absorbed vector power in the circuit and the second denotes the vector 
power fed from the valve. 

Let us assume that the anode current i is expressed by 

(37) 

where gh g3 and g5 are constants depending upon the characteristic curve and v 
is the alternating grid voltage of the valve. 

Then the power fed to the circuit may be reexpressed from (24) and (37) 

P(~= 2~J~tr-"¥{gl(v'2-v sin T)+gs(v2V sin T)3+g5Cv2v sin T)5 }v2V sin T dT 

= -l!£(g1 V2+ ~ g 3V4+ ~go V6
) , (38) 

Using this in (36) we get the following relations: 

2cv dV- CRT7'2 M( Tl'2+ 3 V4 _§ Tlr.) - dt - L v. - L gl v. ~3 + 2-g5 v- ' 

d() ( 1 ) 2CV2 ---=- roC-- · V2 
dt roL . 

(39) 

If we write, 

-- CR M( 3 5 ) A( V,()) =y V2-I gl V 2+-2g3 V4 +-2-g5 V 6 ' 

B( V,()) =-(roC-;L)V2 
, 

(40) 

equation (39) takes on the same form as that of (26), and the steady state of 

the oscillations will be determined from (27) and we shall be able to test their 
stability from (30), (31)_ 

The amplitude of the oscillation V0 will be obtained from 

(41) 

( 17 ) 
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and its frequency from 

wC-1/wL=O. (42) 

The stability conditions not only give them physical reality but also particular 

character of the oscillations, that is, the "hard" and "soft" oscillations. 

Let us show, as an example of our treatment, that the oscillations will be "soft" 

under the following conditions : 

M>O, g,<O, (43) 

In the relation ( 40), V appears only in the even power such as V;~, V4 and V6, 

and it is convenient to introduce p defined by 

(44) 

and under the condition (42) reactive power B(V.(}) will vanish from the stability 

conditions. 
Thus we obtain the following relation instead of (41): 

(45) 

where (46) 

and p0 is determined as the roots of equation ( 45) as 

(46') 

and is stable if, 

(~:)o = £ccR-g1M+2aMpo-3bMp~) >0, 

that is, 

(47) 

and is unstable if 

(48) 

If we denote the roots of the equation p~, which is obtained by equating the 

right hand side of ( 47) to zero, stable domain of the oscillations will be expressed by 

Pn < po < pc2 (49) 

( 18 ) 
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where 

() 

Pcz 

--------------

~----------Pc_' ___ __ 
0 Mo M 

Fig. 4 . Characteristics for the soft oscillations 

Under the condition 

it is evident that po.o· is un­

stable, that is, an oscillation 
will take place. Under this 

condition, only the po·I which 

has the negative sign of the 

root in ( 46) will be stable. 

Therefore, if we increase M 

larger than the value 
M 0 =CR/gl the oscillation of 

the final amplitude Po·I will 

appear, and further increase 

of M will lead to a monotonic increase of amplitude which is shown in Fig. 4. 
When M decreases, the amplitude diminishes until M reaches Mo and then the 

oscillations will stop. 

Appearance and disappearance of the oscillations take place at the same value 

of M. 

Such Oscillations are called the soft oscillations. 

IV . Synchronism of Self Oscillations 

It has been noticed, in Chapter III, that the essential feature of self oscillations 

is characterized by the stability conditions, but in those cases discussed in Chapter 

III the reactive power had no important role at alL Now I will show an example 

in which the reactive power has an important role to test the stability of the equilib­

rium state. 

Let us consider the locked oscillations of valve oscillator. 

A plate tuning oscillator is excited by an external sinusoidal electromotive 
force presented in the tank circuit. 

The essential feature of the oscillator circuit and the notation of the elements 
are shown in Fig. 5. 

In the locked state of the Oscillations, oscillator frequency coincides with that 

of the external force, and oscillations that is not far from the sinusoidal may be 

observed. 

