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SUMMARY
The problem of evaluating the goodness of the predictive distributions of Bayesian
models is investigated. A predictive marginal likelihood is proposed as an estima-
tor of the posterior mean of the expected likelihood of the predictive distribution.
Under the model misspecification situation, the proposed criterion is developed by
correcting the asymptotic bias of the posterior mean of the likelihood as an estimate
of its expected likelihood. The use of the resampling approach in model evaluation

is also discussed.

Some key words: Bayesian models; Markov chain Monte Carlo; Model misspecifica-

tion; Posterior Bayes factor.



1. INTRODUCTION

Suppose a set of n independent observations y,, are generated from an unknown
probability density g(yx) and‘that a parametric family of distributions with densities
{f(y|0);0 € © C RP} is utilised as an apbroximation of the true model. In the
Bayesian framework, an inference for 6 is provided by its posterior distribution,
7(0lyn) o< L(yn|0)m(6), where L(y,|0) is the likelihood function and 7(f) is a prior
distriblltion. The predictive distribution for a future observation z, from the true
model is q(zn|yn) = [ f(2n|0)7(0]ys)df. The remained problem is how to evaluate
the goodness of the predictive distribution, known as model selection problem.

Model selection is a fundamental task in statistical modeling process. The Bayes
factor (Kass & Raftery, 1995) has played a major role in the evaluation of the
goodness of the Bayesian models. Despite its popularity, the Bayes factor has come
under increasing criticism. The most serious difficulty in the use of the Bayes factor
is its sensitivity to prior distributions. The use of non-informative prior leads to the
~ severe situation; the Bayes factor is not well-defined. Many studies therefore have
been conducted to evaluate the goodness of Bayesian models (Gelfand & Dey, 1994;
Kass & Raftery, 1995; O’Hagan 1995; Berger & Pericchi, 1996; Perez & Berger,
2002; Ando 2006). |

To overcome the difficulties of the Bayes factor, Aitkin (1991) proposed a poste-
rior Bayes factor that chooses the model with the largest value of the posterior mean
of the likelihood. However, note that, the same data are used both to construct the
posterior distribution and to compute the posterior mean of the likelihood (Kadane
& Lazar, 2004). It is obvious that the posterior mean of the likelihood has a positive

bias comparing with the posterior mean of the expected likelihood.
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From a predictive point of view, it is natural to evaluate the constructed model
based on the posterior mean of the expected likelihood. The main aim of this
paper is to propose a predictive marginal likelihood, an estimator of the posterior
“mean of the expected likelihood of the predictive distribution. Under the model
misspecification, the proposed criterion is developed by using an asymptotic theory.
It consists of two terms; the posterior mean of the likelihood and an asymptotic bias
of the posterior mean of the likelihood as an estimate of its expected likelihood.

§2 gives a main result. Some observations of the proposed criterion are provided
in §3. 84 ~ §6 conduct Monte Carlo simulations to investigate the performance of

the proposed criterion.
2. MAIN RESULT; PREDICTIVE MARGINAL LIKELIHOOD

The best predictive distribution is determined by maximizing the logarithmic

posterior mean of expected likelihood

1= B. logm(zalyn)] = [ log{ [ Llzal)n(6lun)dt}] o(z0) 1

among different Bayesian models. It is obvious that the quantity 1 depends on the
specified model, and further depends on the unknown true model g(2). The problem
therefore is how to estimate the logarithmic pbsterior mean of expected likelihood.

A natural estimator of (1) is the logarithmic posterior mean of the likelihood,

proposed by Aitkin (1991):

71 = 108 m(unly) = 108 | L(unl6)(6lyn)ab. @)

It is obvious that the logarithmic posterior mean of the likelihood generally provides
a positive bias as an estimator of . Therefore, the bias correction of the logarithmic

posterior mean of the likelihood is required.
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Employing an information theoretic argument (Akaike, 1974), the bias b of 7 in

estimating 7 is defined as

b=E,,(7—n) = /(ﬁ~n)g(yn), (3)

where expectation is taken over the joint distribution of y,. Under some regularity
- conditions, we evaluated the asymptotic bias (3) under the model misspecification.

The result is given in the following theorem.

Theorem 1 Let n and 7 be the logarithmic posterior mean of expected likelihood
in (1) and the likelihood in (2), respectively. Suppose that the specified family of
probability distributions does not necessarily contain the true model. Then, under
some reqularity conditions, the asymptotic bias (3) is given approzimately by

b 2t [ {8(umstn) Hympn {0 v} @

| —

where the notation =~ indicates that the difference between the two sides of the equa-
tion tends to zero as n — 00, 0(Yn, yn) is the mode of 1og{L(yn|0)L(y,|0)m(6)}, and

the p x p matrices I, (0) and J,.,, (8) are given by

00 06T
0 10g 1(Ya, Ya|0)
'ynyn(e = 75 Z { 8980‘]:‘ I

with 10g7(2a, Yal0) = 10g f(240) + log f(yal0) + logm(6)/n.

