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Macroscopic Theory of Non-Linear Circuits

(Received Dec. 8, 1954)
Teruo SUEZAKTI*

Abstract

The author has developed the theory of electric circuits considering
a non-linear character of a source.

From the macroscopic point of view, the author has obtained the relations
which must be satisfied by the active and reactive power of the systems.

In this paper the oscillation problems, such as the hard and soft oscillations,
locked oscillations and fractional harmonic synchronization, have been discuss-
ed as the examples from the above relations.

I. Preliminaries

Sinusoidal electromotive force and current, flowing in a circuit, are represented
by the vector E and I, and their fundamental relation is Kirchhoft’s law, namely :

E=ZI ey
where Z is a linear impedance of the complete circuit.

* B

From the above relation, multiplying the conjugate vector I, the following
relation is readily obtained :

* *
—EI+ZI1=0 : (2
where * denotes a conjugate vector, that is
%
I=1¢ I=1e 3
R .

First term of the left hand side of (2) denotes the generated vector power and
the second term denotes the absorbed vector power in the complete circuit and (2)
shows the equilibrium of the total power.

These are the familiar basis of the treatment of linear electric circuits, in which
we have assumed that the source of power has a linear infinite character.

However, in many electrical devices, notably thermionic valve, current is not
directly proportional to the voltage. Such kind of characters may be called a non-
linear character.

There are a number of cases where the source has a non-linear character and
supplies alternating current which is not far from the sinusoidal waveform.

Non-linear oscillaticn of a valve oscillator is the most interesting and important
in the whole cases mentioned above.
Even under these conditions where the distortion is slight mathematical treatment

* KISKERE : Professor at Keio University

(10



11 Macroscopic Theory of Non-Linear Circuits

is very difficult and we must be satisfied only with the approximate solution.

This paper endeavors to show a more straight forward and facilitated treatment
of non-linear oscillations.

In these problems, it is convenient to express the current and the voltage by
the rotating vector. For example, the current flowing in a circuit fed from a source
which has a non-linear character may best be expressed as

I =1(2) ¢, €))

Both I and € are considered as functions of time # and their rate of change is
assumed to be small enough. In this treatment we must introduce a fictitious
electromotive force additionally, '

—2L 7 X(8) 5)

where L is the resultant inductance in a closed circuit which has a circulating
current I(%).

Appearance of this fictitious electromotive force (5) has been postulated at the
beginning, but it will be seen in the next section that the discussion on the equilibri-
um of power and its stability, which give the physical reality to the steady state
of the oscillation, is greatly facilitated by introducing the term (5).

Let us show some examples taking the simple linear oscillatory circuits.

We will consider the current flowing in the simple linear series tuning circuit
fed from a source which has a linear infinite character. Circuit and notations of
its elements are shown in Fig. 1.

By virtue of the preceding remarks the following relation will be obtained :

E-2L 0 16 = {R-+j(oL — OTIC)}I(t) ' )

This is the fundamental relation in the treatment that will be developed in
this paper.
*
Multiplying the above relation by I, the following relation will be obtained ;

~oLico g 1=l +{R+i(oL- o) o @

and using the expression (4), the next L R C

two relations may be obtained readily : ' ’ L
—orr % _precso+rr E >
1 ® l I

do . :
2LP = —EIlsin l9+(wL_(;C)Ih-

Steady state of the system will be cor-

related with Fig. 1. A Series tuning circuit
dt » dt T

C11)



Teruo SUEZAKI 12

Under these conditions I and § become constant and the right hand side of
the first equation (8) expresses the equilibrium of the total active power and

the second denotes the equilibrium of reactive power.
In the transient state if we reject E for the sake of simplicity, following relation

will be obtained at once, namely

=L ®
that is, the amplitude of the oscillation will diminish with the lapse of time and
if the rate of the change of amplitude is small enough the frequency of this
damped ocillation will coincide with the natural frequency of the circuit, which is
given by the second equation of (8).

