EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title On vibration of a cylindrical shell immersed in water
Sub Title
Author 55, $#Hi(Kito, Fumiki)
Publisher BERBAFBRCSIFE
Publication year |1952
Jtitle Proceedings of the Fujihara Memorial Faculty of Engineering Keio
University Vol.5, No.17 (1952. ) ,p.32(6)- 40(14)
JaLC DOI
Abstract When a cylindrical shell, which is immersed in water makes a vibratory motion, the surrounding
water also vibrates, thus causing the so-called effect of virtual mass upon the vibration. The Author
has made theoretical formula for estimation of the amount of virtual mass, for several cases in
which rigid walls and vibrating shell-walls are arranged in various ways as sketched in Fig. 1.
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00050017-

0006

BREZBAZZMERVRD MU (KOARA)ICIEEE M TWA IV TUY OEFIER. ThThOEEE, FLELEHRLRTECREL. TOERBEHEEECEL ST
HREENTVET, 5IALCH L TR, EFREEZETFLTIRALEZL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

On Vibration of a Cylindrical Shell Immersed

in Water

(Received Feb. 24, 1953) .
Fumiki KITO*

.

Abstract

When a cylindrical shell, which is immersed in water makes
a vibratory motion, the surrounding water also vibrates, thus
causing the so-called effect of virtual mass upon the vibration.
The Author has made theoretical formula for estimation of the
amount of virtual mass, for several cases in which rigid walls
and vibrating shell-walls are arranged in various ways as sketched

in Fig. 1.
_37 Y_ Y v _ I. Introduction
il —zlg-<=lm—=— =—=1
Q) t——=3F+""- ?.—_ T The Author has previ-
J—==F ===—====9 ously made studies on the
ra) 7.y
?*—E——-? effect of virtual mass of
vl 7 V) V) surrounding water upon
R e s sl the vibrations of shells,
(b) k - r -~} i r gratings of flat plates,
T ST T Ty~ -3 etc.’® As a continuation

1
[ a of this theoretical study,
L g

the Author here gives

p—— theoretical formula for
©) . T - _j(::_ the amount of virtual
mass of water, when

a cylindrical shell is im-
mersed in a water region
and is making a vibratory
) |I==7ja =3 —la &= - motion. Various arran-
R ©) ¥ gements of cylindrical
2 = == shell in vibration and
rigid boundary walls are

— WALL OFCYLINDRICAL SHELL  shown in Fig.1.

] MAKING-VIBRATIONS In this figure the slender
— RIGID WALL lines show wall of shell
=== WATER REGION which is vibrating, while

Fig. 1-1 the thick lines show rigid

* figEskk Dr. Eng., Professor of Keio University
2) On Vibration of Cylindrical Shell, which is Filled with Water, This Journal,
3) On Effect of Virtual Mass of a Grating of Flat Plates, This Journal,
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On Vibration of a Cylindrical Shell Immersed in Water 83

boundaries. (a), (b), (¢) N 2 o
and (f) correspond to W em f___:: - %:—

the case of continuous 1
- ¢ylindrical shells, (f} §

supported at equal __ A —
distances 7. '(d), (e) and T T T - - D T . ‘
~ (h) show cases of finite - — — — — —

closed bonndary walls.  §} — — — — — — — ), —— —

(g) and (i) are cases
in which rigid plane (7). _
boundary walls perpen-
didular to the axis of
the cylindrical shell —_ —, — —

extend to infinity, water
region also extending - — ——
to infinity. - Ja

IL General Consider- o T e —y—
ations (l/) — _= _____ = —

As pointed out in il o — .
-previous Reports, we — _r 11—
may approximately ap-
ply the potential e- — WALLOF CYLINDRICAL SHELL
quation V?¢==0 instead MAKING VIBRATIONS
of the wave equation - w—RIGID WALL

_ ==== WATER REGION
345 1 O'¢ ,
V=g Fig. 1-2

so long as the wave
length in water is large in comparison with the main dimensions of the cylinder.
The radial displacement w at any instant, of the cylindricall shell is expressed
by : ' :
w= Weoskx sinnf cosot

where k=7/l, n a whole number giving no.of nodal lines, and » the angular
frequency of vibration.
The fundamental solution ¢, for case (a) is given by

