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On Vibration of a Cylindrical
Shell, which is Filled with Water *

(Received Oct. 19, 1952)
Fumiki KITO**

Abstract

The author has made hydrodynamical study on vibratory motion of a cylindri-
cal shell, inside of which water is filled, and has obtained the amount of virtual
mass of water for the case in which both ends of the cylinder are fitted with
rigid end-plates. '

I. Introduction

When a cylindrical shell, inside which water is filled, makes a vibratory motion,
the water contained inside the shell also makes vibratory motion. The effect of
this vibratory motion of water is to increase the apparent mass of the shell and
lower its natural frequency of vibration as compared to values when there is no
water. This effect is called the virtual mass of water. In the present paper, the -
Author gives some results of theoretical estimations of this virtual mass for the
case of a vibration of a shell in form of circular cylinder, both ends of which
are left free, or are closed with rigid end-plates.

According to the calculation, the effect of rigid end-plates appear as a kind of
“end effect ”, which has significant influence only if the ratio of the length of
cylindrical shell to its radius is less than 5.

2. Solution for the Case of a Series of Cylinders

Let us consider a cylindrical shell of radius @ and length [, as shown in Fig. 1.
We take x-axis along the center line of the shell. . )
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* Read before the Joint Meetings on Vibration and Wave:motion, Soc. Appl. Mech.,,
March 15, 1953
**  Dr. Eng., Professor at Keio University
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96 Fumiki KITO

In this section, we treat the case in which there exist a series of cylinders of
same dimensions along the x-axis, T'ig. 1.showing one of the series.

The shell is supposed to be supported at each ends, that is at x = =+=[/2, and
make vibration, with frequency /. The angular frequency corresponding to it
is o = 27f.

When the water is filled in the shell, the water will also make vibratory
motion, with the same angular frequency . If the travelling velocity of pressure
(or sound) wave in water is ¢, the wave length is given by A =¢/f. For
example, if ¢ = 1460 m/sec. and f = 50 /sec., then A = 1460 + 50 = 20.2 m. Usually
the dimensions 2¢ or / of the shell is small in comparison with the wave length.

Now, the vibratory motion of the water is to be determined from the equation
of wave motion ; -

2 2, 2 2
S =Y W
Bat, if the wave length A is very large in comparison to the main dimensions of
the shell, we may use the equation
A ‘;ij’ + 2% =0, or V=0 @
instead of the above equation (1), which correspond to neglecting the compressi-
bility of water. ¢ is the velocity potential.

A solution of equation (2) in terms of cylindrical co-ordinates (7, 4, x) may be -
written » .
¢1 = A coskx sinnf L,(kr)sin ot , 3)

Corresponding to this value of ¢, we have

Vv, = %‘f;k = kA cos kx sinnf I,/ (k7) sin ot

|

C))
—kA sin kx sin nf Iy(kr) sin of

Il

_ 91
Ve = ox

Now, let us assume that the wall of the shell is making vibration, its radial dis-
placement w being given by
w = W cos kx sin 28 cos ot . )
where W is a constant. If the water is vibrating together with the shell, we
must have at 7 =a, V, = 2w/ot. Whence we have by (4): —
w
A =~ 1k |
In what follows, we shall take up the case in which k= =/, but by slight
change of expression, we can estimate the case in which k= m= I, where m is
an odd integer. :
The kinetic energy at any instant of water contained in one span (x = —I/2 to
+1/2) of the cylinder is given by

(105



On Vibration of a Cylindrical Shell, which is Filled with Water. 97

Zrz/k
Tw':"'PwJ\ adf .f ]dx
x=0

“where p. is the density of water.
Or, putting the value of ¢1 as given by (3): —

L.(k
Tw = pw 2 wat ((ka)) 7,: sin? wf

While the amount of kmetlc energy of wall of shell, whose thickness is 2h
and density pm, is given by

21t/k 2
Tm“pmjadej " 2h - dx
6= x=

= pn@? W2ah ll:— sin® wt
And the ratio T./Tm is

=Tw _ (Pu (2 I(K)
€=, (“p‘,;)( i) AT+ Ko () . ®

where we have put K = ka = wall.
If the water exist outside of the shell (instead of inside) and extend to infinity,

while the inside of the shell is vacant, we should have, instead of (3),

¢ = A cos kx sin nf K, (kr) sin @t 3
and, by making the similar calculations, we obtain
’ Iw _ P _Kn(K )

& == (= om CHII 2B K)— KK,.+1(K)] ™

If the water exist both inside and outside of the shell, we must take the sum
&+& of the above two values in order to obtain the ratio 7%/Tw. In Table I,
some values of the coefficients

M. = I.(K)
VT LK)+ Kl (K)
Ml ’ - KM(K )

. 1Ky (K)—KKn41(K)
are shown.

