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Transient Characteristics of Vacuum Tube Oscillators 
(Received Nov. 26, 1952) 

Teruo SUEZAKI* 

Abstract 

Van der Pol discussed the mechanism of self sustained oscillation by the e

quation which is called by his name. 
And since van der Pol, a number of researches have been reported on self 

sustained oscillations expressed by the van der Pol's differential equation. Nothing 

seems to be added to them. 
However, the anther discussed van der Pol's equation in a modified form and 

have obtained the actual data about the transient as well as the steady character

istics of this oscillation. 

I. Preliminary Remarks 

There are many cases of electrical oscillatory systems which are led to the 

following differential equation ; 

(1) 

where V denotes the oscillatory voltage in the grid side of vacuum tube oscillator. 
Equation (1) may be held in the cases whether plate tunning or grid tunning 

oscillator ; L, C, R denote the inductance, capacitance and resistance of the oscil

latory component respectively, M is the mutual inductance between grid and plate 

coil and z· is the plate current, which can be expressed as follows; 

gl > 0, g,-> 0 (2) 

We can replace i in eq. (1) in terms of V by using eq. (2) and introducting 
the following new variables 

T = wot V= VoX (3) 

where wo is a natural frequency of the oscillatory system that is w0J = 1/ LC, V0 

is a quantity which has a dimension of Volt and to be determined from eq. ( 4) 
such as; 

3 woea MVo2 = 1 (4) 
Further we introduce a parameter n defined by 

- n = wo (RC - gtM) n>O, M>O (5) 

Here we have assumed that -n < 0 ; this condition is very essential otherwise 
no self excited oscillation would be posible. 

* Professor at Keio University 

( 10 ) 
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Substituting the relations (2), (3), (4) and (5) into eq, (1) we shaH obtain the 
following equation. 

(6) 

This is the basic equation in our treatment and is one of the modified forms 
of van der Pol equation. Since time T does not occur explicitely in eq. (6), it is 
possible to reduce the equation to one of first order by introducing dxfdT = y as 
a new variable following the weii known procedure in the non Iineary theory of 
oscillation. 

In this way we obtain the equation 

dy ~ 
dx = n-~~- Y (7) 

It is not possible to obtain the solution curves in the x, y - plane by explicit 
integration, but the approximate solution curves can be drawn with various 
methods. If they are once determined in sufficient detail, it would be very useful 
to characterize the feature of the oscillation. 

And the qualitative charactors of the solution can be obtained from the charac
teristic equation even though the solution curves themselves could not be obtained 
explicitly. 

The characteristic equation will be expressed by the following equation from 
eq. (7) 

S2 -nS+1=0 (8) 

It is concluded from this equation that the parameter n must be limited as 
follows: 

n < 2 (9) 

Under this condition the solution curves of eq. (7) are spirals which start from 
the point near the origin and wiii approach to a definite closed curve in the x, Y

plane which is called "Limit Cycle". Existence of the closed curve, limit cycle, 
iri the x, y-plane shows that eq. (6) has a periodic solution. 

If the value of n becomes larger than 2, then relaxation oscillation will take 
place. 

The time T, which will elapse while y varies from Y1 to Y2 on the solution 
curve, is expressed by 

t il 
T =-= - dx y. 

Yt 
(10) 

Before concluding our discussion something about analytical treatment must be 
added. 

If we introduce polar coordinates in the ~, y- plane that is 

x = Ksin8, y = KcosO 

( 11 ) 
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we obtain the following equation from eq. (6) 

dKK K 2 nK Ks 
-di- = -2- (n - 4) + -z- cos 28 + -8- cos 48 

d8 1 · K 2 K 2 

d-:f = 1 - -2- ( n-2) sin 20 - 8 sin 48 

As a first approximation let us take a mean value terms in the right hand side 
of these equations, that is 

dK K K 2 

(1::,.-- =--z(n- 4) (11) 

!Jfj___ 1 
dr - (12) 

From these equations K and r are given by 

K- I 4n 
- 1/ 1 + Ce-m (13) 

f) = T 

After sufficient lapse of time r, K will approach to the value 2-Vn, which 

represents the amplitude of the oscillation in a steady states and C is a inte
gration constant which is determined from the initial condition T = 0, K = ~ , 
that is 

4n 4n 
C = Ko2 - 1 ~ Ko2 (15) 

Mter time r 0 determined from 

Ce-mo = 1 

K will be built up to the value vi 2n and this To serves as a measure of the 

quickness of building up of the oscillations. Such a time is given from the above 
relations, that is, 

To=~ log 2~n 
n ..no (16) 

Some times it is convenient to compare the number of waves which exist in 
the transient duration of the oscillation. 