Therefore, the locked state of the oscillations may be treated from the equilib­
rium of vector power. 

The fundamental relation will be expressed in the same form as (16). 

( 19 ) 
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We express the anode current i 

i=g1Gv+g2G2v2 +g3G3v3 
, 

G=D-K, 

20 

(51) 

where D= 1/p.,, K=M/L, I" is the amplification factor of the valve and g~, gs are 

the costants depending on the characteristics of the valve. If g1G<O and g3G3 >0 
in (51), it expresses the soft working condition of oscillator as we have mentioned 
in chapter III ( 43) and it is convenient to express 

g1G= -a, g,G2 =(3, gsG3 =ry. (52) 

a>O, r>O. 

Then the power fed from the 
valve will be written as follows 
through use of (24), (51) and (52): 

- 3 
Pa= -aV2+2yV4 

(53) 

R=O, 

c v 

Fig.5. A locked oscillator circuit 

Thus from (17), replacing - Vlcos8 and - Vlsin8 by P(( and Pb, we obtain the 
following fundamental relations: 

dV 3 EV . CR 
-2CV -- -aV2+-NV4 +- sm 8+ ---V2 

dt- 2 1 wL L (54) 

2CV2 -=--cos8- wC-- V 2 d8 EV ( 1 ) 
dt wL wL . 

Hence, the locked state of the oscillation will be determined from 

A(V,8) = (g_J!._a )V2 +~~ryV4+EV sin 8 = 0 
L 2 wL , 

- ( 1) EV B(V,8)=- wC- 00L ¥2- wL cos 8 = 0. (55) 

By virtue of (55) the response curves of the locked oscillator is expressed by 

(56) 

In deriving (56) from (55), the following approximation has been used: 

w~=l/LC , (57) 

V and 8 which satisfy the equation (55) are expressed by Vo and Bo respectively. 
Next, let us calculate the following quantities from (55). 

( 20) 



21 Macroscopic Theory of Non-Linear Circuit 

aA) (CR ) 9 -(av o.o = L -a Vo+ 2 ryVo , 

( 
1 oA) E 1 ( w6 -ct> ) -V a(J o.o =~L cos8o=-rot ~-~-- Vo (58) 

Introducing these quantities into (30) and (31), the conditions under which 

the equilibrium state, ( Vo. 8o ), will be stable, are readily obtained as follows : 

(a:A) 1 (ali) av o.o -v~ ae o.o 

=2Vo {(~8 -a)+ 37 n}>o, 
also, 

Using the approximation (57) and considering Vo > 0 

be expressed finally as 

these conditions can 

wo(aL-CR) -3woryL V3<0 , (59) 

Essential features of the locked oscillations are completely described by (56), 

(59) and (60), that is to say, the response curve of the locked oscillation will be 

presented by (56) and the synchronous range will be determined from (59) and 

(60) together with (56). 

These relations will lead to the results which have been obtained by B. van der Pol. 

v. Subharmonic Synchronization 

In the previous example in chapter IV, the synchronization, which may be called 

the subharmonic synchronization, will be observed again when the external periodic 

force has almost the same frequency as the integral multiple of the frequency 

of the oscillator. 
Now, in this synchronous state the oscillator frequency is exactly the integral 

fraction 1/n of that of the external force. Therefore, we may call them "frequency 
demultiplication". 

( 21 ) 
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Mandelstam and Papalexi have treated this problem with skilled mathematical 

method, but it is rather difficult and complicated. 

Our treatment will enable us to deal with this problem more straightforwardly. 

Let us demonstrate taking as an example 1/2 subharmonic synchronization. 

