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SUMMARY 

The problem of evaluating the goodness of the predictive distributions of Bayesian 

models is investigated. A predictive marginal likelihood is proposed as an estima

tor of the posterior mean of the expected likelihood of the predictive distribution. 

Under the model misspecification situation, the proposed criterion is developed by 

correcting the asymptotic bias of the posterior mean of the likelihood as an estimate 

of its expected likelihood. The use of the resampling approach in model evaluation 

is also discussed. 

Some key words: Bayesian models; Markov chain Monte Carlo; Model misspecifica

tion; Posterior Bayes factor. 
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1. INTRODUCTION 

Suppose a set of n independent observations Yn are generated from an unknown 

probability density g(yn) and that a parametric family of distributions with densities 

{f(yJB); e E 8 c RP} is utilised as an approximation of th~ true model. In the 

Bayesian framework, an inference for e is provided by its posterior distribution, 

1r(Bjyn) ex L(ynJB)7r(B), where L(ynJB) is the likelihood function and 1r(B) is a prior 

distribution. The predictive distribution for a future observation Zn from the true 

model is q(znlYn) = J f(znlB)7r(BJyn)dB. The remained problem is how to evaluate 

the goodness of the predictive distribution, known as model selection problem. 

Model selection is a fundamental task in statistical modeling process. The Bayes 

factor (Kass & Raftery, 1995) has played a major role in the evaluation of the 

goodness of the Bayesian models. Despite its popularity, the Bayes factor has cmhe 

under increasing criticism. The most serious difficulty in the use of the Bayes factor 

is its sensitivity to prior distributions. The use of non-informative prior leads to the 

severe situation; the Bayes factor is not well-defined. Many studies therefore have 

been conducted to evaluate the goodness of Bayesian models (Gelfand & Dey, 1994; 

Kass & Raftery, 1995; O'Hagan 1995; Berger & Pericchi, 1996; Perez & Berger, 

2002; Ando 2006). 

To overcome the difficulties of the Bayes factor, Aitkin (1991) proposed a poste

rior Bayes factor that chooses the model with the largest value of the posterior mean 

of the likelihood. However, note that, the same data are used both to construct the 

posterior distribution and to compute the posterior mean of the likelihood (Kadane 

& Lazar, 2004). It is obvious that the posterior mean of the likelihood has a positive 

bias comparing with the posterior mean of the expected likelihood. 
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From a predictive point of view, it is natural to evaluate the constructed model 

based on the posterior mean of the expected likelihood. The main aim of this 

paper is to propose a predictive marginal likelihood, an estimator of the posterior 

mean of the expected likelihood of the predictive distribution. Under the model 

misspecification, the proposed criterion is developed by using an asymptotic theory. 

It consists of two terms; the posterior mean of the likelihood and an asymptotic bias 

of the posterior mean of the likelihood as an estimate of its expected likelihood. 

§2 gives a main result. Some observations of the proposed criterion are provided 

in §3. §4 ""' §6 conduct Monte Carlo simulations to investigate the performance of 

the proposed criterion. 

2. MAIN RESULT; PREDICTIVE MARGINAL LIKELIHOOD 

The best predictive distribution is determined by maximizing the logarithmic 

posterior mean of expected likelihood 

(1) 

among different Bayesian models. It is obvious that the quantity 17 depends on the 

specified model, and further depends on the unknown true model g(z). The problem 

therefore is how to estimate the logarithmic posterior mean of expected likelihood. 

A natural estimator of (1) is the logarithmic posterior mean of the likelihood, 

proposed by Aitkin (1991): 

(2) 

It is obvious that the logarithmic posterior mean of the likelihood generally provides 

a positive bias as an estimator of '17· Therefore, the bias correction of the logarithmic 

posterior mean of the likelihood is required. 
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Employing an information theoretic argument (Akaike, 1974), the bias b of ij in 

estimating 1J is defined as 

(3) 

where expectation is taken over the joint distribution of Yn· Under some regularity 

conditions, we evaluated the asymptotic bias (3) under the model misspecification. 

The result is given in the following theorem. 

