慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	On vibration of a cylindrical shell，which is filled with water
Sub Title	
Author	鬼頭，史城（Kito，Fumiki）
Publisher	鷹義塾大学藤原記念工学部
Publication year	1951
Jtitle	Proceedings of the Fujihara Memorial Faculty of Engineering Keio University Vol．4，No．15（1951．）），p．95（9）－100（14）
JaLC DOI	
Abstract	The author has made hydrodynamical study on vibratory motion of a cylindrical shell，inside of which water is filled，and has obtained the amount of virtual mass of water for the case in which both ends of the cylinder are fitted with rigid end－plates．
Notes	
Genre	Departmental Bulletin Paper
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00040015－ 0009

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたつては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

On Vibration of a Cylindrical Shell, which is Filled with Water*

(Received Oct. 19, 1952)

Fumiki KITO**

Abstract

The author has made hydrodynamical study on vibratory motion of a cylindrical shell, inside of which water is filled, and has obtained the amount of virtual mass of water for the case in which both ends of the cylinder are fitted with rigid end-plates.

I. Introduction

When a cylindrical shell, inside which water is filled, makes a vibratory motion, the water contained inside the shell also makes vibratory motion. The effect of this vibratory motion of water is to increase the apparent mass of the shell and lower its natural frequency of vibration as compared to values when there is no water. This effect is called the virtual mass of water. In the present paper, the Author gives some results of theoretical estimations of this virtual mass for the case of a vibration of a shell in form of circular cylinder, both ends of which are left free, or are closed with rigid end-plates.

According to the calculation, the effect of rigid end-plates appear as a kind of "end effect", which has significant influence only if the ratio of the length of cylindrical shell to its radius is less than 5 .

2. Solution for the Case of a Series of Cylinders

Let us consider a cylindrical shell of radius a and length l, as shown in Fig. 1. We take x-axis along the center line of the shell.

Fig. 1.

[^0]In this section, we treat the case in which there exist a series of cylinders of same dimensions along the x-axis, Fig. 1 .showing one of the series.

The shell is supposed to be supported at each ends, that is at $x= \pm l / 2$, and make vibration with frequency f. The angular frequency corresponding to it is $\omega=2 \pi f$.

When the water is filled in the shell, the water will also make vibratory motion, with the same angular frequency ω. If the travelling velocity of pressure (or sound) wave in water is c, the wave length is given by $\lambda=c / f$. For example, if $c=1460 \mathrm{~m} / \mathrm{sec}$. and $f=50 / \mathrm{sec}$., then $\lambda=1460 \div 50=29.2 \mathrm{~m}$. Usually the dimensions $2 a$ or l of the shell is small in comparison with the wave length.

Now, the vibratory motion of the water is to be determined from the equation of wave motion ; -

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}} \tag{1}
\end{equation*}
$$

But, if the wave length λ is very large in comparison to the main dimensions of the shell, we may use the equation

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0, \quad \text { or } \quad \nabla^{2} \phi=0 \tag{2}
\end{equation*}
$$

instead of the above equation (1), which correspond to neglecting the compressibility of water. ϕ is the velocity potential.

A solution of equation (2) in terms of cylindrical co-ordinates (r, θ, x) may be written

$$
\begin{equation*}
\phi_{1}=A \cos k x \sin n \theta I_{n}(k r) \sin \omega t \tag{3}
\end{equation*}
$$

Corresponding to this value of ϕ_{1} we have

$$
\left.\begin{array}{l}
V_{r}=\frac{\partial \phi_{1}}{\partial r}=k A \cos k x \sin n \theta I_{n^{\prime}}^{\prime}(k r) \sin \omega t \tag{4}\\
V_{x}=\frac{\partial \phi_{1}}{\partial x}=-k A \sin k x \sin n \theta I_{n}(k r) \sin \omega t
\end{array}\right\}
$$

Now, let us assume that the wall of the shell is making vibration, its radial displacement w being given by

$$
\begin{equation*}
w=W \cos k x \sin n \theta \cos \omega t \tag{5}
\end{equation*}
$$

where W is a constant. If the water is vibrating together with the shell, we must have at $r=a, V_{r}=\partial w / \partial t$. Whence we have by (4): -

$$
A=-\frac{\omega W}{k I_{n}^{\prime}\left(k r_{0}\right)}
$$

In what follows, we shall take up the case in which $k=\pi l$, but by slight change of expression, we can estimate the case in which $k=m \pi l$, where m is an odd integer.

