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Thermal and Centrifugal Stresses in a Rotating 

Disk of Variable Thickness ( I ) 
( Received March 1, 1950 ) 

Toyotaro SUHARA * 

Abstract 

In this paper, thermal and centrifugal stresses in a rotating circular disk of 
small thickness but of arbitrary profiles of certain types are analysed for given 
radial distributions of temperature in the disk, taking the coefficients of elasticity 
and of thermal expansion as functions of the radial distance from the center, 
corresponding to the given temperature distributions. 

Introduction 

With the present tendency of utilizing high temperatures in gas and steam 
turbine operations, thermal stresses in the working parts such as turbine rotors 
have become as important as centrifugal stresses. 

In order to make analyses for these stresses closely at elevated temperatures it 
is necessary to introduce the effects of the changes of material properties in analyt­
ical forms into the basic equations of elasticity. In this paper analyses are made 
on the substantially same lines as my former paper1) where the coefficients of elastic­
ity and thermal expansion were taken as functions of temperature or functions of 
co-ordinates and Poisson's ratio alone was considered constant for all temperatures. 
The analyses hold only for the elastic state strained below yield point of the 
material. 

In the analyses, all variables are assumed to be symmetrical about the axis of 
rotation and a plane ( mid-plane of the disk ) perpendicular to the axis, and the 
disk is considered thin as compared with its diameter so that all the axial stresses 
may be neglected. 

Nomenclature 

The following nomenclature is used in the paper : 
r, e, z 

r, r1, r2 
Z, Zo, Z1, Z2 
Or, Oro, 01·1, Or2 

U, U1, U2 

T, To, T1, T2 

cylindrical co-ordinates 
variable radius, inner and outer radii of the disk 
thicknesses of the disk 
radial components of stress 
tangential components of stress 
radial displacements 
temperatures 

* Dr. Eng., Professor of Mechanical Engineering, Keio University 
1 ) "Elasticity of Steel strained by Unequal Heating 11 by Toyotaro Suhara, Jouraal of 

the Soc. Mech. E~grs., Japan; Vol. XXI, No. 50, Aug. 1918 
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a, ao, a~, a2 = coefficients of thermal expansion 
E, Eo, E1, E2 = Young's moduli 
Subscripts 0, 1 and 2 refer to the center, the inner periphery and the outer 

periphery of the disk, respectively 
A a, Ae, A. u, A.' u, A.t, A.z, v, N (:::::: 1/v) 

= arbitrary constants used in expressions ( 6 ), ( 14 ), etc. 
a, c, ?;, s, s', T = arbitrary positive integers in ( 16 ), ( 14 ), etc. 

JL = Az/Ae, JL1 ~ Az/Aa, JL" = Az/At, j = Lim Az?;, 
.:\z---)0, (---)00 

J.Lo = Au /Ae, 
~0 = j{Ae, 

/Ll = Au/Aa, 
~l = jJAa, 

f.L2 = Au /A,t, 
~2 = j/At, j' = Lim 'Aec 

x = A:1'1' or Au r"', 

B = or/ E a constant 
o = Poisson's ratio 

~ = jr"' 

w = weight of the material of disk per unit volume 
g . = gravitational acceleration 
n = number of revolutions of the disk per second 
w = angular velocity of the disk 

C, C', Co, C1, C2 = constants of integration 

Part I 

.:\e---)0, c---)00 

Expressions for the Stresses when Z, T, a and E are given as Functions of r 

I Basic Equations 

The basic equations are obtained on the assumptions that the shape of disk is 
symmetrical with respecf to the axis Z of rotation and the plane Z = 0 , that all 
the stresses and strains are also symmetrical with respect to the sat:ne axis and the 
plane , and that the thickness Z of the disk is supposed to vary continuously along 
the radius and is considered small in the sense that the stresses in the axial direCtion 
are disregarded without much error. 