Thus, the results obtained by the treatment in which the fictitious e.m.f. is
introduced will be quite evident. The relation (7) may be called a "’vector power
relation’”.

Next, let us consider the case where a parallel tuning circuit is connected to
an alternating current source and is excited by another sinusoidal electromotive

force of the same frequency in the tank circuit.
Circuit is shown in Fig. 2 and all the circuit elements have a linear character.

Current I, circulates in the tank circuit, I is fed from the source and E is
another e. m. f. as shown in Fig. 2.
The fundamental relation concerning the circulating current I, will be expressed

as, E—zLa‘i L()= {R+g(wL— )}Il(t)——(R+wa)I (10)
and L,(®)=jwCV(t). an

The fundamental relation (10) may be rewritten in terms of the voltage
introduced by (11) in the following form:

2Cgle(t) { R+;(wc———)}V(t) %—(1 jwiL)I 12)

where V(&)= V(2) e/o®, E=E, I=1 a3

It will be easily verified from (12) that ‘g;(t) satisfies the following relation :

—20(%{?(;‘) {Cf J(mc - }V(t)+ 9fL (1—3%)1 14)

where V( H=V() e#® | (15)

From (14), multiplying both sides of this equation with V(#) and through use
of the approximation

(125



13 Macroscopic Theory of Non-Linear Circuits

R
1—r=1
we can get the expression‘ which may be called the ’’vector power relation”,
EV(¢
—acvin g Vior={F—i(ec— )V + T —ver . (16)

Substituting V and V from (13) and (15) into (16) and equating the real and
imaginary parts of both sides of this equation, we obtain the following relations :

. CR
-—ZCV%—‘;= —VI cos 0+gLXsm 0+ V2, an

1 .
2CV: 55-5: —VI sin ﬁ—fz cos 0_((‘00_&:2 >V~ . : &>

Steady state of the system will be
correlated with

) av _ o _
%- l ¢t =%, @™,
2R “C V  and under these conditions V and 6
I ég_\\ 5 ] ‘! are constant. '
Then right hand side of the first
equation of (17) yields the total ‘active
Fig. 2. A parallel tuning circuit power. In detail, the first term denotes
with sinusoidal e.m.f. the active power fed from the source,
the second the exciting active power
of the external periodic force, and the last the absorbed active power in the
circuit.
And each term of the right hand side of the second equation (17) represents the
reactive power of the same meaning as mentioned above with the active power.

Refore concluding this section something ahout the active and reactive power
must be added.

Absorbed instantaneous power p in a linear electric circuit is expressed by the
product of the terminal voltage » and current 7 flowing into the circuit, that is,

p=v7=2VI (sin 7 cos f+ccs 7 sin #) sin 7 (18)

_where i=+/21TsinT ,

. a9
v=4/ 2 Vsin (v+6) .

From these relations absorbed active and reactive power may be expressed
respectively :

1 ”
PG=VICOS() = O f2 vi dr 3

=VIsind = 27rf vdT

(13)

20)



Teruo SUEZAKI 14

II. Equilibrium of Vector Power and its Stability

In the preceding chapter, the relations which must be satisfied by the active
and reactive power have been presented taking as the examples the simple tuning
circuits.

By virtue of these relations the discussion of the equilibrium of power which
yields the steady states of the oacillation and its stability will be greatly facilitated.

In the preceding examples, on account of the linear character of the source and
the circuit elements, there were no question about the stability of the steady state.

But if the source has a non-linear character, the question on the stability about
a steady state will become very important and difficult problem.