Theorem 1 Let 1J and ij be the logarithmic posterior mean of expected likelihood 

in {1) and the likelihood in {2), respectively. Suppose that the specified family of 

probability distributions does not necessarily contain the true model. Then, under 

some regularity conditions, the asymptotic bias {3) is given approximately by 

(4) 

where the notation ~ indicates that the difference between the two sides of the equa-

tion tends to zero as n ~ oo, B(yn, Yn) is the mode oflog{L(yn[8)L(yn[8)n(8)}, and 

the p X p matrices jYnYn ( 8) and jYnYn ( 8) are given by 

j (8) = !__ ~ {8logry(ya.,Ya.l8) 8logry(ya.,Yaf8)} 
YnYn 2n 0 ae 88T ) 

a=l 

1 (8) = _!__ ~ {82 logry(ya,Ya.l8)} . 
YnYn 2n 0 8888T ' 

a=l 

with logry(za, Ya[8) =log f(za[8) +log f(Yal8) + logn(8)/n. 

The regularity conditions and derivation are given in Appendix 1. 

· Correcting the asymptotic bias of ij, we propose the predictive marginal likeli-

hood (PML): 

PML -2 x (ij- b) 

-2log J L(ynf8)n(8Jyn)d8 + tr [J~~n {B(yn, Yn)}IYnYn {B(yn, Yn)}]. (5) 
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We choose the predictive distribution that minimizes PML score. 

If we further impose some assumptions on the situation, the bias term (4) reduces 

to a simple form. The result is given in the following theorem. 

Theorem 2 Additionally to the regularity condition of Theorem 1, we assume that 

(a) the prior is assumed to be dominated by the likelihood as n increases, say, 

log?T('y) = 0(1), and (b) the specified parametric models contain the true model, 

or are similar to the true model. Then the estimated bias term b in (4) reduceds to 

b ~ p /2, where p is the dimension of (). 

The derivation is given in Appendix 2. 

In this situation, the prediCtive marginal likelihood (5) is 

PML = -2log j L(Ynle)?T(eiYn)de + p. (6) 

3. SOME OBSERVATIONS ABOUT PML 

3·1. Some regularity conditions 

The proposed criterion is available under the situation that (a) the observations 

are independent, (b) the consistency of() holds, and (c) the penalised likelihood has a 

single mode. From (a), the criterion cannot be applied to dependent data, since the 

derivation of the bias ( 4) utilizes an asymptotic theory. To ensure the consistency 

(b), we integrated out the random effects from the likelihood function when we 

consider the Bayesian model with random effects. The assumption (c) is needed 

so that the Laplace approximation to be reasonably accurate. From theoretical 
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perspective, the proposed criterion is not available when the penalised likelihood is 

characterised by multimodality. We would like to point out that when the Bayesian 

predictive information,criterion (BPIC; Ando, 2006) is applicable, then the proposed 

criterion is also available. Since the scope of BPIC is less limited than other model 

selection criteria (An do, 2006), the proposed criterion can be widely applied. 

3· 2. Other utility maximization 

Under the general situation that the specified family of probability distributions 

does not contain the true distribution, several Bayesian model selection criteria have 

been proposed. Konishi & Kitagawa (1996) considered the maximization of the 

expected log-likelihood of the predictive distribution. Approximating the predictive 

distribution by using the maximum likelihood estimate, the generalised information 

criterion is proposed. Unfortunately, as pointed out by Konishi et al. (2004), when 

we develop various types of nonlinear models such as neural networks and splines, 

the maximum likelihood method often yields unstable parameter estimates and so 

leads to large errors in predicting future observations. Ando (2006) considered the 

maximization of the posterior mean of expected log-likelihood for the evaluation 

of hierarchical Bayesian and empirical Bayes models. Although these two criteria 

measure the predictive ability of the model, the utilities to be maximised are different 

from each other. 

3· 3. Resampling method 

An estimator of the logarithmic posterior mean of expected likelihood, Gelfand et 

al. (1992) proposed the cross validation predictive density: log{J IT~=1 (YaiB)7r(BIY-a)de, 
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where Y-a is the all elements Yn except Ya· Berger & Pericchi (1996) proposed an 

instric Bayes factor, which was originally introduced to cover the weakness of the 

original Bayes factor. 