The expressions for radial and tangential stresses are 

or ~ { du + f!_U - ( 1 + o ) aT } 
1 - o2 dr r 

(1) 

and oe = ___fl_ { odu + 2-t. - ( 1 + o ) aT. .} 
1 - o 2 dr r 

(2) 

The stress equation of equilibrium for the disk rotating with an angular velocity 
ro may be shown to be 

d wro2 

d
-- ( Zro r ) - Zcr9 + - Zr2 = 0 
r g 

(3) 

In these equations Z, T, a and E are all considered to be function of r, and 
Poisson's ratio cr alone is supposed independent of temperature and constant through­
out the disk. 

Eliminating u and ere from the equations ( 1 ), ( 2) and ( 3 ), we get a differen­
tial equation for the radial stress err in the rotating disk of variable thickness as 

( 21) 
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follows: 

tP (1 d z) d dr2 ( rur ) + r + di 1g)! dr ( rur ) 

+{ -~ Ig Z + ( L±_o- - J}, lg E) !!__ lg Z - 1 + l! .1:_ lg E} ( rur) 
dr2 r dr dr r2 r dr 

= _ ww2 r2( 3_j- u - .cf: lg E) - E fi_ (aT) ( 4) 
g r dr dr 

Eliminating ur and o-9 from the same equations we get a differential equation for 

the radial displacement u as follows : 

d
2u + ( ~ + ¢_ lg ZE ) tf.t~: - ( J - C!_ _!! lg ZE )u 

dr2 r dr dr r 2 r dr 

- ( 1 + a-) { ( 1 - u ) U!_(o~'!_ + _rj_ lg ZE·( aT) + _!]_ (aT)} ( 5) 
gE dr dr 

II Disks of Algebraic Profile 

We assume the variations of 
the thickness of disk of the type Z = Zo ( 1 + At: 1~ )-~ = Zo ( 1 + x )-' 
the temperature of disk of the type T = T 0 ( 1 + Xe r~ )'' = T 9 ( 1 + x/ !-'" Y 
the coefficient of thermal expansion of the. type 

a = ao ( 1 + A a r~ )a = ao ( 1 + X/ 1-'' )a 

Young's modulus of the type E = E0 ( 1 + :\1f11 )-1! = E0 ( 1 + x/ 1-' )-1! 

l 
lc 6) 
( 
I 

} 
Here Z0, To, ao and Eo denote the hypothetical values at r = 0 in case of a disk 

with central hole. 

Through these expressions ( 6) we may practically deal with a rotating circular 
disk of any shape and of any thermal condition. Substituting ( 6 ) in eq. ( 4 ) and 
using the new independent variable x in place of r, we get 

:~ ( rur) + (; - f--r X + ~ + X ) d~ ( 'TUr) 

_ { -~- __ ; . + {( 1_+ §)rtJ§_j-_{)Nu} x + 1-'~ + C E + J.t~) Nu}< ru ) 
v':!X? ( 1 + X ) 2 X ( 1 + X ) ( Jl + X ) r 

= _ Z:,f3~ x3N-3 { ~-t- u + 1-'-?; x } 
ao ToEoN f-L! ( ~-t' + X )a-t( ~-t" + x )T- 1

{ 11 , } x;vJ-L'aJ-L"' · • if:.:.ii(P, +-x·i- -- ( a~-t + -rp. ) + (a + , ) x ( 4a) 

We take the following set of the complementary function and a particular inte-
gral 170 as a complete primitive of eq. ( 4a ) : 

( rur ) = xN ( 1 + X)' { C1)/l1 (X) + C2)/l2 ( X) } + 1]o (X ) ( 7 ) 

in which 
()() 

1]1 ( X) = _2] anx", X = :\!r., 
n=O 

and the relation connecting three consecutive a's is 
p. ( m+1) ( m+1+2N) am+t 

+ [ ( 1-t + 1) m ( m + 2N) + { m + N( 1- u)} (!-'~+c) ]am 1 

(8) 

+ [ ( m -1 )( m- 1 + 2 N) + { m- 1 + N( 1- u)} (~+E) ]am-t = 0 (C Sa) 

with a
1 

= __ ( 1 - u ) N ( 1-'~ + c ) a J: 

