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SUMMARY 

The problem of evaluating the goodness of the predictive distributions of Bayesian 

models is investigated. To evaluate the Bayesian model, deviance information cri

teria (DIC) has been extensively employed in various study areas, thanks to its 

simplicity of calculation from the posterior output. Unfortunately, it is also true 

that the DIC has been criticized due to the over fitting. Inheriting the simplicity 

form of DIC, we propose a new criterion that overcomes the over fitting problem. 

Under the model misspecification situation, the proposed criterion is developed by 

correcting the asymptotic bias of the posterior mean of the likelihood as an estimate 

of its expected likelihood. The proposed criteria are robust to any improper priors. 

Monte Carlo simulations are conducted to investigate the properties of the proposed 

criteria. We also show that the proposed criteria can avoid over fitting problem. 

Some key words: Effective number of parameters; Empirical Bayes; Markov chain 

Monte Carlo; Model misspecification; Hierarchical Bayesian model. 
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1. INTRODUCTION 

Suppose a set of ·n observations /J are generated from an unknown probability 

density g(y) and that a parametric family of distributions with densities {! (u I B); e E 

8 c RP} is utilised as an approximation of the true model. In the Bayesian frame

work, an inference fore is provided by its posterior distribution, 1r(B[:y) rx j(y[B)1r(8), 

where f(y[B) is the likelihood function and 1r( 8) is a prior distribution. The pre

dictive distribution for a future observation z from the true model is p(z [.Y) = 

J j(z[B)1r(B[y)d8. The remained problem is how to evaluate the goodness of the 

predictive distribution, known as model selection problem. 

Model selection is a fundamental task in statistical modeling process. Although 

the Bayes factor (See e.g., Kass & Raftery, 1995) has been playing a major role i:n 

the evaluation of the goodness of the Bayesian models, the Bayes factor has come 

under increasing criticism due to its sensitivity to prior distributions. Under non

informative priors, the Bayes factor is frequently not well-defined. Many studies 

have been therefore conducted to evaluate the goodness of Bayesian nwdels (Aitkin, 

19~1; Gelfand & Dey, 1994; Kass & Raftery, 1995; O'Hagan 1995; Berger & Pericchi, 

1996; Perez & Berger, 2002; Ando 2007). 

Aitkin (1991) proposed a posterior Bayes factor that chooses the model with 

the largest value of the posterior mean of the likelihood. Unfortunately, Akaike 

(1991) pointed out the possibility of the overfitting problem, which is caused by the 

repeated use of the observation .Y (Kadane & Lazar, 2004). To avoid over fitting 

problem, the following research was done by Spiegelhalter et al. (2002). A deviance 

information criterion, DIC, was proposed. DIC was defined as a posterior mean 

of the loglikelihood plus a penalty term, or equivalently, model complexity term. 

A penalty term was constructed on the notion of effective number of parameters. 

Unfortunately, many literatures (e.g., Robert & Titterington 2002, Ando 2007) still 

pointed out the overfitting problem since a penalty term does not reflect real model 

complexity. 

However, the DIC is widely used thanks to its simplicity of calculation from 

posterior outputs. Solving the overfitting problem of DIC, but inheriting its ease 
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of calculation, we propose an information criterion from predictive point of view. 

The proposed criterion is applicable for evaluating the predictive distributions of 

hierarchical Bayesian and empirical Bayes models even \vhen the specified family of 

probability distributions does not contain the true nwdel g(y). 

§2 gives a main result. Some observations of the proposed criterion are provided 

in §3. §4 and §5 conduct l\1onte Carlo simulations to investigate the performance of 

the proposed criterion. Concluding and remarks are provided in §6. 

2. MAIN RESULT 

In this paper, the best predictive distribution is determined by maximizing the 

posterior mean of the expected loglikelihood: 

'IJ = Ez [ Eelu {log f(z!B)}] = /{/log f(z!8)n( Bly )de} dG(z) (1) 

among different Bayesian models. This utility function was recently employed Ando 

(2007) and implicitly by Spiegelhalter et al. (2002). When the unknown true model 

is replaced with the predictive distribution, the 'IJ reduces to a specified version of 

the predictive discrepancy measure proposed by Gelfand & Ghosh (1998). 