Similar to Konishi & Kitagawa (1996) and Ando (2006), the bootstrap method 

(Efron & Tibshirani, 1993) allows us to perform the bias correction of ij. The boot-

strap analogues of TJ and iJ are TJ(b) =log J L(YniB)n(Biy~)de and ij(b) =log J L(y~l&)n(Biy~)de, 

where y~ is the empirical distribution based on bootstrap samples. The bootstrap 

bias estimator of b in (3) is then b(b) = Ey;. ( TJ(b) - ij(b)). Estimating the asymptotic 

bias b-y by the bootstrap bias estimator b~), we can also construct an estimator for 

TJ· In practice, the bootstrap bias estimate b~) is approximated by b~), which is 

obtained by Monte Carlo simulation. 

4 NORMAL EXAMPLE 

To give insight into the proposed criterion, we first apply the proposed criterion 

to a simple normal model with known variance. Suppose that a set of n independent 

observations yl, ... , yn are generated from a normal distribution with true mean 

/-Lt and known variance 0"2 , i.e. g(zlf-Lt) = N(f.-Lt, 0"2). We assume the data are 

generated from a normal distribution f(zlf-L) = N(f.-L, 0"2 ). The use of a normal prior 

1-L ""' N(f.-Lo, T5) leads to the posterior distribution of f-L being normal with mean 

The true bias (3) and its estimate b are 
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where w;; 1 = nja-2 + 1/o-~, fl(Yn, Yn) is the mode of log{L(YniJ-t)L(YniJ-t)7r(p,)}, 

JYnYn(p,) = n-1 I:~=1 {(ya-p,)/CT2 +(p,o-p,)/(2nTJ)p and JYnYn(J-t) = 1/CT2 +1/(2nTJ). 

Insert Figure 1 around here. 

--------------------------------------------------------------------------

Figure 1 shows the true bias and the bias estimate of PML for various sample 

sizes n. The quantities are evaluated by a Monte Carlo simulation with 100,000 

repetitions. We arbitrarily set the true mean, true variance and the prior mean to 

be Jkt = 0, CT = 0.5 and p,0 = 0, respectively. In Figs 1 (a) and (b), the prior variances 

are set to be To = 0.1 and To = 100, corresponding to a rather informative prior and 

a flat informative prior, respectively. Figure 1 shows that ~ has a significant bias 

as an estimator of '17· It can be seen that the estimated asymptotic bias of PML is 

close to the true bias. 

5 NONLINEAR REGRESSION MODELS 

5·1. Preamble 

We conduct Monte Carlo experiments to compare the proposed criterion with 

its competitors: Bayesian predictive information criterion (EPIC; Ando, 2006), de-

viance information criterion (DIC; Spiegelhalter et al., 2002), harmonic mean Bayes 

factor (HMBF; Newton & Raftery, 1994), GIC (Konishi & Kitagawa, 1996) and 

network information criterion (NIC; Muarta et al., 1994), respectively. 
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§5.2 considers P-spline generalised linear models. A tailor-made version of the 

proposed criterion is then derived. The resulting formulae are applied in §5.3 to 

special cases involving Gaussian, logistic and Poisson models. Numerical results are 

summarised in §5.4. 

5· 2. P -spline generalised linear models 

Suppose that we have n independent observations Ya corresponding to design 

points Xa, for a = 1, ... , n. In generalised linear models (McCullagh & Nelder, 

1989), Ya are assumed to be drawn from the exponential family of distributions with 

density f(Yalxa; ~a,¢) = exp[{Ya~a- u(~a)} / 4> + v(ya, 4> )], where u(-) and v(·, ·) are 

functions specific to each distribution, and 4> is an unknown scale parameter. The 

conditional expectation E(Yalxa) = f-La = u'(~a) is linked to a predictor 'Tfa = h(J-La), 

where h( ·) is a link function. In this paper, we use the B-spline function for the 

predictor '17a = L,j=1 Wjbj(xa) (Eilers & Marx, 1996). 

Then it follows from the density and the predictor that the data are sum

marised by a model from a class of probability densities of the form f(Yalxa; 8) = 

exp([yaf{ wTb(xa)}-s{ wTb(xa)}]/ cf>+v(ya, ¢)),where 8 = (wT, c/>)T, w = (w1, · · ·, Wm)T 

is them-dimensional coefficient vector, b(x) = (b1 (x ), · · ·, bm(x) )Tis them-dimensional 

basis function vector, r(·) = u'-1 o h-1 (·) and s(·) = u o u'- 1 o h- 1(·). 