Now let us express the character of an electric two pole:

v = f(2) @n

where v is the terminal voltage of the.two pole, 7 is the current flowing into
this two pole and f(?) is a polynomial. Equivalent active and reactive power will

be calculated in terms of i=+/ 2 Isint through use of (20) and (21):

1 pem, .
pa=%fz FW 2 IsintW 2 Isintdr,

1 (22)
Pb=ﬂf0 F(W 2 Isint)V 2 Icosr dr.
Next, let us express the character of an electric two pole by
i = g(v) (23)

where g(v) is a polynomial.
Equivalent active and reactive power will be expressed in terms of v=4/ 9 Vsin+

instead of 7, because in a steady state the relation:
dp = vdi+1idy =0

should be satisfied.
So, we can obtain the following expression of the equivalent active and reactive

power from (20) and (23) using —i dv instead of v d7:

— 1 2z I .
Pi=3,.[ "8~/ 2 Vsinm)V 2 Vsinz dr,
(24
— —-]_ 27 . . -
pb=—2;f0 2w 2 Vsintv/ 2 Vcosr dr.

When the active power that is expressed by P. in (22) or P, in (24) takes
a positive value, it denotes an absorbed active power in an electric two pole.

(14)



15 Macroscopic Theory of Non-Linear Circuits

On the other hand if they take a negative value under any condition, they
express a generated active power from the electric two pole, and in these cases
P, and P, denote the generated reactive power. Under these conditions, such an
electric two pole may be regarded as a power source,

If the source in the first example in the preceding chapter feeds the power
which is expressed by (22) with the conditions mentioned above, the expressions
—EI cos § and —FEI sin @ in (8) must be replaced by P, and P, in (22) respectively.

In the same way, if the source in the second example in the preceding chapter
feeds the power expressed by (24) the terms —VIcos@ and —VIsin g in (17) must
be replaced by P, and P, in (24) respectively.

Consequently these two examples may be expressed in more general forms, such as

dI
—2LI G=A(0)

a9 (25)

2L §)=B(16)

and —2cve) <A
b (26)

20V G =B(V,9)

where A(L#) is the total active power of a system expressed by the current and
resistance, B(Z,d)is the total reactive power expressed by the current and reactance,
A(V,9) denotes the total active power of a system expressed by the voltage and
conductance, and B(V,0) denotes the total reactive power expressed by the voltage

and susceptance.
Let us consider the equation (25) further in detail.
The steady state of the oscillation will be expressed by

X(1,0)00)=0 y -F(VO;GO)=O . (27)
In order to test its stability we will suppose the small variation
Vot+-8V 0o-+30 (28)

and replace V and @ in (26) by (28), develop the right hand side of (26) in powers
of 8V and 86, and reject all but the linear term in 8V and &86.
Thus we shall obtain the following variational equations:

207 gyov=(59), 3v+(35), 90 e
oB

2CV§%89=(6V)0_03V+ (a; )0.059 ‘

0
It must be considered that the equilibrium will be stable if 8V and 89 approach

(15)



Teruo SUEZAKI 16

zero with laps of time £ These conditions are readily obtained from (29)

(21‘,)0 0 130(3; 000, (30)
04y 104
and ‘ (6V 0.0 Vo(30 )o ol 2o an

We have assumed that C>0 and V,>0 in deriving these conditions.

In the similar way, the equilibrium of power and its stability will be dicussed
from (25) too.

It will be seen clearly that not only the active power but also the reactive
power play important roles in testing the stability of the equilibrium of powers.
And as we have seen from these treatment, the discussion on the equilibrium
and its stability are greatly facilitated by the introduction of the fictitious electro-
motive force described in chapter 1.

Stability conditions described in (30) and (31) are the basis of the treatments
that will be developed in the following chapters.

II1. Self Oscillations
Self oscillations of the grid tuned valve oscillator will be considered as an
example of the treatment developed in the preceding chapter.
The essential feature of the oscillator circuit is shown in Fig. 3.

