慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	Transient characteristics of vacuum tube oscillators
Sub Title	
Author	末崎，輝雄（Suezaki，Teruo）
Publisher	慶鷹塾大学藤原記念工学部
Publication year	1951
Jtitle	Proceedings of the Fujihara Memorial Faculty of Engineering Keio University Vol．4，No．14（1951．）），p．70（10）－78（18）
JaLC DOI	
Abstract	Van der Pol discussed the mechanism of self sustained oscillation by the equation which is called by his name． And since van der Pol，a number of researches have been reported on self sustained oscillations expressed by the van der Pol＇s differential equation．Nothing seems to be added to them． However，the author discussed van der Pol＇s equation in a modified form and have obtained the actual data about the transient as well as the steady characteristics of this oscillation．
Notes	Genre URLDepartmental Bulletin Paper https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝KO50001004－00040014－ 0010

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたっては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

Transient Characteristics of Vacuum Tube Oscillators

(Received Nov. 26, 1952)

'Teruo SUEZAKI*

Abstract

Van der Pol discussed the mechanism of self sustained oscillation by the equation which is called by his name.

And since van der Pol, a number of researches have been reported on self sustained oscillations expressed by the van der Pol's differential equation. Nothing seems to be added to them.

However, the auther discussed van der Pol's equation in a modified form and have obtained the actual data about the transient as well as the steady characteristics of this oscillation.

I. Preliminary Remarks

There are many cases of electrical oscillatory systems which are led to the following differential equation;

$$
\begin{equation*}
L C \frac{d^{2} V}{d t^{2}}+R C \frac{d V}{d t}+V=M \frac{d i}{d t} \tag{1}
\end{equation*}
$$

where V denotes the oscillatory voltage in the grid side of vacuum tube oscillator. Equation (1) may be held in the cases whether plate tunning or grid tunning oscillator; L, C, R denote the inductance, capacitance and resistance of the oscillatory component respectively, M is the mutual inductance between grid and plate coil and i is the plate current, which can be expressed as follows;

$$
\begin{equation*}
i=g_{1} V-g_{3} V^{3}, \quad g_{1}>0, g_{3}>0 \tag{2}
\end{equation*}
$$

We can replace i in eq. (1) in terms of V by using eq. (2) and introducting the following new variables

$$
\begin{equation*}
\tau=\omega_{0} t \quad V=V_{0} x \tag{3}
\end{equation*}
$$

where ω_{0} is a natural frequency of the oscillatory system that is $\omega_{0}{ }^{2}=1 / L C, \quad V_{0}$ is a quantity which has a dimension of Volt and to be determined from eq. (4) such as;

$$
\begin{equation*}
3 \omega_{0} g_{3} M V_{0}^{2}=1 \tag{4}
\end{equation*}
$$

Further we introduce a parameter n defined by

$$
\begin{equation*}
-n=\omega_{0}\left(R C-g_{1} M\right) \quad n>0, M>0 \tag{5}
\end{equation*}
$$

Here we have assumed that $-n<0$; this condition is very essential otherwise no self excited oscillation would be posible.

[^0]Substituting the relations (2), (3), (4) and (5) into eq, (1) we shall obtain the following equation.

$$
\begin{equation*}
\frac{d^{2} x}{d \tau^{2}}+\left(-n+x^{2}\right) \frac{d x}{d \tau}+x=0 \tag{6}
\end{equation*}
$$

This is the basic equation in our treatment and is one of the modified forms of van der Pol equation. Since time τ does not occur explicitely in eq. (6), it is possible to reduce the equation to one of first order by introducing $d x / d \tau=y$ as a new variable following the well known procedure in the non lineary theory of oscillation.
In this way we obtain the equation

$$
\begin{equation*}
\frac{d y}{d x}=n-x^{2}-\frac{x}{y} \tag{7}
\end{equation*}
$$

It is not possible to obtain the solution curves in the x, y-plane by explicit integration, but the approximate solution curves can be drawn with various methods. If they are once determined in sufficient detail, it would be very useful to characterize the feature of the oscillation.

