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On Vibration of a Cylindrical 

Shell, which is Filled with Water* 
(Received Oct. 19, 1952) 

Fumiki KITO** 

Abstract 

The author has made hydrodynamical study on vibratory motion of a cylindri­
cal shell, inside of which water is filled, and has obtained the amount of virtual 
mass of water for the case in which both ends of the cylinder are fitted with 

rigid end-plates. 

I. Introduction 

When a cylindrical shell, inside which water is filled, makes a vibratory motion, 
the water contained inside the shell also makes vibratory motion. The effect of 
this vibratory motion of water is to increase the apparent mass of the shell and 

lower its natural frequency of vibration as compared to values when there is no 
water. This effect is called the virtual mass of water. In the present paper, the 
Author gives some results of theoretical estimations of this virtual mass for the 

case of a vibration of a shell in form of circular cylinder, both ends of which 

are left free, or are closed with rigid end-plates. 
According to the calculati0n, the effect of rigid end-plates appear as a kind of 

"end effect", which has significant influence only if the ratio of the length of 

cylindrical shell to its radius is less than 5. 

2. Solution for the Case of a Series of Cylinders 

Let us consider a cylindrical shell of radius a and length l, as shown in Fig~ 1. 

We take x- axis along the center line of the shell .. 

Fig. 1. 

* Read before the Joint Meetings on Vibration and Wave:motion, Soc. Appl. Mech., 
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96 Fumiki KITO 

In this section, we treat the case in which there exist a series of cylinders of 

same dimensions along the x- axis, ·Fig. 1.showing one of the series. 

The shell is supposed to be supported at each ends, that is at x = ±l/2, and 

make vibration. with frequency f. The angular frequency corresponding to it 

is w = 27t/. 
When the water is filled in the shell, the water will also make vibratdry 

motion, with the same angular frequency w. If the travelling velocity of pressure 
(or sound) wave in water is c, the wave length is given by :A = c/f. For 

example, if c = 1460 m/sec. and f = 50 /sec., then A. = 1460 + 50 = 29.2 m. Usually 
the dimensions 2a or l of the shell is small in comparison with the wave length. 

No'Y, the vibratory motion of the water is to be determined from the equation 

of wave motion ; -

(1) 

But, if the wave length :\ is very large in comparison to the main dimensions of 

the shell, we may use the equation 

(2) 

instead of the above equation (1), which correspond to neglecting the compressi­

bility of water. cp is the velocity potential. 
A solution of equation (2) in terms of cylindrical co-ordinates (r, 8, x) may be · 

written 

c/J1 = A cos kx sin nB In (kr) sin rot 

Corresponding to this value of 1)1 we have 

V 1• = acp_1
- = J~A cos kx sin nB In' (kr) sin rot 

ar 

Vv = -?J-1
- = -kA sin kx sin nB In(kr) sin rot 

uX · 

(3) 

(4) 

Now, let us assume that the wall of. the shell is making vibration, its radial dis­
placement w being given by 

w = w· cos kx sin nB cos rot (5) 

where W is a constant. If the water is vibrating together with the shell, we 
must have at r =a, Vr = awjat. Whence we have by (4):-

A= _ __ wW 
kin' (kro) 

In what follows, we shall take up the case in which k = 7t l, but by slight 

change of expression, we can estimate the case jn which k = m.7t l, where m is 
an odd integer. 

The kinetic energy at any instant of water contained in one span (x = -l/2 to 

+l/2) of the cylinder is given by 

( 10 ) 
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T. = -p, s:~.d8 siP ~r-J dx 

where pw is the density of water. 

Or, putting the value of ¢1 as given by (3) : -

T w = pw ~;l£ W2 1:~~~~) ~
2 

sin2 rot 

While the amount of kinetic energy of wall ·of shell, whose thickness is 2h 

and density pm, is given by 

Tm = ~ S:~O dO JI~t )'- ~ · dx 

7(2 
= pm c~ 2 W 2 ah k sin2 rot 

And the ratio Tw/Tm is 

c = ~: = ( ~: )( ~) nln(Kf~2n+I(K) (6) 

where we have put K = ka = 7tafl. 

If the water exist outside of the shell (instead of inside) and extend to infinity, 
while the inside of the shell is vacant, we should have, instead of (3), 

¢1 = A cos kx sin nfJ Kn (kr) sin rot 

and, by making the similar calculations, we obtain 

c' _ 1'w _ ( Pw )( a ) [ - Kn(K) J 
- Tm - p;;: h nKn(K}-KKn+t(K) 

(3') 

(7) 

If the water exist both inside imd outside of the shell, we must take the sum 

c+C' of the above two values in order to obtain the ratio Ttt~/Tm. In Table I, 
some values of the coefficients 

M
1 

= ln(K) 
nln(K}+Kln+t(K) 

M
1

' = -Kn(K) 
nKn(K)-KKn+t(K) 

are shown. 

