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Study on Relaxation and Sinusoidal Oscillations 
( Received Oct. 10, 1951 ) 

Hiroichi Fujita ** 
Abstracts 

A relaxation and a sinusoidal oscillation are expressed by the same type differen
tial equations. But the mechanism of the oscillations are different entirely. We 
can find the distinction of them. 

I. Introduction 
Differential equations concerning vacuum tube oscillators with linear characte

ristics of tubes, are constant co-efficient linear type. The simplest case is the 
second order differential equation, 

X + 2h0x + C.DX0
2 = 0 · · · · · · ( 1, 1 ) 

where dots denote time derivatives. The constants h0 and w 0 depend on the circuit 
elements. The integral of ( 1, 1 ) is 

...... ( 1, 2) 

where K1, K2, A and (F are arbitrary constants and q1, Q2, are roots of characteristic 
equation of ( 1. 1 ) 

However, ( 1, 2 ) can not be applied to real oscillators which have non-linear 
characteristic in vacuum tubes. ( 1, 2) does not mean constant amplitude oscillations 
except when ho = 0. Even if h0 = 0, the the amplitude depends on arbitrary 
constant A which is decided from initial conditions. On the other hand, in actual 
case the amplitude always approaches asymptotically to a constant value in.dependent 
of initial conditions. This is one of reasons that non-linear differential equation can 
not be solved easily. Namely, exact solution for non-conservative system should 
not have such arbitrary constants that are related linearly with function of time 
as ( 1, 2 ). One example is perturbation method to get a solution of non-linear 
differential equation sligntly differed frcm ( 1, 1 ). By the methnd, the right side 
of ( 1, 2) is corrected successively and arbitrary constant are not related linearly 
with the function of time. 

Now let us try to correct the left side of ( 1, 2 ). For some non-linear differential 

equations, exactly or approximately the solution may be often 

f( x) = K1eq1t + K 2eq2t ...... ( 1, 3) 

Differential equation for ( 1, 3) is 

•· {f"(x) · } · f(x) 
X + f I (x) ;r, - ( Ql, + Q2 ) X + Q1 Q2 jl(x) = 0 ······ ( 1, 4) 

) 

where dash denote differentiation respect to dependent 
4> (f.X •tr.)i' 

variable x. The following is based on ( 1, 3 ) and ( 1, 4 ). 
X 

, __ .-- II. Wave distortion in unsymmetric characteristic. 

,_ ! • c,,x' As the first example of ( 1, 3) and ( 1, 4 ), we shall 
',' ! / __ .-' • • • • 

----- -~--=---~7/- ,-=--=-.: _________ • examme a plate tuned oscillator whtch has unsymmetrtc 
"' 

/;<' characteristic of vacuum tube. ( See Fig. I. ) 
..... /, 

-""/,', I 
i 

Here, we do not take account of saturation charactri-
1 stic, then its characteristic is expressed by 

Fig. 1. Unsymmetric characteris-
itc curve for the equation ( 2. l )· ----

** Lecturer of Faculty of Eng. Keio Univ. 
(22) 
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io = G1 (eo+ evf~-t) + G2( G0 + epfJ-t)2 (2,1) 

The circuit and its notations are given 
by Fig. 2. z"v, e0, ev are alternating compo

nents of plate current, grid voltage and 
plate voltage respectively. G1 and 1-L is mu
tual conductance and amplification factor 
of tube. If grid current is neglected, the 
equations corresponding to our scheme are 

di 

l.p 

23 

I 
I 

-ev =Lilt 
~~--._~------~----~ 

= (1/C) J ( iv - i ) dt } ... ( 2, 2) Fig. 2. Plate tuned oscillator circuit 
expressed by the differential equation 
(2,3). 

From ( 2, 2 ), we can get the second order differential equation of current i. 