( 1 + 2N) 1-' 
0 

(22) 
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<>" 

and 'Y/2 (X) = x-!!Nlj bnxn ( N * 1/2, 1, 2, 3, ••• 
n=O 

and the relation connnecting three consecutive b's is 

fl. ( m +1) ( m + 1-2N) bm+t 

+ [ ( I" + 1 ) m ( m - 2N ) + { m - N ( 1 + u ) } ( !"~ + c ) ] bm 

' ( 9) 

+ ( m - 1 ) ( m - 1 - 2N) + { m - 1 - N ( 1 + u ) } ( ~ + c ) ] bm-1 = 0 ( 9a ) 

with b _ ( 1 + u ) N ( c + p,~ ) b 
1 - (1-2N)!" -- 0 

A particular integral is 

YJo ( X ) = xN ( 1 + X ) ( p, + X ) - H_1{ ~ CnXn + X 2
N-l ~ dnX"' } 

n=l n-1 

The relations connecting three consecutive c's and d's are 

I" ( m + 1 )( m + 1 + 2N) Cm+t 

+[(I"+ 1 )( m + 1 )( m + 1 + 2N)-{ m+1+N( 1+u )} ( c+p,~) ]em 

+ [ ( m + 1 )( m + 1 + 2N)-{ m + 1 + N ( 1 + u )} ( c+ ~ ) ] Cm-I 

= - Wm for m < a + T - 1 
= 0 for m 2: a + T 

and - Wo ao ToEoN 11-e-t ( a T ) 

c1 = rn=--2N ) 11- = - c 1 +2N }>..~ /.2 + "'" 
aoToEoNfl.e m+1 a! T! ( m + 1) 
--- >..~ ~o k! ( a-k )! ( m+l-k )! ( T-m-l+k)! 

z 

i fl. ( m+2N) ( m+4N )dm+t 

: + [ ( .u+ 1 ) ( m+ 2N ) ( m +4N ) - { m + N ( 3+ u ) } ( c + .u~ ) ] dm 
+ [ ( m+2N) ( m+4N) - { m+N ( 3+u)} ( c+~)] dm-1 

= - Gm 

= 0 

for 
for 

m ~ c 
m 2 s+ 1 

and d1 = - ww2 ( 3 + u )J.Le-t/ ( Bg>..!N ) 

Go = ww2N'J ( 3 + u ) Me/ ( gA.~N) 

Gm = W(JJ2 { N2 ( 3 + u ) + Nm } fl. e-m.s ! / { gA.~N.m ! ( c - m ) ! } 

Ge = w(l)2 { N2 ( 3 + u ) + Nc } I ( gA.~N ) 

( 10) 

lOa) 

: (lOb) 

The constants C1 and C2 in ( 7 ) may be determined by the conditions at the 

inner and outer peripheries of the disk. 
u 6 is obtained from ( 3 ) and ( 7 ) as follows : 

d d ww2 ~ u9 = d-lgZ-( rur ) + d-( rur ) + - r-r r g 

or ru9 = xN ( 1 + x )' [ Ct { r;1 ( x) + vxr;t' ( x)} + Cs { r;s ( x) + vxr;s'( X) } ] 

+ vx { r;0' ( x ) - ~ ( 1 + .x )-1r;o ( x ) } + ww2r2jg ( 11 ) 

( 23) 



54 Toyotaro SUHARA 

and u from ( 1 ), ( 2 ), ( 7 ) and ( 11 ) 

Eu = xN ( 1 +X )~ [ C1 { ( 1 ;_o- ) 771 ( X ) + vX77/ (X)} + C2 { ( 1-o- )772 (X) 

+ 11Xr;2' (X)}]- { vsX ( 1 +x )-1 +o-} 77o (X)+ VX77o'.( X)+ WCP12rJ/g + raTE 

where' denotes d/dx. 