For posterior inference, we shall use a singular multivariate normal prior density 

(Konishi et al., 2004) 1r(8) = {nA/(27r)}(m-2)/2 IRI~2 exp{-nA8TR8/2}, where A is 

a smoothing parameter, m is the number of basis functions, R = diag{D, 0} is a 

block diagonal matrix and IRI+ is the product of (m- 2) nonzero eigenvalues of R. 

The remaining problem is how to choose the smoothing parameter A and the 

number of basis functions m. We use the proposed criterion ( 5) to choose appropriate 
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values for these parameters. The result is summarised in the following theorem. 

Theorem 3 Let f(Yaixo:; e) be P-spline generalised linear model, to be estimated by 

the Bayesian approach. Then the (m + 1) X (m + 1) matrices IYnYn {B(yn, Yn)} and 

JYnYn {B(yn', Yn)} in the predictive marginal likelihood (5) are given by 

Here B = (b(x1 ), ... , b(xn))T, 1n = (1, ... , 1)T, A and r are n x n diagonal matrices 

and p and q are n-dimensional vectors with a: th diagonal elements and a th elements 

Substituting the density functions f(Yo:ixo:; e) and n(e) into the equation (5), the 

bias term can be derived. The adjusted parameters A and m are determined as the 

minimisers of the predictive marginal likelihood in (5). 

5·3. Some special cases 

Example 1. P-spline Gaussian regression model. Consider P-spline Gaussian 

regression model Ya = wTb(xo:) +Eo: (a= 1, ... , n), where the errors Eo: are indepen-

dently and normally distributed with mean zero and variance a2 . Estimating the 

parameter vector e by producing the posterior samples, the predictive distribution 

is obtained. In this case, taking 
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in Theorem 3, the bias term of the predictive marginal likelihood is derived. 

Example 2. P -spline logistic regression model. Suppose that we have n inde-

pendent binary observations Ya., each from a logistic distribution with conditional 

expectation pr(Ya = 1lxa.) = 7r(xa)· It is assumed that the probability 1r(xa) is of 

the form: log [7r(xa.)/ {1- 7r(xa)}] = wTb(xa.)· Posterior inference can be done by 

producing the posterior samples. Then taking 

in Theorem 3, we derive the predictive marginal likelihood for evaluating the pre-

dictive distribution. 

Example 3. P-spline Poisson regression model. Let Ya, a= 1, ... , n be indepen-

dent observations, each from a Poisson distribution with conditional expectation 

E(Yalxa) = r(xa.)· Then the conditional expectation is expressed as log { r(xa.)} = 

wTb(xa), a = 1, 2, ... , n. We estimate the unknown parameter vector w by produc-

ing the posterior samples. The predictive marginal likelihood for eavluating the 

constructed model can be obtained by taking u(~a.) = exp(~a), ¢ = 1, v(ya, ¢) = 

-log(ya!) and h(f.La.) = log(f.La) in Theorem 3. 

5· 4. Results 

As an Gaussian example, datasets { (ya, xa); a = 1, ... , n} are repeatedly gener-

ated from the true regression model Ya = sin(47rxa) + Ea for Xa = (2a- 1)/(2n). 

The errors ca. are independently and identicaly distributed according to a mixture of 

normal distributions g(ca) = ,8N(cal0, o-i) + (1- ,8)N(sa.IO, O"~), where ,6 is a mixing 

proportion, and N(s!f.L, 0"2 ) is the normal density function with mean f.L and variance 

0"2 . The values of the mixing proportion and sample variances are set to be ,6 = 0.8, 
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o-1 = 0.25 and o-2 = 0.5, respectively. To fit the logistic model, we generated a 

set of n observations for according to pr(Ya = 1lxa) = 1/ [1 + exp {3 sin(nxa)}] for 

Xa = (2a- 1)/(2n). 

The total number of Markov chain Monte Carlo iterations is chosen to be 11,000. 

The first 1,000 iterations are discarded. To save computational time, the initial value 

of the parameter is chosen to be the posterior mode. 

--------------------------------------------------------------------------

Insert Tables 1 and 2 around here. 

