
Title Thermal stress in a spheroid with steady axisymmetric distribution of temperature
Sub Title
Author 牟岐, 鹿樓(Muki, Rokuro)

Publisher 慶應義塾大学藤原記念工学部
Publication year 1953

Jtitle Proceedings of the Fujihara Memorial Faculty of Engineering Keio
University Vol.6, No.20 (1953. ) ,p.10(10)- 26(26) 

JaLC DOI
Abstract The general exact solution is given for the thermal stress in a spheroid with steady axisymmetric

distribution of temperature, in closed form so far as the temperature is expressed in finite terms.
As an application of the preceding analysis, numerical calculations of the three dimensional
thermal stress in a turbine disc of the form of an oblate spheroid are carried out for several cases.

Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00060020-

0010

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


Thermal Stress in a Spheroid with Steady 

Axisymmetric Distribution of Temperature* 
(Received September 2, 1953) 

Rokuro MUKI** 

Abstract 

The general exact solution is given for the thermal stress in 
a spheroid with steady axisymmetric distribution of temperature, 
in closed form so far as the temperature is expressed ·in finite 

terms. 
As an application of the preceding analysis, numerical calcu

lations of the three dimensional thermal stress in a turbine disc 
of the form of an oblate spheroid are carried out for several 
cases. 

I. Nomenclature 

The following nomenclature is used in the paper ; 

(u, v, w) = Cartesian components of displacement 

e = di!atation 
F = thermo displacement potential 

q;, :\ = displacement potential 
(a, (3, ry) = spheroidal 'Co-ordinates 

( u~. Ufl, u-y) } _ curvilinear components of displacement 
(<T~, .. ·,T~fl) - and stress, respectively 

q=cosha, ·(j_=sinha} = auxilia:y positio~ paramenters for prolate 
p = cosfl, p = sinfl sphermdal co-ordmates 

h=hl=h2 =1/vfq'J-p'J [ local scale coefficients for prolate 
} 1 . = h 'd 1 d' t3 = -q P J sp erm a co-or mates 

q0, iio = values of q and q at a = ao 

s = !ly,... = shape ratio for prolate spheroid 
Qo 

A = Laplacian Operator 
G, v = shear modulus and Poisson's ratio 

c = linear thermal expansion coefficient 
T = temperature distribution 

* Read at the 590th Congress of the Japan Society of Mechanical Engineers, June, 
24, 1953 

** !Fl!llti:RUI Student in the Graduate Course of the Faculty of Eng., Keio 
University 
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Thermal Strese in a Spheroid with Steady Axisymmetric Distribution of Temperature 11 

II. Introduction 

Thermal stress in a turbine disc is an important problem for designers and 
many investigations have been made. These papers stand on the assumption that 
the thickness of the disc is so small compared with its diameter that stress for 
one circular section of the disc will hold for any such section. In many cases, 
however, the foregoing assumption can not be applied and three dimensional aspects 
of the thermal stress must be studied. 

In this paper, the author assumed the disc to be an oblate spheroid composed 
of homogeneous isotropic material and obtained a general exact solution for the 
thermal stress due to a steady axisymmetric djstribution of temperature, in closed 
form as far· as the temperature distribution is given in finite terms. 

For convenience, the anal~sis are carried out at first for a prolate spheroid 
and then the results so obtained are transformed into an oblate spheroid. 

III. Stress Distribution in a Prolate Spheroid with 
Steady Axisymmetric Distribution of Temperature 

This problem is equal to determining a displacement field which satisfies the 
following thermo displacement equation 

1 . 2(1+v) 
(Ju, Jv, Jw) + 1_ 2" grade- 1_ 2" grad cT = 0, 

e = div (u, v, w), 

.and is free from tractions on the surface of the spheroi<L 

l 
( 

i 
) 

The particular solution of eq. (1) n will be obtained by taking 

l+v 
(u, v, w) = 1_" c grad F, 

where F is thermo displacement potential and 

JF= T. 