Table 1. Values of M; and M;

K=0 K=02 K=04 K=0.6

2 0.5000 0.4993 0-4935 0.4566
M, 3 0.3333 0.3328 0.3311 0.3284
4 0.2500 0.2498 0.2490 0.2478

n=2 0.5000 " | 0.4952 0.4865 0.4645
3 0.3333 0.3322 0.3286 0.3242
4 0.2500 0.2496 .0.2483 0.2464

(11)



98 Fumiki KITO
3. Solution for the Case of Cylindrical Shell with rigid Bottom Plates.

With the above mentioned value of ¢, the axial velocity V. of water at ends
% = +//2 have some values and are not identically zero. If we wish to obtain
the solution for the case of rigid end-plates, we must add to ¢; another potential
@2 such that,
(a) V?¢a=0, throughout the inside of the shell

—q 9% _
(b) at r=a, Sy 0
Y T O¢s _
(c) at x—-:!:~2~, % + S 0.
We take
¢s = 3 Bi cosh mx sin 018 Ju(m;r) sin wit (7=1,2,3, «-eveeeet ) ®

which satisty the equation V?¢. = 0.
According to the condition (b), we must have
o' (mua) = 0

According ‘to the condition (¢), we have, at x = :i:%,

— A ksin kx sin nd L, (kr)
+ X B; m;sinh m; x sin nf J, (m;r) = 0 ’

If we put for shortness,

B; m, sinh m; é = A-’liC,v s

the above equation reduces to: —
In(ﬂ—;) = EL Ci Jn (mer) . 0 é 7 _S.. a . X (9)

which means that, when we expand the function at the left hand side of this
equation as a series of Bessel functions J(m;7), the coefficients of expansion are C..
Now, according to the known formula *

f :Jn (mr) Jo(mr) rdr = 0 (j==4)

f :[;T,, (m) P vdr = %nf [(m,';’a”—n’) Jn(m:a) ’]

the coefficients C; can be easily determined thus; —

ce RN
omE [(qu”— n?) Ju(mia) “‘]

= f:fn (k7) Jo (my7) rdr

* H. Lamb, Hydrodynamics, Sect. 191.

(12)
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2

= m— [kJn(mia) Ly (ka) - WIn(ka) Jn’(m{a)] *

= s [ RInma) 1 (k)|
Knowing thus the value of constants C, the values of B; can be calculated,
and we have
B = A_2mka__ 1 . I/ (ka)
sinh (dmid) ~ (B2+m2)(m2a>—n?) ~ Ja(ma)

The value of kinetic energy of water contained in the region x = +12 is,

=+1/2
w = —ij a df f (¢1+¢2)
==12

Putting the values of ¢; and (i)g into this expression, and utilizing the formula

+1/2

cos kx cosh mux dx
-2

I exp(mx)[ m; cos kx + ksin kx]
(3 + mi?)

2k cosh ( 5 ml)

= I’ + m¢’
we have at last

— W? I(ka) .
w = Pl —p— T (ka )w’n

[_ s B, Ja(mia) ) 2k cosh(imtl)]
1l ¢ A IL(ka) k2 4m?

Comparing this value with the expression for 7T, as obtained in the previous
section, we have,

- Fo- (2)) At

Tm pm In, (ka) ka .
nia 2k cosh (3ml)
[1+2 % ey L] | 0
This expression can be transformed to a more convenient form, as follows; —
&= P, _. M,
where we have

4] &l

— )& coth 5

My=Mi+ 3 (a) & 2a

Pl )T e

where M, is the value obtained in the previous section. £; are the roots of the
equation

* Mac Lachlan, Bessel Functions for Engineers, p. 115.

(13)
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Ja (§) =0
and have following values: —
n=2 £ =304 £ =67 £ =19
n=3 £, =43 £ = 8.0 £ =114
n=4 £, =53 E, =93 e

The values of M, and M. for a range of values of l/a up to 5 are shown in
Fig. 2. , '

From the figure we see that for //a > 5, we may take M;, M, to be approxi-
mately equal to unity.
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Fig. 2. Values of M; and M,
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