Using the notations which are shown in Fig. 3, fundamental relations will be
readily obtained as,

—2Lg‘§11(t)={R+ j(wL—wlc)}I,(t)—jwMI , (32

L(8)=jCV(2) (33) M
L

Replacing I, by V through /> O OV

use of (33) the fundamental I RN L

relation (32) will become

Fig. 3. A feedback Circuit
d CR . 1 M
_ZCE‘VU)={T 4j <mC—&)~Z)} V-1 34)
and from (34) we get the conjugate relation,
ax | M *
—2C J, V(t)= {_ - ;(mc——— )} vo-21 (35)

(16 )



17 Macroscopic Theory of Non-Linear Circuits

Multiplying V on both sides of this equation the vector power relation will be
obtained,

—2CV(2) 5, 4 5= { ]<cuC L)}V(t)V(t)— v ‘ (36)

In the equilibrium of the power, the first term of the right hand side of (86)
denotes the absorbed vector power in the circuit and the second denotes the vector
power fed from the valve.

Let us assume that the anode current 7 is expressed by

=G0+ g5+ gs0v° 37

where g1, g; and g; are constants depending upon the characteristic curve and v
is the alternating grid voltage of the valve.

Then the power fed to the circuit may be reexpressed from (24) and (37)
=g f {gl(v 2Vsin1)+g(v 2 Vsin 7)+gi(v/ 2V sin 7)° }«/ 2Vsin T dr
= Mavrgavigar) (38)
P,= Ql;fzﬂlﬂll{gl(«/7 Vsin m)+g:(v 2 Vsin7)34g;(v/ 2 Vsin 7)° }«/ 2 VeosTdr=0.
Using this in (36) we get the following relations:

dV_CR
—2CV dt —V“' L<g1V+ 2baV + 2g5V“> ,

39
207 g = ~(aC— o )V*
If we write,
- CR, M
R A CACE FAS AL
” s ’ (40)

_ 1.,
B<V,e>=_(wc—wL)Vz ,
equation (39) takes on the same form as that of (26), and the steady state of
the oscillations will be determined from (27) and we shall be able to test their

stability from (30), (31).
The amplitude of the oscillation V, will be obtained from

3
(CR—gM) Vo— 5 g, MVi— ggstgzo (41)

(17 )



Teruo SUEZAKI 18

and its frequency from
oC—1/oL=0. (42)

The stability conditions not only give them physical reality but also particular
character of the oscillations, that is, the “hard” and “soft” oscillations.

Let us show, as an example of our treatment, that the oscillations will be “soft”
under the following conditions:

M>O’ gl>0’ g3<0v g5>0- (43)

In the relation (40), V appears only in the even power such as V2, V* and V5,
and it is convenient to introduce p defined by

p=V2 (44)

and under the condition (42) reactive power B(V.0) will vanish from the stability
conditions.

Thus we obtain the following relation instead of (41):

(CR—gi:M)po+aM p2—bMpi=0 (45)

where a=—3g,/2 , b=5g:/2 , (46)

and p, is determined as the roots of equation (45) as

PO-‘O=0 ’
a [Tay_1 -
pras=gyy (g0) — L @M —-CR> (46
and is stable if,
24\ _1
(539, [(CCR—g:M+2aMp—36Mp) >0

that is,
(e:M—CR)—2aMp,+3bMpj<0 n

and is unstable if

(8:M—CR)—2aMp,+3bMp?>0 (48)

If we denote the roots of the equation p., which is obtained by equating the
right hand side of (47) to zero, stable domain of the oscillations will be expressed by

Pe1 < Po < Pe2 (49)

(18)



19 Macroscopic Theory of Non-Linear Circuit

where pera= 3%1‘\/ (3(2\)2 —%LM(g 1M—CR)

Under the condition
aM—CR>0, (50

it is evident that po.c is un-
stable, that is, an oscillation

\\30\7\\ will take place. Under this
T Emsmmmme— e condition, only the po. Which
Coz has the negative sign of the

I B - ‘ - root in (46) will be stable.
b oo Therefore, if we increase M

larger than the value

0 Mo M M,=CR/g the oscillation of
Fig. 4. Characteristics for the soft oscillations the final amplitude po.1 Will

appear, and further increase
of M will lead to a monotonic increase of amplitude which is shown in Fig. 4.
When M decreases, the amplitude diminishes until M reaches M, and then the
oscillations will stop.
Appearance and disappearance of the oscillations take place at the same value
of M.
Such oscillations are called the soft oscillations.