~~ + { - G2 ( MLC ld!!-J~ ~f - gl_( MLVfii-L) } ~~ + L~ z" = 0 ...• ( 2, 3 ) 

we simplify the notations as follows; 

i = X l/LC = CQJ
2 

__ G2 ( M - L/~-t )2 = 2y _ Q_1_(_1!!___- L/1!-_) = 2h 
LC LC 

Then ( 2, 3 ) is 

cr~ + { 2rvdx + 2h } dx + GD 2X = 0 
df2 I dt dt 

...... (2,4) 

If h is small and negative, the oscillation is so hard that x is small and its 
wave form is· distorted. Then we can assume .ry and x is small. 

The approximate solution of ( 2, 4 ) is 

xeYJ! = Kle(-h + ,..;w:-:_-OS2)t + K2/-hv'h2-ciJ2)t 

= Ae-~tt sin (,..; h2 - c.o 2 t + cp) ( 2, 5) 

( 2, 5 ) is easily understood by the aid of following substitution to ( 1, 4 ), 
f( x) xeYX 

Then 
f( X) _ X 

/'( x ) - 1 + ryx 

and 
f" ( x ) _ 2ry + 'Y2X 1'-------rxT - j_ + -,y-.x = 2ry - y 2x · · · · · · · · ~:- 2ry 

In order to know the wave form. we shall examine the curve in x-plane repre
senting a circle, the center of which is at origin in z-plane where z means xeYr.. 

We take comlex coordinate 

z = u, + j v } . . . . . . ( 2, 6 ) 
X = E + j1J 

By applying ( 2, 6 ) to z = x eYx 

u = eY~( Ecosy17 - 17Sinry17) } 

v = eY~( 1'/Cosryq + Esinryq ) 
······ ( 2, 7) 

The circle in z·plane, the radius of which is r and whose center is at origin, is 
(23) 
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u2 + v2 = r2 ( 2,.8) 

from ( 2, 7 ) and ( 2, 8 ), we obtain 
1i2 = r2e-2"1~ - ~2 ( 2, 9 ) 

Fig. 3. (a) shows curves of r 2 e-2"'~ and - ~2• Therefore, a closed curve in (b) 

represents ( 2, 9 ). (c) t.nd (d) are the wave forms of current £ and voltage ep, 

which is slightly different from sine wave. 

~-0<~ ep J n n CL t 
! _.:.,___-+-v-+---+-v~v~, -4---~---.:..,. 

(() 

L 

{d ) 

Fig. 3. ( a ) Curves expressing the equation ( 2. 9 ). 
( b ) Closed curve representing a circle of ( 2. 8 ). 
(c) Wave form of current z' that flows in the inductance Lin Fig. 2. 
(d) Wave form of plate voltage got from (c) by differentiation. 

III. Relaxation oscillation 

I 

t 

Now, we shaH discuss a symmetric multivibrator which is the most well-known 

relaxation oscillator. The circuit is shown in Fig. 4. 
Neglecting the grid current, we obtain the equations ( 3, 1) by Kirchhoff's low. 

z'Pl = z'rl + z'IJ2 

-epl = z'rl Rv + (ljc)~i92 dt ··· ( 3, 1 

-ely= £g1 Rv 

tics and shown approximately by the third degree polynomial ( 3, 2 ) 

z'p1 = G1 ( eyt + eJ!1/1l) + G3 ( egl + ev1 Ill )3 ( 3, 2) 

As the circuit is symmetric, we have 
z'l}2 ::.= - lr;t 

Then we can obtain the differential equation 

dx aox + a2x3 

ilt li~~6~x2 
...... ( 3, 3) 

(24) 



Study on Relaxation and Sinusoidal oscillations 25 

where x = ( egi + epdf.L ) 

ao = - ( 1/RP + G1//L )/C 
b0 = ( 1 + Rgj RP ) - G1Rg( 1 - 1jp, ) ········· ( 3, 4) 

a2 = - G3/f.LC 

b2 = - 3G3Rg ( 1 - 1/ IL ) 
( 3, 3 ) can be integrated easily as following. 