By the conditions ( o-~ )r=rl = o-r1 and (o-r )r=r2 = o-r2, 

C ~ 1 { ( 'T10'"r1 + 77o1 ) 7722 _ ( 'T20'"r2 + 77o2 ) 7721 } 1 - 77 u 77~--- 7712 ;J; --xf -(T=t- x;) x.![ ( 1 + x2 )~ 

C2 = ___ 1 ______ f ( 'TIO'"rl_± 77ol )_17.!_2 _ ( 'T20'"r2 + 77o2 ) 7721 } 
77n 7722 - 7712 7721 xfi ( 1 + X1 )~ x.!f ( 1 + X2 )~ 

( 12) 

lc 13 ) 

) 

in which X1 = Az rY and X2 = Az r~ ; and 77u, 7712, · • • denote 771 ( X1 ) = 771 ( Az r~ ), 

771 ( X2 ) = r;1 ( Az r~ ), · · · ·. 
A Special case 

When v = 2, N = 1/2 and s = c = a = r = 1, x = Az r 2 
( 6 ) becomes 

Z = Zo ( 1 + At'T2 
)-

1 

T = To ( 1 + Acr2 
) 

a = ao ( 1 + A.ar2 
) 

E = Eo ( 1 + A.er2 
)-

1 

and the solution ( 7 ) takes the form of 

ro-,. = vx ( 1+x) { C1 'Y/1 (X)+ C2'Y/2 (x) + 'Y/0 (X) } 
C<l 

in which 1h ( X ) = },] an X 11 

n=o 

and A.z ( n+2) ( n+3 )an+2 

+ ( Ae + Az ) { ( n+2) ( n+3) - ~ ( 2n+5+o-) }an+I 

+ Ae { ( n + 2 ) ( n + 3 ) - ( 2n+5 + o- ) }an = 0 

a1 = - ~ ( 1-o-) { 1+( Ae/Az }}ao 

a2 = ~ ( 1-o-) [ ( 7-o-) { 1+( AefAz )}2
- (8A.e/Az ) ] a1 

"" 

( 14) 

( 15) 

( 16) 

( 16a) 

1J2 (X) = r;1( x )lgx + b-1 x-1 + }.] bn X 71 
( 17) 

n~l 

Az ( n+2) ( n+3) bn+2 + Az ( 2n+5) an+2 

+ ( A.e+Az) {(n+2) (n+3)- ~ (2n+5+o-)}bn+1+(A.e+Az) (2n+4)an+l 

+ Ae{(n+2)(n+3)- (2n+5+o-)}bn+Ae(2n+3)an=0 ( 17a) 

b 2A.z ao b1 = { ---~- __ ( 5+3o-) ( Ae+Az) }ao 
-l= (l+o-)(A.e+Az), A.e+At 8A.z 

co 

r;0 ( X ) = ~ CnX" ( 18 ) 
'n=l 

Az ( n + 2 ) ( n + 3 ) Cn+2 

+ ( A.e + A. z ) { ( n+2) ( n+3) - J ( 2n+5+o-) }cn+I 

c1 = ,-

+ Ae { ( n + 2 ) ( n + 3 ) - ( 2n + 5 + u ) } Cn = 0 ( 18a ) 

w w 2 
( 3+o-) 

'SgA!/2 
aoToEo ( Aa +At) 

4A!/2 

( 24) 
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w w2 
{ · 

c2 = 96gA!':~ ' ( 1-a-2') ~\.P. + C 7 -{r ) ( 3--f-a- ) Az } 

+ ao ToEo { 7 ( } 48A~J2 ( -a- ) AP.--1- Az ) ( ~u +A~ ) - 8A,At 

III Disks of Exponential Profile 

In the expression for the disk thickness Z in ( 6 ), if we make 

A!--+ 0, t;--+ oa and Lim A.zs = j ( a finite val~e ) 

we get the exponential expression for Z, thus 

Z = Z0 Li'rn ( j + Arf" )-~ = ZJ e-.ir.,. = Z0 ?-~ 

where ~ = jr11 
• The expressions for T, a and E in terms of ~ are 

T = To ( 1 + A.tr11 )'T = To ( 1 + ~l¢2 )'T 

• (X = ao ( 1 + Aa rv )a = ao ( 1 + ~I ¢I )a 

E = Eo ( l+Anr11 )-!=Eo ( 1 + !;l¢o )-z 

( 19 ) 

c 20) 

