EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title On virtual mass of a grating of flat plates vibrating in water
Sub Title
Author 55, $#Hi(Kito, Fumiki)
Publisher BERBAFBRCSIFE
Publication year |1952
Jtitle Proceedings of the Fujihara Memorial Faculty of Engineering Keio
University Vol.5, No.16 (1952. ) ,p.19(19)- 25(25)
JaLC DOI
Abstract In connection with the torsional vibration of screw propellers etc., there arose the problem of
finding amount of virtual mass of a grating of flat-plates which is vibrating in a water region. In this
report, this problem is solved by using the two-dimensional potential function, and the result of
calculation is shown in a chart
Notes
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO50001004-00050016-

0019

BREZBAZZMERVRD MU (KOARA)ICIEEE M TWA IV TUY OEFIER. ThThOEEE, FLELEHRLRTECREL. TOERBEHEEECEL ST
HREENTVET, 5IALCH L TR, EFREEZETFLTIRALEZL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.



http://www.tcpdf.org

On Virtual Mass of a Grating of
Flat Plates Vibrating in Water”

(Received December 22, 1952)

Fumiki KITO**

Abstract

In connection with the torsional vibration of screw propellers
etc., there arose the problem of finding amount of virtual mass
of a grating of flat-plates which is vibrating in a water region.
In this report, this problem is solved by using the two-dimensional
f)otential function, and the result of calculation is shown in
a chart,

I. Fundamental Expressions

It is known, in theory of two-dimensional potential flow in Hydrodynamics,
that a grating of flat plates as shown in {-plane of Fig. 1 can be related con-
formally to a circle of radius ¢ in the z-plane, by means of a function of complex
- variable z; ‘

= ;—”[é"log Z:—Z + e ® z;g;: ] ' ¢))
where z=x+13dy, {=&+1in, 4 n
and ¢ is the pitch, B the stagger
angle, of grating and ! is the /J
breath of each flat plate. « is >\ ' e &
a positive real number greater e ! J a b fou
than c. ' L 3
When there exist a flow of AN AE 0 8 %

water with angle of incidence A\ ' {/’“ — F—= = o
to this grating, the corresponding Y
complex velocity potential w, is’ P
given by ‘ . Fig. 1

we = % [ BN 1og % + =B Jogr ‘z’:::;g ] ’ 2)
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20 Fumiki KITO

The amount of circulation around each flat plate is here taken to be zero. If
there exist no grating, the uniform flow with velocity V and direction A, is given
by
w, = Ve ¢ |
Therefore, the complex velocity potential w=w.—w, represents the flow caused
by the grating of flat plates when it advances with velocity V to direction of
angle .
Thus we have
A%

W= Wy - Wy = o
2

z2—c%a

e *.2/sin\ log 2ica

The complex velocity potential, when the grating advances in the direction
normal to the face of each flat piate is obtained by putting A = 90° into the
above expression, and we have

. —_—2
w = _t}r/_ - ie” " log Z-i—ié%— 3)

The velocity potential ¢ corresponding to this state of flow can be obtained by

taking real part of the above expression (3).

II. Amonnt of virtual magss for grating of flat plates when

there exist no flow throgh the grating.

The motion of water, when the above-mentioned grating makes a vibratory -
motion, iz represented by a potential p = ¢coswr.  When angular frequency o of
vibration is not too high, and the breadth / is small in comparison with the wave
length of pressure-wave in water, the wave equation

1 o
= 5

‘'may approximately be replaced by a potential equation p?p = 0. And the ex-
pression for ¢ can be obtained from (3). In order to obtain the amount of virtu-
al mass of water, we should find the value of kinetic energy of water contained
in a region CDEF as shown in Fig. 2, surrounding one member AB of the grating.

n According to a known theorem in Hydro-

' dynamics, it can be expressed as
; _1 3¢
F E Tx‘— ~2—P f¢ st @

) A ::,L“B
c where p is the density of water, 6¢/on

ol/. P the normal derivative of ¢, and the inte-
3/ gral is to extend to entire boundary of

A A |
ﬁ_“'}:] the region. But, since the value of inte-
Fig. 2. gral around the outer-boundary CDEF

vER

cancells out, we have only to integrate the expression (4) over the both faces of

(20)



On Virtual Mass of a Grating of Flat Plates Vibrating in Water 21

flat plate AB.

