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Thermal and Centrifugal Stresses in a Rotating
Disk of Variable Thickness ( I )

( Received March 1, 1950 )
Toyotaro SUHARA *

Abstract

In this paper, thermal and centrifugal stresses in a rotating circular disk of
small thickness but of arbitrary profiles of certain types are analysed for given
radial distributions of temperature in the disk, taking the coefficients of elasticity
and of thermal expansion as functions of the radial distance from the center,
corresponding to the given temperature distributions.

Introduction

With the present tendency of utilizing high temperatures in gas and steam
turbine operations, thermal stresses in the working parts such as turbine rotors
have become as important as centrifugal stresses.

In order to make analyses for these stresses closely at elevated temperatures it
is necessary to introduce the effects of the changes of material properties in analyt-
ical forms into the basic equations of elasticity. In this paper analyses are made
on the substantially same lines as my former paper? where the coeflicients of elastic-
ity and thermal expansion were taken as functions of temperature or functions of
co-ordinates and Poisson’s ratio alone was considered constant for all temperatures.
The analyses hold only for the elastic state strained below yield point of the
material.

In the analyses, all variables are assumed to be symmetrical about the axis of
rotation and a plane ( mid-plane of the disk ) perpendicular to the axis, and the
disk is considered thin as compared with its diameter so that all the axial stresses
may be neglected.

Nomenclature

The following nomenclature is used in the paper:

7, 0, 2 = cylindrical co-ordinates

7, 71, 72 = variable radius, inner and outer radii of the disk
Z, 2o, 71, Za = thicknesses of the disk

Gy, Gry, Gr1, Ore = radial components of stress

Gg, Gm, Og1, G2 = tangential components of stress

u, u, Us = radial displacements

T, To, Ty, T: = temperatures

* Dr. Eng., Professor of Mechanical Engineering, Keio University
1) 7 Elasticity of Steel strained by Unequal Heating # by Toyotaro Suhara, Journal of
the Soc. Mech. Engrs., Japan; Vol. XXI, No. 50, Aug. 1918
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Thermal and Centrifugal Stresses in a Rotating Disk of Variable Thickness (1) 51

a, ay, a;, oz = coefficients of thermal expansion
E, E,, E,, E; = Young’'s moduli
Subscripts 0, 1 and 2 refer to the center, the inner periphery and the outer
periphery of the disk, respectively
Aoy ey Ay, Mgy Ae, Az, v, N (= 1/v)
= arbitrary constants used in expressions ( 6 ), ( 14 ), etc.
a, & §, s, 8, 7 = arbitrary positive integers in (16 ), (14 ), etc.

= Az, @ = Az, o= N, 7 = Lim AL,
Az—0, (>

Ho = 7\0'/>"8, = 7\0/7\41, M2 = Nr/)\»:,

B0 = Jjfe, 1 = j/a, #2 = j/Ae, 7 = Lim &
Ae—0, >0

X = A2 or A7, E =jr

B = 6,/E a constant

6 = Poisson’s ratio

w = weight of the material of disk per unit volume

g = gravitational acceleration

n = number of revolutions of the disk per second

@ = angular velocity of the disk

C, ¢, Gy, C, C; = constants of integration

Part 1
Expressions for the Stresses when Z, T, a« and E are given as Functions of 7
I Basic Equations

The basic equations are obtained on the assumptions that the shape of disk is
symmetrical with respect’ to the axis Z of rotation and the plane Z = 0, that all
the stresses and strains are also.symmetrical with respect to the same axis and the
plane, and that the thickness Z of the disk is supposed to vary continuously along
the radius and is considered small in the sense that the stresses in the axial direction
are disregarded without much error.