For this purpose it is convenient to use the ratio defined by the following 
formula, 

A = 2!_ = _!&_(1 + logto 2-v'n ) 
Ts nTs Ko (17) 

where Ts denotes the period of the oscillation in the steady states and T 1 is 
determined from 

ce-m1 = 0.01 

In other words after the lapse of time T 1 , K will take a value of 99.5 per cent 
of the steady states value. 

( 12 ) 
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II. Nummerical Calculation and Characteristic 
Deta of the Oscillations 

73 

Since it is impossible, as mentioned above, to obtain the solution curves of 
eq. (7) by direct integration, the author adopt an approximate integration method 

as follws: 
Coordinates axis are divided into small intervals such as 

Xm+I - Xm = L1 Xm , Ym+I - Ym = L1Ym 

Then tangent of the m- th segment which pass through a point ( Xm , Ym) is 

determined from eq : (7) 

~J'm - X2 Xm - C 
L1 Xm - - m - Ym - m 

It is quite reasonable to consider that Cm changes its value in an equal dif
ference in the neighbourhood of the considering point : 

Cm+I - Cm = Cm - Cm-1 

or 

Cm+I = 2 Cm - Cm-1 

If we extend the m- th segment until it intersects with adjacent interval 

x = Xm+I, it should be tangent which is determined by Cm+I. 

Therefore it is more probable to draw the segment which has the tangent given 

by the arithmetical mean of Cm and Cm+I through the point Xm , y,. that is ; 

L1Ym 1 1 
L1 Xm = 2 ( Cm + Cm+I) = 2 ( 3 Cm - Cm-1) 

Therefore 
1 

Ym+I = Ym + 2(3Cm- Cm-1)L1Xm 

And again from this relation Cm+I is determined as follows ; 

L1Ym+I 2 Xm+I C 
L1 Xm+I = n - Xm+l - Ym+I = m+I 

and the value of this Cm+I must coincide with the value 2 Cm - Cm-1 within 
a sufficient accuracy by taking the intervals small enough. 

Thus starting from a point that is given by initial conditions we can construct 
the approximate, but sufficiently detailed, solution curve in such a way as mention

ed above. 
Some examples of the calculations are as follows : 

X 

0 

0.001 

0.002 

0.003 

Table 1. Example of nummerical calculation 

n = 0,1 

y .x/y 

0.10000 0 0 

0.10010 0.00000 0.00999 

0.10019 0.00000 0.01996 

0.10027 0.00001 0.02992 

( 13 ) 

.tJyj.tJ.x 

0.10000 

0.09000 

0.08003 

0.07006 
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(b) 

4Ln-x<} 
dx ~ 
n ·L537 

-3 3 

(d) 

(f) 

Fig. 1. Solution Curves for various value of n 

( 14 ) 
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Since T is expressed by eq. (10), in our approximate calculation T is given by 

the area. 

L1T = _! L1x y 

In the actual treatment scale is so chosen as the area 1 em 2 correspond to 0.002 
in T. 

One example of these calculation is shown in Table 2. 

X 

0 

0.01 

0.02 

Table 2. . Example of nummerical calculation 

n = 0.4 

T X 

- 0 0.03 0.0926 

0.0976 0.0976 0.04 0.0910 

0.0948 0.1948 0.05 0.0904 

T 

0.2850 

0.3760 

0.4664 

The solution curves and the actual wave forms are shown in Fig. 1 (from a to 
/), for various values of paramater n, in these cases where n < 2 the oscillations 
are normal and where n ~ 2 they are relaxation oscillations as mentioned in part 1. 

