慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Resistive forces against the motion of a model car rolling on sand（III）
Sub Title	
Author	高橋，清（Takahashi，Kiyoshi）
Publisher	慶應義塾大学藤原記念工学部
Publication year	1953
Jtitle	Proceedings of the Fujihara Memorial Faculty of Engineering Keio University Vol．6，No． 22 （1953．），p． 71 （18）－78（25）
JaLC DOI	
Abstract	Improvements were added to the experimental apparatus used before so as to take the simultaneous measurements of the horizontal and vertical components of the resistive force acting upon a wheel rolling on sand dried in natural state and also the depth of the sinking of the wheel in sand．The range of measurement was widened at the same time． By the use of these new apparatus changes of the constants K and n which appear in the empirical formula $\mathrm{H}=\mathrm{KV}^{n}$ ，which relates the horizontal components H and the vertical component V of the resistive force acting upon a disc－shaped wheel were mesasured under different conditions of the experiment，namely the diameter and the thickness of the wheel and the packing state of the sand． The results obtained were applied to the study of the relationship between the traction resistance of a car and the position of its gravity center．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00060022－ 0018

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

Resistive Forces against the Motion of a Model Car rolling on Sand（III）

（Received March 5，1954）
Kiyoshi TAKAHASHI＊

Abstract

Improvements were added to the experimental apparatus used before so as to take the simultaneous measurements of the horizontal and vertical components of the resistive force acting upon a wheel rolling on sand dried in natural state and also the depth of the sinking of the wheel in sand．The range of measurement was widened at the same time． By the use of these new apparatus changes of the constants K and n which appear in the empirical formula $H=K V^{n}$ ， which relates the horizontal components H and the vertical component V of the resistive force acting upon a disc－shaped wheel were mesasured under different conditions of the ex－ periment，namely the diameter and the thickness of the wheel and the packing state of the sand．The results obtained were applied to the study of the relationship between the traction resistance of a car and the position of its gravity center．

I Apparatus and Methods of Measurement

Just as it was in the previous experiments，a sand box（ $75 \times 300 \times 45 \mathrm{~cm}^{3}$ ）filled with sand was slid on（lower）rails instead of moving the car．The sand was raked with a fork and its surface was smoothened every time before each cycle of the measurement to give a virgin state．

The apparatus shown in Fig． 1 is suspended by a hook C and a spring balance S_{V} ，keeping the horizontal state of the base plate by means of levels L_{1} ，and L_{2} ， the reading of S_{V} ，which is the load acting upon the wheel is regulated by the movement of the movable poise Q ．After that，the apparatus is removed from the hook and placed on the sand while the rollers R_{1} and R_{2} are mounted on the upper rails．

A part of the weight of the whole apparatus is supported by the wheel W ， the amount of which is measured by S_{V} ，and the rest is supported by \boldsymbol{R}_{1} and \boldsymbol{R}_{2} ．

The counter－weight G is used to cancel the frictional resistance of the latter．

[^0]During the motion of the sand box toward the left in the figure, the screws A_{1} and A_{2} are turned so that the distance between the base of the apparatus and the rollers becomes appropriate to keep the base and the pulling rope horizontal; naturally the pulley P is adjusted also to come to a proper position. Thus when the motion of the wheel levels off and the base of the apparatus and the rope are horizontal, the reading on the spring balance $S_{\text {H }}$ indicates the horizontal component of the resistance acting upon the wheel.

The readings on scales attached to the screws A_{1} and A_{2} show the depth of sinking of the wheel in the sand. The sand used in this experiment was the No. 5 of the previous report (the mean diameter 0.026 cm , angle of repose 28.5°, apparent density $1.27-1.47$) and the velocity of the wheel was $4.1 \mathrm{~cm} / \mathrm{sec}$.

II Results

1) The functional relation among the horizontal compoment H, the vertical component V and the depth of sinking h in the sand,

$$
H=K^{\prime} h^{n^{\prime}} \quad V=K^{n} h^{n^{n}} \quad H=K V^{n}
$$

where $K^{\prime}, K^{\prime \prime}, K, n^{\prime}, n^{\prime \prime}, n$ are all constant, holds for the wheel of Fig. 2 are Table 1,

Fig. 2. Relations between H and V under some conditions shown on Table 1

Fig. 3. Relations between H and V under some conditions shown on Table 1

Generally speaking, the resistance acting upon a wheel is considered to be composed of two parts: the one acting upon the central part of the cylindrical surface of the wheel and the other acting upon the side plane and its nearby positions.

Fig. $1_{\text {A1 }}$. Apparatus
(Unit cm.)

H. horizontal component	$S_{\text {H }}$.	spring ba'ance to measure H.	Q.	movable poise	S.	support
V. vertical component	Sv.	spring balance to measure V.	$R_{1}, \& R_{2}$.	roller		fork
R. resistance	$\begin{aligned} & L_{1} \& L_{2} . \\ & W \end{aligned}$	level wheel pulley	R.	rope	$L P$.	$\begin{aligned} & \text { leveling } \\ & \text { plate } \\ & \text { rail } \end{aligned}$
			$A_{1} \& A_{2}$.	adjusting screw		
	P.		G.	balancing weigl:t	Ка.	