¢1=AlL,(kr) coskx sinnf sinwt ¢))

~where
=—_oW
A kI (ka)

¢7)



34 ) Fumiki KITO

While for case (f), it is given by

¢1= A K, (kr) coskx sinnf sine? 2
where
_ oW
A=—Ir/Cay
In general, the function ¢, has the form,
1= AF(r) coskx sinnd sinot 3

For other cases we put ¢=¢,+¢s and determine ¢, in such a way that on the
surface of vibrating shell we have 9¢,/or=0, while on the rigid boundary we have-
op/on=03(¢,+¢s)/on=0. For cases (b) and (c), the expression for ¢, consisting
of a single term can be obtained.

For cases (c), (e) and (h), ¢, are expressed as an infinite series of so-called

Fourier-Bessel expansion, in the form: —
¢1 = X B,cosh mx fi(r) sinnf sinwt @

In cases (g) and (i), ¢s can be expressed, at least formally, as a form of Fourier-

Bessel integral.
Total amount of kinetic energy of water is given by calculating the value of

the integral
To=1[[6Pas (5)

taken over the boundary surface, where o¢/on is the velocity component normal
to the surface. The only boundary surface where 9¢/on is not zero is the surface
of the vibrating surface of the cylindrical shell. On the other hand, we have, on
the surface of the shell ;

%‘f‘_ = %’%’- = — Wwcoskxsinnfsinet ()

Putting the values (4) and (6) into (5), .we.have

L= L AWo [LF@) + Sk k, +m cosh .. %-f;(a) Jrasindet @

+!)
For kinetic energy of shell wall, which is moving by radial displacement
w = W coskx sinnf coset

and whose density is pm and thickness A," we have

T = po W ah 2L sintort ®
The ratio of virtual mass to actual mass'is.given by
T = [ Pw .
&=~ (——)(— - ®
where
= l :
K= L[Fay+55 £ (k, s cosh T3 (10)

(8)
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and k=n/l.
We can also construct theoretical formula for the factor &, for the cases in which
the function ¢, is given in a form of Fourier-Bessel integral.

II1I. Theoretical Formula for Virtual Mass in Each Special Cases

In what follows, the results of calculation, according to the method of previous.
section, of theoretical value of the factor of virtual mass € for each special cases
(a) to (i) as sketched in Fig.1 will be given.

Case (a) Here we have

F(r)=I(kr), A=— }7:%}7
$a=0

=(L=)(4 __I(ka) B
8_(_;)_,:)(71-)1{ where K—W k=n(l

Case (b) Here we have
F(r) = Ku(kr)L/(Rb) — Kn'(kb)I(kr)
oW

A= = WRIGa Ty Ry — Ky Chay]
$9=0
Kol . EaCka)ly (k) — Kyl (k) MnCha)

A Fa Ky (ka)I, (kb)— K, (kDI (ka)
where a>b. ‘
Case (¢) Here we have the same formula as in the case (b). The only dif-

ference is that here b>a. . ' ‘

Case (d) This case has been treated fully by the Author in the previous paper.
Case (e) In this case there exist rigid plane walls at z==+1//2. The velocity
potential ¢ is written in the form ¢=¢,+¢,, where

$1= AL L (k) Kn(kr) — Ku' (Bb)I(kr)] coskz sinnf sinwt.

A= - 14
KR Chay T (k) — Ko Gy Ty Ry ]

¢ = SBcoshmx fi(r)sinnf sinwt

JULr) = Ju(mur) Yo' (ma)—Jo'(ma) Ya(mer) = Tu(m,r)
We must have 0¢,/0r=0 at r=a and r=b. Hence

I (mb)Yw' (mia) —Jn’ (mia) Yo' (mib) = 0 an
so that the parameters m.2=X\; must be so chosen as to satisfy the equation
() Ya'QW) 12)