(1) 

(2) 

(3) 

For the removal of the stress residuals on the surface due to the particular 
solution, the Boussinesq's Approach 2> will be used, which in the case of rotation
aly symmetry about the Z axis represents the sum of the following two dis
placement fields referring to the cylindrical co-ord·inates (p, ry, z); 

CUp, Uy, Uz) = grad cp, ( 
(Up, Uy, Uz) =. z grad A.- (0, 0, (3-4v)X), f (4) 

where Jcp(p, z) = J"A (p, z) = 0 . 
These solutions will be referred to as basic solutions 1 and 2 respectively. 
The prolate spheroidal co-ordinates system is defined by the equations of transfor-
mation 

1) Timashenko and Goodier; Theory of Elasticity. (McGraw-Hill 1951) 
2) The Boussinesq's Approach was originated by Boussinesq. ]. Boussinesq ; Appli

cations des Potentials (Gauthier-Villars, Paris, France, 1885) 

( 11 ) 



12 Rokuro MUKI 

x = c sirrh a sin j3 cos ry, 

y = c sinh a sin j3 sin ry, . c = 1, 

z = c cosh a cos (:3. 

(5) 

The surfaces a = canst. /J = const. and ry = const. form a triply orthogonal family 

of prolate spheroids, · hyperboloids of two sheets and meridional half planes. 
For convenience, the following auxiliary variables are introduced 

q =cosh a, 
p =cos (:3, 

{j = sinh a = ...; q:! -1 , 

P = sinfl =...; 1-P2
, 

l 
J 

(6) 

where 

-l<P<l' O<P<l. 
~7) 

The displacement and stress (elds of the thermo displaeement potential in the 

spheroidal co-ordmates are expressed as follows. 

l+v - 3> 
UIXI = -1--EhqFq, -v 

1+v -
ufJ ==:- 1_v chPFp. 

u~/2G = i!-;; c C h2tl F11q + h4 ji2 (qFq- pFp)- T), 

l+tJ -- ' __ 
a-f:l/2G = T~~;- c ( h~ p"2 Fpp + h4 q2 

( qFq - pFp) - T), 

• l+v . 
u-yj2G = -f~b'- c C h 2 (qFq- PFp)- T), 

, l+v , ~~ 
T~fJI2G = --r=-; s c -h2 Fpq + h4 (qFll- pFq))pq. 

(8) 

(9) 

Also, the displacement and stress fields of the Boussinesq's solution in the co-

ordinates are expressed as follows. 4> 

U111 = hqcpq, 'l 
UfJ = -hPq>p. J 

• u111/2G = h2 (f cp11q + h'1P (q<f>q - Pcf>p), 

Ufl/2G = h2 p cppp + Jt4 q2 ( qcpq - Pcf>p) ' 

Uyj2G = h2 (Qcpq - P(l)p)' 

T a,f3/2G = (-h2 cppq_ + h4 
( lj(pp - prpq)) p q. 

··-------------

3) Subscripts attached to functions which originally bear no subscript denote 

partial differentiation. 

(10) 

(11) 

4) The equations from (10) to (13) are the rotationaly symmetry case of the 

formulation designated by Sadowsky and Sternberg .. In this paper, their no

tations are adhered to. M. A. Sadowsky and E. Sternberg; Stress Concen

tration Around ·an Ellipsoidal Cavity in an Infinite Body Under Arbitrary 

Plane Stress Perpendicular to the Axis of the Cavity. ]. of Appl. Mech. 69, 

A -191, (1947) 

( 12 ) 



Thermal Stress in a Spheroid with steady Axis~m~etric Distribution of Temperature 13 

u(t, = h (q\q- (3-4v)A.)pq·, 

UtJ = h C -PA'p + (3-4v) A.)pq. 
l 
f 

u(1,/2G = h2 (q\9q- 2A.q)pq3 - 2vh2 (qff\p- PffA.q) 

+ h4(qiq- pxp)pqpz, 

O"tJ/2G = h2 (p\pp - 2A.v) q p2, + 2vh2 ( q pz Ap - p q2 A,q) 

+ h4 (qA.q- pxp) pq (jz,. 

u"'/2G = (1-2v) h2pq (q'Aq- pA.p) ~?vh2 (qA.p- pA.q), 

Tf1,fJ/2G = h2 ((1-2v)(pA,P + qA,q)- pqA.pq)pq 

+ h4 ppqq(qA.p- pA.q). 