The expressions for radial and tangential stresses are

_ E du | ou _

o= B %+ (1+0)aT} | (1)
and _ _E (odu ,u_ 1

6971_62{d,+, (1+0)al | (2)

The stress equation of equilibrium for the disk rotating with an angular velocity
® may be shown to be

d ' ww? _
(fi’;(Zm,)—Zaa+fgr Zrr = ¢ (3)
In these equations Z, T, « and E are all considered to be function of 7, and

Poisson’s ratio o alone is supposed independent of temperature and constant through-

out the disk. '
Eliminating # and oy from the equations (1), (2 ) and ( 3 ), we get a differen-
tial equation for the radial stress o, in the rotating disk of variable thickness as

(21)



52 Toyotaro SUHARA

follows :
£oms (e ff) o
+{d‘£1 z+ (M - fwE) lwz - L+ T LRE] (o)
. w(3%e — digp) — B ar) (4

"*  Eliminating o and o from the same equations we get a differential equation for
the radial displacement z as follows:
du (1, d de (1 _od

dr? dr rt  rdr
2 d d
= — (o) { (=) "G+ DI ZE-Cal) + G (aDf (5)

ITI Disks of Algebraic Profile

We assume the variations of
the thickness of disk of the type Z = Zy (1 4+ Ae?*)$ = Zp (1 + x)*¢
the temperature of disk of thetype T = To (1 + A7) = To (1 4 x/u” )" ]
the coefficient of thermal expansion of the.type {.( 6)
a = ap(1l+ra?) = ap( 1+ x/u/ )° ‘(
Young’s modulus of the type E=E(l+xr)t =E(1+ x/u)t )
Here Zy, Ty, @y and E; denote the hypothetical values at 7 = 0 in case of a disk
with central hole.
Through these expressions ( 6 ) we may practically deal with a rotating circular
disk of any shape and of any thermal condition. Substituting ( 6 ) in eq. (4 ) and
using the new independent variable x in place of 7, we get

1 ¢ & d
dxz (ror) + (x 1’”'_*: x -+ /.L+I> (7’0‘7)
_{‘_1,.__ ¢ +{(1+e)c+<e+C)N«r}x+u§+(e+u§>zva}(m)
vy (1+x)? x(l+x)(pn+2x) r
_ wWoN s [3+ 0 _Ex
- gxaNxN { ” +u+x}

_ g ToEg Nyt (W + 2 )" + x )™t ' ’
NN e 7 {(aw +mw)+Cat D2} (da)
We take the following set of the complementary function and a particular inte-
gral 7, as a complete primitive of eq. ( 4a ):
(70-) = a2V (1 + 2 ¥{Com(x)+ Cima(x)} + n0(x) 7>

in which m(x) = §oanx", X = A (8)

and the relation connecting three consecutive a’s is
uw(m+1)(m+1+2N) amn |
+[(pu+1)m(m+2N)+{m+N(1—0c)}(u&+E)lan i
+0(m=1)(m—14+2N)+{m=1+N(1=o)}({+&)Jan1=0 ((8a)
J

with @ = — (l—U)N(p.L'-i-E)
! (1+2N)p

(22)
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and ng(x)=:r?N§_".ob,.x" (N=+=1/2,1,2,3 ¢+ ) (9)

and the relation connnecting three consecutive b’s is
uw{m+1)(m + 12N ) by
+[(p+1)m(m—=2N}+{m—N(1+o)}(pul+¢E)]bn ;
+(m—1)m—-1=2N)+{m—1—N(14+6)}(E+E)]bny1=0 (9a)