And the qualitative charactors of the solution can be obtained from the characteristic equation even though the solution curves themselves could not be obtained explicitly.

The characteristic equation will be expressed by the following equation from eq. (7)

$$
\begin{equation*}
S^{2}-n S+1=0 \tag{8}
\end{equation*}
$$

It is concluded from this equation that the parameter n must be limited as follows:

$$
\begin{equation*}
n<2 \tag{9}
\end{equation*}
$$

Under this condition the solution curves of eq. (7) are spirals which start from the point near the origin and will approach to a definite closed curve in the x, y plane which is called "Limit Cycle". Existence of the closed curve, limit cycle, in the x, y-plane shows that eq. (6) has a periodic solution.

If the value of n becomes larger than 2, then relaxation oscillation will take place.

The time τ, which will elapse while y varies from y_{1} to y_{2} on the solution curve, is expressed by

$$
\begin{equation*}
\tau=\int_{y_{1}}^{y_{2}} \frac{1}{y} d x \tag{10}
\end{equation*}
$$

Before concluding our discussion something about analytical treatment must be added.

If we introduce polar coordinates in the x, y-plane that is

$$
x=K \sin \theta, \quad y=K \cos \theta
$$

we obtain the following equation from eq. (6)

$$
\begin{aligned}
& \frac{d K}{d \tau}=\frac{K}{2}\left(n-\frac{K^{2}}{4}\right)+\frac{n K}{2} \cos 2 \theta+\frac{K^{3}}{8} \cos 4 \theta \\
& \frac{d \theta}{d \tau}=1-\frac{1}{2}\left(n-\frac{K^{2}}{2}\right) \sin 2 \theta-\frac{K^{2}}{8} \sin 4 \theta
\end{aligned}
$$

As a first approximation let us take a mean value terms in the right hand side of these equations, that is

$$
\begin{align*}
& \frac{d K}{d \tau}=\frac{K}{2}\left(n-\frac{K^{2}}{4}\right) \tag{11}\\
& \frac{d \theta}{d \tau}-1 \tag{12}
\end{align*}
$$

From these equations K and τ are given by

$$
\begin{align*}
& K=\sqrt{\frac{4 n}{1+\mathrm{C} e^{-n \tau}}} \tag{13}\\
& \theta=\tau
\end{align*}
$$

After sufficient lapse of time τ, K will approach to the value $2 \sqrt{n}$, which represents the amplitude of the oscillation in a steady states and C is a integration constant which is determined from the initial condition $\tau=0, K=K_{0}$, that is

$$
\begin{equation*}
C=\frac{4 n}{K_{0}^{2}}-1=\frac{4 n}{K_{0}^{2}} \tag{15}
\end{equation*}
$$

After time τ_{0} determined from

$$
C e^{-n \tau_{0}}=1
$$

K will be built up to the value $\sqrt{2 n}$ and this τ_{0} serves as a measure of the quickness of building up of the oscillations. Such a time is given from the above relations, that is,

$$
\begin{equation*}
\tau_{0}=\frac{2}{n} \log \frac{2 \sqrt{n}}{K_{0}} \tag{16}
\end{equation*}
$$

Some times it is convenient to compare the number of waves which exist in the transient duration of the oscillation.

For this purpose it is convenient to use the ratio defined by the following formula,

$$
\begin{equation*}
\Lambda=\frac{T_{1}}{T_{s}}=\frac{4.6}{n T_{s}}\left(1+\log _{10} \frac{2 \sqrt{n}}{K_{0}}\right) \tag{17}
\end{equation*}
$$

where T_{s} denotes the period of the oscillation in the steady states and τ_{1} is determined from

$$
C e^{-n \tau_{1}}=0.01
$$

In other words after the lapse of time τ_{1}, K will take a value of 99.5 per cent of the steady states value.