(12) 

(13) 

· Any steady axisymmetric distribution of temperature in the prolate spheroid is 
00 

T = 2J An Pn(P) Pn(q), (14) 
0 

where Pn is an ordinary Legendre function of the first kind. For the later con

venience, eq. (14) is rearranged in the following form; 
00 

T = 2 2J Bn ((2n+3) Pn(P) Pn(q) + (2n-5) Pn-2(p) Pn-2(q)), (15) 
0 

where 

1 
Bn = . 2(2n+B) CAn- 2(2n-1) Bn+2] 

2n-1 ~ 
1 

An+am 
= -2-- ;

0 
(- )m (2n+4m-1)(2-n-,-+-=-4-m-+--=3=-). (16) 

Making use of the eq. (3), the thermo displacement potential corresponding to 

the temperature distribution (15) is found to be 
oc 

F = (q2 + P2
) ~ Bn CPn(P) Pn(q) - Pn-2CP) Pn-2(q)). (17) 

n=O 

For simplicity, the thermal stress due to one term of eq. (15), namely 

Tn ,;. 2Bn C(2n+3)Pn(P) Pn(q.) + (2n--.5) Pn-2(p) Pn-2(q)) 

will be considered, but the generality remains undisturbed. 

The complete sOlution, Rn, which represents the displacement vector and stress 

tensor fields will be written symbolically 

[~] ' 

Rn = Ro,n + ~ Cn-2m+2 R I,n-2m+2 
m=O 

where Ro, is the soluti<?n obtained from the thermo displa~ement potential F and 
R1n, R:~n are the solutions obtained from the first and second solutions of Boussinesq's 

Approach' respectively. The C, D are coefficients of supei_"position and [ ~] 

( 13 ) 



14 Rokuro MUKI 

designates the maximum integer in the bracket. 

In the expression of cral/2G and TCilf3/2G in eqs. (9), (11) and (13) there are terms 

multiplied by h4 which are apparently undesirable for the determination of 

constants. These terms can be put into the forms multiplied by h1 through the 

proper form of harmonic functions such as 

cp = Pn(P) Pr.(q) - Pn-2CP) Pn-2(q). 

Making use of the following recurrence relations 

(2n + l) p, _ dPn+J:_ _ dPn--:1_ 
n- dp dp ' 

(2n + l)P ~n_ = n d~p+I + (n+1) d~p-1 
, 

l 
J 

and noting eq. (19), the terms multiplied by h4 now become 

h4 (qcpq- Pcpv) = -h2 ~~!c:=iT ~~j=-1_ d~r}-, l 
h4 (QqJp _ pcpq) = h2 [ ! ~li£;z -~n_ + n~T-~-t!~p~-:2 __ ~4£1!=-~J. J 

(19) 

(20) 

(21) 

After the repeated use of the followi~g recurrence relations and eq. (20) 

nPn- (2n-l)PPn-I + (n-1)Pn-2 = 0., 

(P2 -1)~1J;n = n(PPn-Pn-1). 
.(22) 

and by making use of the eq. (8) - (13) and (21), the displacement and stress 

flelds can be computed. For brevity, the displacement fields are omitted and only 

the stress fields are recorded. 

Ro,n; 

where 

F = (q2 +P2
) Bn [Pn(P) Pn(q) - Pn-'!.(p) Pn-2(q)], \ 

Tn = 2Bn [(2n+3) Pn(P) Pn(q) + (2n-5) Pn-2(p) Pn-2(q)J. } 

{ ) } dPn-1 J - n(n+5 +5 -- ~~---
dx , 

( 14 ) 

(23) 
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Thermal Stress in a Spheroid with Steady Axisymmetric Distribution of Temperature 15 

K"( ) (n+ 1)(n+2) { 1 4} dP,.H 
n X = (2n+1)(2n+3)(2n+5) n(n- )- -dx- ·-

+ [ -c2:~tfJti_:-iT + 
2{nf:n-!ix21Ji2~~~:~1~1} 

_ (n+l)(n+2){n(n+3)+6} J dP,.+I 
(2n+ 1)(2n+3)(2n+5) dx 

[ 
2{n(n+3)+ 1}{2n(n+ 1)-1} 2(n-l)n{2n(n-2)+7} 

+ - (2n-1)(2n+1)(2n+3) - (2n-3)2(2n-1)(2n+1) 