· 1 (ao b1 1 ) · bu t 
X ( x2 + ao/a2 )2 boa2- =Keao ...... ( 3, 5) 

Wh~re K is arbitrary integral constant. We set z = ( the .left side of ( 3, 5 ). ). 
We may. understand the mechanism of the oscillation by a curve in z-piane repre-

senting real axis of z-plane, as a0jb0 is real. 

Before we reseach the representation, we must notice the case in which we put 
:)elf-inductancee in series to the condensers. Then the differential equation is 
second order 

lPx + { b0 + b2 -r2 1 + __ 6q_2x_ _dx } !!!____+ ao-r + a2X3 1 0 ( 3 6) 
di2 . · - a0 + 3a2x2 LC a0 + 3a'2xJ dt dt ao + 3a2X2 LV · · · ' 
In usual circuit, 

3a2/ao ="-~ b2/bo 
Then comparing ( 3, 6 ) and ( 3, 5 ) with ( 1, 3 ) ( 1, 4 ), w:e obtain the approximate 

solution ( 3, 7 ) 

when 

x ( X 2 + ao/a2 )'Y = K 1eq1t + K2eq2t 

"/ = !:._ ( ~0 ~ - .1 ) 
2 boa2 

ql = (bo/2aoLC) + ,,/(6~J2a0LC? - 1/LC 

q2 = (bo/2aoLC) - v<b0/2a0LCp - 1/LC · 

...... ( 3, 7) 

When q1 q2 are real, mechanism is almost the same as the case in ( 3, 5 ). 

We transform· x and z into polar coodinate 

x = reJo 

z = Re·i6 

After simple calculaticn, we obtain 
R = r { ( 1· cosO - ~/a0ja2j )2 + r 2sin28 }~-{ ( r ccsfJ + 4./ a0ja2 j )2 + r 2sin2 fJ } ~ · ·-( 4, 1 ) 

rsinR rsinr9 C 2 ) (t:) = fJ + rytan-:-1 ·····- .· + ytan- 1 • 4, 
rcosfJ-v a0ja2j rcosfJ+v· a 0 /a?J 

Positive real axis of z-plane is 
0) = 0 ( 4, 3) 

Setting the second and third term on ( 4, 2 ) to (PA and rpR respectively, these are 

:he angles &round the points ±..ja~TaJ to a representative point p. (See Fig.5) 

We can prove easily that the trajectory for 
VA + rpB = lc ( const.) is an orthogonal hyperbola 
rhich approac:h~s to the axis inclined at -k/2. (See Fig, 6.) 

The. int~rsected point of the hyperbola and fJ = 
-Icy, satisfies the group of curves for ( 4, 3) in Fig.7. 

If y is rational number, the number of curves is 
finite, and if not, it is infinite. But vacuum tube is 
not so stable that we need not to pay any attenti"on 

o this matter. 
( 25) 

.Fig. 5. 
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Fig. 6. 

That is 

Hiroichi HUJITA 

We should not take in consideration of imaginary 
·axis in x-plane from a physical point of view. 

When small x is given at the initial condition, 
the representntive point moves alo~g the real axis, 
as time t increaces. After representativ point reaches 

the point of dRjdr = 0 ( x = ±vbo/bJ ), it can not 

go forward physically. As dR/dr = 0 means 
dxfdt =co, x jumps here. Condition of the jump is 

decided by the continuity of energy containd in the 
reactance of the circuit. 

lt· { ~ i9 dt f + ~ L ig2 = E ( 4, 4) 

c 4, 5) 

( 4, 6) 

Where E is constant. Then, 

~ ig dt =±v12EC-LCi9
2 

The solution of integral equation ( 4, 5 ) 

± ig I v2EC = sin ( 2t I vLC-) 

Fig. 7. Curves in X-plane representing the 7;eal axis in Z-plane. 

from ( 3·, 1) ( 3, 4) and ( 4, 6 ), we obtain the relation betweon dt"pfdx and x. 