IME) T Y (LB

where E = b/a.
Moreover, we must have, at x = =:1/2,

(9>



36 : Fumiki KITO

0, Oy _
0x + ox 0

)

so that

B, sinh 2L LT, () Yol (mug) - T (mua) Ya(mar) ]
2

= S\Bim; sinh 'gi’ Su(mar) = ALLu(kb)Ea(kr)— L(Rr) K/ (kbY]

where we have put
Sn(ms,r) = Ju(mir) Yy’ (mua) — I’ (mia) Ya(mar)
This equation means that the right hand side of this equation is expressed as

a form of Fourier-Bessel integral® Hence we have

B sinh.!’gi = MeA | :ug(g) Sa(myu) dx 13)

where
‘ g(u) = L/ (kb)) Ku(kr)—In(kr) Ky’ (kb)

Now we have, by a lengthy but easy calculation;

f : ug(n) Su(n\u)du

. A 1 ’ ’ _ 4

=2 s [T O@non - Hoa Y0 |
Eo1 , ,

-k WT[I" (kb)Y Ky (ka)— Ko (KDY (ka)]

so that we have, referring to (11‘),

f b ug(u) Su(mi,u)du

_ k 1 ’ ’ —_ ’ ’
= e [ L/ (kD) K’ (ka)— Ky (kD) I (ka)]
Hence ,
_ M, k , , ' ’
Bi= misinh_mj ‘R24+mg? [I” (kb Ko’ Cka) — Kn! (KDL (ka)] 13
2

Thus, knowing the values of coeiﬁcients B, the virtual mass-factor K can be
calculated from the general formula (10), where

fia) = Su(mua)
= Jn(’”ld“) Yn’('mza)—J,.’(mia)Y,.(mta)

1
ma

Note : The function S.(m;7) has similar property as the function

4) See Note below,‘

(105
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Ta(mr) = Ju(mr)Yn(mia) —Tn(mia) Y omer)

‘( L. N- Sneddon, Fourier Transforms, 1951, §8.3 )

Thus we can show, by actual calculation and repeated application of Lommel
integrals, that,

f :Qn(x,u) Qn(p,u) udu = 0
for A =‘m;, no=m; 77,

Also we obtain by actual calculation,

LIr Oy Tudu
— 4 - J.’ ____”’ - __1 ’-.:
. (12N OO —T QY] +(1 451 )(55-)' = M
where A =my.
For validity of expansion of a function in the form
' 2 AiQa(my1)
1t is necessary to prove the completeness of the set of functions Q.(m.7) (=1,
2 8, <) The above discussion stands on the assumption that this set of

fnnctlons is complete. ( See also, W. B. Ford, Studies on Divergent Series and-
Summability, 1916, Chap. V, III )

Case (f) Here we have

F(7) = Ka(Rr), A=— 7.7(5’%)‘
$a=0,

Pw —_ K-(ka)
e=(£2)(4) K where K= Klhe)

Case (g) In this case, rigid plane walls represented by x=+//2 and x=-10/2,
extend to mﬁnity For this case we have to put ¢=¢1+¢s. The radial velocity
V, is given by

V.= 6 _ 0%y | 0,
T or or or

Now, let us put

¢ = f :sf(s)Q,.(s,r)ds coskx sinnd sinwt (14)
where
Qn(8,7) = Ju(sr)Yn'(sa)— Yu(sr)Ju’(sa)
Since Qn’(s,7)=0, we have 0¢,/0r=0 at r=a. Therefore 64)/67—64:,/61 at r=a.
. Next, along the rigid plane walls we must have

Ve 6x+6x =0 for =x :t~2—.

This condition requires that

(11)
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FAK (kr) = [ sf(8)Qu(s,7) ds

This is an inversion problem quite similar to that treated by Sneddon.
Case (h). For this case, the formal solution is quite the same as in Case (e),
only difference being that here we have b<a.