It is obvious that the quantity 17 depends on the specified model, and further 

depends on the unknown true modelg(z). The problern therefore is how to estimate 

the logarithmic posterior mean of expected likelihood. A natural estimator of 11 is 

the posterior mean of the loglikelihood 

f; = ]:_ Eeiu {log f(yl8)} = ]:_. ;·log f(yl8)n(Aiy)de. 
7t 71 

(2) 

As pointed out in §1, it is obvious that the posterior mean of the loglikelihood 

·tj generally provides a positive bias as an estimator of '1/. Therefore, bias correction 

should be considered. Ando (2007) defined the bias b of 1] in estimating 11 as 

be= Ey)f;- 17) = /Cf7- 17)dG(y), (3) 

where expectation is taken over the joint distribution of y. Once we have an estima

tor of the bias, be, the bias-corrected posterior mean of the loglikelihood is given by 
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n~ 1 Ee1y{log f(yje) }-tJe, which is usually used in the formIC= -2Ee1y{log L(yje) }+ 

2nbe. Under a certain mild regularity condition, we obtained the bias term. The 

result is in the following theorem. 

Theorem 1 Let 17 and 1] be as defined in (1) and (2), respectively. Suppose that 

the specified family of probability distributions does not necessarily contain the true 

model. Then, under some regularity conditions, the asymptotic bias of 1] is given 

approximately by 

(4) 

where en 1.S the posterior mean, and the notation :::::; indicates that the dif/e1'ence 

between the two sides of the equation tends to zero as n ---* oo. The term Pn 

is an effective n-umber of parameters (Spiegelhalter et oL (2002) ). defined as the 

diff'erence between the posterior mean of the deviance and the deviance evaluated at 

the posterior mean of the parameters: 

The regularity conditions and derivation are given in Appendix. 

Correcting the asymptotic bias ofT), an information criterion is given as 

IC = -2Ee1y {log f(yje)} + 2Pn, (5) 

where be is given by the right-hand side of equation (4). We choose the predictive 

distribution that minimises the IC score. Recall that the original DIC was defined 

as DIC = -2Ee\y {log f(yje)} + Pn. Comparing with (5), the penalty term of the 

proposed criterion is twice of of that of original DIC. 

The criterion (5) is available under the situation that (a) the consistency of e 
holds, and (b) the penalised likelihood has a single mode. To ensure the consis

tency, we integrated out the random effects from the likelihood function when we 

consider the Bayesian model \Vith random effects. See Section 5. The assumption 

(b) is needed so that the Laplace approximation to be reasonably accurate. From 

theoretical perspective, the proposed criterion is not available when the penalised 

likelihood is characterized by multimodality. We would like to point out that when 

the Bayesian predictive information criterion (BPIC; Ando, 2007) is applicable, then 
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the proposed criterion is also available. Since the scope of BPIC is less limited than 

other model selection criteria (Ando, 2007), the proposed criterion can be widely 

applied. 

However, as pointed out by Spiegelhalter et al. (2002), the developed penalty 

term based on PD is not invariant to reparameterization. Thus, the proposed crite

rion in (5) suffers the same problem. 

3. SOME OBSERVATIONS 

3-1.. Further simplification 

If we· impose assumptions, the bias term ( 4) reduces to a simple form. Addi

tionally to the regularity condition of Theorem 1, we assume that (a) the prior is 

assumed to be dominated by the likelihood as n increases, say, log 1r ( R) = 0( 1), and 

(b) the specified parametric models contain the true model, or are similar to the 

true model. Then the estimated bias term b in ( 4) reduces to b ::::::; p, where p is 

the dimension of e (See Spiegelhalter et al. (2002)). In this situation, the criterion 

reduces to 

IC = -2Eely {log f(yiB)} + 2p. (6) 

Thus, we can easily calculate the score. Also, note that, the penalty term has 

an advantage because it does not contain the simulation errors. This score is the 

simplified version of Bayesian predictive information criterion (BPIC; Ando, 2007), 

3· 2. Simple example 

To illustrate the proposed criterion, we first apply the proposed criterion to a 

simple normal model with known variance. Suppose that a set of n independent 

observations y1, ... , Yn are generated from a normal distribution with true mean f-Lt 

and known variance a-2 , i.e. g(zlpt) = N(pt, o-2 ). Vve assume the data are generated 
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from a normal distribution f(z\J.L) = N(p, cr2 ). The use of a normal pnor {L rv 

N({;,0 , ,g) leads to the posterior distribution of p being normal with mean J-l.n 

(tl·o/T5 + L~=l .1/" /cr2)/(1/T5 + n/cr2) and variance cr~ = 1/(1/TcY + n/cr2). 

