EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title On the lateral buckling of a trapezoidal cantilever of uniform thickness and a trapezoidal cantilever
of | section with concentrated load at the free end (part 1)
Sub Title
Author JEER, — HB(Watanabe, Ichiro)
Publisher EREEBAFERILSIES
Publication year |1953
Jtitle Proceedings of the Fujihara Memorial Faculty of Engineering Keio
University Vol.6, No.23 (1953. ) ,p.86(8)- 91(13)
JaLC DOI
Abstract In this paper the author discusses the method of analysis for the determination of the critical lateral
buckling load of a trapezoidal cantilever of uniform thickness and a trapezoidal cantilever of |
section both with concentrated load at the free end, with special reference to the effect of the
degree of convergence or divergence of the trapezoid on the critical buckling load.
The author, further, performed the calculus for the numerical example for each case to find the
tendency of the variation of the critical load with degree of convergence or divergence coincides
qualitatively for the two cases.
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=K050001004-00060023-

0008

BRZBAZZMERIRD MU (KOARA)CEBE M TLWAR OV TUY OERER. ThTIOEEE, FLFLEFHRLRTECREL. TOERMGEFEEECELST
RBEENTVET, BIACHLE> TR, BEFRELEZETLTIFALEE L,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

On the Lateral Buckling of a Trapezoidal Cantilever of
Uniform Thickness and a Trapezoidal Cantilever of I
Section with Concentrated Load at the Free End(Part 1)

(Received September 17, 1953)
Ichiro WATANABE*

Abstract

In this paper the author discusses the method of analysis

for the determination of the critical lateral buckling load of a
trapezoidal cantilever of uniform thickness and a trapezoidal
cantilever of I section both with concentrated load at the free
end, with special reference to the effect of the degree of con-
vergence or divergence of the trapezoid-on the critical buckling
load. ’

The author, further, performed the calculus for the numerical
example for each case to find the tendency of the variation
of the critical load with degree of convergence or divergence
coincides qualitatively for the two cases.

1. Introduction

In this paper the author treats the problem of lateral buckling of a trapezoidal-
cantilever of uniform thickness (Part I) and a trapezoidal cantilever of I section
(Part II) both with concentrated load at the free end, with special reference to the
effect of the degree of convergence or divergence of the trapezoid on the critical
buckling load.

In Part I, i.e. as to the case of trapezoidal cantilever of uniform thickness, L.
Prandtl] previously had found theoretically the critical buckling load for the case
of rectangular cantilever of uniform thickness.”” Further, K. Federhofer had made
theoretical analysis concerning to the cantilever of uniform thickness but varying
breadth, the variation of which being expressed by the relation of %A=hy(1—2z/l)",
where %, represents the breadth of the cantilever at the fixed end, / denotes the
length of the cantilever and z means the ordinate measured lengthwise from the
fixed end®. If we put #=0 in the above expression, we obtain the solution for
the triangular cantilever of uniform thickness with a concentrated load at the
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appex. The author now has made theoretical survey and obtained the buckling
loads of trapezoidal cantilever of uniform thickness but varying convergent or
divergent degrees loaded at the free end. The results were plotted for a numerical
example together with the results derived from the above-mentioned analysis de-
veloped by L. Prandt! and K. Federhofer, to find the buckling loads increasing with
increasing divergent degree (or decreasing convergent degrees) when the breadth of
the cantilever at the fixed end is maintained unaltered.

In part II, i. e. as to the case of trapezoidal cantilever of I section, the author
has treated the problem in a like manner, and also examined the effect of the
degree of divergence or convergence upon the critical buckling load for a numer-
ical example. '

Part 1

Lateral buckling of a trapezoidal cantilever of uniform thickness with concent-

rated load at the free end
I—1, The method of analysis
t) 4 u

/

A

N

Fig. 1 Trapezoidal cantilever of uniform thickness

Fig. 1 shows a trapezoidal cantilever of uniform thickness with concentrated load
P at the free end, the other end being fixed. P is considered to lie in the mid-
plane of the web and further let the point of application of P to be the centre of
the end section of the cantilever.