Tables 1 and 2 compare the average squared error between the true and estimated 

conditional expectatiqns: ASE = 2::~=1 {E(Yalxa)- y(xa)}2 /n. The means and 

standard deviations of the selected smoothing parameter .A and the number of basis 

functions m are also given. The values in parentheses indicate standard deviations 

for the means. The value of sample sizes is set to benE {100, 200}. The candidates 

for the smoothing parameter were chosen on an evenly spaced grid of 10 values 

between log10 (.A) = 0 and log10 (.A) = -9. The number of basis functions ranges 

from 6 to 10. The simulation results were obtained from 100 repeated Monte Carlo 

trials. 

It may be seen from the simulation results that BPIC achieved the best per-

formance in almost all cases. However, Gaussian models evaluated by PML are 

superior to those based on other criteria in n = 100; they give smaller mean val-

ues with smaller variances for ASE. When n = 200, the performances of Gaussian 

model evaluated by PML and BPIC are almost the same. The mean values of the 

smoothing parameter chosen by DIC and PBF were smaller than those based on 
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other criteria. PML tends to choose fewer basis functions and larger values of .A 

than those based on .DIC and PBF. It indicates that DIC and PBF are generally 

more variable and more likely to undersmooth than PML. ASE indicates that the 

model selected by DIC and PBF overfits to the observed data. 

6 STOCHASTIC VOLATILITY MODELS 

6·1. Preamble 

As a hierarchical Bayes example, stochastic volatility model selection problem 

is considered. We fit six different stochastic volatility models to the simulated data 

including the true model from which the data are generated. An objective is to 

investigate whether the proposed criterion is capable of identifying the true model 

from which the data are generated. 

For each model, §6.2 describes observation and state equations, their distribu

tional assumptions and the prior distributions for the unknown parameters. §6.3 

summarises the results. 

6·2. Models 

Model 1 is the basic stochastic volatility model: Yt = exp(ht/2)ut, ht = f-L + 

cp(ht-1- t-L) + TVt, where e = (f-L, ¢, T2)T, ht is an unobserved log-volatility of Yt and 

Ut rv N(O, 1) and Vt rv N(O, 1) are uncorrelated Gaussian white noise sequences. 

Following Kim et al. (1998), we assume that each parameter is a priori independent 

7r( 8) = 7r(f-L )w( ¢ )7r( T 2) and use the same prior specifications of Kim et al. (1998). 
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For the prior densities of (¢ + 1)/2, T 2 and p,, a beta distribution Be(20, 1.5), an 

inverse-gamma distribution IG(2.5, 0.025) and a normal distribution N( -5, 52 ) are 

utilised. 

Model2 utilises AR(2) structure for the state transitions: ht = p,+¢(ht-l- p,) + 

1j.;(Bt_2 - p,) + TVt, Vt rv N(O, 1) The observation equations are equal to the basic 

model. We use the same prior for ¢, p,, T 2 as for the basic stochastic volatility model 

and center the prior for 1/J around zero using a uniform distribution U[-1, 1]. 

Model 3 is equivalent to the basic stochastic volatility model including a leverage 

or asymmetric effect by allowing for correlation p between Ut and vt+l· Following 

Berget al. (2004), we specify a uniform prior distribution U[-1, 1] for p. 

In Model 4, the normal distribution of Ut in the observation equation is replaced 

by independent central Student-t distributions with v degrees of freedom St(v): 

Yt = exp(Bt/2)ut, Ut ,.._, St(v). We use the same prior for¢, p,, T 2 as for Modell and 

use the uniform prior distribution U[2, 100] for v. 

Model 5 is equivalent to Model 4 including a leverage effect by allowing for 

correlation between Ut and Vt+l· We specify a uniform prior distribution U[-1, 1] 

for p. 

Model 6 is similar to the basic stochastic volatility model except that it contains 

a jump component in the observation equation to allow for large movements: Yt = 

Stqt + exp(Bt/2)ut, Ut ~ N(O, 1), where qt follows a Bernoulli distribution which 

takes the value one with unknown probability K, and the time-varying variable St 

represents the size of the jump when a jump occurs. For the parameters, we follow 

the prior specifications of Chib et al. (2002). 

6· 3. Results 
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In the simulation desig:p., Model 4 and Mode 5 are employed for the true model. 