The true bias (3) and its estimate b11 are 

b = E { .!_ (f.-lt- {ln) 2 _ ~ ~ (Yo - {Ln) 2}. 
/1· y 2+ 2") L..., 22 . 

a~ 'fl. o=l cr 

b, - P/1 /'17 - cr2 1a2 
J.'- D ·- nl · 

Insert Figure 1 around here. 

Figure 1 shows the true bias b,, and the bias estimate b/1 for various sample 

sizes n. The quantities are evaluated by a Monte Carlo simulation with 1,000,000 

repetitions. The true mean, true variance and the prior mean are set to be P·t = 0.2, 

cr = 0.5 and tto = 0.0, so that the prior mean is slightly different from the true 

mean. In Figs 1 (a) and (b), the prior variances are set to be To= 0.1 and To= 10, 

corresponding to a rather informative prior and a flat informative prior, respectively. 

Figure 1 shmvs that 1] has a significant bias as an estimator of 1]. It can be seen tl:mt 

the bias estimate is close to the true bias. 

In this case, the true sampling density belongs to the specified parametric family 

of models. Also, the prior information becomes weak as sample size increases, the 

bias estimate thsu converges to the number of parameters p = 1. 

4 EMPIRICAL BAYESIAN MODELING 

We conduct l\1onte Carlo experiments to compare the proposed criterion with 

its competitors: Bayesian predictive information criterion (BPIC; Ando, 2007), de

viance information criterion (DIC; Spiegelhalter et al., 2002), Bayes factor (Kass 

and Raftery, 1995), and the posterior Bayes factor (Aitkin, 1991), respectively. We 

also considered the frequentist's criteria network information criterion (NIC; Muarta 

et al., 1994), and modified AIC (AICM; Eilers & Marx, 1996), bias-corrected AIC 
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(AICC; Hurvich et al., 1998), respectively. However, note that, as pointed out by 

Ando et al, (2008), NIC tends to overfitting. 

§4.1 considers P-spline generalised linear models. A tailor-made version of the 

proposed criterion is then derived. Numerical results are summarized in §4.2. 

4·1. Generalised linear models with basis expansion predictors 

Suppose that we have n independent observations /Jo corresponding to design 

points :t 0 , for a = 1, ... , n. In generalised linear models (l\kCullagh & Neider, 

1989), Yo are assumed to be drawn from the exponential family of distributions with 

density f (Yo l:ro; eo,¢) = exp[ {:yo eo· - u( eo)} I¢+ v(yo, ¢) l' where u(-) and ·u( ·, . ) are 

functions specific to each distribution, and ¢ is an unknown scale parameter. The 

conditional expectation E(Mol:ro) =f-Lo= v.'(eo) is linked to a predictor 770 = h(t1.0 .), 

where h(-) is a link function. In this paper, we use the B-spline function for the 

predictor '17o = "Zj:1 WJbj(:1::Cx) (Eilers & Marx, 1996). 

Then it follows from the density and the predictor that the data are sum

marised by a model from a class of probability densities of the form fCIJol:co; B) = 

exp([lJoT{WTb(:r:0 .)}-s{wTb(;ro) }]/ cp+v(y0 , cp)), where B = (wT, cp)T, W = ( ll)I, · · ·, Wmf 

is the rn-dimensional coefficient vector, b( :r) = ( b1 ( :r), · · · , bm ( ::r)) T is the m-dimensional 

basis function vector, r(-) = u'- 1 o h-1(-) and s(·) = u o u.'- 1 o h-1 (-). 

For posterior inference, we shall use a singular multivariate normal prior density 

(Konishi et al., 2004) x(B) = {n>./(2x)}(m- 2li2 IRI~2 exp{ -n>.BT RB /2}, where ). is 

a smoothing parameter, In is the number of basis functions, R = diag{ D, 0} is a 

block diagonal matrix and IRI+ is the product of (rn- 2) nonzero eigenvalues of R. 