Further, we assume that the displacement is small and the stresses induced are
within the elastic limit. Let the origin of the fixed coordinate %, ¥, 2 be on the
fixed end of the cantilever as shown in the figure, and further we choose another
rectangular coordinate £, n, £, the origin of which is selected as D, D being the
centre of any cross section of the cantilever as shown. Denoting the displace- _
ments as #(x—component), v(y—component) and /3, and taking into account of
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88 Ichiro WATANARE

the right hand portion of the section through the point D, the moment around
the axes passing through the point D and parallel to the x—, y— and z—axis
may be described respectively as follows.
M.=P(l—2), M,=0, M,=—P(d—u)
where / denotes the total length of the cantilever, while & represents the displace-
ment of the free end shown as in Fig. 1.
As the direction cosine between the rectangular axes of x,y, 2, and &, %, { may

be written as in table 1, the moment around the &,%,{ axes may be written as

follows.
Table 1. Direction cosines

ox Y 7
3 | 1, 3 —duldz
i “ -8 1, —dv|dz
¢ l duldz, dv|dz, 1
M; =P(1—2)
M, =—BP(l—2)

M; =P(l—z)%—P(8—u)

Putting these expressions into the general moment equation

BLY M, BV -m., ¢ o,
we obtain the following equations.
B, 2% — —pPi—2)
B, ‘f;f; = —P(I—7) ‘ ¢h)
c ¥ = Pu—2) % _p5—u) |

Denoting the thickness and the height of the cantilever by & and % respective-
ly, we have
_ h _ bms . hb® o b\~
B = —«1-2~E, = ~~1-2-¥E, C=- 3~—»(1 0.630-]1—)(1.

If we put h:hu(l—c-i—), c=(ho—hi)/hy, then it becomes that ¢ represents the

degree of convergence or divergence of the trapezoidal cantilever. From the first
equation of (1), we get

dn _ _ BP,,

az =" g U7 )
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Differentiating the third equation of (1) by z and eliminating d*«/dz* by means
of eq. (2), we obtain

- to

ag _ 36P2([—2)*
{(z —c2)—0.630 -}_d ¢ dz BTy 8= @.1)
Putting 36PP/h°EG =a, 0.630 bl/hy=K for simplicity, the eq. (2.1) yields
(l—cz){(l——cz) — } dé —c(l—cz) dB +a(l—2z)B=0 (2.2)
Putting w=1[—2, the eq. (2.2) becomes ﬁnally
(cw+l—cl){(cw+l~cl)—K} @B +c(cw+1—cl) ~d’§ +aw?3=0 3
i _

We may solve the eq. (3) by infinite series. Thus, puttmg
B=Aw™+ Bw™' -+ Cw™t> Dw™+3 4 Ewntt+ Fuw™+5 4 Gu™ 0+ Hw™+7-+ Tw™+8 4 Jym+e
- K™ +10 4 Logm+11 L Mpm+13 4 Nggm+18 - Qgpmt1e - eeeeee...e (4)
and denoting
X={I(1—c)—KIl1—c)}, Y={2c(1—c)— Kc}
for the sake of simplicity, we get the equation which defines the exponent m of
the infinite series as follows:
m(m—1)=0 (5)
Thus, we obtain m=0and m=1. We are able to obtain, further, the following
relations between the coefficients A, B, C, «+-eeeeeee .

B _ Ad(l—c)
(m+1)X

o= Ad(l—c{mY+d(1—c)} Am*e®
(m+2)(m+1)X2 T (m+2Ym+1)X

Using these expressions, the eq. (4) is expressed in a following manner.

g=d— AGL=0) 4y ATEL=O oy
ac(1—¢) yoay
+aw— oW w?+ 4.1)

One of the boundary conditions of the present problem ‘is that M; =0 at z=/,
Ze. (dB/dz)=—(dB/dw)=0 when w=0. Therefore, it is evident that there exists
the following relation between A and « of eq. (4.1).