Datasets are generated from the true model with parameter values ¢ = 0.8, p = 

-8.0, T = 0.2, p = -0.4 and v = 10, respectively. We simulate 50 data series of 

n = 800 observations. In our application, the total number of MCMC iterations 

is chosen to be 1,000,000 in which the first 100,000 iterations are discarded as a 

burn-in period sample. After a burn-in period, we stored every 1,000th posterior 

sample. 

Table 3 reports the model selection results obtained from 50 repeated Monte 

Carlo trials. Since the asymptotic bias of PML in (5) is not be available in closed 

form and requires numerical integration and derivatives, the PML in ( 6) is utilised. 

To compute the Bayes factor, we utilise Chib (1995)'s marginal likelihood method 

(Chib's BF). 

As shown in Table 3, the proposed criterion selects the correct model 90% of the 

times against other models when the data is generated from Model 4. It may be 

seen from Table 3 that the proposed criterion is superior to PBF and DIC; it chooses 

the correct model frequently than DIC and PBF. Since DIC and PBF provide much 

less penalty for model complexity than that of BPIC and PML, the best models 

chosen by DIC and PBF are relatively complex than those of BPIC and PML. On 

the other hand, the Bayes factor tends to choose the simpler models than those 

selected by other criteria. In conclusion, PML relatively performs well in the full 

Bayesian approach. 

Insert Table 3 around here. 

--------------------------------------------------------------------------
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APPENDIX 1 

Proof of Theorem 1 

We first describe some asymptotic properties of the parameter estimators. Let 

tively. For a simplicity of notation, we used L(zn, YniB) = L(zniB)L(YniB). Since 

log L(yn, zniB) is the sum of the independently and identically distributed random 

variables, it follows from the law of large numbers that log{L(yn, zniB)1r(B)} --+ 

Ezn,Yn[log{L(zn,YniB)K(B)}] as n tends to infinity. Then B(zn,Yn)--+ Bo in probabil-

ity as n tends to infinity. Hereafter, we restrict our attention to a proper situation 

in which the Hessian of Ezn,YJlog{L(zn,YniB)K(e)}] is nonsingular at 00 , which is 

uniquely determined and interior to 8. 

Lemma Al. Assume regularity conditions similar to those of Ando {2006}; i.e., 

the model is sufficiently smooth and the Hessian of Ezn,yJlog{L(zn, Ynle)1r(e)}] is 

non-singular at ea. Then ffn{B(zn, Yn)- eo} is asymptotically normally distributed 

and IZnYn (e) and ]ZnYn (e) are the p X p matrices respectively defined by 
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Proof of Lemma Al. Since e(zn, Yn) is the mode of L(zn, YniB)n(B), it satisfies the 

score equation a[log{L(zn, YniB)n(O)}]/aBie=e(zn,Yn) = 0. Taylor expansion leads to 

-~ 82 log{L(zn, YniB)n(e)} I ~{e( ) - e } 
2n aeaeT v L.n Zn, Yn 0 

B=Bo 

= _1_8log{L(zn,YniB)n(B)}I +OP (-1-). 
ffn 80 B=Bo ffn 

It follows from the central limit theorem that the right-hand side is asymptotically 

distributed as N {0, IznYn (Bo)}, while the left-hand side converges to lznYn (Bo)ffn{e(zn, Yn)-

80 }. Thus we obtained the desired result. In the same way, we can proof that 

fo{B(yn, Yn)-Bo} is asymptotically normally distributed as N {0, J;;;,~n (Bo)IYnYn(Bo)J;;;,~n (Oo)}. 

Here B(yn, Yn) is the mode of L(yn, YniB)n( e). 