4n(n-2) (n+ l)(n+2) J dPn-t 
+ -(2n-3)(2n+ 1) - (2n+ 1)(2n+3) ~ 

+ (n---1)n{4n(2n+1)-13} dPn-s 
(2n-3Y"(2n-1)(2n+ 1) dx ' 

,. (n-l)n{4n(2n-5)-1} dPn+I [ 4(n-l)n(n+l)(n+2) 
Kn-2(x) = - (2n__::3)(2n-=1)(2n+ 1)2-~ + (2n-3)(2n-1)(2n+ 1)' 

2{ n:a-5(n-1)}{2n(n-3)+3} 2(n-1){2n(n+ 1)+ 1} 
--- -(2n__::5)(2n__::3)(2n=1Y- - (2n-1)(2n+ 1)2 

2(n-1)(n+1) (n-3)(n-2) 8(n-1)n J dPn-t 
- (2n-3)(2n-1) + (2n_:_5)(2n-3) - (2n-3)(2n+1)2 ~ 

[ 
2{2n(n-3)+3}{n(n-1)-1} (n-3)(n-2){n2 -5(n-2)} 

+ (2n-5)(2n-3)(2n-1) (2n-7)(2n-5)(2n-3) 

n(n-5)+2 J dPn-s 
- (2n-3)(2n-1) ~ 

(n-3)(n-2){n(n-1)-4} dP,._5 
- --(2n=-7)(2n--=5)(2n-3)-- dx -

(n-3)(n-2) [ dPn-I 
K:_"(x) = - -(2n_5X2n-3)2 {n(n-7)+11}~ 

- {.n(n-5)+8} a:;-s J . 
,. _ _(n+l): __ l}Pn 

U n+2(x)-- (2n-f-1X2n+3) dx , 

u:Cx) = - (2?i~n1~~~+3f !ft~~-- 2 [ (2:~ix1J-~;3) 
n2(n-1)+1 J dPn Sn(n-1)·-5 dPn-2 

+ n(2.~-=--i)(2n+I) di + -(2n-3X2n--1X2n+1) -----;IX, 

Sn(n-1)-5 dPn [ n(n-1)2-1 
u:_2(.x) = (2-n-3)(2n-1)(2n+l)" di-- + 2 T2n~3)(2n-=:..1Xn-1) 

n(n-3)+ 1 J dPn-2 (n- 2)2 . dPn-• 
+ (2n~5)(2n=-3) -~ + (2n...:..5X2n-3) ----ax--, 

(n-2? dPn-2 
u:_"(x) = (2ri=--:5)(2n=sr-ax -. 

Rt,. ; cp = Pn(P) Pn(q)- Pn-?.(p) Pn-2(q). 

( 15 ) 

(25) 

(26) 

(27) 
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2n-1 dPn-l dPn-t a- /2G = - ~ -----~ -- -· -- ---------
1 (n-l)n dp dq 

T~f3/2G = pfi h2 [V~(q) -c!J;~- + v~_2 (q) a:p=-2__], 

L"(x) = __ _l-_ [Cn-l)n dPn+_t_- {n(n+l)+l} d_'Pn-:l_] 
r. 2n+l dx dx , 

L:_2(x) =- 2n~-~r [{Cn-l)(n-2)+l}__qJ;n-:!__- (n-l)n dJi-'], 

where 

n-t (n-l)rt2(n-4) dPn+I n{n(3n-4)+4} dPn-l 
Mn (x) = -(2t£-1)2(27i+-if ~Cix ___ + (2n--=-3)(2n-i)2n-t I)dx 

(n-l)n dPn-3 
- -(2n=-3-)(2,1-I)2 {n(n+l)+l} ~-, 

n-·1 (n-1)2n(n-4) dPn+t -c (n-l){n(n-1)+6} 
Mn_.ix) = (2n-f)2(2n+If -dx --- + (2n-3)(2n-1)(2n+l) 

(n-3)(n-2)2(n-6) n-2 J dPn-t. 
- ·· ·c2.~-.::..:::5)2(2n-=3f ·- (2n-1)(2n-5) -(lx __ _ 