IV. Synchronism of Self Oscillations

It has been noticed, in Chapter III, that the essential feature of self oscillations
is characterized by the stability conditions, but in those cases discussed in Chapter
IIT the reactive power had no important role at all. Now I will show an example
in which the reactive power has an important role to test the stability of the equilib-
rium state.

Let us consider the locked oscillations of valve oscillator.

A plate tuning oscillator is excited by an external sinusoidal electromotive
force presented in the tank circuit.

The essential feature of the oscillator circuit and the notation of the elements
are shown in Fig. 5.

In the locked state of the oscillations, oscillator frequency coincides with that
of the external force, and oscillations that is not far from the sinusoidal may be
observed.

Therefore, the locked state of the oscillations may be treated from the equilib-
rium of vector power.

The fundamental relation will be expressed in the same form as (16).

(195



Teruo SUEZAKI 20
We express the anode current 7

i=g4Gv+g:G*?*+g:G313 , (629
G=D-K,

where D='/u, K=M|L, u is the amplification factor of the valve and g, gs are
the costants depending on the characteristics of the valve. If ,G<0 and g;G3*>0
in (51), it expresses the soft working condition of oscillator as we have mentioned
in chapter III (43) and it is convenient to express

aG=—a, 2:G*=4, gG*=y. (52)
a>0, y>0.

Then the power fed from the
valve will be written as follows
through use of (24), (51) and (52): gM P
| él{ I

- 3
P= ‘—avz'i‘?}/‘”

o
i}
o
<

(63)
P,=0, Fig.5. A locked oscillator circuit

Thus from (17), replacing — VIcos# and — VIsind by P, and P,, we obtain the
following fundamental relations:

av 3 EV . CR
—2CV W—:—aVZ-I'?')’V“ +0E sin 6+ Z”'V’ , (54)

do EV 1
2Cvy? 3= " oL 08 0—(wC——w—L)V’ .

Hence, the locked state of the oscillation will be determined from

Ao = (F-a )i+ EV sino = 0
B8y =—(wC—p )V =LY cosg = 0 (55)

By virtue of (65) the response curves of the locked oscillator is expressed by

{oaL—CR ~GonLvi i+ {22 V'vs =2 (56)

g
In deriving (56) from (55), the following approximation has been used:
wL==w,L , wi=1/LC , (1)

V and € which satisfy the equation (55) are expressed by V, and 6, respectively.
Next, let us calculate the following quantities from (55).

(205



21 Macroscopic Theory of Non-Linear Circuit

(g§>o.oz<cf—a)Vo+ g vV3 ’

( ?{/ g?) wEL CcoS 090:;3.1‘ ‘%EE)VO ) (58)
GP)mar®H)%

() G (Foa bt

Introducing these quantities into (30) and (31), the conditions under which
the equilibrium state, (V,, 6,), will be stable, are readily obtained as follows:

CoR I
—2v, {(%R —a )+ 3yV3}>0
also,
{EV(v2)-(v 3 Yovlh.
_{ CL—E—LI>V0+ ’)’V’} {(CR—CX)VO-F 5 ')'Vo} (wL wo—w> V’<O

Using the approximation (57) and considering V; > 0 these conditions can

be expressed finally as

wy(aL—CR)—3wyyLV}<0 , (59

{oiaL—~CR~ 5 oy LVi}{oaL—CR)~ wwLV} (“’LG) >0 (60)

Essential features of the locked oscillations are completely described by (56),
(59) and (60), that is to say, the response curve of the locked oscillation will be
presented by (56) and the synchronous range will be determined from (59) and
(60) together with (56).