The solution for this case may be considered to be a limiting case of the preced­
ing general expressions. The following expression of o-r is the primitive of Eq. 
( 4 ) for a special value of exponents 

r = a = c = 1 
in ( 20 ) : 

00 00 

( ro-r ) = j1111exp ( jr11 
)·{ C1r Lj an ( jr11 y~ + C2r-1 2J bn ( jr11 Y'~} 

n=O n=O 

+ f;SN~ c~ ~n + f;3N+l ~ c~ ~n + f;N+l f: c~r ~n + ~N+2 ~ c~ t;·rz 
n=O n=O n=O n=O 

in which coefficients c r, c n, c m and c Iv are given by 

¢o (m+1+2N) (m+1+4N) c"!+t 

+ [ ( m + 1 + 2N ) ( m + 1 + 4N ) - (1 +(Po ) { m + 1 + N ( 3 +a- i } ]c~n 

- { m+1+N( 3--1-a-)} c ~n-1 =c 0 

and . c~ = - ww2 
( 3+a- ) 1 ( 8gj3N ) 

¢o ( m+2-f2N) ( m+2+4N) c,~,r+ 1 
+ [ ( m+2+2N) ( m+2+4N)-:- ( 1 +¢0 ) { n~+2+ N ( 3+a- ) } ] c;}z 

-- { m+2+N ( 3--1-a-)} Cr~-1 = 0 

c~1 = -ww2 (3+a-+v)/{gj3N( 2+v)(4--f-v)¢0 } 

1)o ( m--1-2) ( m+2+2N ) C 1;
1l1 

+ [ ( m + 2 ) ( m + 2 + 2N ) - ( 1 + ¢ 0 ) { m 1- 2 + 1V ( 1 +a- ) } ] c;~r 
\ .. 

- { m+2+1V ( 1 +a-)} c!,~~ 1 = 0 

l~ri = - aoToEo ( c/>1 +<!)2) I { jN ( 2+v) c/>1¢2} 

{,~o ( m+3 ) ( m+3+2N) c:r;:+l 

+TCm+3) < m+3+2N)- ( 1+¢n) { m+3+N (1+o-)} J c~! 
- { m+3+N( 1--f-a-) }c1~_ 1 = 0 

c1v =- aoToEo / { 2jN( 1+v) ¢1¢2} 

( 25.) 

( 21) 

I 
' ( 21a). 

c 21b) 

( 21c) 

I c 21d) 
i . -
! 
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Further, if we take v = 2 Eq. ( 21) simplifies a little as follows: 

CTr = jl'2 exp ( jr2 ) { clfJ an ( jr2 )n + C2r-2 jj bn ( jr2 )n} 
n=O n-J 

00 

+ p12r2 ~0 ( c~ + ci~I ) ( jr2 )n 

""' + l'2 r 2! ( c~ + ci~ ) ( jr2 )n 
n~o 

ifJo ( m + 2 ) ( m + 3 ) c,!+l l 
+ [ ( m + 2 ) ( m + 3 ) - ~ ( 1 + t/Jo ) ( 2m + 5 + cr ) ] c~ 

C: = _ w .,• ( 
3 

+ o- ) I ( ~!,, ~ 2m + 5 + o- ) c!,_, = 0 J 

ifJo ( m + 3 ) ( m + 4 ) Cm~\ 

+ [ ( m + 3 ) ( m + 4 ) - i ( 1 + ifJo ) ( 2m + 7 + cr ) ] c:r! 

