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On the Lateral Buckling of a Trapezoidal Cantilever of 

Uniform Thickness and a Trapezoidal Cantilever of I 

Section with Concentrq.ted Load at the Free End(Part 1) 
(Received September 17, 1953) 

lchiro WATANABE* 

Abstract 

In this paper the author discusses the method of analysis 

for the determination of the critical lateral buckling load of a 
trapezoidal cantilever of uniform thickness and a trapezoidal 
cantilever of I section both with concentrated load at the free 
end, with special reference to the effect of the degree of con­
vergence or divergence of the trapezoid·on the critical buckling 
load. 

The author, further, performed the calculus for the numerical 
example for each case to find the tendency of the variation 
of the critical load with degree of convergence or divergence 
coincides qualitatively for the two cases. 

I. Introduetion 

In this paper the author treats the problem of lateral buckling of a trapezoidal· 
cantilever of uniform thickness (Part I) and a trapezoidal cantilever of I section 
(Part II) both with concentrated load at the free end, with special reference to the 
effect of the degree of convergence or divergence of the trapezoid on the critical 
buckling load. 

In Part I, i. e. as to the case of trapezoidal cantilever of uniform thickness, L. 
Prandtl previously had found theoretically the critical buckling load for the case 
of rectangular cantilever of uniform thickness.o Further, K. Federhofer had made 
theoretical analysis concerning to the cantilever of uniform thickness but varying 
breadth, the variation of which being expressed by the relation of h=h0(1-z/l)7

\ 

where ho represents the breadth of the cantilever at the fixed end, l denotes the 
length of the cantilever and z means the ordinate measured lengthwise from the 

fixed end2>. If we put n=O in the above expression, we obtain the solution for 
the triangular cantilever of uniform thickness with a concentrated load at the 

* l1.l ~ - ~B. Dr. Eng., Professor at Keio University 
1) L· Prandtl; Kipperscheinung, Niirnberg 1899 

2) K. Federhofer: Rep. Intern. Congr. App. Mech., Stockholm 1930 
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appex. The author now has made theoretical survey and obtained the buckling 

loads of trapezoidal cantilever of uniform thickness but varying convergent or 

divergent degrees loaded at the free end. The results were plotted for a numerical 
example together with the results derived from the above-mentioned analysis de­
veloped by L. Prandtl and K. Federhofer, to find the buckling loads increasing with 
increasing divergent degree (or decreasing convergent degrees) when the breadth of 
the cantilever at the fixed end is maintained unaltered. 

In part II, i.e. as to the case of trapezoidal cantilever of I section, the author 
has treated the problem in a like manner, and also examined the effect of the 

degree of divergence or convergence upon the critical buckling load for a numer­

ical example. 

Part I 
Lateral buckling of a trapezoidal cantilever of uniform thickness with concent­

rated load at the free end 
I -I. The method of analysis 

z 

Fig. 1 Trapezoidal cantilever of uniform thickness 

Fig. 1 shows a trapezoidal cantilever of uniform thickness with concentrated load 
P at the free end, the other end being fixed. Pis considered to lie in the mid­

plane of the web and further let the point of application of P to be the centre of 

the end section of the cantilever. 
Further, we assume that the displacement is small and the stresses induced are 

within the elastic limit. Let the origin of the fixed coordinate x, y, z be on the 
fixed end of the cantilever as shown in the figure, and further we choose another 
rectangular coordinate ~. r;, t, the origin of which is selected as D, D being the 

centre of any cross section of the cantilever as shown. Denoting the displace­
ments as u(x-component), v(y-component) and fJ, and taking into account of 

( 9 ) 



88 Tchiro WATANABE 

the right hand portion of the section through the point D, the moment around 
the axes passing through the point D and parallel to the x-, y- and z-axis 

may be described respectively as follows . 

. ll1a:=P(l-z), My=O, Mz= -P(8-u) 

where l denotes the total length of the cantilever, while 8 represents the displace­

ment of the free end shown as in Fig. 1. 
As the direction cosine between the rectangular axes of x, y, z, and f, r;, ~ may 

be written as in table 1, the moment around the f, r;, /;; axes may be written as 

follows. 
Table 1. Direction cosines 

X y z 
---------

1, {3, -dujdz 

TJ - {3, 1, -dvjdz 

( dujdz, dvjdz, 1 

M~ =P(l-z) 

M'l = -j3P(l-z) 

JJf~ =P(l-z) ~: -P(8-u) 

Putting these expressions into the general moment equation 

d 2u d 2v 
Bt dzz =MYJ, B2 dzz- = -M~, 

we obtain the following equations. 