We will express the anode current by (51) for the sake of simplicity, because 

it disturbs the essential treatment of our method the least. 

and in this case, we put the anode voltage in the synchronous state as follows ; 

v= VI sin(~· t+e)+ v2 sin rot. (61) 

which may be written 

(61') 

Then the anode current will be expressed by 

i=-aVtSinT+f3VtV2COS(T-2())+ ~ryl1sinT-!-~ryV1 l1sinT+[ • • • J. (62) 

By virtue of (24) and (62), power fed from the valve at the fundamental 

frequency will be written thus: 

P.--- _ 1 ( v2 3 v4 3 v2v2 f3 2TT • 28) a--2 -aJ1+-4ry 1+z"l 1 z+ V1v2sm , 

- 1 
PlJ= --2 (3l1V2 cos 2() (63) 

where Pa denots the active power and P,) denotes the reactive power. 

And the power absorbed in the circuit at the fundamental frequency will be 
expressed as: 

- CR V~ 
Pac= L -2- , (64) 

The total active power At and reactive power B1 will be 

(65) 

where ro~ = ljLC. 

In this relation, V2 remains undetermined. It may be calculated approximately 

( 22 ) 
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from the impedance drop due to the circulating current in the tank circuit which 
is caused by the external periodic force Vi= Vt sin wt. 

Hence, neglecting the resistance in the circuit, the following relation will be 

obtained: 

And from this relation, using the approximation, 

(66) 

the relation between the amplitude v2 and vl may be obtained; 

V,-!- - Vd3. (67) 

Using (66) and (67) in (65), we get the following expression: 

A-(VB) Vi{( CR) 3 v2 3 2 1 . } 
1 1 = 2 -a+y +4'Y I+.f8'YVi-:r!3Vism28, 

(68) 

And the synchronized state of the oscillation to be correlated with the equilibrium 

of these powers is expressed as follows: 

Thus in the synchronized state, we obtain the following relation: 

Let us now turn to the stability problem. , 
From ( 68) we obtain 

(aAl) 3 
aV1 o.o =4rno, 

( I oA1) 1 ( w
2 

) 

V~ ---a1F o.o = woL 1- 4w-~ V10 

(aJJl) _0 oV1 o.o- , 

( 23 ) 

(69) 

(71) 
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By virtue of these quantities, the stable conditions of the subharmonic synchro­
nized state will be obtained from (30) and (31); 

(72) 

and s 4 {( CR) 3 v2 3 v2} 0 --.rryVlO -a+-L~ +4'Y to+Is'Y i < . (73) 

Since ry>O in (73), we shall obtain only the following condition from these two: 

(74) 

All the characteristics of the subharmonic synchronization can be easily deduced 

from (70) together with the condition (74). 

VI . Coupled Tuning Circuits 

In this chapter we shall deal with the case where two oscillatory circuits are 

coupled to each other through a common inductance and connected to a source 
which has a non-linear character. 

The essential feature of the circuits are shown in Fig. 6. Current I flows 
from the source into the external circuits and, l1 and l2 circulate through the 
primary and secondary tuning circuit respectively. 

Fig. 6. Coupled tuning circuits 

These circulating currents play the principal role in our treatment as we have 

seen in chapter I. Their magnitude and phase must be regarded as a function 
of t: 

(75) 

And these circulating currents are subjected to the effect of the fictitious electro­
motive force 

(76) 

( 24 ) 
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which should be introduced in the primary and secondary tuning circuit respectively, 

where 

(77) 

Then the following relations will be obtained readily : 

-2Lu1tll = ( R1 + jwL11 + jw~JI1 +(Rt + jwLn)I -jwL12I2 , (78) 

-2L2:2d~l2= ( Rll+jwL22+}w~JI2-jwLI2(I+It)' 

and (79) 

By virtue of the relation (77) and (78), we can obtain the following relations : 

(80) 

These V1 and V2 are also the functions of t as 

(81) 

* * Let us introduce V1 and V2 defined by 

* V1 = V1(t) e-Jrt>tCt), 

* 
(82) 

V2= V2(t) e-J.P2ct). 