[ 
(n-l)l'n(n+3) (n-2)(n(n-5)+12} 

- (2n--3)(2n~I?- + (2n-7)(2n-5)(2n-.:-3) 

+ -(2n=:~-~in-1Y J dJ;-s- + (n(i~~~K~~=~5)/L dJxn-5
, 

n-1 (n-3)(n-2){n(n-7)+13} dPn-l 
Mn-·/ r) = - --- -----(2-n-=5)2(2n-3)--~ --dx 

(n-3){n(3n-14)+19} dPn-s 
- -(2n-7)(2n-5)(2n-3f --dx -

+ (n-~_)2(n-?Xn-t_!l dPn-rs 
(2n-7)(2n-5)~ dx , 

N n-l( ) _ _( '!=~)~ [2 D D J 
n X - - (2n-l)2 . 11.rn - .rn-2, 

( 16 ) 

(29) 

( (31) 
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_ (n-l)n [ (n-1)2n (n-3Xn-2)2 J 
N:_~(x) = (2n-i)'J P,. + 2 -(2n-1Y + (2n-5)2 P,._2 

(n-3Xn-2) 
- (2n-5)' P,._4 , 

n-1 · (n-3Xn-2) 
N n-ix) = - (2n-5)2 ( P,.-2+2(n-3) Pn-4], 

Wn-l( ) = __ (n-2) (( -l) dPn + dPn-2 J 
" x (2n-1)2 n dx n dx , 

,._1 . (n-2)n dPn [ (n-2)n2 

W,.:-ll~x) = - (2n-1Y dx - (2n-1)~(n-1) 
_ Jn-1)(n-3)~ J dPn-2 (n-1Xn-3) 

(2n-5)2(n-2) dx + (2n-5)2 · 

T.V"~1( ) = _ n-1 [< _3) dP,._~ + ( _2)_!]_Pn-4 J 
r n-4 x 2n - 5 n dx n d:c , 

x:-)(x) = (2n~1)2 [ 2(n-1} d::c, +-~~;-2] , 

dPn-4 
dx 

,. 1( ) 1 dP,. 2[ n n-3 J dPn-2 

X .. : 2 X = (2n-1)2 dx (2n-1)2 +(2n-5)2 dx 
1 dPn-4 

- (2n-5)2 dx, 
n-1 1 [ dPn-2 dPn-4 J 

X n-/X) =- (2n-5):1 --dx--2(n-2)-ax- . 

IV. The Satisfaction of the Boundary Conditons 

The arbitrary constants C, Dare to be determined from the following conditions 
on the surface of the spheroid 

• (32) 

which led to the 2 [ ~ + 1 J) +1 = n+3 simultaneous ~inear equatons for even 

value of n and 2 [ {-+ 1 ]+2 = n+3 for odd as in eqs. (34) and (36), whereas 

the number of the arbitrary constat~ts are only 2 [ -~--+ 1 J for the temperature 

distribution expressed by the following equation, 

C+J 
T = 2 2J Bn-2mC (2n-im+3) Pn-2m(P) Pn-2m(Q) 
. tn=O 

+(2n-4m-5) Pn-2m-2(p)Pn-2m-2(q)J. (33) 
For even value of n, the ec:uations arising from the boundary conditions are 

[ CnHLn+ll(qo) + Dn+tMn+I(qo)+ -11+~ cBnK" (qo) ]P,.H(P)=O' ClJ I 
n+9 n+2 - V n+2 

[ 
n+2 ~ -n+l J 

Cn+:~L (qo)+Cn L (qo)+Dn+IM (qo)+ · · · Pn(P)=O , (2J 
n n n 

5) ( ~- + 1 } designates the maximum integer in the brack~t. 