with b, (1+a)N(8+,u§)b
(1—-2N)u
A particular integral is
70 (%) = 2N (1+ ) (p+ 2) " S1ear” + N1 ST duxn } (10)
 n=1 n=1
The relations connecting three consecutive ¢’s and d's are Y
3/ ,u(m+1)(m+1+2N)cm+1 1;‘
T4+ 1) (m+1)(m+ 14 2N)—{m+1+N(1+0 )} (E+ut ) Ion (
+L(m+1)(m+1+2N)—{m+1+N(1+o )} (E+E)ICna | |
= — Wan for m<=a+7—1 |
=0 for m=a+ 1
and 0= =W - _ o ToENu? (9_ + T )
(TH+2N>u~  (1+2NNF Z | (10a)
. — aoToEoNut 33 al e (m+1) ‘:
" AV 20 K Ca—k ) (mAT—k ) (r—m—1+k)! ,
= BNy fa | 7
WO - 7\1\] {Mr + u.” }' i
i
Wapr—1 = aoT‘;gvoNﬁ‘(ﬁ?’—*_ ™) ‘1
( w (m+2N ) (m+4N ddnn T
S+ [(ut1)(m+2N) (m+4N) —{ m+N (3+c ) } (E+ul) Jdn
‘ +[(m+2N) (m+4N ) — { m+N (340) } (E+& ) Jdna
= — Gn for m= & ;’
=0 for m=E&+1 1(10b)
and d = —we? (3 + o )u (8gA3N) 3

Gy = wo'N* (3 + o) st /(gnN)
Gn = w(u”{ZV“(3+a-)+Nm}u' ms!/{gx’Nm'(e—m)'}
G: = wo? {N*(3+ o)+ Ne} /(NN

The constants C, and C; in (7 ) may be determined by the conditions at the
inner and outer peripheries of the disk. '
o is obtained from ( 3 ) and ( 7 ) as follows:

_ 4a d w_ﬂ’a!
go .= t‘i;lgz-(fd'r)’*‘ d;( 7'0'7') + I r

or rae= 2 (1+2¥[Ci{m(x)+van’ (x)}+Ca{na(x)+van/(x)}]
+ wx{n/ (%) —&(1+ %) (%)} + wo'r'/g (11)

(23)



54 Toyotaro SUHARA
and # from (1), (2),(7)and (11)

Eux = xN(1+x ¥[Ci{ (1= )m(x) + vap/ (%)} + Co{(1—0c )na(x)
+oxn ()} ] —{vlx(1+x )y 4o }p(x)+ van'(x) + weorg + raTE

(12)
where * denotes d/dx. _
By the conditions ( ¢y )r=r1 = 01 and ( o, Jy=rzs = 012,
C = 1 (nor + %01 ) 728 _ (72072 + 7es ) 731 } J
711 Y22 — T2 a1 N (1+x ¥ 2V (1+x:
((13)
Cy = 1 { (riom + na)me _ (720rs + M03) } . j
711 N2z — 12 Nat AV (142, % 2 (1+x; ¥

in which x; = A, 7} and x; = A, 7¥; and nu, 719, -+- denote 9 (%) = m (A 77),
m ()= (N 73 ), -,
. A Special case
When v =2, N=12and{=6=a=7=1 x=x7 (6) becomes
 Z=2Z, (14

T="T, (14 xr?) 1[ (14)
a=a, (1+x7) -‘
E=FE, (1+xr*) /
and the solution (7)) takes the form of
7oy = /x5 (1+2) {Cim () + Com Cx) + 7, () } (15)
in which 7 (%) = 3l gy 2" . (16)
and Az (n+2) (n+3 )ans=
+ (A + 2 ){(n+2) (n+3) — ; (20+5+0 ) }awn
+xX{(n+2) (n+3) — (2n+5+0 ) }an =0 L (16a)
ay = — % (1= ) {14+ Ae/Az ) }ao
ar =5 (1—o ) [ (7T—a) {1+ XAz )} — BAe/Az ) 1
72 (%) =m(x)lgx+b-1x'1+élbnx" (17)
Az (n4+2) (n43) bage + A (2745) Gnea
+ ( xe’i'lz) {(n+2) (n+3)— 1‘ (2n+5+¢r)}bn+1+(7\e+7\3) (2”+4)an+1 (
+ A{(B+2)(n+3)—  (20+5+0) b+ A(2n+3)an=0 C (17a)
b = 22Xz ao b = { Ae . (5+30‘) (7\.@""7\2)}00 |
T (140 ) (M) - Ae + Ae 8z /
.770(7‘)=2”Cnx” (18)

A m4+2) (743 ) Cote ]
+ (e + 2:) {(n+2)(n4+3) — [ (204540 ) Yonn |
+ a{(n42)(n+3) — (2n+5+0 )} ca =0 } (18a)

 wer(3da) . oToEy (e M) \
6 = .— 'Sgkz;z T 4)\2/2 i ; .