These relations will lead to the results which have been obtained by B.van der Pol.

V. Subharmonic Synchronization

In the previous example in chapter 1V, the synchronization, which may be called
the subharmonic synchronization, will be observed again when the external periodic
force has almost the same frequency as the integral multiple of the frequency
of the oscillator.

Now, in this synchronous state the oscillator frequency is exactly the integral
fraction !/n of that of the external force. Therefore, we may call them “frequency
demultiplication”.

21)



Teruo SUEZAKI 22

Mandelstam and Papalexi have treated this problem with skilled mathematical
method, but it is rather difficult and complicated.

Qur treatment will enable us to deal with this problem more straightforwardly,

Let us demonstrate taking as an example !/2 subharmonic synchronization.

We will express the anode current by (51) for the sake of simplicity, because
it disturbs the essential treatment of our method the least.

i=—av+Lvi+7e® ,
and in this case, we put the anode voltage in the synchronous state as follows ;
v=Visin( 5 t+0)+ Vysin ot (61)
which may be written
v=Visint + V,sin 2(r—0) . (61
Then the anode current will be expressed by
i=—aV,sint+B8V1Vscos (t—20)+ i»«yV? sin -r+—§«yvlvg sin T+[ .o ] G

By virtue of (24) and (62), power fed from the valve at the fundamental
frequency will be written thus: ‘

=~ 1 3 3

Pu=g <—an+Z YVit g yViVi+BViVesin 2(9)

- 1

Pb: —‘2' BWVz COoS 20 (63)

where P, denots the active power and P, denotes the reactive power.
And the power absorbed in the circuit at the fundamental frequency will be
expressed as:

. _CRV:
Pue="7 9, (64

wC Z)Vf

P

2

The total active power A, and reactive power B, will be

_ 2 CR\ 3 3 S .

A= g‘{(—a+ 1‘>+ £ VVit g vVitBVasin 29}’

- V2 2 w?
B, = 2' {Z?L( 1— 4(03)—/8% cos 29}’ (65)
where o);=1/LC.

In this relation, V: remains undetermined. It may be calculated approximately

22)



23 Macroscopic Theory of Non-Linear Circuit

from the impedance drop due to the circulating current in the tank circuit which
is caused by the external periodic force v;=7V; sin wt.

Hence, neglecting the resistance in the circuit, the following relation will be
obtained :

Vi = Va(1-e?LC),
And from this relation, using the approximation,
2w @ (66)
the relation between the amplitude V, and V; may be obtained ;
Va= —Vi/3. . (67)
Using (66) and (67) in (65), we get the following expression :
CR

avior="V(—a+ Pyt 3rvie Sovi- Javisinos)

B(V:60)= Vl{”’“ (1 io? >+ =BV 00520} (68)

And the synchronized state of the oscillation to be correlated with the equilibrium
of these powers is expressed as follows:

— 2 3
Ay (V10;60> 2&{(*a+ QLR>+ ‘4’YV§0+ 138')’.[/3 '—_éBVI sin 290} =0 , (69)
Bl (VIO,GO)— VIO{{B L(l 4&72 >+ BVZ COS 200 }

Thus in the synchronized state, we obtain the following relation:
3 3 2 1 2 2) 2
{@(—aL+CRY+§ @y LVit+ 5o LViF ={ 3oLV —{1-(2- V) (0

Let us now turn to the stability problem..
From (68) we obtain

24,
aV])O 0 yVSO
1 8A ?
N e (S 71

0By _
aVl)O,O_O ’

1 3B, CR 3 3
Vléle 0_02(0‘— L >V10""4")’Vf0—18'")’VmV?.

(23)



Teruo SUEZAKI 24

By virtue of these quantities, the stable conditions of the subharmonic synchro-
nized state will be obtained from (30) and (31);

( ——oz+%?)+% 4 Vfo+'1§8 YVi>0 (2
3 CR\, 3 3 .

