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Fig. 6. )
Sketch of flow of Whirling Water
through an Elbow.

Note :—Some copies giving the main feature of this paper has already been
distributed by the Author in Oect. 1941.

Bending of a Circular Plate of
Non-Uniférm Thickness.

Recieved Jan. 15, 1949, Fum1k1 Kito*

A circular plate whose thickness varies linearly with the radius r is subjected to non-
uniform load which is a specified function of r. This problem of -bending of plate has
been studied theoretically, and the result obtained is shcwn as charts, so that the designer
could make estimates of stresses etc., in such a plate with easiness. . 3 -

Section I. Preliminary Remarks.

Let us consider a circular 'plate of radius R, as sqbwn in Fig. 1. Its thickness %
is not uniform, but it is a function of radial distance . On this ~platg lateral load
of strength p/unit area is applied. This distributed load p is also a function of i:adial
distance r. Thus, all things being symmetrical about the center' O of the plvat';e,rthe
stresses occurring'iﬁ_ tEe plate must also be functions of radius 7 only. The Auihor
has made some calculation on such a state of stress, and it is reported here. A case
of stress in blades of a marine pi'opeller (espeéially wide-blad'é‘dténé) under the action

* Dr. of Eng. Prof. of Keiogijuku University.
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of hydraulic pressures upon their surface, has
some resemblance with the case of the presont
paper. - ' .

In order to obtain simple solutlon as far as
possible, we confine ourselves to the case in - -
which the thickness varies linearly with the
radius 7, and we use the following notation :
E=Young’s modulus of the material of the
plate, v=its Poisson’s ratio, A=thickness at ,
N=Flexural rigidity=FEA3/12(1 - v?), or=radial
stress, o:=tangential stress, p=load per unit

area of plate surface, p,—shearing force at

circular section 7, w=lateral deflection, p=
inclination of middle surface:dw/dr, R=0ut-. Fig. 1.

side radius of the plate, R,=virtual radits at Circular Plate of non-uniform
which the thickness % vanishes. thickness.

The thickness % of the plate is given by A=/h(R;— r)/R, Further, we put x=r/R,,
and regard x as new independent variable. At the outer edge of plate we have x=
2y=R/Ry. bk, being the thickness at center, we put

‘ No=Ehj3/12(1—7?) - ' (1)

As to the dependent variable, we take instead of @, the quantity y defined by the

formnla

T
. B
Using these notations, it is found out that the equation of equilibrium of plate as
given in usual text-books can be transformed into:— ‘ '

B R s R

The homogeneous equatlon to be obtained by putting the r:hs. of this eq. to zero
is of hypergeometric type and could be sqlvéd, by means of the hypergeometric
functions. But if we assume tentatively that »=1/8, then-they reduce into elementary
functions, and the complementary solution of eq. (2) can be written in the form;

y_A(l—-gx)ﬁuB 1

Knowmg the complementary solutlon we can build up the general solutlon of ( )
by usual method.

Section II. Circular Plate under the action of Lateral Loads along the Edge.
Thus the general solution of eq. (2), beeomes v

”‘A(l - “”) o

(88>
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and if we know t.he value p, of the shearing force at radius r, the integration in

the formula (8) could be performed. When the plate is acted upon by edge load
of strength P per unit peripheral length, and there exist no distributed load, we
must have rp,=RP (a const.) so that

(&)= R g

and we can obtain value of y by putting this expression for p,(&) into the equation (8).
Section III. Circular Plate under the action of non-uniform lateral loads.
Here we take, k being a numerical parameter,

p=pf(x)+kg@)]
where

f(x)=%[(é~ —e)eyt— Zatow)

1[ =03 (1— 2x)—7x2+3x‘]

50 that

1-xz[/1 1 of1, 1
p=n G (gt ghe) —n(g+ghn) |

Putting this expression for p, into the eq. (3) we obtain:—

y=A<l_}§x)+_—};’T§l—{ (%) -+ ez, Fo(x)] -(4)

where Fi(x) and Fy(x) are functions of x which is shown later on. The arbitrary
constants A and B are to be determined by Boundary Condirions which we take
‘to be as follows;

(a) owing to symmetry we must have =0, or ry=0 at 5:::0 (r=0)

(b) the outer radius r=ZR, being free edge, we must have at r=ux,

PENT

‘which is the same things as

(;y %(2+.’r)y=0

x(l —x)
In this way, arbitrary constants A B are determined. The strcsses ¢, and 6; in the
plates are tyen given by,

12N df"’ _q_)_]

__l2Nr de ¢ ? U )
=" "dr

The Author has carried out the calealation for ¢, and ¢, and obtained the following
(34)
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result, the detail of which, being lengthy, is omitted here.

2p,Ry® [ ?2’ (6 —4x+22)C+Gy(x) +k(L’,G2(x)] -(8)

Or =21 —x)%

oo S5 e S ]

(7)

where we put _
1 1 2
C=[ 3 Gil@)+he x 3 Gofar) |+ - § 642127 |

and the functions G,, G., H; and H, are defined as follows :—

F,(x):—% (1 - %x)[.(x) - %Ig(x)

Fur)y=5(1- —2—x>I2(x) )

Fy(x)= —~Ix(x)+ L(x)

/(@)= - 210+ 5o L)
L(0)=(a+ 50+ (1-2,7) log (1-2)

L(x)= %x,“’(%—x? - ~12<c - 1>x

-%ax3(%x4—71{x 3)+;x( x—i—l)

+ (-9 log (1-2)
11
L(m)=(1—2) log (1 —x)+x(1+§x+§x2)

L(z)= —;—x,sx (%x* - %x - 1)

el bl o)

+ %—(1 — %) log (1—2)

G()=35(1—2)Fy/(2) +2(2+2) Fi(x)
Ga()=30(1 —2) Fy/ (@) +2(2+2) Fi(2)
Hy(#)=a(1—0)Fy/(2)+2(2 — ) F} ()
Hy(r)=(1 - 2)Fy/(@)+2(2 — ) Fi(2)

Practically, the calculation of stresses as given by the Formulae (6) and (7) can
easily be carried out if we know values of the functions G,(z), G.(x), H,(x), and
The numerical values of these functions has been obtained by the Author,

Hoy(x).
and they are shown as curves in Figs 2 to 5.

(85)
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Fig. 2. Chart for Gi(x). . . Fig. 3. Chart for G«(x).
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Fig. 4. Chart for Hi(x). ; Fig. 5. Chart for Hy(x).
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