( 17 ) 



18 Rokuro MtrKI ~ ··~ 

l (34) 

n 2 1 ' n • [ ·, d'D [c + .. _n+I ) + v B U · · )]P -· .r tH2 O [ n J 
n+2V (qo)+Dn+I lY (Qo + -1---c n (Qo. .q&.-.-:-d'"7-'--..-=:=i -2+3 -

n+2 n+2 - ZJ n+2 ·I · , J-' , 

where Jlr[=j}f+2vN, (35) 

For odd value of :.n, the• e:tuations arising. 'from ·the· boundary conditions are 

J Cn+~L n+?. (qo)+DrH-rMn+I (qo)+ 1
1 
.. +v• 'f:tJ;,kP .. (qo)]Pn~~CP) ~-0~ > :> "['l]"~'lt 

__ n+2 n+2 - v r:+2 ~- , 

J -· '- dP ' , ' t '- ·' pq 1==0 
- "dp ' 

(26) 

The systr~:ns of equations so obtained are c:::>:npatib1e, b:~caus~ the -rank of the 

augumented matrix is but 2( -~-+ 1) for even or odd value of n and this will be exam-

ined subsequently. Then for the temperature distribution given by eq. (33), the 

constants C, D can be ctlmputed successively fr:)m the following equations. 

n+2-2m _ >:+ 1-·Zm 
V Cn+2-·2m+ VV Dil+J-2m n+2-2m n+2-~n 

(37) 

1 + 3 n+Zr-Zm n+4-2m 
= --- f) c~ Bll-]21'-'.!.m u - CnH--2m v 

1-v r=O n+2-2m n+2-~m 

1 _ 7e+:lr+3-2m. 

- ~ Dn+'!.r+S-2m Vv 
r=O n+2-2m • n 

(m=O, 1,· .. · ,[2·]) 

r5a-/2G and Ta-f3/2G of the solution R1o eq. (27), can be written in the other forms 

ns follows. 

( 18 ) 
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(38) 

Now making th~~(ollowitw sulbstitution;in eqi (38}1·:.~ f·:F·'~-..,; .· \i 

p~q, P2~~cl, P ij~-{ja, (39) 

an~ ~Y the aid L~f t~e~~~ep~f..f(R1~.Y fQrn;tpla$ ~20); it.-,can·be shQWn that·&o~/26'h2 and 
Ta,f!."k.Gh2 so substituted are equal.6) 

[?"Q\/2Gh'J .·. , =,:;: [ra,t.l/?.GhliJ \, .. : . ·' ~· .~ . , ... 
:t ,, • ::~. TJtp~q 1 { ' p~q (40) 

Comparing eq. (38) with ( 40), it is easily seen tha_tShe ~?~Jowi~~:--~q~atjon holds. 

d2P"Pn(q)-d'Pn-:~p _.:J(q)=- 2n-1_(dPn-1)
2 + n-j(dPn)2 

_ ~(-dPn-2~2 
( 41) 

( ;:~~. dq2 dq"- n n(n -1) dq \ ·tt' lfq · n -1 ~} 

It is also verified that a-a,/2Gh' and Ta,f3/2Gh2 of the solutio:p. R0 and R2 _can,lbe 
equated if the substitution (39) are made ·and eq~ (4.0) h~ld~. This,mean~ .,that 

a-a,/2Gh2 and TrxfJ/2Gh' are equal after the 'substittitiorto:f' P~(p) 4P;.(~\ 1
. 

p. q~:n ~ -(jz ~in_ in eqs. (24), (27) 'and (30). Adding up the lef~ ha~d ~~~e of the 

~- , · , : · . . ·· . ' . . . , .. __ , .. --~~ ·~'dP~ '--
2
,dPn 

eq. (34): ~~0.~~6~a a~t~r ~1~r ~~~~ytptt9,.~_ o! __ Pit(P),::!l:1f.(q) ,a_od, ;p. qf(Jf:.~q o;q the 

sum is, ~J'te.r~fore. (zero for. the arbitrary values of B, C and p as the re~uJ.ts of the 
foregoing discussion. This completes the proof for even. value of n thai tB.e rank 

of the augumented matrix is 2 [~ + 1 J . 
One more linearly dependent relation, however, is necessary for odd value of 

n. Consider the resultant force in Z direction on the surface of the spheroid 

due to the stress functions. 
1 

Zres?t·r=-27r ~ [()rxQ2 P-Ta{JQqp]dp. (42) 
-1 

To compute the resultant force, h3 should be expanded in terms of P.n(P) and 

this is achieved by the aid of Neuman's formu1a. 
7) 

qh2 = (p~p3=~0 (in+1)Q2n(q)P2lP) . (43) 