Proof of Theorem 1. We assume the regularity conditions of Lemma Al and the 

Laplace approximation. For the regularity conditions of the Laplace approximation, 

we refer to Barndorff-Nielsen & Cox (1989). Using the basic Laplace approximation 

and a ratio of integrals (Gelfand & Day, 1994), we have 

J . f L(zn, YniB)n(B)dO 
m(zniYn) = L(zniB)n(BIYn)dO = J L(YniO)Jr(O)dO 

= L{zn, YniB(:n, Yn)}Jr5B(zn, Yn)} ['j~~n {e~zn, Yn)}ll~20(n-2), 
L{Yn!B(yn)}Jr{ O(yn)} IJ;,.l( O(yn)) I 

J J L(yn, Yn!O)Jr(O)de 
m(YniYn) = L(YniB)n(Ojyn)dO = J L(YniB)Jr(O)dO 

= L{yn, Ynle(yn, Yn) }n5 B(yn, Yn)} [I J;;;,~n { {j~Yn, Yn)} ll ~20( n -2),. 
L{ynjO(yn)}n{O(yn)} IJy,.I(O(yn))j J 

where B(zn, Yn), e(yn, Yn) and B(yn) are the modes of L(zn, YniB)n(e), L(yn, YniB)Jr(O) 

and L(YniB)n(O), respectively. Here lyn(e) = -n-1Eyn[82 {logL(Yni8)Jr(8)}jaeaeT], 

and JYnYn, JznYn and JYn are p X p matrices obtained by replacing the expectation 

operator by the empirical distribution. 
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Using the above expression, we decompose the bias in (3) as 

where 

Bz = Eyn[log{L(yn,YniBo)1r(Bo)}]- Ezn,Yn[log{L(zn,YniBo)1r(Bo)}J, 

B3 = Ezn,Yn [log{ L(zn, YniBo)1r(Bo)}] - Ezn,Yn (log[L{ Zn, YniB(zn, Yn)}1r{ B(zn, Yn)}]), 

B4 = Eyn [~log IJ;.~Yn {B(yn, Ynnl] - Ezn,Yn [~log IJ~~YJB(zn, Yn)}l] · 

For the evaluation of Bl, considering a log[L{yn, YniB(yn, Yn)}1r{ B(yn, Yn)}]/ ae = 

0, the Taylor expansion oflog{L(yn, YniBo)1r(B0 )} around the posterior mode e(yn, Yn) 

gives 

log{L(yn, YniBo)1r(Bo)} = log[L{yn, YniB(yn, Yn)}1r{B(yn, Yn)}] 

-2n{ Bo - e(yn, Yn)} T jYn,Yn { B(yn, Yn) }{ Bo - e(yn, Yn)} /2 + Op(l/ yn). 

From Lemma, the variance matrix of yn{ B0 - e(yn, Yn)} is asymptotically given by 

J:;;,~JBo)IYnYn(Bo)J:;;,~JBo). With this result and since JYnYn{B(yn,Yn)}--+ JYnYn(Bo) 

in probability as n--+ oo, we have B1 = tr{ J;,!YJBo)IYnYn (Bo)}. 

Using the Taylor expansion of log{L(zn, YniBo)1r(Bo)} around B(zn, Yn), we have 

log{L(zn, YniBo)1r(Bo)} = log[L{zn, YniB(zn, Yn)}1r{e(zn, Yn)}] 

-2n{Bo- B(zn, Yn)}T jzn,Yn {B(zn, Yn)}{Bo- e(zn, Yn)}/2 + Op(l/v2n). 

The term B3 is then B3 = -Ezn,Yn[ffn{e(zn, Yn) - Bo}T Jzn,Yn(Bo)ffn{B(zn, Yn)

B0)}]/2+0(1/\1'2n). Considering LemmaAl, we have B3 = -tr{J;,;_1JBo)IznYn(Bo)} /2+ 
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Op(1/ .ffn). The terms B2 and B4 are zero, because 

Ey, [log{ L(yn, YniBo)1r( Bo)}] = Ezn,Yn [log{ L(zm YniBo)1r(Bo)}J, 

Eyn [log j}~~n {B(yn, Yn)}l] = Ezn,Yn [log jJ;,-.~, {B(zn, Yn)}l] · 

When the above results are combined, the asymptotic bias is given by EYn ( i] -

TJ) = tr{ J~tJ Bo)IYnYn ( Bo)}-tr{ J;,-,~J Bo)IznYn ( Bo)} /2. Estimating the matrices IznYn ( Bo) 

and IYnYn(Bo) by jYnYn{B(yn,Yn)} and JZnYn(Bo) and JYnYn(Bo) by jYnYn{B(yn,Yn)}, we 

obtain the required result. 