A 1 & [ Flogn(Ya, Yalb) Olo o Yo |0
Iynyn(9)=2—2_j{ 87(Ya, Yal0) 9logn(y yl)})

The regularity conditions and derivation are given in Appendix 1.
" Correcting the asymptotic bias of 7, we propose the predictive marginal likeli-
hood (PML):

PML = —-2x (7 —0b)

— ~210g | L(yal0)m(01ya)d0 + tr [ I, {8(n, ya) o {05 3)}] - (5)

4



We choose the predictive distribution that minimizes PML score.
If we further impose some assumptions on the situation, the bias term (4) reduces

to a simple form. The result is given in the following theorem.

Theorem. 2 Addz'tianally to the reqularity condition of Theorem 1, we assume that
(a) the prior is assumed to be dominated by the likelihood as n increases, say,
logm(y) = O(1), and (b) the specified parametric models contain the true model,
or are similar to the true model. Then the estimated bias term b in (4) reduceds to

b~ p/2, where p is the dimension of 0.

The derivation is given in Appendix 2.

In this situation, the predictive marginal likelihood (5) is

PML = —2log / L(yn|0)7(6lyn)d0 + p. (6)

3. SOME OBSERVATIONS ABOUT PML

3-1. Some regularity conditions

The proposed criterion is available under the situation that (a) the observations
are independent, (b) the consistency of 6 holds, and (c) the penalised likelihood has a
single mode. From (a), the criterion cannot be applied to dependent data, since the
derivation of the bias (4) utilizes an asymptotic theory. To ensure the consistency
(b), we integrated out the random effects from the likelihood function when we
consider the Bayesian model with random effects. The assumption (c) is needed

so that the Laplace approximation to be reasonably accurate. From theoretical
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perspective, the proposed criterion is not available when the penalised likelihood is
characterised by multimodality. We would like to point out thatv when the Bayesian
predictive information criterion (BPIC; Ando, 2006) is applicable, then the proposed
criterion is also available. Since the scope of BPIC is less limited than other model

selection criteria (Ando, 2006), the proposed criterion can be widely applied.

3-2. Other utility mazimization

Under the general situation that the specified family of probability distributions
does not contain the true distribution, several Bayesian model selection criteria have
been proposed. Konishi & Kitagawa (1996) considered the maximization of the
expected log-likelihood of the predictive distribution. Approximating the predictive
distribution by using the maximum likelihood estimate, the generalised information
criterion is proposed. Unfortunately, as pointed out by Konishi et al. (2004), when
we develop various types of nonlinear models such as neural networks and splines,
the maximum likelihood method often yields unstable parameter estimates and so
leads to large errors in predicting futu;re observations. Ando (2006) considered the
maximization of the posterior mean of expected log-likelihood for. the evaluation
of hierarchical Bayesian and empirical Bayes models. Although these two criteria
measure the predictive ability of the model, the utilities to be maximised are different

from each other.

3-3. Resampling method

An estimator of the logarithmic posterior mean of expected likelihood, Gelfand et

al. (1992) proposed the cross validation predictive density: log{ [ TTa_;(Ya|60)7(0|y—-a)dd,



where y_,, is the all elements v, except y,. Berger & Pericchi (1996) proposed an
instric Bayes factor, which was originally introduced to cover the weakness of the
original Bayes factor.
Similar to Konishi & Kitagawa (1996) and Ando (2006), the bootstrap method
(Efron & Tibshirani, 1993) allows us to perform the bias correction of 7. The boot-
strap analogues of ) and /) are n® = log [ L(y,|0)7(0]y:)df and 7#® = log [ L(y*|6)7(8]y*)de,
where y* is the empirical distribution based on bootstrap samples. The bootstrap
bias estimator of b in (3) is then b®) = E. (n® — #®)). Estimating the asymptotic
bias b, by the bootstrap bias estimator bﬂyb), we can also construct an estimator for
n. In practice, the bootstrap bias estimate bﬁf’) is approximated by 13(71‘), which is

obtained by Monte Carlo simulation.

4 NORMAL EXAMPLE

To give insight into the proposed criterion, we first apply the proposed criterion
to a simple normal model with known variance. Suppose that a set of n independent

observations y!,...,y™ are generated from a normal distribution with true mean
u: and known variance o2, ie. g(z|u:) = N(u,0%). We assume the data are
generated from a normal distribution f(z|u) = N(u,0?). The use of a normal prior

i ~ N(po,78) leads to the posterior distribution of p being normal with mean

fin = (o/78 + 301 y*/0?)/(1/78 + n/o?) and variance o2 = 1/(1/7¢ + n/c?).

The true bias (3) and its estimate b are

E,, [ —1{ (Xt ya>2 — nzﬂ-? — no’

n

b=

! + 2/, X
2 i o20?

nea (Y — ) }




b= tr[jy—nlyn {ﬂ(yn, yn)}lynyn{/l(ym yn)}]/2>

where w;' = n/0® + 1/0%, i(yn,y) is the mode of log{L(yn|)L(yal)r()},

A

Iyya (k) = 07 Toma{ (") /0> +(o—p)/ (2n73)}? and Jy, () = 1/ +1/(2n73).