When a flat plate is vibrating with an amplitude A normal to its own face,
the normal displacement » at any instant is given by % = Asineof Hence, its
normal velocity v, is

vy = o Acosowt.

According to previous section, the motion of surrounding water can be express-

ed approximately by

¢ = (Real pt.) ;— Awie™® [log z;z:;z :lcos ot . )

Now, on a point ‘of flat plate we have ds = df, df = df + idn = dE. Also
we have at there 8¢/0n = w A cos wf. Putting these values into (4) we have

T1=%-pmAf¢dEc05wt=—%prCOSwtf¢(dE+idn)

where the integral is to extend to both faces of the plate.
And this expression is equivalent to the real part of a contour integral

U= § (¢+3p) dE = §(¢+z’¢)<ds+idn)
taken over both faces of the plate. By (1) and (5), it can also be written: —

U= %—sz’cos wtf[log z;gz :]e""f3

troe(_1 1 —iB 1 1
X 27 [ez. ( z2—a  z2+a ) +e (z—c”/a + z+cia )]dz
and the integration may be carried out once around the circumference of the
circle ¢ in z-plane. The integrand in U has, over a region outside of the circle

¢ in z-plane, two singular points at 2 = +a and z = —a. Therefore we have,
by'a theorem on residue: —

_t L L . —iB
U—”szx 27r><27rze Ccos ot

) 2_ . 2
X [ e® log a—c e® log -g,——_'-—i;]

a+cd
2
= (;* )2 QnAwlog%cosm‘
Hence the value of T3 is found to be
2 2
Ty~ 3 pLowAcos st [ 210g e

For a member of flat-plate gratings, the virtual mass M is found to be
T
M =pl? 1K (6)
per unit length, where we have.put
8 st a+c?
K= (1) log g @

Also we have

(21)
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! 2 &/ a*Fct+2a%2 cos 23 + 2accos B
7:—”—[005,810g PR
' 2acsin B
. -1 8
+sin @ tan A at+ct+2a%c cos 23 :| &
20 | . ) For a/c — oo, we have
K .
-t T t_ma
1= 4 ¢’

a2—l-c2 <

|_5" log —_a = 2( a‘)z
3 P=70\ ;

so that we have in this case K = 1.

Therefors for a simple isolated plate

vibrating in water we have

/\
//

% | M, = pl? Z. 9
i

o .
——

When it is a member of grating, the

value M, is multiplied by the factor
K. In Fig. 3, the values of K for

various values of ¢/ and B are shown

PRIV DU G Y PRV TAT ) ST SNPGRS BN S

0 05 10 L) 20
Fig. 3. Value of the factor K

II1. Effect of Flow upon the Virtual Mass.

in a chart, thus making easy the actu-

al estimation..

In the above calculation, we assumed that there is no flow through the grating.
In an actual case of screw propeller which is working and is making vibration at
the same time, there exist a flow through each blades. ‘

Let us assume that there exist a parallel flow attacking the grating as shown
in Fig. 1 with an angle of incidence A. Also we assume the existense of circu-
lation around each flat plate, the value of circulation being determined by usual
condition of finiteness of flow-velocity at trailing edge of plate. The state of flow
can be expressed by the following complex velocity potential W: —

— p2
o e e =

z_|_a + e—:(ﬂ @) Iog

+iHlog z+c,/a] ® + iV (10)

where we have put
He 2actsin(2B—a)
7 [ 2accos B + / (@*+c*Xa*+c* cos 28)
When each plates of the grating is vibrating in thlS flow, the corresponding
velocity potential ¢, is given by