The resultant force in Z direction on the surface of the spheroid due to a stress 

function Rr, cp=P2'z-:-1(P)P2n+r(q)-P-:.n-1(p)P2n--lq), can be computed by the aid of 

eqs. (38), ( 43) an:i the orthogonality of the Legendre functions. It is interesting 

to note that the integr3.l ( 42) results in the relation analogou~ to the eq. ( 41). · 

6) If one or b:lth of the L3ge:1dre function of the first kind are changed to that of 

the second kind in e:f. (38), eq3. (40) and (41) hold true as far as n is greater 

than two. Also these relation hold for the solutions Ru and R 2• 

( 19 ) 
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(44) 

The comparison of eq. (44) with (38) shows that, when n is odd, the resultant 
-4 ' 

force in Z direction due to (J"cr, is obtained by multiplying -47t ~J to ucr, and the 

transformation of Pn(P)~Qn(Q). The resultant force in Z direction due to Tu,f3 is 

also obtained by multiplying -47th2 fi!..- to Tu,f3 and the transformation of P,.(p)--)> . pq 
Qr..(Q). These hold true for the other stress functions, R2 and R0• 

Adding up the left hand side of eq. (36) after the substitution of P,lp)-~Qn(Q), 

- -dPn - dQn h • 1 p q (Jp ->q2 dq , t e sum lS 47tq2 Zresuzc and is zero for the arbitrary value of 

B,C and D. This relation together with the foregoing relation using eq. (39) 
completes the proof for odd value of n that the rank of the augumented matrix 

· 2[ n + 1 J . IS 2 

V. Thermal Stress in a Turbine Disc with Steady 
Axisymmetric Distribution of Temperature 

The disc is assumed to be an oblate spheroid composed of homogeneous isotropic 

material. 
The oblate spheroidal coordinates are defined by the foliowing equations of 

transformation 
~=d cosh a sin f1 cos ry, 

Y=d cosh a sin f1 sin ry, 

z=d sinh a cos {J. 

l 
) 

For convenience, the fo11owing auxiliary, variables are introduced 

where 

q=sinh a, -q=cosh a= v'IJii+-L l 
o~q<=, f 

7) H. Miyamoto; Stress Concentration Around a Spheroidal Cavity in an 

Infinite Elastic Body. Trans. of the Jap. SJc. of Mech. Eng. 1987, 60, (1953). 
8) This equation can be verified for arbitrary value of n by the aid of 
the recurrence formula. 

( 20 ) 

(45) 

(46) 
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Eq. (45) can ~ obtained from the eq. (5) which defined the prolate spheroi
dal coord~-- by ~he . following transformations, 

prolate spheroid ~oblate spheroid 

(a)proslate = {7t + (a) 
2 oblate 

ch a~ ish a, 
sh a -+ i ch a, 
c=l~d=-i 

or q ~ t'q, 

or q ~ iq, 

or p, p, ~ p, P, 
ry ~ ry. 

l 
j 

(47) 

By the a1d of eq. ( 47) the results obtained for the prolate spheroid can be 
transformed to the oblate spheroid. 

VI. Numerical Examples 

(1) K, M, U are very complicated when they are expressed in the general form 
such as eq. (25) and (31), but they take simple forms when n are given. Some 
of these are shown 

:1 24 I 228 2 8 I 2 I 158 
K 4 = 25p 3--175, K 2 = -105p 5 + 15p 3-35 , 

K2 = 18p '_2_~ K4 =~Op '-~1Qp I 

0 75 8 2::> • 6 297 5 297 3 ' 

4 80 ' 7733 , 55552 , 524 
K 4 = 429p 7 + 9009p ~> -17325 p 3 + 525 , 

K' =-~-~p' _1036p' +164 K~= 725p 3' + 7
8
5

' 
2 945 5 945 3 105 ' 
1 8, 6 1 4 '8 

M2=-45P s+l5, Mo=-45Ps+15, 

s 16 ' 36 3 16 ' 47 3 2 ' 11 M=-P -- M=-P -- M=---P ----
4 35 s 35 ' 2 36 3 21 ' 0 45 3 15 , 
II 36() 1 528 1 1290 