- ~ ( 2m + 7 + cr ) c:,r_ 1 = 0 

Con = - Ww 2 
( 5 + cr ) / ( 24gj312 ifJo ) 

em satisfies the first expression of ( 22a ) with 

Com = - aoToEo ( ifJ1 + ifJ2 )/( 4P12 ifJ1ifJ2 ) 

c1v satisfies the first expression of ( 22b )with 

Co1v = - aoToEo /( 6j1'zifJ1ifJ2) 

De Laval Profile 

When cr r, T, a and E are all constant, 
Eq. ( 4) reduces to 

_!]__2 ( lgZ) + 2 + CT • ~ ( lgZ) = - ~~2 ( 3 + CT ) 
dr2 r dr gur 

the primitive of which is 

Z = C1 exp ( - C2r-t-u ) + exp ( - Ww3r2j2gur) 

( 22) 

(22a) 

(22b) 

( 22c) 

( 22d) 

The last term is a particular integral giving well known De Laval profile. 

IV Disk of Uniform thickness 

When the disk is of uniform thickness Eq. ( 4 ) becomes 

t ( Tcrr ) + ( ; - if. lgE) d~ ( '!'err ) - ( ; 2 - i d~ lgE) (rur ) 

= _ l!Jro2
1'

2 
( 3 + cr _ _ d,_ lgE) _ E _!!:_ ( a T) ( 23 ) 

g r dr dr 

We assume the variation of 

Young's modulus E = Eo ( 1 - "A: r ) 
disk temperature T = To ( 1 + At T2

) ( 24) 
coefficient of thermal expansion a = ao ( 1 + A.x r2 ) 

( 2&) 
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Substituting ( 24) in Eq. ( 23) we get 

tP ) ( 1 4~2r3 ) d ( 1 4o-Ae2r2) dr~ ( ro-r + r + I-Ae2r' _ dr ( ro-r)- r2 + l-Ae2r' ( ro-r) 

=- ww2r2 (U~ 4>.; ~3 ) - E _!!_ (aT) 
g r + 1-A: r' dr 

the complete primitive ( divided by r ) of which is 

o-r = Ct F (A~, A2; 3/2; A! r) + C2 (Aer2 )-1F (At - ~, A 2 --}; 1/2; A~ r') 

and a1 = 1 
{- 3 ~ ~- ww2 

21 g 

1 
a2 = 3! { 

!_ Ae2 { 1 - o-2 • U)(J)2 

4! 4 g 

1 ... 2 J Sf ~e l 

and for a7, a a, · · · 

- ~ ( Aa + At ) aoToEo } 

- Aa .\c aoToEo } 

+ ~ ( 5 - o- ) ( Aa + At ) ao To Eo } 

( 11 - o- ) Aa At ao ToEa } 

( 
5+o- 1-o-) 2 

On = 1 - -n- - n + 1 Ae On-2, n = 7, 8, 9, ··· 

The tangential stress is 

( 25) 

( 26) 

( 26a) 

o-8 = C1{ F'( A 11 A2; 3/2; A~ r') -; ( 1- o-) X! r' F( At+1, A2+1; 5/2; A:r' )}· 

+ c2 { - ( ~ r 2 )-I F ( A 1- L A2- L 112 ; A~ ,.. > 

+ 2 ( 1 + o- ) A.e r 2 F ( At + ~ , A2 + i; 3/2 ; A!r' ) } 

+ f:: ( 2n + 1 ) anr2n + ww2 r2/g (27) 
n=l 

in which a's are given by ( 26a ). 
The displacement component u is 

u = cl ( 1 - 0") Eo-l rF (AI + 1, A2 + 1; 3/2; A; y4) 

- ( C:2/Ae) ( 1 + o- ) Eo-1r 1 F ( At + ! ; A2+ i; 1/2; "\!r4 )+r f:c2n+tr2
n ( 28) 

n=l 

where c's are given by 

C3 = 1 { _ 1 - o-2• ww2 1 ) ,.. } - - -
2 

( 1 + o- ) ( Aa + At ao 1 o 
2! 4 gEo 

(27) 
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1 ~ 
C5 = :3! ( 1 + rr ) ( A.e - A.a Ac ) ao To 