¢ =P+ ¢ (11)

(22)
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where ¢ is the value in previous section and & is the real part of the above ex-
pression (10). The value of pressure p of water at any instant is given by

b= Pat z[(a§+ )+<?§7)+g?1)]

Write this expression thus: —
D=p1+p+ps

A A

where

b= o[ 5 56+ 5 or
bs = 2”[( ) (an)z]

P is the value for flow only, and has no ccncern with the vibration. p; has
values of second order in ¢, so when ¢ is a small quantity of first order, we may
neglect p;. In the expression for p., the term —pd¢/o¢ is the same when’ there
was no flow, its effect being explained in the previous section. The remaining
term, giving effect of flow, is '
o
Ak
On the face of flat we have, o®/oy =0, so that

D
= —p ok (12)

The resultant of this pressure p,” acting upon the face of the flat plate has
direction of »-axis, and the amount is: —
: oP o
F = [ —p5g o5 & (13)
Now on a point of plate we have

a?—Vg - Ve —iVy ., dE =dt

so we have, also on the plate

aa? g? d& = [Real pt.J[Vi — iVy][ve — dvy | dE

= [Real pt.1 %9 at

Where W is given by (10) and w by (5).
Now let us consider a contour integral

dw dw
Q=§Fa % (14)
taken around a circuit enclosing one of flat plate. This can be regarded - as
a contour integral

(23)
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o-§ () x-§ L B (%)

taken round a circuit enclosing the circle ¢ in the z-plane. But we have
ﬁﬂiw_( dz ) 2 = 7 dz

dz a
[ 121:;0 e - w)( — 1a + z-l%a )
N tzTQ, -—1(ﬂ"“”)( z_lcz/a + z+}J’/‘1)

+ z’H(‘E—lkZ '?4?1?2/7)]
y [%Awie—iﬁcos wt( z—lc’/a + z+}:’/a )]

x _2{5—[9{5 ( z}—a' + z4l—a ) + e ( z—];’/a - z+i"/a )]—1 ndz. (1%

Singular points of this expression are

- N
(C) e = a (B) 2y = a
0.9 leading edge 24 = Ce® , trailing edge 2zp = —Ce®

where

0= tan“[ P tanﬂ]

The last one, that is the trailing edge, is not actually the singular point, since
the circulation was so chosen so as to assure the finite value of flow-velocity at
there. '

Let us draw a small circle of radius & with center at A, as shown in Fig. 4.

We understand, as the contour for (14), the contour line made up of the cir-
cumference of circle C exepting the arc ab, and inside half of the circle 8. (make
afterwards 6 - 0)

The value of contour integrél taken over a circle of radius C + & (€ being
a small positive number) is zero, because there exist no singularity outside of
this circle.

If we donote by R the residue of the function Z in (15) for point A, we have
for the value of (14):

Qo = 5 +27iR

On the other hand, Z being merely an algebraic fractional expression having
singular points at A, B and C, the sum of residues at B and C is equal to —R.
Therefore we have, by calculation of residues at points 2, = ¢?/a and 2z = —c/q,

-R= %Vl g~ {A-®) {i Aowie ™ cos wi’} %’5 e

+|: tV“ e KA=®) _ zH]{ Awie coswt}——t—-e"”

(24)
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= ~tH2Awicos ot = 2HA » cos ot
Thus we have
. = —27iHA o cos ot ,

and this is pure imaginary. So that its real part is zero, and consequently we
have in (13), F’ =0. This shows us that,
at least when we confine to ideal fluid, the
effect of flow has nothing upon the value
of virtual mass.

Note : The Author has shown afterwards,

that in general the value of virtual mass

is not affected by the presence of a flow
around a vibrating body, so long as the

flow is a potential flow.

(25)