Mu = i573p 7 + f287p 5 -1089p 
5 300 ' 792 , 6493 ' 48 

M, = i573p 1 + 9C09p ~> -4235p s + 35 , 

II 4 1 43 1 36 
M2 =-2IP 5-105p 3 +35 , 

2 .9 ' 2 9 ' 13 , 4 25 , 
U = --P U =·--P --P U = ---P 

4 35 2 ' 2 35 4 21 2 ' 6 99 4 ' 

··u' = _25p' _530p' +-~P' . u4 =!I!_p' +j_p' 
4 99 6 693 4 315 2 ' 2 315 4 3 2 • 

(2) When the temperature distribution on the surface of the oblate spheroids 
are given by T/Tm-:~z = /J2, the distribution of G"a,/2G£Tw1z on the surface and 
the stress and temperature distribution on the plane Z=O are calculated for five 
shape ratios such .as 0.05,· 0.10, 0.15, 0.20, and 0.25. · It 'is assumed that v =0.25 in 

( 21 ) 
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all the calculations. The results are shown in Fig. 1-5. 
~3) Under the same temperat~re condition with (2), lTCI/2GST maa; and u,)2GST maz 

at the point B, u-yj2GST zam and up/2GST maz at A, temperature at the center C are 

plotted as functions of shape ratio S in Fig. 6. 
If S = 1, the shape is sphere. It is reported 1> that E. Alm3;nsi 9> studied the 

thermal stress of a sphere but the paper is not available. So thermal stress in 

a sphere with stedy axisymmetric distribution of temperature is computed in 

Appendix which affords a chek for the limiting case S = 1. 

VII. Acknowledgement 

The author wishes to express his deepest gratitude to Prof. T. Suhara who 
gave him valuable and detailed guidance throughout the course of the w~rk. 

Also his hearty thankfulness should be made known to Mr.· and Mrs. Mita · for 
giving warm encouragement to the author. 

Appendix 

Theramal Stress in a Sphere with: Steady Axisymmetric 
Distribution of Temperature 

After the same procedure as developed in the foregoing analysis, the following 
results are obtained. For the temperature distribution 

00 

T=L: Anp11P(p), 
naO 

where p=rja, P= cos fl, and a is the radius of the sphere, the coresponding 

stress fields are 

= 
up/2G= -ZJ n(n-l)an(p71 -,J''-2)P,.(p) , 

naO 

= -dP 'Tpf3/2G== - LJ (n-l)an(p"'-p"-2) p ___ n 
n-o dp.' 

where 

Apparently, crp/2G and Tpf3/2G vanish for arbitrary values of n on the surface of 

the sphere and also all the stresses vanish for n=O and n=l. The case n=O 
means uniform temperature and the case n = 1 me:1ns a linearly varying tempera
ture distribution in Z direction, both of which apparently do not. produce any stress. 

It is interesting to note the fact that the distributions of u/umaz and· T/Tmaz 

are not affected by Poisson's ratio v so far as the temperature distribution is 
expressed by a single term, AnpnPn(P). 

9) E. Almansi; Atti reale accad. sci. Torino, 32, 963, (1896 -18917) Mem. reale accad. 

sci. Torino, series 2. 47, (1897) 

( 22 ) 
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Postscript 

In this paper, thermal stress in a spheroid with steady axisymmetric distribution 
·of temperature has been considered, but the thermal stress arising from distinct 
uniform.· temperature changes applied to a spheroidal inclusion and surrounding 
medium w~ solved by R. H. Edwards and to an ellipsoidal inclusion py K. Robinson. 

(a) ·R. H. Edwards; Stress Concentration Around Spheroidal Inclusions 
and Cavities, J. Appl. Mech I 8, 19,( 1951) 

(b) K~ Robinson ; EJa.qtic Energy of an Ellipsoidal Inclusion in an Infinite 
:Solid, J. Appl, Physics, 22, 1045, (1951) 

The author wishes to express his thanks to E. Sternberg Prof. of Illinois Institute of · 
Technology for so kindly advising him to refer to these papers. 
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("'n-nrax) =P2 

at the surface 

(T lrma.Jc 
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