Acl(1—c¢)
a=—x
Denoting
K:O.630-»lil~-=kl, k=0630-2

I
X={P(1—c)— Kl(l o)y =8{(1—c)*—k(1—c)}="Px,
Y=2cl1—c)— Kc—lf2c(1——c) —ke} =1y,
x=(1—c)—k(l—c), y=2c(1—c)—kc
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for simplicity, the relations between the above-mentioned coefficients 4, B, C,
------------------ are deduced to the following. Thus,

B=—Adl=c)
Ix
_ Ac(1—c)?
C= 22x? ’
—_ Ac(l=o{y+c(l—0)} | Ac(l—c)
p 6l3x5 T by
F=_ 41 =c{y+c(1—c){2y+d1—c)} _ Ac(1—c){2y+5c(1—c)} _ aA

41 x¢ 4 1x3 120%x °
The similar expressions are obtained between the coefficients «, /3, 1y, «e-reere-r .
In practice, however, it is rather convenient to proceed as follows. Thus, using
the numerical values of x and y evaluated for given values of ¢, we proceed to
decide the values of the coefficients numerically by means of the following relations.

=,__TAC(1T'C)
(m+1x
c=_ Blmy+dl—c)} = Amc
m+2)x (m+2Xm+D)Px

D= Cm+Dy+c(l—c)}  B(m+1yc
Um+3)x B(m+3)m+-2)x ?

E=— D{m+2y+cl—-c)} _ COm+2yc
Im+4)x ~ Em+ L) m+3)x

Fe — E{(/{n+3)y+c(1fc)} _ D(m+3)ct o aB
I(m—+5)x P(m+-5)m+4)x P(m+5)(m+4)x

G=— FH(m+y+c(1—0)} Em+4yPce aC
[m~+6)x T P(m+-6)m+5)x E(m~+6)m-+5)x ’

H=_ G{m+5)y+c1l—0)  Fm+5¢c¢ aD
Am+7)x T Em+7)(m+6)x T pPm+7) m+6)x

I = H{0n+6)y+o1-0)} G(m+6yc aE
Im+8)x T PEom+8)m+T)x — BEm+8)m+T)x’

Thus, using the above expressions, all the coefficients are determined for given
values of ¢, x and y corresponding to m=0 and 1 respectively. The coefficients
thus determined are then put in the eq. (4.1). Applying another boundary con-
dition, 7. e. 8=0 at the fixed end (2==0 or w=1{), into this equation, and denoting

36 36P2

= KRG “T HpEG

for the sake of simplicity, we obtain the polynomial expression as regard to
al*=cP?. The minimum root of the equation which may be obtained by numeri-

—ePl

cal calculus represents the critical lateral buckling load P.. tn our case.
1—-2. Numerical example
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As cited previously, ¢=(hy—h,)/h, is the coefficient which represents the degree
of convergence or divergence of the trapezoidal cantilever. The positive
values of ¢ means the convergent trapezoidal cantilever, while the negative
values of c represents the divergent trapezoidal cantilever. As mentioned before,
the cases for ¢=0 and c¢=1 are already solved by L. Prandtl and K. Federhofer
respectively. In the present example, the author performed calculations for ¢=~—0.5
to determine the critical buckling load for the assumed values of &/h,=1/30 and
k=0.021. The evaluations were performed taking up to the 4th order terms for
eP?t, Thus, for c=—0-5, x=2.2185, y=1.4895, the equation yields to
0.00000000083273(eP21*)t —0.00000039909( e P2/4)3+0.00017439(e P 2/ )* —0.032571&(eP2{*)

+0.9987=0.

Solving this equation, we have eP?*=375 or
 =1.020 0V EG

2

For ¢=0, P..=06615 ,,,"ob?}z/ﬁ‘

and for c=1, P..=0.3963 hob?«l{EfGﬁ

The results are 15—
plotted in Fig. 2,
taking @N
Py PPV EG D
as ordinate and ¢ as E Lo
abscissa. The ’

critical buckling load
decreases for con-
vergent trapezoidal
cantilever and in-
creases for divergent 05—
one for the same
values of hy, b and
I, As seen in the
figure, the  slope

becomes somewhat 0 | ' l
-05 g +05 +10

steeper for c C

negative. Fig. 2 Critical buckling load of a trapezoidal cantilever

of uniform thickness
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