Fig 1A. Apparatus

Fig 1b. A wheel travelling on Sand

Curve		wheels		n
		(cm)	(cm)	
\bigcirc	I	5	20	1.42
\times	II	7	20	1.73
\square	III	20	20	2.20
-	IV	5	28.5	1.48
-	V^{*}	5	28.5	1.46
\times	VI	10	28.5	2.11
\triangle	VII	20	28.5	2,30

Table 1. The value of n in the formula $H=K V^{n}$, for each curve in Fig. 2

* In the case of sand pressed under wheel, 20 cm . in thickness and 28.5 cm . in diameter, loaded to 30 Kg

Wheels			
Curve		(cm)	(cm)
\times	I	28.5	5
-	II	28.5	10
-	III*	28.5	5
\odot	IV	28.5	20

Table 2. Cvrves on Fig. 3

$V(\mathrm{~kg})$	$\bar{H}(\mathrm{~kg})$						
	Thickness T and Diameter D of wheels						
	$\left\{\begin{array}{l} T=5 \mathrm{~cm} \\ D=28.5 \mathrm{~cm} \end{array}\right.$	$\left\{\left.\begin{array}{l} T=10 \mathrm{~cm} \\ D=28.5 \mathrm{~cm} \end{array} \right\rvert\,\right.$	$\left\{\begin{array}{l} T=20 \mathrm{~cm} \\ D=28.5 \mathrm{~cm} \end{array}\right.$	$\left\{\begin{array}{l} T=5 \mathrm{~cm} \\ D=20 \mathrm{~cm} \end{array}\right.$	$\left\{\begin{array}{l} T=20 \mathrm{~cm} \\ D=15 \mathrm{~cm} \end{array}\right.$	$\left\{\begin{array}{l} T=7 \mathrm{~cm} \\ D=20 \mathrm{~cm} \end{array}\right.$	$\left\{\begin{array}{l} T=5 \mathrm{~cm} \\ D=28.5 \mathrm{~cm} \end{array}\right.$
2	0.35			0.37			
4	0.70	0.40		2.01			
5		0.62		5.1	0.91		
5.6						2.80	
6		0.80	0.21		2.61		
7		1.11			3.51	4.18	
8	2.99	1.90	0.76	5.11	4.74		2.75
8.4						5.74	
9					5.89		
10		2.97			7.44		
12	5.93	4.17	1.64				4.95
16	8.76	8.18	3.60				
20	12.19	11.55	5.54				10.44
24	15.89						
25	16.61	17.06	9.48				14.27
30			15.16				

Table 3. Measured H and V plotted on Fig. 2 and Fig. 3

* In the case of Pressed sand under 30 kg . loaded wheel 20 cm . in thickness and 28.5 cm in diameter

In the case of a thick wheel it may be presumed that the proportion of the latter becomes small while the former contributes the main part resulting in the liner proportionality of the resistance to the thickness. It can be seen from Fig. 2 and Table 1 that though the values of n are rather different between the wheels with thickness 5 cm and 10 cm respectively and with the same diameter, the difference becomes very small between the wheels with thickness 10 cm .

The difference between the resistances of two wheels with the same diameter and different thickness were calculated and plotted in Fig. 4 and given in Table 4.

Suffixes I, II and III show that the V and H values came from the wheels of thickness 5,10 and 20 cm respectively, the diameter being 28.5 cm in common.

We may regard these differences as composed purely of that part of the resistance which is proportional to the length of the central part of the wheel surface measured along the the axle, free from that part of resistance acting at and near the side planes of the wheel.

Fig 4.

Therefore, when we plot the difference of resistance in each case against those of logarithmically shown in Fig 4, the gradient may be considered to represent the value of n at the thickness very large compared with the diameter, and moreover, to be the maximum value of n since n does not change with diameter.

This value was measured to be about 2.7 .

Curve		Vertical
\odot	1	$V_{I I}-V_{\mathrm{I}}$
\odot	2	$\mathrm{~V}_{\mathrm{III}}-\mathrm{V}_{\mathrm{II}}$
\times	3	$\mathrm{H}_{\mathrm{II}}-\mathrm{H}_{\mathrm{I}}$
\times	$\mathrm{H}_{\mathrm{III}}-\mathrm{V}_{\mathrm{II}}$	