• * * Then it will be easily verified from (80) that V1 and V2 satisfy the following 

relations: 

(83) 

in which the following approximation is used : 

Multiplying V1 on both sides of the first equation of (83) and V2 on both sides 

of the sec:mrl, we can obtain the relations which may be called the ~·vector power 

relations " : 

( 25 ) 
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(84) 

We can obtain the following relations from (84): 

In these treatments, we have regarded the source as an ideal constant current 

source which supplies the active power-Vd cos ¢1 and reactive power-V1l sin ¢1 

to the primary circuit. But if the actual character of the source is 

i=g (vt) (86) 

we should calculate the active and reactive power from (24) as 

~ 1 f21t . I- ) . ;-
Pa = 27t 0 g( '\1 2 vl sin 'T '\1 2 Vt sin T dT' (87) 

~=1~ J:1tg(v2-vl sin T)~ZVt cos 'T dT, 

and accordingly - V2l cos ¢2 and - V2l sin ¢2 in (85) must be replaced by 

(88) 

and 

respectively. 

Steady state of the system is to be correlated with the singular point of the 
differential equations of the first order (85). 

Let us rewrite the equations (85) in more general forms for the sake of brevity: 

(89) 

( 26 ) 



27 Macrscopic Theory of Non-Linear Circuit 

In the steady state of the system, magnitude and phase of the voltage are all 

constant and may be determined from 

A~( V1o.cf>1o: V2o: V2o) =0, 

B~CV10.-¢1o~ V2o.cf>2o) =0, 

A~( V10. ¢1o. V2o. ¢2o) = 0, 

13;( V10. ¢10 _. V2o.¢2o) = 0. 

(90) 

Now, A-1 and fh express the total active and reactive power in the primary 

circuit respectively and -A2, 7J; express the similar meaning to the secondary circuit. 
And (90) denotes the equilibrium of these powers. 

In order to test the stability of the steady state, let us otain the variational 
equation from (89), giving small variations to each variables, V1 +8Vt. ¢1 +o¢1. 
V2+oV2, ¢2+8¢2. 

The variational equations will be 

-2c1 V10 ~t oV1 =(~?)ooV1 +(~~:)0o¢1 +(~~:)oV2+(~~~)o1>2, 
2c1 Vto ~~ o¢1 =(~~~)/>Vt +(~!:)oo¢1 +(~t~)ooV2+(~~;)oo¢2, (91) 

-2C2 V2o drj_t_ oV2=(~~) oV1 +(?JA;-) o¢1 +(oA-;) oV2+(~-i-;-) o¢2, o Vt o o¢1 o o V2 o o¢2 o 

2C2 Vio ~t o¢2 =(~~D08V1 +(~::)0o¢1 +(~~;)0oV2+(~-{t~)oo¢2. 

(oil1) (oil1) oV~ o denotes aV~ Vt=Vw, V2=V2o, etc. 
4>1 = 10> cf>2 = </>20· 

Characteristic equation of (91) may be given as follows : 

wpere Do=l. 

( 27 ) 

(92) 

(93) 

(94) 

(95) 
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(96) 

v, =tc~v~. (~~;). 1 (aA1) t 1 COfft) 1 (aB1) 
2c;¥---;-o av2 o 

X 
cl Vio oq,l 0 2(\Vio ~ o 

1 (aA2) 1 (aA;) 1 (aB2) 1 (aB1) 
c;-v~ av1 o 2c;v;o av2 o c2 no o¢1 0 2C2 n~ acp-; o 

1 (aA1) 1 (aA1) tc~d~~:). 1 (aB1) 
2C1 Vio oc/>1 o 2C1 no o¢2 o 

X 
2c1v10 av2 o 

1 (aA;) 1 (aA2) 1 (aB2) 1 (aB2) 2c;v:o acp; o 2c2 Wo o¢2 o ---c;v;o av1 o 2C2V2o av; o 

(97) 

By virtue of Hurwitz criterion, stability conditions may be given as follows : 

D2>0, Ds>O, 
and (98) 
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