Bx ~~ =- /3P(l-z) 

B2 -~~- = -P(l-z) (1) 

C fl:fL = P(l-z) du -P(8-u) 
dz dz 

Denoting the thickness and the height of the cantilever by b and h respective-
ly, we have 

hb3 

BI= -i2·E, 

If we put h=hu(1-c-[-). c=(ho-hi)/ho, then it becomes that c represents the 

degree of convergence or divergence of the trapezoidal cantilever. From the first 
equation of (1), we get 

d 2u = _ /3P (l-z) 
dz2 B1 (2) 

( 10 ) 
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Differentiating the third equation of (1) by z and eliminating d 2u/dz2 by means 

of eq. (2), we obtain 

{ (l-cz)-0.630 _bL}~2~ - c d/3 +-~6P2{Zjl-z2~ f3=0 (2.1) 
h0 dz-- dz h~b6 EG( l-cz) 

Putting 36P2f2jh~b6EG=a, 0.630 bljh0 =K for simplicity, the eq. (2.1) yields 

to 

(l-cz){(l-cz) -K} _!]_zf3 -c(l-cz) _!!fL+a(l-zrf3=0 (2.2) 
dz2 dz 

Putting w= l-z, the eq. (2.2) becomes finally 

( cw+ l-et){( cw + l-cl)-K}-<! 2
1!__ + c( cw+ l-cl) _!},_@__ + aw2j3 = 0 ( 3) 

dw2 dw 

We may solve the eq. (3) by infinite series. Thus, putting 
f3 = Awm+ Bwm+l + Cwm+2 + Dwm+J + Ewm+4 + Fw"''+5 + Gwm+6 + Hwm+7 + Jwm+3+ ]wm+9 

+Kwm+lO+£wm+ll+Mwm+l2+Nwm+13+0wm+14+············ (4) 

and denoting 
X= {l2(1-c)2 - Kl( 1-c )} , Y = {2cl( 1-c)-Kc} 

for the sake of simplicity, we get the equation which defines the exponent m of 

the infinite series as follows : 
m(m-1)=0 (5) 

Thus, we obtain m=O and m=l. We are able to obtain, further, the following 

relations between the coefficients A, B, C, · · · · · · · · · · · ·. 
B= _ Acl(1-c) 

(m+1)X 

C= Acl(1~c){11ZY +~~J-c)} Am2c2 

(m+2)(m+l)X2 - (m+2Xm+1)X-

Using these expressions, the eq. ( 4) is expressed in a following manner. 

f3=A- Acl(1-c) w + A(;2l2(1-c)2 w2+ .............. . 
X 2!X:d 

+aw--~cl(1-c) w2+ ................. . 
2X 

(4.1) 

One of the boundary conditions of the present problem is that M~ =0 at z=l, 

z".e. (d/3/dz)= -(df3jdw)=O when w=O. Therefore, it is evident that there exists 
the following relation between A and a of eq. (4.1). 

a= __4~1(1-c) 
X 

Denoting 
bl b K=0.630-
1
--- =kl, k=0.630--h--, 
~ 0 

_\'" = {l2(1-c)2
-; K/(1-c)} = l2{(1-c)2 -k(1-c)} =l"x, 

Y=2cl(1-c)-Kc=l{2c(1-c)-kc} =ly, 

x=(1-cr-k(1-c), y=2c(1-c)-kc 

( 11 ) 



90 Ichiro W AT AN ABE 

for simplicity, the relations between the above-mentioned coefficients A, B, C, 

·················· are deduced to the following. Thus, 

B=--~(1-=c) 
lx ' 

C=_Ac2(1-c)2 

2l2x2 
' 

D= _ Ac2(1-c)~{y+c(l--c)} _Ac11(1-c) 
6l3x3 --+ 6fax2 

E= _ 4c2(1-c)~{Y+c(l-c)}{2y+c(l-c)} _ Ac3(l-c){2y+5c(l-c)} 
__, 4!l4x 4 4!l4x 3 

The similar expressions are obtained between the coefficients a, /3, ry, ............ . 