The remaining problem is how to choose the smoothing parameter ), and the 

number of basis functions 'tn. We use the proposed criterion ( 5) to choose appropriate 

values for these parameters. Substituting the density function f (lJo l:r0 .; B) into the 

equation ( 5), a tailor made version of our criterion can be derived. 

4·2. Results 

P -spline Gaussian regression model. 
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As an Gaussian example, datasets {(y0 , :r: 0 ): a= 1, ... , n} are repeatedly gener

ated from the true regression model Yo: = sin(.57r:t0 ) + Ec, for X 0 = (2a- 1)/(2u). 

The errors Eo are independently and identically distributed according to a mixture 

of normal distributions g(Eo) = L3N(E 0 [0, o-f)+ (1- ,L3)N(Eo[O, o-5), where /3 is a 

mixing proportion, and N(E[p, o-2 ) is the normal density function with mean p and 

variance a-2 . The values of the mixing proportion and sample variances are set to 

be ;3 = 0.8., o-1 = 0.25 and a-2 = 0.5, respectively. 

\Ve consider ?-spline Gaussian regression model Yo= wTb(:ro)+Eo (u = 1, ... , 11), 

where the errors Eo are independently and normally distributed with Inean zero and 

variance a-2 . Note that the true model is mis-specified in both distributional and 

structural equations. Estimating the parameter vector by producing the posterior 

samples, the predictive distribution is obtai1ied. In this case, taking 

the IC in (5) is derived. 

P -spline logistic regression model. 

We generated a set of n observations for according to pr(Yo = 1[:r0 ) = 1/ [1 + exp { sin(57r 

for :r0 = (2a- 1)/(2n). It is assmned that the probability 7r(:to) is of the form: 

log [1r(:.c0 ) / {1- 7r(:c0 )}] = wTb(:r0 ). Improved DIC in (5) for evaluating the predic-

tive distribution can be obtained by taking 

u(eQ) = log{1 + exp(eo:)}, v(yo, cjJ) = 0, h(p,0 ) =log Mo and cjJ = 1. 
1- PO: 

Results summary 

In both examples, the total number of Markov chain Monte Carlo iterations is 

chosen to be 11,000. The first 1,000 iterations are discarded. To save computationa.l 

time, the initial value of the parameter is chosen to be the posterior mode. 

Insert Table 1 around here. 
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Tables 1 compares the mean squared error between the true and estimated con

ditional expectations: l\1SE = I:~= I { E(l·~. l:ro) - :9Cto)} 2 /n. The means and stan

dard deviations of the selected smoothing parameter A and the number of basis 

functions m are also given. The values in parentheses indicate standard deviations 

for the means. The value of sample sizes is set to ben E { 100, 200}. The candidates 

for the smoothing parameter were chosen on an evenly spaced grid of 10 values be

tween log10 (..\) = 0 and log10 (..\) = -5. The number of basis functions ranges from 6 

to 15. The simulation results were obtained from 200 repeated Monte Carlo trials. 

It may be seen from the simulation results that BPIC, BF and our proposed 

criteria performed well in almost all cases. The mean value of the smoothing pa

rameter chosen by DIC is smaller than those based on other criteria. The proposed 

criterion tends to choose fewer basis functions and larger values of ..\ than those 

based on DIC. It indicates that DIC is generally more variable and more likely to 

undersmooth than the proposed criterion. MSE indicates that the model selected 

by DIC overfits to the observed data. 

5 HIERARCHICAL BAYESIAN MODELING 

As a hierarchical Bayes example, stochastic volatility model selection problem 

is considered. Vve fit six different stochastic volatility models to the simulated data 

including the true model from which the data are generated. An objective is to 

investigate whether the proposed criterion is capable of identifying the true model 

from which the data are generated. 

For each model, §5.1 describes observation and state equations, their distribu

tional assumptions and the prior distributions for the unknown parameters. §5.2 

summarises the results. 

5·1. Models 

Model 1 is the basic stochastic volatility model: Yt = exp(ht/2)ut, ht = f-.L + 
4>(ht-l- t.t) + TI.Jt, where e = (Ji., 4>, T 2)T' ht is an unobserved log-volatility of Yt and 
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1Lt ("'-.) N(O, 1) and Vt rv N(O, 1) are uncorrelated Gaussian white noise sequences. 

Following Kim et al. (1998), we assume that each parameter is a priori independent 

1r(B) = 7r(p)7r(c/>)7r(T2) and use the same prior specifications of Kim et al. (1998). 