For small L; 

dip
dx-

( 1 1) 9L ( -· ) .R~+ R; - 4!4Ru2 ( 1 + J.L) 1±vb0/bsJX 

( 1 + t) 41-LcR/!t 1 + J.L) ( l±vbo/bs jx ) 
······ ( 4. 7) 

( 2 6·) . 
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When there is no inductance, di1,/ dx is constant. When the circuit has a smaJI 
inductance, div/dx takes the same constant value at the initial instant of jump, 
when X = ±.Vbo/lh j. The path of the jump in x-ip plane is shown Fig. a Doted 

line is the path when L = o, Fig. 9. is the wave form of iv. 

t 

L"'f 0 

Fig. 8. Path of the re~resentative 

point in iv-X plane when the 

oscillation is relaxation. 

Fig. 9. Rehtxation wave form of plate current 

i p got from Fig. 8. 

V. Sinusoidal oscillation 

In this section, we sha!l study on the case when the ri~ht side of ( 3, 7 ) is 
oscillatory. If Q1, Q2 are imaginary, z excutes an increaced oscillatory process. So 
we should examine ·a curve in x-plane representing a circle in z-plane the center 
.of which is at origin. 

Then we can say, from ( 4, 1 ) 

~ ~ 

r{ ( rcos{)- "-I a0/ aJ)2 + r 2sin2
{)} 2 { ( rcos{) + v 1 a0j a 2j)

2 + r 2sin2{)}2 = p ( 5, 1) 

where p is a constant radius of a circle in z-plane. Factera in th"e brackets of (5,1) 
is square of the distance from ±.V a0ja;j to a representative point. ( See J:i,ig. 10. ) 

Then we obtain. closed curves for various p in ( 5, 1) shown in Fig. 11. 

At the begining of oscillation, representative point 

goes along inner closed curves, Then gradually it 

moves to the outer closed curves. This osillatory 

case is cau~ed when G1 is negative, known as 

transitron character, (Fig, 12). 

(27) 

0 

Fig. 10. 
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!Ro<J 

Fig. 11. Clm~ed curves representing the circles in z-plane. 

We can recognize the following distinctions, period and initial transient 

phenomena, between relaxation and sinusoidal oscillation. 

Fig. 12. Sinsoidal osillator corresponding to the 

multi vibrator. 

( l ) Period, 

In ( 3, 5 ) period of relaxation 

J3cillati0n is proportional to 
bo I a0 and the pr-:>pxtional con· 
stant is decided from nonline
arity. In ( 3, 7 ), we can find 
almost equal period to ( 3, 5 ). 

But sinusoidal· period is 

27t I v(b~;r:Ez~LC/2-:._ 1/ LC which is extremely short th:Ul the relaxation p·~riod. The 

circuits of both cases have same circuit elements except G1, G2 and p •. 

( 2) Initial transient phenom,ena, 

Relaxation osciiiatlon build up rapidly in one period. ( See Photo. 1 ) While sinu

soidal oscillation does gradually. (See Photo. 2. ) 

(28) 
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Photo: 1. Initial wave ·form of 
multi vibrator. 

Photo. 2. Initial wave form of 
~sinusoidal oscillator. 

Appendi~. 

B. van der Pol showed en that the symmetric multi vibrator was equivalent to tran
sitron relaxation oscillator. ( See Fig. 13. ) Sinusoidal oscillator corresponding to 

Fig 13. is shown in Fig. 14 .. 

Fig. 13, Equivalent sinusoidal 

oscillator circuit to Fig. 12. 

( 1 ) B. van der Pol ; Phil. Mag. 2. ( 1926) 

( 2 9 ) 

Fig. 14. Transitron relaxation oscillator 

corresponding to Fig. 13. 