APPENDIX 2 

Proof of Theorem 2 

Under the situation log1r(r) = 0(1), the quantity logTJ(Za,YaiB) in the p x p 

matrices IznYn(B) and JZnYn(B) reduces to logTJ(Za,YaiB) = logf(zaiB) + logf(YaiB) 

as n --> oo. Since the specified parametric models contain the true model, or are 

similar to the true model, it can be shown that IZnYn (e) c:::: JZnYn (e). Therefore, the 

bias b in ( 4) reduces to a half dimension of (}. 
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Figure 1: Simple normal example. Comparison of the true bias b (-), the esti
mated asymptotic bias BPIC (---)for various sample sizes. (a) under the rather 
informative prior with To = 0.1 and (b) under a flat informative prior with To = 100. 
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Table 1: Comparison of the average squared errors based on various criteria. Aver-
ages are given and figures in parentheses give estimated standard deviations. The 
results are for Gaussian example. 

n = 100 n = 200 

m log10 (.\) ASE m log10 (.\) ASE 

PML 8.98 -4.15 0.01971 9.06 -4.26 0.0094 
(0.94) (0.70) (0.0092) (0.82) (0.68) (0.0043) 

PBF 9.64 -4.91 0.02057 9.64 -4.84 0.0100 
(0.64) (0.28) (0.0094) (0.60) (0.36) (0.0045) 

BPIC 8.07 -3.93 0.01989 8.36 -3.92 0.0093 
(1.04) (0.68) (0.0095) (0.90) (0.55) (0.0045) 

DIC 9.65 -4.81 0.02054 9.63 -4.75 0.0098 
(0.62) (0.39) (0.0094) (0.60) (0.43) (0.0048) 

HMBF 9.63 -4.86 0.02056 9.64 -4.80 0.0099 
(0.64) (0.34) (0.0094) (0. 78) (0.39) (0.0045) 

GIC 8.36 0.02066 8.53 0.0102 
(1.00) (-) (0.0090) (0.85) (-) (0.0046) 

NIC 8.60 -4.91 0.02001 8.66 -5.00 0.0098 
(8.60) (0.29) (0.0094) (0.29) (2.276) (0.0043) 

ASE, average squared error 
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Table 2: Comparison of the average squared errors based on various criteria. Aver-
ages are given and figures in parentheses give estimated standard deviations. 
The fitting results are for logistic model. 

n = 100 n= 200 

m log10 (A) ASE m log10 (A) ASE 

PML 8.65 -5.39 0.01423 8.09 -5.04 0.0060 
(1.39) (0.96) (0.0068) (1.69) (1.41) (0.0045) 

PBF 9.67 -6.13 0.01630 9.77 -8.52 0.0079 
(0.59) (0.61) (0.0068) (0.44) (0.93) (0.0039) 

BPIC 6.97 -4.86 0.01198 6.27 -4.09 0.0039 
(1.34) (1.20) (0.0070) (0.84) (0.85) (0.0035) 

DIC 9.67 -6.11 0.01629 9.78 -8.13 0.0079 
(0.59) (0.55) (0.0068) (0.44) (1.02) (0.0040) 

HMBF 9.67 -6.13 0.01630 9.77 -8.53 0.0079 
(1.23) (0.61) (0.0068) (0.45) (0.92) (0.0039) 

GIC 8.12 0.01668 6.89 0.0066 
(1.52) (-) (0.0079) (1.38) (-) (0.0043) 

NIC 8.43 -6.13 0.01507 7.81 -8.10 0.0063 
(1.51) (0.62) (0.0072) (1.35) (1.06) (0.0042) 

ASE, average squared error 
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Table 3: Frequency distribution of selected models across 50 simulated replications. 
The datasets are generated from Model 4 and Model 5. 

True model; Model 4 

Models 1 2 3 4 5 6 

PML 3 2 0 44 1 0 
PBF 2 1 0 43 4 0 
BPIC 4 1 0 44 1 0 
DIC 1 2 0 42 3 2 
Chib's BF 5 0 0 45 0 0 

True model; Model 5 

Models 1 2 3 4 5 6 

PML 4 0 3 3 40 0 
PBF 2 1 3 4 40 0 
BPIC 6 1 0 4 39 0 
DIC 0 0 2 5 40 3 
Chib's BF 5 0 0 8 37 0 
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