For the prior densities of (¢ + 1)/2, 1 2 and p., a beta distribution Be(20, 1.5), an 

inverse-gamma distribution /G(2.5, 0.025) and a normal distribution N( -5, 52 ) are 

utilised. 

J\,fodel 2 utilises AR(2) structure for the state transitions: ht = p. + ¢(ht~ 1 - p) + 
1/'( Bt~2 - p.) + TUt, Ut rv N (0. 1) The observation equations are equal to the basic 

model. \Ve use the same prior for ¢, p, T 2 as for the basic stochastic volatility model 

and center the prior for V1 around zero using a uniform distribution U[-1, 1]. 

Model 2: is equivalent to the basic stochastic volatility model including a leverage 

or asymmetric effect by allowing for correlation p between Ut and vt+I· Following 

Berget al. (2004), we specify a uniform prior distribution U[-1.1] for p. 

In Model 4, the normal distribution of tLt in the observation equation of the basic 

stochastic volatility model is replaced by independent central Student-t distributions 

with z; degrees of freedom 8t(z;): Yt = exp(Bt/2)ub Ut rv 8t(l/). We use the same 

prior for ¢., p, T 2 as for Model 1 and use the uniform prior distribution U[2, 100] for 

l!. 

l\1odel 5 is equivalent to Model 4 including a leverage effect by allowing for 

correlation between 'lit and Vt+l· We specify a uniform prior distribution U[-1, 1] 

for p. 

Model 6 is similar to the basic stochastic volatility model except that it contains 

a jump component in the observation equation to allow for large movements: Yt = 

Stqt + exp(Bt/2)ut, Ut rv N(O, 1), where qt follows a Bernoulli distribution which 

takes the value one with unknown probability K and the time-varying variable St 

represents the size of the jump when a jump occurs. For the parameters, we follow 

the prior specifications of Chi b et al. ( 2002). 

5· 2. Results 

In the simulation design, Model 3 was employed for the true m.odel. Datasets are 

generated from the true model with parameter values (p = 0.8, 11 = -8.0, T = 0.2 
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and v = 10, respectively. We simulate 100 data series of Ti = 800 observations. In 

our application, the total number of MCI\1C iterations is chosen to be 1,000,000 in 

which the first 100,000 iterations are discarded as a burn-in period sample. After a 

burn-in period, we stored every 1,000th posterior sample. 

Table 3 reports the model selection results obtained from 50 repeated Monte 

Carlo trials. To compute the Bayes factor, we utilise Chib (1995)'s marginal likeli

hood method (Chib's BF). In this simulation study, ''le employed a simple form of 

BPIC because of its complicated form. Thus, the BPIC and the proposed criterion 

have the same form in (6). However, we also checked the accuracy of the proposed 

in (5). As shown in Table 3, the proposed criterion selects the correct model 90% 

of the times against other models when the data is generated from Model 3. 

It may be seen from Table 3 that the proposed criterion is superior to DIC; it 

chooses the correct model frequently than DIC. Since DIC provide much less penalty 

for model complexity than those of other criteria, the best model chosen by DIC is 

relatively complex. On the other hand, the Bayes factor tends to choose the simpler 

models than those selected by other criteria. In fact the standard model was selected 

6 times among 100 trials. In conclusion, the proposed criteria also perform well in 

the full Bayesian modeling. 

Insert Table 3 around here. 

6 CONCLUDING AND REMARKS 

The main aim of this paper was to improve the performance of deviance infor

mation criteria (Spiegelhalter et al. (2002)), while preserving the computational 

advantage of DIC, i.e, easy score calculation. Since theoretical framework of DIC 

was unclear, we employed the Ando (2007)'s framework that select the best model 

by maximizing the posterior mean of the expected log-likelihood. Under this frame

work, it was clarified that the more accurate penalty term is double of that of DIC. 
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We also conduct numerical experiments to compare the performance of the pro

posed criteria with other Bayesian model selection criteria as well as frequentist's 

model selection criteria. As demonstrated by various numerical experiments, the 

proposed information criterion performs fairly well in various situations. 