The kinetic energy at any instant of water contained in one span $(x=-l / 2$ to $+l / 2$) of the cylinder is given by

$$
T_{w o}=-\rho_{z y} \int_{\theta=0}^{2 \pi} a d \theta \int_{x=0}^{2 \pi / k}\left[\phi \frac{\partial w}{\partial t}\right] d x
$$

where ρ_{w} is the density of water.
Or, putting the value of ϕ_{1} as given by (3):-

$$
T_{w}=\rho_{w} \frac{\omega^{2} a}{k} W^{2} \frac{I_{n}(k a)}{I_{n}^{\prime}(k a)} \frac{\pi^{2}}{k} \sin ^{2} \omega t
$$

While the amount of kinetic energy of wall of shell, whose thickness is $2 h$ and density ρ_{m}, is given by

$$
\begin{aligned}
T_{m} & =\rho_{m} \int_{\dot{\theta}=0}^{2 \pi} a d \theta \int_{x=0}^{2 \pi / k}\left(\frac{\partial w}{\partial t}\right)^{2} \cdot \frac{2 h}{2} \cdot d x \\
& =\rho_{m} \omega^{2} W^{2} a h \frac{\pi^{2}}{k} \sin ^{2} \omega t
\end{aligned}
$$

And the ratio T_{w} / T_{m} is

$$
\begin{equation*}
\varepsilon=\frac{T_{w}}{T_{m}}=\left(\frac{\rho_{w}}{\rho_{m}}\right)\left(\frac{a}{h}\right) \frac{I_{n}(K)}{n I_{n}(K)+K I_{n+1}(K)} \tag{6}
\end{equation*}
$$

where we have put $K=k a=\pi a / l$.
If the water exist outside of the shell (instead of inside) and extend to infinity, while the inside of the shell is vacant, we should have, instead of (3),

$$
\phi_{1}=A \cos k x \sin n \theta K_{n}(k r) \sin \omega t
$$

and, by making the similar calculations, we obtain

$$
\begin{equation*}
\varepsilon^{\prime}=\frac{T_{w}}{T_{m}}=\left(\frac{\rho_{w}}{\rho_{m}}\right)\left(\frac{a}{h}\right)\left[\frac{-K_{n}(K)}{n K_{n}(K)-K K_{n+1}(K)}\right] \tag{7}
\end{equation*}
$$

If the water exist both inside and outside of the shell, we must take the sum $\varepsilon+\varepsilon^{\prime}$ of the above two values in order to obtain the ratio T_{w} / T_{m}. In Table I, some values of the coefficients

$$
\begin{aligned}
M_{1} & =\frac{I_{n}(K)}{n I_{n}(K)+K I_{n+1}(K)} \\
M_{1}^{\prime} & =\frac{-K_{n}(K)}{n K_{n}(K)-K K_{n+1}(K)}
\end{aligned}
$$

are shown.
Table 1. Values of M_{1} and M_{1}^{\prime}

		$\mathrm{K}=0$	$\mathrm{~K}=0.2$	$\mathrm{~K}=0.4$	$\mathrm{~K}=0.6$
	$n=2$	0.5000	0.4993	0.4935	0.4566
M_{1}	3	0.3333	0.3328	0.3311	0.3284
	4	0.2500	0.2498	0.2490	0.2478
	$n=2$	0.5000	0.4952	0.4865	0.4645
$\mathrm{M}_{\mathrm{I}}^{\prime}$	3	0.3333	0.3322	0.3286	0.3242
	4	0.2500	0.2496	0.2483	0.2464