C = 1 , 2 J- ( 5 + a- ) __ 1_1 - o-
2 

) • Ww
2 

_ 5 ( 1 +a- ) ( A. +A. ) a ~ } 
7 4! "'-e l 4 gEo 2 Ill t 0 o 

Cg = ~! Ae2 
{ ( 11 + rr ) Ae2 + ( 1 - rr ) A.a~A.t } 

( 28a) 

and for n = 5, 6, 7, · · · 

f2n+1 = ( 1 - ±_~ _l! - ~ ~-1 ) f2n-1 

The constants C1 and C2 in ( 26 ) may be determined on the conditions 

( a"r) r=rl = frrh ( O"r )r=r2 = a"r2, 

{ 
r 12 ( a-1·1- z: ... 1 an r1

2n )F1
( A1- -L A2 -J; 1/2; A~ r24 ) } 

- r22 ( rrr2 - ~11~1 an r22
n ) F ( A1 - ~. A 2 -

1
2 ;1/2; A.~ r14 

) 

cl = ---------------- ----·-·-

{ 
r1 2 F ( A1 - i· A2 - ~; 1/2; A; r24 )·F (A1. A2; 3/2; A.~ r1 4

) } 

- r22 F ( A1 - ;, A2 - ~; 1/2; A.; r1
4 )·F (Ah A2; 3/2; A.~ r2

4
) 

. { ( o-1'2- Ln~\ an r22n) F(A1, A2; 3/2; A~ r14
).} 

r2r2 1 2 
- ( rrn - zn.:l an r1

2
n ) F ( A1, A2; 3/2; A.; r2

4 
) ( 29) 

---~--~----------------~----------------------------- --- - ·----~-

same denominator as above 

Complete Disk of Uniform Thickness 

Putting r1 = 0 in expressions ( 26 ), ( 27) and ( 28) we get rrr, a-8 and u for 
a complete disk as follows: \ 

rrr = C1F (A1, A2; 3/2; A~ rt) +~an r 2n 
n=l 

00 

+ Ww2r2/g + ~ ( 2n + 1 ) an 'T2'~~ 
n=l 

'U = Ct ( 1 - (I") Ec,-1rF (AI + 1, A2 + 1; 3/2; A; r) + r i C2n+l T211 

n=l 

Taking the radial stress at the circumference 

( a" r ) r=r2 = a" r2 

we get Ct = ( rrr2- ~n':::l anr22n) /F( Ar. A2; 3/2; A~ r2
4

) 

d _ ( ~l 271 ) F ( Ah A2; 3/2 ; A; r4 ) + ~ 2 an rrr - a-1·2 - L..J a:n r2 F_T_A_ --·A . 3-12 ., 2 ,... 4 ) ~ an r n ( 30) 
11=1 \ 1, 2, , "'--e '2 n=l 

-( _ fJ 
1 

r 2n /~A~,A2;3/2 ;-;\:~)-:-~ 0-::-a·)A;f"4F(4I_-t-l,A2 + 1 ;5/2 ;A~rt) 
rro- O'r

2 
n=l 

1
" 

2 F( A1o A2; 3/2; \:r24 ) -

w 2T2 co + w + ~ ( 2n + 1 ) anr2" ( 31 ) 
g n=l 

_ ~- 2'11 (1- a-J_7"f_(_4I+ 1, A2+ 1; 3/2; :\:r) ~, 'Jn 2 ) 
u - (a-,.2- .::.,unr2 ) E F( A A. 3/2. 'z,.. 4 ) + r,.;. C2n+lr ( 3 

n=l o 1, 2, , l'..e' 2 n=l 

If the condition be ( a"r) r=o=rrro we get cl = a"ro, and U'r, a"9 and u in (30), 
( 31 ) and ( 32 ), with the last series in each expression in expanded· form, may be 

( 28) 
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written as follows : 

U"r = U"ro F ( AI, A2; 312 ; A-;r4 ) 