(24)
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w o

= g | (1meDn (7o) (34000, | ]

(24} ToEu
MRTNE

{ (7—0' ) ( Xp‘i‘)\z ) ( /\:u""‘kf) - 8)\,77\45 } ) i

IIT Disks of Exponential Profile
In the expression for the disk thickness Z in ( 6), if we make
N0, oo and Lim A = j ( a finite value )
we get the exponential expression for 7, thus
Z = ZyLim (1 + A )8 = Zye ™ = Z, (19)
where £ = j». The expressions for 7, « and E in terms of & .are
T=To(I+n? Y = To(1 + Elds )T
o= g (I+xar ) = o (1 + E/gpy )® ; (20)
E = E (I+x2 )t =Ey( 1+ Elgpy)® '
The solution for this case may be considered to be a limiting case of the preced-
ing general expressions. The following expression of o, is the primitive of Eq.
( 4 ) for a special value of exponents

in (20):
(o) = exp Cir )L Cr 3 an i + Cort S G or )
+evSige v Sae gD are 4 gy Siay g2

in which coefficients ¢, ¢, ¢ and ¢! are given by

g0 (M+14+2N) (m+1+4N ) crar ‘ ]

+ L (mA1+2N) (m+1+4N) — (Q+epy) { m+1+N (340 ) b, i(21a).
—_ {m+1+]\7( 3+(7' ) }‘ C ':n—l = 0 \
and €y = — wa? (3+o )/ ( 8gN)

Bo ( MA2+2N) (m+2+4N )¢5,
+ [ (m+242N ) (m+2+4N ) — ( 1+ ) { m+2+N (3+a )} 1 e
—{m+2+N(3+c)}ems =0 1<21b)
ey = — ww?(3+o+v) / {gPN( 2+4v)(4+v) o }

It

do(m+2)(m+242N ) ¢ i
T L(m+2) (m+242N ) — (1+¢) { m -2+ N (1+0) ) Jolf |

— {m+24+N(1+c)} el =0 iﬁ(mc)
"= — ToEy (hitps ) ) {VN(24v ) dua }
tho (M43 ) ( m+3+2N)Cm+1 i
+L(m+3) (m+3+2N) — (14 ) { MA3EN (o) ) e |
— {m43+N(140) } .= 0 ,(21‘“

e = —agToEy [ {27V (14v) ueps }
(25.)



56 Toyotaro SUHARA

Further, if we take » =2 Egq.(21) simplifies a little as follows:
or = 7 exp (jr*) {Clgo an (jr* ) + Cor? :Zj, b (372" }
33 (e ) (e
S () (22)

$o(m+2) (m+3) cua
+L(m+2)(m+3)— 2(1+¢)(2m+5+0a)]c,

—i(2m+5+0) cma =0

l (22a)
J

¢y = —wao(3+0)/(8g")
go(m+3)(m+4) cmir ‘
+[(m+3)(m+4)—§(1+¢o)(2m+7+cr)]62 ! (22b
_ —3(2m+74+0 )¢, =0 ( )
, " = —we? (5 + o )/ (24g7" ¢y ) j
¢ satisfies the first expression of ( 22a ) with
o™ = — agToEy (¢1 + ¢2 )/ (4 ¢1¢2 ) (22¢)
c'V satisfies the first expression of ( 22b )with
"V = — ayToF, [( 653¢162 ) (22d)

De Laval Profile

When o, T,  and E are all constant,
Eq. (4) reduces to

da? , 2+o0 d _ _we®(3+a)
dr’ (1gZ) + r dr (182D = " go,

the primitive of which is
Z=Ciexp ( — Cor =7 ) + exp ( — wewr*/2gc, )

The last term is a particular integral giving well known De Laval profile.