3. Solution for the Case of Cylindrical Shell with rigid Bottom Plates.

With the above mentioned value of ϕ_{1}, the axial velocity V_{x} of water at ends $x= \pm l / 2$ have some values and are not identically zero. If we wish to obtain the solution for the case of rigid end-plates, we must add to ϕ_{1} another potential ϕ_{2} such that,
(a) $\nabla^{2} \phi_{2}=0, \quad$ throughout the inside of the shell
(b) at $r=a, \frac{\partial \phi_{3}}{\partial r}=0$
(c) at $x= \pm \frac{l}{2}, \frac{\partial \phi_{1}}{\partial x}+\frac{\partial \phi_{2}}{\partial x}=0$.

We take

$$
\begin{equation*}
\phi_{2}=\sum_{i} B_{i} \cosh m_{i} x \sin n \theta J_{n}\left(m_{i} r\right) \sin \omega t \quad(i=1,2,3, \cdots \cdots \cdots) \tag{8}
\end{equation*}
$$

which satisty the equation $\nabla^{2} \phi_{2}=0$.
According to the condition (b), we must have

$$
J_{n}{ }^{\prime}\left(m_{i} a\right)=0
$$

According to the condition (c), we have, at $x= \pm \frac{l}{2}$,
$-A k \sin k x \sin n \theta I_{n}(k r)$
$\quad+\sum_{i} B_{i} m_{i} \sinh m_{i} x \sin n \theta J_{n}\left(m_{i} r\right)=0$

If we put for shortness,

$$
B_{i} m_{i} \sinh m_{i} \frac{l}{2}=A \frac{\pi}{l} C_{i},
$$

the above equation reduces to:-

$$
\begin{equation*}
I_{n}\left(\pi \frac{r}{l}\right)=\sum_{i} C_{i} J_{n}\left(m_{i} r\right) \quad 0 \leqq r \leqq a \tag{9}
\end{equation*}
$$

which means that, when we expand the function at the left hand side of this equation as a series of Bessel functions $J_{n}\left(m_{i} r\right)$, the coefficients of expansion are C_{i}.

Now, according to the known formula*

$$
\begin{aligned}
& \int_{0}^{a} J_{n}\left(m_{i} r\right) J_{n}\left(m_{j} r\right) r d r=0 \\
& \int_{0}^{a}\left[J_{n}\left(m_{i} r\right)\right]^{2} \dot{r} d r=\frac{1}{2 m_{i}^{2}}\left[\left(m_{i}^{2} a^{2}-n^{2}\right) \overline{J_{n}\left(m_{i} a\right)^{2}}\right]
\end{aligned}
$$

the coefficients C_{i} can be easily determined thus; -

$$
\begin{gathered}
\frac{C_{i}^{2}}{2 m_{i}{ }^{2}}\left[\left(m_{i}{ }^{2} a^{2}-n^{2}\right) \overline{J_{n}\left(m_{i} a\right)^{2}}\right] \\
\quad=\int_{0}^{a} I_{n}(k r) J_{n}\left(m_{i} r\right) r d r
\end{gathered}
$$

[^1]\[

$$
\begin{aligned}
=\frac{2}{k^{2}+m_{i}^{2}} & {\left[k J_{n}\left(m_{i} a\right) I_{n}^{\prime}(k a)-m_{i} I_{n}(k a) J_{n}^{\prime}\left(m_{i} a\right)\right]^{*} } \\
& =\frac{a}{k^{2}+m_{i}^{2}}\left[k J_{n}\left(m_{i} a\right) I_{n}^{\prime}(k a)\right]
\end{aligned}
$$
\]

Knowing thus the value of constants C_{i}, the values of B_{i} can be calculated, and we have

$$
B_{i}=A \frac{2 m_{i} k^{2} a}{\sinh \left(\frac{1}{2} m_{t} l\right)} \cdot \frac{1}{\left(k^{2}+m_{i}^{2}\right)\left(m_{i}^{2} a^{2}-n^{2}\right)} \cdot \frac{I_{n}^{\prime}(k a)}{J_{n}\left(m_{t} a\right)}
$$