Table 1. Values of M1 and M{ 

I K=O I K=0.2 I K=0.4 K=0.6 

n=2 0.5000 0.4993 0-4935 0.4566 

Mt 3 0.3333 0.3328 0.3311 0.3284 

4 0.2500 0.2498 0.2490 0.2478 

n=2 0.5000. 0.4952 0.4865 0.4645 

Mi 3 0.3333 0.3322 0.3286 0.3242 
4 0.2500 0.2496 .0.2483 0.2464 

( 11 ) 
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3. Solution for the Case of Cylindrical Shell with rigid Bottom Plates. 

With the above mentioned valm~ of cpt, the axial velocity Vx of water at ends 

x = ±l/2 have some values and are not identically zero. If we wish to obtain 
the solution for the case of rigid end-plates, we must add to ifJ1 another potential 

r/J2 such that, 

(b) 

throughout the inside of the shell 

at r. = a, _C)ch__ = 0 ar 
(c) 1 .a .. ¢_1_ a¢" 0 at X = ±2- ' oX + ?Jx~ = . 

We take 

c/>2 = ~ Bt cosh mtX sin nO Jn(mir) sin wt 
i 

which satisty the equation \72 c/>2 = 0. 
According to the condition (b), we must have 

Jn'(mia) = 0 

( £=1, 2, 3, ......... ) 

According 'to the condition (c), we have, at x = ± ~ , 

- A k sin kx sin nO In (kr) 

+ ~ Bi nzl sinh mt x sin nO Jn (mir) = 0 
l 

If we put for shortness, 

Bt mt sinh m- _L = A-J!C • • 2 l . ' 

the above equation reduces to : -

(8) 

(9) 

which means that, when we expand the function at the left hand side of this 

equation as a series of Bessel functions Jn(mir), the coefficients of expansion are Ci. 

Now, according to the known formula* 

(j=f=i) 

J:[Jn(mtr)]2 rdr = 21~i2 - [<mTa2-n2
) Jn(m:a) '] 

the coefficients Ct can be easily determined thus ; -

2~:2 [Cmt2a2-n2) Jn(mta) 2
] 

* H. Lamb, Hydrodynamics, Sect. 191. 

( 12 ) 
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k2;m12 
[ kJn(m~,a) I,/ (ka)- mtln(ka) J,' (mta) J * 

= k2~mt' [ kJn(m,a) I,/ (ka) J 

99 

Knowing thus the value of constants Ct, the values of B, can be calculated, 
and we have 

Bl =A . 2mtk2a 1 1,/(ka) 
smh (lm,l) · (k2 +m/'•)(mt"Ja"A-n2 ) • Jn(m,a) 

The value of kinetic energy of water contained in the region x = ± l 2 is, 

Tw = -pw s:~ d8 f]~•+¢•)] dx 

Putting the values of ¢1 and ¢a into this expression, and utilizing the formula 

we have at last 

f
+l/2 

cos kx cosh m,x dx 
-l/2 

= _!_ J exp(m,x)[ml cos kx + k sin kx] I 
2 (k2 + mt2) · 

2k 1 
- k' + mij cosh ( 2 mtl) 

,.. _ W2 I,.(ka) 2 
.LUI- pwa~ [,'(ka)ro 7t • 

[ _! ~ B, J,(m,a) . 2k cosh (lmd) J 
l 1 A I,(ka) k2+mt'J 

Comparing this value with the expression for Tm as obtained in the previous 
section, we have, 

8 = T. = (}!!!!._)(.!!_) J,(ka) 
Tm pm h [,.' (ka) ka . 

[ 1 + ~~~. 2k'cosh(imd) J 
, A J,(ka) (k2 + m,') 

(10) 

This expression can be transformed to a more convenient form, ~ follows; -

8 = .1!!!!_ • !!. · M, 
pm h 

where we have 

( 41 ) ~: coth E2atl - 1ii.i 5t 

M,-:-- Ml + ~ [1+(E, ;arr . <E,'-n2> 

where M1 is the value obtained in the previous section. f, are the roots of the 
equation 

* Mac Lachlan, Bessel Functions for Engineers, p. 115. 

( 13) 
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.T,' (~) = 0 

and have following values : -

n = 2 ~1 = 3.04 
n=3 
n=4 

~1 = 4.3 

~1 = 5.3 

~2 = 6.7 
~2 = 8.0 
~2 = 9.3 

~3 = 7.9 

~3 = 11.4 

The values of M1 and M2 for a range of values of l/a up to 5 are shown in 
Fig. 2. 

From the figure we see that for l/a > 5, we may take Mh 1l!a to be approxi­
mately equal to unity. 

--Pia 

Fig. 2. Values of M1 and M2 
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