Next let us consider about the wave forms of these oscillations in a steady states. 
As is evident, x is a odd function of T in the steady states as seen from the 

figures (Fig. 1 from a to/), so the following relation must be satisfied; 
X ( T + 7l') = -X ( T) 

Consequently x will be expressed as follows : 

x = a1 sin.T + as sin 3T + ·· · · · · · · · · · · 
+ b1 COS T + b3 COS 3T + • • • • .. • • • • • • 

These coefficients of Fourier expansion will be determined approximately by 

the following method. Dividing " 

·a half cycle interval (7i') into m 

sections we can determine a defi

nite value of x corresponding to 

the mid point of each section, 

2 "' . jvn 
aJ=-~ X-vSlD--

m-v=l m 

b 2 ~ jvn 
J =-.GA x-vcos--

m-v=t m 

Then the distortion factor is 

defined by 

20 

'f 
T 
6 
5 
4 

.2 .3 ~ .~.1).7.8,91 !- 3456789 

Fig. 2. Distortion factor 

( 15 ) 
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Distortion factor - '\I Al + An
2 + · · · · · · · · · + Al + · · · · · · - ---~~-~--~~-----~~-----

where Al = al + bl 

In our calculation the interval are divided into fifteen sections ( m = 15) and 

higher harmonics are taken into account up to the seventh (j = 7 ). 
The calculated results from the above relations with various values of n are 

shown in Table 3. 
Table 3. 

Amplitude of harmonics and distortion factors with various values of n 

n I AI 

---o.1oo T-o.1957-

0.400 1.2670 

0.854 

1.537 

3.000 

5.000 

1.8960 

2.4400 

3.5940 

4.6930 

0.00098 

0.01689 

0.12769 

0.5180 

0.8647 

1.5050 

0.00079 

0.00532 

0.0550 

0.1110 

0.3914 

0.6956 

Distortion facters are also shown in Fig. 2. 

0.000437 

0.000618 

0.02410 

0.02640 

0.20960 

0.44530 

Dist. Fact. % 

0.68 

1.81 

7.49 

21.7 

27.1 

38.2 

Some remarks about the period of the oscillations must be added. 
In a steady states of the oscillations period T, is defined as follows; 

;zo-

1.9 

1,8 

l7 

f6 

l5 

1.4 

13 

l2 

11.1 

~0 

09 

as 

Q7 

I 

Trli IT* T 
I 

?t" .. to 

7r<tQ9 

7[+Q8 

7C+Q7 

7[t06 

7C+Q5 

7[+(14. 

7CtQ3 

;nQ2 

lt"+O.I 

•. 7C 

Ql .2 .34 .6.8l0 2 3 4. 5 
-n 

Fig. 3. Transient and steady states half 

period of van der Pal oscillation 

( 16 ) 

7r-QI 

/['-~ 

7(-0,3! 

7[-Q4· 

X ( T + T,) - X ( T) = 0 

y ( T + T,) - y ( T) = 0 

But during the transient 

states of the oscillations there 

is no period which satisfy the 

above relations. So, something 

about the the period in the 

transient states must be added. 

Suppose that the solution 

curve cut the positive y axis 

at time r J and pass throng h 

the positive x axis at the point 

(KJ , 0) then the solution curve 

cut the negative y axis at time 

TJ+t• The time interval ,-J+1 

- TJ may be "transient half 

period " and is expressed by 
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Te I 2 , and Tt may be called as a " transient period ". 
It should be noticed here, that this transient periods depend upon the value K; 

which denotes the peak value of x in the half cycle. 

Ca!culated values of them are shown in Table 4 for various values of n , in 
which K; is taken one tenth of its steady states value determined from the limit 
cycle. 

Table 4. Transient half periods for value of n 

n Ts/2 

0.100 n: 
0.400 3.168 

0.854 3.289 

1.537 3.390 

3.000 4.437 

5.000 5.740 

Figure 3 shows the half period of 

steady and transient states interpo

lated from the above calculated value. 
It is interesting that the ratio 

Ts / Te becomes approximately unity 
when n takes the value equal to 0.854 
(see Fig: 3). Wave numbers A during 
the transient states of the oscillations 
defind by eq. (17) are shown in Figure 
( 4). The characteristic data of the 
oscillation expressed by van der Pol's 

t!quation have been given in our dis

cussions as mentioned above. 
They will be useful in de

signing the oscillators which 
are driven by pulsive wave 

forms. 

Fig. 4. Wave numbers contained 
in transient duration 

Fig. 5. Relations between 

coupling coefficient 

k = M/L and parameter 
n 

1?-

.9 

.8 

.7 

.6 

.5 

,4 

.3 

.2 

.I 

Te/2 Ts/Tt 

n: 1 

3.189 0.993 

3.290 0.999 

2.900 1.168 

2.035 2.159 

1.463 3.922 

g,: I X !OJ A/v 

~3 •1.4 X t5
5
NVS 

Fig. 5. 

fl: a3 
fa = 7 x I o5c~cle 

~=~ 

.2 .3 .4 £ .8, I 2 .) 4 6 n 
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