APPENDIX 1 

Proof of Theorem 1. First, we define eo = limn~% EeJy[e] and decompose the bias 

in (3) as Ey(i}- 17) = E1 + E2 + E3, where 

E1 = Ev [2. EeJy {log f(yiB) -log f(y!Bo)}] , 
n 

E2 = Ey [.!:.EeJy {log fCyiBo)}- Ez [log{f(z!Bo)}J] , 
n 

E3 = Ey (Ez [log{.f(z!Oo)}]- Ez [EeJy{logf(ziB)}]). 

We first evaluate E1. Using the Taylor expansion of log{f(:y!B)} around 80 and 

then taking expectations of the above equation with respect to the posterior dis

tribution gives EeJy[log{f(y!())}] ::::o log{f(y!Bo)} + (Bn- B0)T8log{fClJIB0)}/8B-

0.5tr{Ln(Bo)EeJy[(B- Bo)(B- Bo)T]}. Here 

L (B)=- CJ2logf(y!B)I 
n 0 (:)()f)()T 

IJ=Bo 

is the observed Fisher information matrix evaluated at 80 . Notice also that 

where Vn(B) = EeJy[(B- en)T((J- en)] is the posterior covariance matrix of 0, and 

i/~(Bn) = Ey[(t~n- Bof(Bn- Bo)] is the covariance matrix of en· Then, noting that 
~ A 

noting that en ___,. Bo, and Ln ( Bn) ___,. L( Bo) in probability as n ___,. oo, , we have the 

following approximation 

where L(eo) is the expected Fisher information matrix evaluated at e0 . 
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Similarly, Taylor expansion of log{f(y\fl)} around the posterior mean iJn and then 

taking expectations of the above equation with respect to the posterior distribution 

gives 

Ey[Eety [log{f(y\B)}]] = Ey [log f(y\iJn)] - 0.5tr{ L( Bo)Ey [l~( B)]}. 

Substituting these expression into E 1 , we finally have 

nE1 ~ E);[log .f(:y\iJn)]- Ey[Ee[y[log{.f(y\B)}]]- 0.5tr { L(flo)lr(Bn)} 

= 0.5Ey[PD]- 0.5tr { L(Bo)V(Bn)} 

with PD is the effective number of parameters. 

The term E2 can be regarded as zero, because 

E2 = Ey [log{.f(y\flo)}]- Ez [log{f(z\Bo)}] = 0. 

Next, we evaluate the term E3 . We again use the Taylor expansion oflog{.f(z\fl)} 

around flo and then take the posterior expectation. This gives 

Ee[y[log{f(z\B)}] ~ log{f(z\Bo)} + (Bn- Bo)T8log{f(z\Bo)}/3B 

-0.5tr[Ln(Bo){l~,(B) + V(Bn)}]. 

Using the same auguments used in the evaluation of E 1 , we have the following 

approximation 

When the above results are combined, the asymptotic bias is given by 

0.5Ey[PD]- 0.5tr { L(Bo)\l(iJn)} + 0.5tr[L(flo){Ey[Vn(B)] +\!(lin)}] 

0.5Ey[PD] + 0.5tr[L(B0)Ey[\!~(B)]]. 

Replaceing the expectation of y by the empiricaldistribution and the true parameter 

value flo by en' we finally have 

Here we used tr{Ln(Bn)1i,,(B)} = 0.5PD (Spiegelhalter et al. (2002)). 
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Figure 1: Simple normal example. Comparison of the true bias (-),the estimated 
bias (- - -) for various sample sizes. (a) under the rather informative prior with 
To == 0.1 and (b) under a flat informative prior with To = 100. The dotted lines in 
each panel indicates ±2 times the standard deviation of the estimated bias. 

17 



Table 1: Results for the Gaussian regression model. Comparison of the mean 
squared errors based on various criteria. The mean squared error is defined as 
the difference between the true and estimated conditional expectations: MSE = 
2::~.= 1 {E(Y::X\:ra)- :l}(:ro)}2 jn. We used the predictive mean of :IJol:ro for :I}Cta)· The 
simulation results were obtained from100 repeated Monte Carlo trials. Averages are 
given in each of the first rows and fig11res in the second row give estimated standard 
deviations. The means and standard de·viations of the selected smoothing parameter 
A and the number of basis functions m are also given. NIC; network information 
criterion (Muarta et al., 1994), AICC; bias-corrected AIC (Hurvich et al., 1998), 
AICJ\,1; modified AIC (Eilers & Marx, 1996), BPIC: Bayesian predictive information 
criterion ( Ando, 2007), DIC; deviance information criterion (Spiegelhalter et al., 
2002), and BF; Bayes factor (Kass and Raftery, 1995). 