Table 4. Curves on Fig. 4
2) Fig 2 and Table 1 show that n is nearly the same for wheels with the same thickness and different diameter. This fact can be seen also from the experimental of the traction resistance of cars, if we regard the constancy of n against
the change of the packing state of sand.
3) The packing state of the sand does not change n. Since the traction resistance and the weight of W of a car equipped with the same type wheels stand in the relation $F=k W^{\nu}$ and the equation $H=K V^{n}$ holds for a single wheel, the following arguments results. For a 4 wheeled car,

$$
\begin{equation*}
H_{i}=K_{i} V_{i}^{n_{i}}, \quad \sum_{i=1}^{4} V_{i}=W, \quad \sum_{i=1}^{4} H_{i}=F, \quad F=k W^{\nu} . \tag{1}
\end{equation*}
$$

where the suffix i runs from 1 to 4 representing each wheel.
If we take $V_{i}=W / a_{i}$ where $\sum_{i=1}^{4} 1 / a_{i}=1$ then the relations

$$
\begin{equation*}
H_{i}=\frac{K_{i}}{a_{i}^{n_{i}}} W^{n_{i}} \text {, therefore } \sum_{i=1}^{4} K_{i} a_{i}^{a_{i}^{n_{i}}} W^{n_{i}}=k W^{\nu} \tag{2}
\end{equation*}
$$

must hold, which means that $n_{i}=\nu$. Thus n never changes among eaeh wheel, even when the front and rear ones face different states of packing of the sand.

In order to verify the above conclusion, the sand in a virgin state was pressed in advance by rolling a wheel with diameter of 28.5 cm and thickness of 20 cm under the load of 30 kg and thereupon the reistance upon a wheel was measured, resulting to the curve of Fig. 2 and Table 1 which does not show any change of n as clarified by the comparision with the curve IV.
4) Position of the gravity center of a car. Since the curves I and II in Fig. 3 intersect each other, the equation,

$$
\begin{equation*}
\frac{\partial H_{1}}{\partial V_{1}}=\frac{\partial H_{2}}{\partial V_{2}} \tag{3}
\end{equation*}
$$

Which gives the position of the gravity center, G. C., corresponding to the minimum value of the traction resistance, (Suffixes 1 and 2 indicate the front and rear wheels respectively), shows that this position may lie in front of that of G. C. at which each wheel carries equal load. Appropriate selection of the thickness of the wheels makes this possible. Actually these positions were observed (refer to Fig. 6, Table 5, Table 6, Curves IV and V).

The following is the calculation of the position of G. C. for the minimum value of the traction resistance. Substituting the equations

$$
\begin{equation*}
H_{i}=K_{i} V_{i}^{n_{i}}, V_{1}+V_{2}=W / 2 \tag{4}
\end{equation*}
$$

in (1), we get, $n_{1} K_{1} V_{1}^{n_{1}-1}=n_{2} K_{2} V_{2}^{n_{2}-1}$, or, $\left(n_{1} K_{1} / n_{2} K_{2}\right)^{1 /\left(n_{2}-1\right)} \cdot V_{1}\left(n_{1}-n_{2}\right) /\left(n_{2}-1\right)=V_{2} / V_{1}$.

If the coefficients n_{i} and K_{i} are known which depend on the conditions of the wheels and the sand, the ratio of $V_{2 /} / V_{1}$ or the position of $G . C$. for the minimum traction resistance can be determined by (5) and the corresponding load W is calculated by (4). Therefore graphical plot of the relation between V_{1} and W allows the determination of V_{1} against a given load W at once.

Wheels			
		$\begin{aligned} & \text { Diameter } \\ & \text { (20cm) } \\ & \text { Thickness } \\ & (\mathrm{cm}) \end{aligned}$	
Curve No.	Weight (Kg)	Front	Rear
I	21.3	2	5
11	21.3	2	7
III	21.3	5	5
IV	30.0	7	2
V	16.4	7	2
VI	30.2	5	5
Vİl	15.0	2	2

Table 5. Curves on Fig. 6

Fig. 5. Numbering for the wheels point 0 corresponds to the position of center of gravity in Fig. 6

Table 6. Relation between the tractive resistance and the position of the center of gravity of the car with four wheels

III
 Conclusions

a) Thickness of the wheel giving minimum traction resistance varies with load.
b) Position of the gravity center which minimizes the traction resistance may lie in front of that of the gravity center corresponding to the equal loading of the wheels.
c) Position of the gravity center for minimum traction resistance of a car with a given amount of load can be determined by the equation (5).

IV Acknowledgement

This experiment was executed under the kindness of Prof. M. Mashima to whom the author expressed his hearty thanks. Collaboration has been kindly given by Mr.
A. Miyake an assistant at Shibaura college of Technology, Mr. T. Ito and I. Nanbu. To all of them $m y$ gratitude is due.

Fig. 6. Relations between tractive force F and position of center of gravity of a car with four wheels of different thicknesses shown on Table 5 and with some weight

[^1]
[^0]: ＊高橋 清 Assistant at Faculty of Eng．，Keio University

[^1]: 1) Read at the meeting of the society of Applied physics, Japan Nov. 1953
 2) I of this report and read at the meeting of the society of Applied physics, Japan Apr. 1953