-( Ww218g ) { ( 3 + a- ) r 2 - {2 ( 1 - a-2 )A;r6 - :J~ ( 5 + a- ) ( 1 - a-2 ) Ae4r10 _ ... } 

- f aoToEo { (A"' + At )r2+~ At.tAt r- ~ ( 5 - a-) "A~ ("At»+"At) r6 

- h< 11 - a- ) "A~A.t»A.trll - 3~0 ( 1 -o-2 
) A! ( A111 + At ) r 10 - • • • } ( 33 ) 

a-e = a-n { F( Ax. A2; 312; A;r) 
- ~ ( 1- a-) A.=rF( A1 + 1, A2 + 1; 512; A.;r)} 

- ( Ww2 l8g ) { ( 1 + 3a- ) r 2 - ~ ( 1 - o-2 ) A,;r6 - ... } 

-} aoToEo { 3 (At» +"At) r 2 + ~ "At»A.tr- 1
7
2 ( 5 -a-)"A;( "At»+"Ar)r6- 1~(11-a-)A.~A.t»Atr8 -···} 

( 34) 
u = U"roV~~ rF (AI+ 1, A2+ 1; 312; Ae2 r) 

- ( Ww218gEo) ( 1 - a-2 ) { r 3 + ;2 ( 5 + a-) A-1? r 7 + ··· } 

+ }ao To ( 1 + a- ) [- ( At» + At ) r 3 + ! ( A;- "At» "At ) r 5 + 1
1l 1 - a- ) "A; ( Aa +At ) r 7 

+ ~0 "A! { ( 1 - a- ) A-111 At + ( 11 + a- ) Ae2 } r 9 + · · · ] ( 35 ) 

The first term containing hypergeometric function of the right hand side of ( 33 ) 

denotes the stress due to the radial static pressure at the circumference ( r = r2) of 

disk. The second term denotes the stress due to rotation and the third term due 

to thermal expansion. The radial stress a-e and the displacement u expressed by 
( 34) and ( 35) are also made of 3 similar items as the above expression ( 33 ). 

When a, T and E are all constant in the disk with a central hole, 

( 26 ), ( 27 ) and ( 28 ) reduce to, with Aa~ = At = Ae = 0 , 

a-r = a-r
2 

( T2-!}_2 ) r2~ + ( r22-T2 ) r12 ( 3 + a-) Ww2 
( r22 - r 2 ) ( r 2 - r12 ) 

( r22-r12) r2 a-n ( r22-r;2-Yr2 + --· 8g___ -- -- --;;2. ---- ----- -

( 36) 

a-e = ( r 2+ri2 ) r22 ( r22+r2 ) r1 2 
( 3 + a- ) W(!)2 

( r22 + r 2 
) ( r2 + r12 ) 

a-r'J ( r22-r?) r2 - a-ri (r22-r~2 fr2 + ----Sg - . ·- --- r2 - -- -----

u 1-a-
-E-;-
1+a-+ E~--· 

- ( _!__f_q_) tpw2!_~_ ( 37 ) 
2g 

t:_22a-r2_ - r12a-r1 + < 3 -f:_!!_)_ CU!CI!_2l 8g)( '/'2~-=._!14 ) r 
rl·- ri2 

r12T22 { a-r2- q_:r1 + ( 3 + a-)( W(!)218g) (_T22 - r1 2 )} .I _ 1-a-2• W(J)2 r 3 
r22 - r12 r 8 gEo 

( 38) 

For complete disk we get 

a-r = a-r2 + { ( 8 + a- ) Ww2 /Bg} ( r22 - r 2 
) ( 39) 

a-e = a-r2 + { ( 3 + a- ) W(!)2 I Bg} { T22 
- T2 

( 1 + 3a- ) I ( 3 + a- ) } ( 40 ) 

u =~a-{ ur2 + C3 _±_C!) W(!)
2 

f r22 - ~+_a- r 2 ) } r ( 41) 
~ ~ \ v+a-

( to be continued ) 

(29) 