In practice, however, it is rather convenient to proceed as follows. Thus, using 
the numerical values of x and y evaluated for given va!ues of c, we proceed to 

decide the values of the coefficients numerically by means of the following relations. 

B=---Ac(l~c) _ 
(m+l)/x ' 

C= __ B{my+c(l-c)} ___ Am_2cz _____ _ 
(m+2)lx- --- (m+2)(m+l)l2x ' 

D= _ C{(m+l)y+c(l=c)}__ B(m+l)Zcz 
l(m+3)x f2(m+3)(m+2)x ' 

E= _ D{(m+2)y+c(l--c)} _ ... _ C(~j-_2)2c~---
l(m+4)x - f2(m+4)(m+3)x 

F= _ E{(m+3)y+c(l-c)} D(m+3):c2 

l(m+5)x l2(m+5)(m+4)x 

G= F{(m+4)y+c(l-c)} E(m+4)2c2 

l(m+6)x l2(m+6)(m+5)x 

H= __ G{(m±_~)H±£(1-c)l_ ____ fl~-f-_5)2cz _ 
l(m+7)x l2(m+7)(m+6)x 

1 = _ H{(m+6)Y+11-c)}_ G(m+6)2c2 

l(m+8)x - l 2(m+8)(m+7)x 

aB 
l2(m+5)(m+4)x ' 

aC 
zzcm+-6X m +-5)x- • 

aD 
[

2(m+7)(m+6)x ' 

aE 
-~~~ 

f2(m+8)(m+7)x ' 

Thus, using the above expressions, all the coefficients are determined for given 

values of c, x and y corresponding to m =0 and 1 respectively. The coefficients 

thus determined are then put in the eq. ( 4.1). Applying another boundary con­
dition, i.e. /3=0 at the fixed end (z=O or w=l), into this equation, and denoting 

36 36P2l2 

e = h6b6fi:c ' a Jz6b6 EG eP2f2 

for the sake of simplicity, we obtain the polynomial expression as regard to 

al2 =cP2l4
• The minimum root of the equation which may be obtained by numeri­

cal calculus represents the critical lateral buckling load Pr!r tn our case. 
I -2. Numerical example 

( 12 ) 



On the Lateral Buckling of a Trapezoidal Cantilever of Uniform Thickness 91 

As cited previously, c=(h0-h1)/h0 is the coefficient which represents the degree 
of convergence or divergence of the trapezoidal cantilever. The positive 

values of c means the convergent trapezoidal cantilever, while the negative 

values of c represents the divergent trapezoidal cantilever. As mentioned before, 

the cases for c=O and c=l are already solved by L. Prandtl and K. Federhofer 

respectively. In the present example, the author performed calculations for c= '--0.5 
to determine the critical buckling load for the assumed values of b/h0 = 1/30 and 

k=0.021. The evaluations were performed taking up to the 4th order terms for 

eP2l4
• Thus, for c=-0-5, x=2.2185, y=1.4895, the equation yields to 

0.00000000083273( eP2l4 ) 4 -0.00000039909(eP2/ 4 ) 3 + 0.00017 439( eP 2/
4 

)
2 -0.0325718( eP 2l4

) 

+0.9987=0. 

Solving this equation, we have eP2l4 = 37.5 or · 

Per= 1.020~_Qb3 x' lj___g_ 

For c=O, Per =0.6615 

The results are 1.5 

plotted in Fig. 2, 
taking 

Per/( hob:~~~--) 
as ordinate and c as 

abscissa. The 

critical buckling load 

decreases for con­

vergent trapezoidal 
cantilever and in­

creases for divergent 

one for the same 

values of h0, b and 
l. As seen in the 

figure, the slope 
becomes somewhat 

steeper for c 
negative. 

~~~ 
~~ 
~ 
Q'-' 1.0 

0.5 

0~----------~----------~----------J 
-0.5 0 +0.5 c + !.0 

Fig. 2 Critical buckling load of a trapezoidal cantilever 

of uniform thickness 
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