The value of kinetic energy of water contained in the region $x= \pm l 2$ is,

$$
T_{w y}=-\rho_{w v} \int_{\theta=0}^{2 \pi} a d \theta \int_{x=-l / 2}^{x=+l / 2}\left[\left(\phi_{1}+\phi_{2}\right)\right] d x
$$

Putting the values of ϕ_{1} and ϕ_{2} into this expression, and utilizing the formula

$$
\begin{aligned}
& \int_{-l / 2}^{+l / 2} \cos k x \cosh m_{i} x d x \\
& \quad=\frac{1}{2}\left|\frac{e x p\left(m_{i} x\right)\left[m_{i} \cos k x+k \sin k x\right]}{\left(k^{2}+m_{i}{ }^{2}\right)}\right| \\
& \quad=\frac{2 k}{k^{2}+m_{i}{ }^{2}} \cosh \left(\frac{1}{2} m_{i} l\right)
\end{aligned}
$$

we have at last

$$
\begin{aligned}
T_{v}= & \rho_{w v} a \frac{W^{2}}{k} \frac{I_{n}(k a)}{I_{n}^{\prime}(k a)} \omega^{2} \pi \\
& {\left[\frac{2}{l} \sum_{i} \frac{B_{i}}{A} \frac{J_{n}\left(m_{i} a\right)}{I_{n}(k a)} \cdot \frac{2 k \cosh \left(\frac{1}{2} m_{i} l\right)}{k^{2}+m_{i}^{2}}\right] }
\end{aligned}
$$

Comparing this value with the expression for T_{m} as obtained in the previous section, we have,

$$
\begin{align*}
\varepsilon= & \frac{T_{w o}}{T_{m}}=\left(\frac{\rho_{w o}}{\rho_{m}}\right)\left(\frac{a}{h}\right) \frac{I_{n}(k a)}{I_{n}^{\prime}(k a) k a} . \\
& {\left[1+\sum_{i} \frac{B_{i}}{A} \frac{m_{i} a}{I_{n}(k a)} \cdot \frac{2 k^{2} \cosh \left(\frac{1}{2} m_{i} l\right)}{\left(k^{2}+m_{i}^{2}\right)}\right] } \tag{10}
\end{align*}
$$

This expression can be transformed to a more convenient form, as follows; -

$$
\varepsilon=\frac{\rho_{z v}}{\rho_{m}} \cdot \frac{a}{h} \cdot M_{2}
$$

where we have

$$
M_{2}=M_{1}+\sum_{i} \frac{\left(\frac{4 l}{\pi a}\right) \xi_{i}}{\left[1+\left(\xi_{i} \frac{l}{\pi a}\right)^{2}\right]^{2}} \cdot \frac{\operatorname{coth} \frac{\xi_{i} l}{2 a}}{\left(\xi_{i}^{2}-n^{2}\right)}
$$

where M_{1} is the value obtained in the previous section. ξ_{i} are the roots of the equation

[^2]$$
J_{n}^{\prime}(\xi)=0
$$
and have following values:-
\[

$$
\begin{array}{llll}
n=2 & \xi_{1}=3.04 & \xi_{2}=6.7 & \xi_{3}=7.9 \\
n=3 & \xi_{1}=4.3 & \xi_{2}=8.0 & \xi_{3}=11.4 \\
n=4 & \xi_{1}=5.3 & \xi_{2}=9.3 & \ldots \ldots \ldots \ldots
\end{array}
$$
\]

The values of M_{1} and M_{2} for a range of values of l / a up to 5 are shown in Fig. 2.

From the figure we see that for $l / a>5$, we may take M_{1}, M_{2} to be approximately equal to unity.

Fig. 2. Values of M_{1} and M_{2}

[^0]: * Read before the Joint Meetings on Vibration and Wave-motion, Soc. Appl. Mech., March 15, 1953
 ** Dr. Eng., Professor at Keio University

[^1]: * H. Lamb, Hydrodynamics, Sect. 191.

[^2]: * Mac Lachlan, Bessel Functions for Engineers, p. 115.