Since >0 in (73), we shall obtain only the following condition from these two:

3 3
( —(X+‘CLE>+’I 04 Vfg*i’is v Vi>0 . ¢LH)

All the characteristics of the subharmonic synchronization can be easily deduced
from (70) together with the condition (74).

VI. Coupled Tuning Circuits

In this chapter we shall deal with the case where two oscillatory circuits are
coupled to each other through a common inductance and connected to a source
which has a non-linear character.

The essential feature of the circuits are shown in Fig. 6. Current I flows
from the source into the external circuits and, I; and I, circulate through the
primary and secondary tuning circuit respectively.

v G5

Fig. 6. Coupled tuning circuits

These circulating currents play the principal role in our treatment as we have
seen in chapter I. Their magnitude and phase must be regarded as a function
of ¢:

L=Iy() e, Lo=I,(¢) e, (75)

And these circulating currents are subjected to the effect of the fictitious electro-
motive force

d d
'—2L11 az Il R ’—2L22 'd'f Iz . (76)

(24)



25 Macroscopic Theory Non-Linear Circuits

which should be introduced in the primary and secondary tuning circuit respectively,

where

Ly=L+Lys, Lyp=Ly+Ls. an
Then the following relations will be obtained readily :
2Ly = (RitjoLut e )l (Ri+jo L)l —joLuls | (78)
—2Ls» (glz = (Rz +joLa+ }g,laz) I—joLi(I+1 )’
and —joC V=1, JoCaVa=T,. . 9

By virtue of the relation (77) and (78), we can obtain the following relations :

d R,Cl 7 . wL1,Cy
=2, Vi ={7 (G wL oLV (g T ; (80)
R,C L L;:.C
20, GVa={5% 1 j(wCa 7 WV PR
These V; and V; are also the functions of ¢ as
V1 = Vl(t) e"’x("), Va= Vz(t) P2, (81)
* *
Let us introduce V, and V, defined by
Vi=Vi() e 391,
(82)

{;2 = Vz(t) e—JP3(®),

Then it will be easily verified from (80) that {51 and \Z satisfy the following
relations :

d * R,C . L.C; *

*‘2C1 dt VI:{_Ill“I —]((ﬂcl )}- 1— (0 15121 Vg, (83)
4‘ ¥ __RzCz . Lys * -Qlecl s

—2C4 dt Vz—{ Ly _]( er>2>} L22 . Vi ,

in which the following approximation is used :
1+R1/]-(1)L11$1.

Multiplying V; on both sides of the first equation of (83) and V, on both sides
of the second, we can obtain the relations which may be called the “vector power

relations 7 :

(25)



Teruo SUEZAKI 26

d C . 1 * * L1,C.
—2C,V, dt %71={Igif—](wcl— T)}Vl V,—V, I—]w L12*2V1 Vz s (84)
L12C
—ZCZVS gt 62—{52—(;2 "“](wcz COL )}V: {(}2 gzvz I— i Ll? IVz Vx

We can obtain the following relations from (84):

dV1 Cl CULIZCZ

—2C,Vy dt = —ViI cos pr+-7 L., Vi L., V1 Vs sin (¢p2— <;b1
. L,,C.
201VT ddd;l = —VII sin ¢1—(wC1 le ) V2 COL12 2‘/11/2 COSs ((;bz (l)l) s (85)
—2C2V2 dVZ 212V2I COSs ¢2+R2€2 VZ —'CBL’I’ZQVJ/z sin ((1)1 4)2)
L L:,C
2C2 3 Zfz— 12V21 sin ¢2-* (Cz)07 CUL22) 58— @ iz 1V1V2 cos (¢‘1"¢’2).