IV Disk of Uniform thickness

When the disk is of uniform thickness Eq. ( 4 ) becomes

& 1 d d (1 _o d
(o) + (L= g 18E ) f(ron) — (53 ~ T 1gE) ()
- _wWorr /3 4+ o _ i _ ﬁ
N g ( 7 drlgE) Edr(aT) (233
We assume the variation of
Young’s modulus E=E,(1—A7) 1
disk temperature T=To(1+ A7) ( (24)
)

coefficient of thermal expansion a = ap (1 + A7)

(26)
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Substituting (24 ) in Eq. (23 ) we get

d#ﬁ(mw( 47‘”3) (r0,) — (1+14"77tgr,)(m)

_— wo'r? + o A3 3
- (3 1—x§7‘) -
the complete primitive ( divided by 7 ) of which is

or = CF (A, A5 3207 ) + C (b ) F (AL — |

Ea;(aT) (25)

A — 112z

+3 g (26)

n=1

where A, A; = —+}./5— 4o

and a = Lo, wo? ~ L n A Tl |

a; = — A X A THE,

(26a)

a; = AL

" = Eiz)il_:fﬁ wm2+ (1—=0%) (hat A ) 2oToEs

as =

{
{

o= 1a{ls .g’ +2(5—0) O+ X)) aToky
11
“{
{

}
J
(11 - ¢) X aToBy }
J
J

(l—dz)AﬁlzaoToEo
and for e, as, -
_ _b5+o_1—-0¢
e (1- 831z
The tangential stress is
o9 = C{F (A, A;8/2; 7)) —3 (1 — o ) X7 F(Ai+1, A2+ 5/2; A2t )}
+C{— (NP ) F(A— 5, A~ 312,00 7)
+2(1+ )N F(A+3As+5;32;07) }

) Ag QAn—2, n = 7; 8’ 9’ ot

+ 320 + 1) awr™ + we? g (27)

n=1
in which a’s are given by ( 26a ).
The displacement component % is

#u=C(l—c)E7F(A + 1A +1;32;N\7r)
—(GA) (14 0) B F (A 1 Avt 1512 0 )47 Semnr™ (28)
n=1
where ¢’s are given by

1 {_1—02 we?

(27)
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¢ = 1,7(1+a)(>\§—>\a>\;)aoTo
—_— —_— 2 v
672 { (5+a’21(1 a);’g (1+o-)(7\.,+7\¢)cxoTon}
cgz {(11+o)>\32+(1—0)7w7\r}' (28
and for n =5,6,7, -

Cant1 = (1 - ']1-;{-? - }1{ i ) Can—1

The constants C; and C in ( 26 ) may be determined on the conditions
(0r) r=m = on, (o r=rs = O,
72 (o — Sy @ ) F (A — 5, As —55 12, M2 7))
{—fz(mz—umanrn’*")F(Al—iA L2, Vn‘)}

C =
{ 7']2F(A1‘—‘~A‘7—“1/2 )\27'2)F(A1,A2,3/2X2714)}

— 12 F(A -1 3 —'-Z' 1/2; 02 74 )-F (A, A5 3/2;02 75¢)
) . { (o2 — Z0) an fzz'z)F(Al, A2;3/2;7\ﬁ 7*) }
2
= (on - B n ™) F(A, As32 0t )
same denominator as above

C2/ Ae =

(29)

Complete Disk of Uniform Thickness

Putting 7; = 0 in expressions (26 ), (27 ) and (28 ) we get o, o¢ and u for
a complete disk as follows: .