II. Nummerical Calculation and Characteristic
 Deta of the Oscillations

Since it is impossible, as mentioned above, to obtain the solution curves of eq. (7) by direct integration, the author adopt an approximate integration method as follws:

Coordinates axis are divided into small intervals such as

$$
x_{m+1}-x_{m}=\Delta x_{m} \quad, \quad y_{m+1}-y_{m}=\Delta y_{m}
$$

Then tangent of the m-th segment which pass through a point $\left(x_{m}, y_{m}\right)$ is determined from eq: (7)

$$
\frac{\Delta y_{m}}{\Delta x_{m}}=-x_{m}^{2}-\frac{x_{m}}{y_{m}}=C_{m}
$$

It is quite reasonable to consider that C_{m} changes its value in an equal difference in the neighbourhood of the considering point:

$$
\begin{gathered}
C_{m+1}-C_{m}=C_{m}-C_{m-1} \\
C_{m+1}=2 C_{m}-C_{m-1}
\end{gathered}
$$

If we extend the m-th segment until it intersects with adjacent interval $x=x_{m+1}$, it should be tangent which is determined by C_{m+1}.

Therefore it is more probable to draw the segment which has the tangent given by the arithmetical mean of C_{m} and C_{m+1} through the point x_{m}, y_{m} that is;

$$
\frac{\Delta y_{m}}{\Delta x_{m}}=\frac{1}{2}\left(C_{m}+C_{m+1}\right)=\frac{1}{2}\left(3 C_{m}-C_{m-1}\right)
$$

Therefore

$$
y_{m+1}=y_{m}+\frac{1}{2}\left(3 C_{m}-C_{m-1}\right) \Delta x_{m}
$$

And again from this relation \boldsymbol{C}_{m+1} is determined as follows;

$$
\frac{\Delta y_{m+1}}{\Delta x_{m+1}}=n-x_{m+1}^{2}-\frac{x_{m+1}}{y_{m+1}}=C_{m+1}
$$

and the value of this C_{m+1} must coincide with the value $2 C_{m}-C_{m-1}$ within a sufficient accuracy by taking the intervals small enough.

Thus starting from a point that is given by initial conditions we can construct the approximate, but sufficiently detailed, solution curve in such a way as mentioned above.

Some examples of the calculations are as follows:
Table 1. Example of nummerical calculation

$$
n=0,1
$$

x	y	x^{2}	x / y	$\Delta y / \Delta x$
0	0.10000	0	0	0.10000
0.001	0.10010	0.00000	0.00999	0.09000
0.002	0.10019	0.00000	0.01996	0.08003
0.003	0.10027	0.00001	0.02992	0.07006

Fig. 1. Solution Curves for various value of n

Since τ is expressed by eq. (10), in our approximate calculation τ is given by the area.

$$
\Delta \tau=\frac{1}{y} \Delta x
$$

In the actual treatment scale is so chosen as the area $1 \mathrm{~cm}^{2}$ correspond to 0.002 in τ.

One example of these calculation is shown in Table 2.
Table 2. Example of nummerical calculation

$$
n=0.4
$$

\boldsymbol{x}	$\Delta \tau$	τ	\boldsymbol{x}	$\Delta \tau$	τ
0	-	0	0.03	0.0926	0.2850
0.01	0.0976	0.0976	0.04	0.0910	0.3760
0.02	0.0948	0.1948	0.05	0.0904	0.4664

The solution curves and the actual wave forms are shown in Fig. 1 (from a to f), for various values of paramater n, in these cases where $n<2$ the oscillations are normal and where $n \geqq 2$ they are relaxation oscillations as mentioned in part 1. Next let us consider about the wave forms of these oscillations in a steady states.