In these treatments, we have regarded the source as an ideal constant current
source which supplies the active power—V,J cos ¢; and reactive power—ViIsin ¢,
to the primary circuit. But if the actual character of the source is

i=g(v) (86)

we should calculate the active and reactive power from (24) as
Ex——-ziﬂfzﬂg(x/ 2Visin & 2 VisinT d’r, 87
_;7% f:ﬂg(«/_Z*Vl sin 7)A/ 2 V; cos T dr

and accordingly —V.I cos ¢» and — VI sin ¢, in (85) must be replaced by

1 = - -
77;_/‘: g 2 Vysin(t+¢1—¢a))Vasin 7 dr (88)
and %7:1— Zﬂgt‘/7vl sin(t+¢1—¢2)IVa cos 7 dr

respectively.

Steady state of the system is to be correlated with the singular point of the
differential equations of the first order (85).

Let us rewrite the equations (85) in more general forms for the sake of brevity :

d .
~2CV, G = AV b Vagn)

20,V B BV Vg

d Va

=Ay( V1.¢1.V2.¢2>’

2C,VE 9 =BV Vi)

(26)
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In the steady state of the system, magnitude and phase of the voltage are all
constant and may be determined from

Ay( Vio.010:Vao:Va0) =0,
B(V1.6p10: Va0 p20) =0, (90)
Ax(Vio p10.Vao.pao) =0,
Fz( V10.¢10,—V20;¢20) =0.

Now, A, and B, express the total active and reactive power in the primary

circuit respectively and A, B, express the similar meaning to the secondary circuit.
And (90) denotes the equilibrium of these powers.
In order to test the stability of the steady state, let us otain the variational
equation from (89), giving small variations to each variables, Vi+8Vi, ¢+,
Vat-6Va, patScpa.

The variational equations will be

—2C, Vo dtavl( )avl( )8(]51 (g‘;) ( )&;)2,

2C, Vi, dt Opi= ( ) bV1+(aBl> 3¢1+(g ) (aBl) oz €y

SV,
—2C, Vo dtavz_(a“lﬂ) SV + (aA2) 8¢1+< % ) (7) Seba,

2C:V'3, gt Scps :(a§2> 8V1+(ggf [5¢1+( ) 3V2+<‘35 2) Scps .

04, A,
(aVI)o denotes (aV)Vl—Vm, Vo=V,  etc.

$1= 10, $2="%yq.

Characteristic equation of (91) may be given as follows :

D,S*+D,S*+D,S?*+D;S+D,=0, 92)

where D=1, 93)
_ 1 @Ay _1 @B\ 1 (34N 108 .

Di=gc, V10L<aVl)o‘Vm(a¢l)} +202V20{(3V2>o Ve 8¢z)o}, oH

Db, sovd@)|  beviGR), sanlm),
1 (azg) ;,,1””(8;71;) + 1 ((g_;;) 1 (373})
2CzV‘20 ﬁ o 2CVa\0 Va/q 2C2Vgo 5’(]51 0 2C)V§a o¢

oo Gt ecmGo) Hoara G 2o Codl) (95

275
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Ds= {ZC}Vw(g‘;: 2c1V20 {é—:)o} vcllvi‘)(%) 0 2C1 10(25;)

071172;; %f—f ), 2012V§0(g%)

- J12’c11'V;7(, gff)ﬁiclmo(%% o} 2cfvm(avl> 2clvl< )
1 (o4, (96
v G, ey GO
D4=27CI{V{Q g—[;}i)o 25‘;7410 géz» % ?Cll Vi §f1> 2C1V20(f >0
2@%17;(%%)" éé%féo(g%)o 2@%50(%—2?)0 202 % (%B )o}
- 2_51%/%(2%;0 2?%3(%)0 % ZCTV{o a—é)o 2C1V10(8V2)
2D, @D bn@., @l
2C,Vi\op, Jo  2C,Vi\odhs Jo zczvzo(avl) 2C,Va\oV3/o

By virtue of Hurwitz criterion, stability conditions may be given as follows:

D,>0, D,>0, D;>0, D,>0,
and (98)
Ds(D:D;—DyDy)— DD, >0,
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