Case (i) Solution for
the case of cylindrical shell

T with open ends.
QuTsIiDE By “ open ends “ we
EGION imply that at the end of
— the shell the water is con-
—i— —_—% nected to a water region
—_ —d extending to infinity, as
= < shown in Fig, 2.
——=-0 - In this case, we consider
—""—'“6?_9 — —  that the water of outside

Fig. 2 region also makes a vibra-
- ’ tory motion with velocity
potential ¢5. . _
Taking new origin of coordinates at ends (See Fig. 2) we assume that
s = [ e=F(s) Ju(sryds sind sinot : (15)
for the region x<0,
For space inside the shell, we take
&1 + ¢a = Asinkx I,(kr) sinnd sinwt

+3Dicoshm, ( x —%z) Ju(mir) sinmf sinet 16)

where D, are unknown constants and m; the roots of equation J.’(ma)=0, as
before. For values of velocity components V, and V; at the plane x=0, we have

two sets of values, the one being given by (15) :—
(Voo = [ "sF(s) Ju(sr)ds sinnd sinotdt an

(Voo = [7sF(s) Ju'(sr)ds sinnf sinwtdt (18)
while the other set is obtained from (16)
(V2)o = RAL(kr) sinnf sinwt

+ X Domysinh (—24L) J,Comer sinnf sinot | 19

(Vr)o = 23 Dim; cosh (—

”Zl) Jo’ (mur) sinnf sinwt 20

Now, let us compare (17) and (19). We must have

(12)



On Vibration of a Cylindrical Shell Tmmersed in Water

f “F()s Ju(sr)ds = kAIyCkr) — 53 Do sinh "gl'],.(mzr) ' l

for 0<7<a [ @D

= 0, . for a<r
AcCording to a theorem on Fourier-Bessel Integrals* we have in general
f ~ds f : AP T(AS) Ju(sr)dN = W(r) for 0<r<a

: =0 for a<r¥
comparing this with (21), we observe that

Fs) = [ MaAs) [kAI,,((ex) — 33 Dom sinh ""’ Ly (mr) |

Cka) —sI.(ka) Ju'(sa) ]

k’+s’
—>2Dym,sinh m;l 2 (mJu(sa) ]’ (ma)—s]w’ (sa) Jn(mua)}

ST—mg

= kA [ kJa(sa) I/ Cka) —sI(ka) J'(sa) ]

s
+3) Dim sinh’_”éi s,—i’;?J,;'(sa) Ju(mua)

So that we have by (18), putting ke=K,
(V:)o = sinnd sinot KA
f : “P_S-Fs'—[ kJn(sa) Iy (K)—sIn(K)]Ju' (sa)] Jw’(sr) ds

+ 31 Dym, sinh-=4- md f 5 Jw' (sa) Ja(mua) ]’ (sr)ds

and this must coincide with (16). Integrating by 7 we have

2 D, COSh ]n(?ﬂﬂ' )

= KA f k’+s’ k]n(Sd)In’(K)—SIn<K)]n,(sa)]Jn(sf)ds

+ 3 Domysinh 74 [ Y A COVICVACRLS
Observing that
S JnGsr) ds = sl (sa)JuCrua)

we have, by Fourier-Bessel Expansion ;—

* Gray and Mathews, Bessel Functions, VIII § 3

(135



0 ' Fumiki KITO
D, cosh %i ﬁ‘, [( m3a*—n*) Ju(mia)?]

= KA f:_,;;%s_,- Lk (o) (R =S TCEOJ (5]
[—sjn’(sa)]n(mza)]ds
+ 3} Dym,sinh m’l f T + iy Jo’ (sa)Ju(m;a)
[ —sJw (sadJn(mia)1ds (22)

(i=112’3, "")

" This being a system of linear simultaneous equations for D, these unknown

eonstants are determined.
The amount of total kinetic energy of water can be obtained by taking surface
integral of i
¢ x (normal velocity )

along all the boundary surface. The rigid plane wall at x =0 ( a< f<<:xs) contri-
butes nothing to the integral, since normal velocity at there is zero. So that the
kinetic energy of water is given by the same formula as in previous section,
provided we interchange the coefficients B; by D;. Therefore, we have, for the
effect of virtual mass of water;—

=7 = () ek

2k cosh (1. ma
[ 1+ 2 3‘ 7;.’%;:7)' (k’+1(m’) )]

For a practical estimation, there remains the question of convergence of series D;.

(14)