N

= CIF (Al,A2,3/2 7\e74)+20n?’2”

go = C{F (A, A3 323027 ) — 2(1— o ) X2 7 F(Ay+1, A, +1;5/2; xzr*)}

+ ww?r?lg + 2$ 2n+ 1) anr™
e

u=C(1—c)ErF(A + 1, A, +1;3/2§>\27’4)+ "'Elczm-l-l"zﬂb
J i
Taking the radial stress at the circumference
(O'r)r=m = Or2
we get C, = (o2 — S1Z anr® ) [F (A, Ay 3/2; As7et)
_ g amy F AL, Ag 320 v ) < "
and oy =(on— danr; )F(Al, A 32 2 ) T 2 an 7 (30)
_ _ 2, o F‘(A],A2,3/2 )274 (1—0‘)7\.»7’F(A1+1 A2+1 5/2 7\274)
O’ﬂ*( T2 ”=Zl An T2 ) l"(Al, Az, 5/2 \27'2 )

wo'r? an
+ 2 + §l(2n+1)anr (31)

% = (0’7.2—”%073?%‘”)( ;—'0' ) TF( A1+ 1 A2+ 1 3/2 7\e

L r ) S 7
Ey F{ Ay, A3 323 Xrst) 7 Zomar (32),

If the condition be (o) r=0=0r» we get C, = o, and o, o9 and # in (30),
(31) and (32), with the last series in each expression in expanded form, may be

(28)
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written as follows :
Or = Opo F( A], Az; 3/2 5 7\%74 )
—(weo?8g){(34+ o) — 4 (1 — 2N — (54 o) (1 —a?) N — -}
— 3§ WTE { (A + X )P4 AN 71— 1 (5 — 0 ) A2 (gt e ) 79
— (11 = ) AT — 5 (1 —02 ) AL ( Ay + Ae ) 79— -0 } (33)
g9 = G'rc{F(AI, Ag; 3/2,}?’)’4)
—3(1 = )NPF(A + 1, Ay + 1;5/2; 3%4) )
— (wef8g) {(1430) 7" — 55 (1 — o)A — .}
~ A TE {3 (Ne 2 ) 72 + WA~ (5 —a MY Mgt A= S(11— N AaA 75—}
L (34)
u = or/ N TF (A1 1, As+1;3/2; 032 1)
—(wo?BgEy ) (1 — a? ) {7+ (5 +a)N27T + - }
F 0T (14 6 )[— (M F AP A+ 2 (= AN ) 7+ (T — )N (a0 ) 7
FuNM{ (1= NeMe + (11 +a)N2} 7P + - ] (35)
The first term containing hypergeometric function of the right hand side of ( 33)
denotes the stress due to the radial static pressure at the circumference (7 = 73) of
disk. The second term denotes the stress due to rotation and the third term due
to thermal expansion. The radial stress oy and the displacement # expressed by
(34) and (35) are also made of 3 similar items as the above expression ( 33 ).
When «, T and E are all constant in the disk with a central hole,
(26), (27 ) and ( 28 ) reduce to, with e = At = A = 0,

or = o (7rP—r?)r? + o (n——ﬂ)_rl (83+ oc)wo® (12 —7°) (7 —1?)

(ri—r?) 7 (r2—r2)rr ' 8 7
(36)
oo = gt ()t (3t o we! (1’ 7)) (74t
2(raé—r2) r T rd—rnt) r 8g 72
_(1+0)wer?
92 (37)
u=1—0' 726‘«,‘2—rlo'r1+(3+0')(ww2/8g)(7'2—'714)
En 7 _Tl
_l_lig'. 1’1’7‘22{0‘72—— O'n+(3+0‘)(ww2[8g)(7’22_7]2 )}.1 1—6? woe? 73
E, 7 —1? 7 8 " gE,
(38)
For complete disk we get ;
or = o+ {(8+oc)wn?/8g}(r?—17) (39)
06 = o+ {(3+c)we? (8} {7?—7(1+3¢)/(3+a)} (40)
_1—0 (3 + o) we? 2~1+0
“="E, { 2 8g (72 3+ ¢ )}r (41)

( to be continued )

(29)