As is evident, x is a odd function of τ in the steady states as seen from the figures (Fig. 1 from a to f), so the following relation must be satisfied;

$$
x(\tau+\pi)=-x(\tau)
$$

Consequently x will be expressed as follows:

$$
\begin{aligned}
& x=a_{1} \sin \tau+a_{3} \sin 3 \tau+\cdots \\
&+b_{1} \cos \tau+b_{3} \cos 3 \tau+
\end{aligned}
$$

These coefficients of Fourier expansion will be determined approximately by the following method. Dividing a half cycle interval (π) into m sections we can determine a definite value of x corresponding to the mid point of each section,

$$
\begin{aligned}
& a_{j}=\frac{2}{m} \sum_{\nu=1}^{m} x_{\nu} \sin \frac{j \nu \pi}{m} \\
& b_{j}=\frac{2}{m} \sum_{\nu=1}^{m} x_{\nu} \cos \frac{j \nu \pi}{m}
\end{aligned}
$$

Then the distortion factor is defined by

Fig. 2. Distortion factor

$$
\text { Distortion factor }=\frac{\sqrt{A_{3}{ }^{2}+A_{5}{ }^{2}+\cdots \cdots \cdots+A_{j}{ }^{2}+\cdots \cdots}}{A_{1}}
$$

where

$$
A_{j}{ }^{2}=a_{j}{ }^{2}+b_{j}{ }^{2}
$$

In our calculation the interval are divided into fifteen sections ($m=15$) and higher harmonics are taken into account up to the seventh $(j=7)$.

The calculated results from the above relations with various values of n are shown in Table 3.

Table 3.
Amplitude of harmonics and distortion factors with various values of n

n	$\mathrm{~A}_{1}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{7}$	Dist. Fact. \%
0,100	0.1957	0.00098	0.00079	0.000437	0.68
0.400	1.2670	0.01689	0.00532	0.000618	1.81
0.854	1.8960	0.12769	0.0550	0.02410	7.49
1.537	2.4400	0.5180	0.1110	0.02640	21.7
3.000	3.5940	0.8647	0.3914	0.20960	27.1
5.000	4.6930	1.5050	0.6956	0.44530	38.2

Distortion facters are also shown in Fig. 2.
Some remarks about the period of the oscillations must be added.
In a steady states of the oscillations period T_{s} is defined as follows;

Fig. 3. Transient and steady states half period of van der Pal oscillation

$$
\begin{aligned}
& x\left(\tau+T_{s}\right)-x(\tau)=0 \\
& y\left(\tau+T_{s}\right)-y(\tau)=0
\end{aligned}
$$

But during the transient states of the oscillations there is no period which satisfy the above relations. So, something about the the period in the transient states must be added.

Suppose that the solution curve cut the positive y axis at time τ_{j} and pass through the positive x axis at the point (K_{j}, O) then the solution curve cut the negative y axis at time τ_{j+1}. The time interval τ_{j+1} $-\tau_{j}$ may be "transient half period" and is expressed by
$T_{t} / 2$, and T_{t} may be called as a " transient period".
It should be noticed here, that this transient periods depend upon the value K_{j} which denotes the peak value of x in the half cycle.

Calculated values of them are shown in Table 4 for various values of n, in which K_{j} is taken one tenth of its steady states value determined from the limit cycle.

Table 4. Transient half periods for value of n

n	$\mathrm{~T}_{s} / 2$	$\mathrm{~T}_{t} / 2$	$\mathrm{~T}_{s} / \mathrm{T}_{t}$
0.100	π	π	1
0.400	3.168	3.189	0.993
0.854	3.289	3.290	0.999
1.537	3.390	2.900	1.168
3.000	4.437	2.035	2.159
5.000	5.740	1.463	3.922

Figure 3 shows the half period of steady and transient states interpolated from the above calculated value.

It is interesting that the ratio T_{s} / T_{t} becomes approximately unity when n takes the value equal to 0.854 (see Fig. 3). Wave numbers Λ during the transient states of the oscillations defind by eq. (17) are shown in Figure (4). The characteristic data of the oscillation expressed by van der Pol's equation have been given in our discussions as mentioned above.
They will be useful in designing the oscillators which are driven by pulsive wave forms.

Fig. 4. Wave numbers contained in transient duration
Fig. 5. Relations between coupling coefficient $k=M / L$ and parameter n

Acknowledgements

I am very obliged to Miss A. Furuhashi and Mr. K. Sasaki who assisted me in the numerical calculations and in making the voluminous list of calculated numbers.

[^0]: * Professor at Keio University