'II= 100 '// = 200 
m A MSE m A MSE 

NIC 9.28 0.01408 0.00738 8.94 0.00449 0.00352 
1.90 0.02914 0.00469 1.54 0.00472 0.00217 

AICC 9.56 0.35207 0.00530 9.44 0.11867 0.00274 
1.61 0.44831 0.00329 1.56 0.24710 0.00160 

AICM 9.66 0.25258 0.00578 9.48 0.10318 0.00287 
1.68 0.40092 0.00380 1.68 0.23201 0.00173 

BPIC 10.32 0.87183 0.00457 10.11 0.38025 0.00230 
1.89 1.67932 0.00295 1.86 0.44860 0.00116 

DIC 10.54 0.35215 0.00604 10.66 0.21529 0.00296 
2.02 0.44835 0.00422 2.09 0.35953 0.00177 

BF 13.38 0.88300 0.00463 11.73 0.35110 0.00236 
1.16 0.30419 0.00285 1.65 0.40679 0.00120 

Improved DIC 10.49 0.77221 0.00471 10.44 0.42794 0.00246 
1.9~( 1.40230 0.00297 2.05 0.45123 0.00124 
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Table 2: Results for the Logistic regression model. Comparison of the mean 
squared errors based on various criteria. The mean squared error is defined as 
the difference between the true and estimated conditional expectations: !viSE = 
I:~=l {E(!'~I:ro)- :l/(rQ)}2 jn. We used the predictive mean of P(:yo = 1l:rQ) for 
y(:r 0 ). The simulation results were obtained from 100 repeated Monte Carlo tri
als. Averages are given in each of the first rows and figures in the second row 
give estimated standard deviations. The means and standard deviations of the se
lected smoothing parameter A and the number of basis functions n1 are also given. 
NIC; network information criterion (lVluarta et al., 1994), AICC; bias-corrected AIC 
(Hurvich et al., 1998), AICl'v1; modified AIC (Eilers & l\1arx, 1996), BPIC; Bayesian 
predictive information criterion (Ando, 2007), DIC; deviance information criterion 
(Spiegelhalter et al., 2002), and BF; Bayes factor (Kass and Raftery, 1995). 

n = 100 'II= 200 
m A MSE m A J'v1SE 

NIC 9.44 0.10102 0.02304 9.36 0.00002 0.01012 
1.73 0.30127 0.01114 1.12 0.00005 0.00499 

AICC 8.61 0.12338 0.02148 8.90 0.00003 0.01015 
1.72 0.32653 0.01081 1.29 0.00005 0.00506 

AICM 9.15 0.08333 0.02123 9.40 0.00006 0.01016 
1.79 0.27310 0.01108 1.49 0.00008 0.00496 

BPIC 9.11 0.23447 0.01719 9.86 0.14607 0.00894 
2.03 0.34268 0.00849 2.19 0.27058 0.00351 

DIC 11.02 0.00016 0.01977 11.13 0.00008 0.00989 
1.75 0.00034 0.00944 1.50 0.00013 0.00417 

BF 11.98 0.35409 0.01877 12.13 0.07235 0.00948 
1.12 0.43461 0.00877 1.02 0.19429 0.00410 

Improved DIC 10.81 0.00028 0.01730 10.83 0.00017 0.00901 
1.83 0.00070 0.00885 1.55 0.00032 0.00406 
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Table 3: Frequency distribution of selected models across 100 simulated replications. 
The datasets are generated from Model 3. BPIC (Bayesian predictive information 
criterion: Ando (2007)), DIC (Deviance information criterion: Spiegelhalter et al. 
(2002)), BF (Bayes factor: Kass and Raftery (1995)), Improved DIC (DIC1) in (5) 
and Improved DIC (DIC2) in (6), respectively. Note that the scores of BPIC and 
DIC2 are the same and thus give the same model selection results. 

Models 1 2 3 4 5 6 
BPIC 0 0 75 0 25 0 
DIC 0 0 44 0 56 0 
BF 6 0 70 0 24 0 
DIC1 0 0 73 0 27 0 
DIC2 0 0 75 0 25 0 
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