Figure 1 shows the true bias and the bias estimate of PML for various sample
sizes n. The quantities are evaluated by a Monte Carlo simulation with 100,000
repetitions. We arbitrarily set the true mean, true variance and the prior mean to
be u; = 0, 0 = 0.5 and po = 0, respectively. In Figs 1 (a) and (b), the prior variances
are set to be 79 = 0.1 and 7y = 100, corresponding to a rather informative prior and
a flat informative prior, respectively. Figure 1 shows that 7 has a significant bias
as an estimator of . It caﬁ be seen that the estimated asymptotic bias of PML is

close to the true bias.

5 NONLINEAR REGRESSION MODELS

5-1. Preamble

We conduct Monte Carlo experiments to compare the proposed criterion with
its competitors: Bayesian predictive information criterion (BPIC; Ando, 2006), de-
viance information criterion (DIC; Spiegelhalter et al., 2002), harmonic mean Bayes
factor (HMBF; Newton & Raftery, 1994), GIC (Konishi & Kitagawa, 1996) and

network information criterion (NIC; Muarta et al., 1994), respectively.
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§5.2 considers P-spline generalised linear models. A tailor-made version of the
proposed criterion is then derived. The resulting formulae are applied in §5.3 to
special cases involving Gaussian, logistic and Poisson models. Numerical results are

summarised in §5.4.
5-2. P-spline generalised linear models

Suppose that we have n independent observations y, corresponding to design
points z4, for & = 1,...,n. In generalised linear models (McCullagh & Nelder,
1989), y, are assumed to be drawn from the exponential fémily of distributions with
density f(yalZa;€a; #) = exP{Yala — u(€a)}/é + v(ya, ¢)], where u(-) and (-, -) are
functions specific to each distribution, and ¢ is an unknown scale parameter. The
conditional expectation E(ys|Ta) = po = u'(£s) is linked to a predictor n, = h(ua),
where h(-) is a link function. In this paper, we use the B-spline function for the
predictor 7o = Y7L, w;b;j(za) (Eilers & Marx, 1996).

Then it follows from the density and the predictor that the data are sum-
marised by a model from a class of probability densities of the form f(ys|za;6) =
exp([yar {wTb(ea)} s {0Tb(T0)})/ 60 va, ¢)), where 6 = (w?, )%, w = (wy, -, w,)T
is the m~-dimensional coefficient vector, b(z) = (by(z), - -, b ()T is the m-dimensional
basis function vector, 7(:) = «/~ o A7(-) and s(-) =uwow"toh7I().

For posterior inference, we shall use a singular multivariate normal prior density
(Konishi et al., 2004) (8) = {nA/(27)}™=2/2|R|Y/* exp{—nA0T RO/2}, where X is
a smoothif.g parameter, m is the number of basis functions, R = diag{D,0} is a
block diagonal matrix and |R|; is the product of (m — 2) nonzero eigenvalues of R.

The remaining problem is how to choose the smoothing parameter A and the

number of basis functions m. We use the proposed criterion (5) to choose appropriate
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‘values for these parameters. The result is summarised in the following theorem.

Theorem 3 Let f(ya|za;0) be P-spline generalised linear model, to be estimated by
the Bayesian approach. Then the (m -+ 1) x (m + 1) matrices I,y {0(yn, yn)} and

Jyun £0(Yn, yn)} in the predictive marginal likelihood (5) are given by

N A 1 7/ BTA An _ /\Dlﬁan 9 A )
Ly {On(vmrvm)} = — ( /9 7 n/ ) (AB/¢n — MTinD/2,p),
P16 1 (B™T'/¢o+nAD/2 BTAL,/?

J'ynyn{an(ymyn)} = ;{ ( 1/$AB/$2 / _qufjb > .

Here B = (b(x1), ..., b(z,))T, 1, = (1,..,1)T, A and T are n x n diagonal matrices

and p and q are n-dimensional vectors with o th diagonal elements and o th elements

Yo — e yor {67b(za)} — s{0Tb(za)} = O
ao = T~ "y Pa= — ~ + =7 ) )
U (€a) P (fla) P e} 8¢U(y ?) b=dn
b e = (" ()W (o) + o (E*H () |1 - O
Qo T a ~ S N y do = .
{u" () (1) }? () (fha)? 99 l4=4n

Substituting the density functions f(ys|zs; 0) and 7(6) into the equation (5), the
bias term can be derived. The adjusted parameters A and m are determined as the

minimisers of the predictive marginal likelihood in (5).

5-8. Some special cases

Example 1. P-spline Gaussian regressi‘on model. Consider P-spline Gaussian
regression model y, = wrb(z,) + €, (o = 1,...,n), where the errors e, are indepen-

2. Estimating the

dently and normally distributed with mean zero and variance o
parameter vector 6 by producing the posterior samples, the predictive distribution

is obtained. In this case, taking

u(a) = E2/2, ¢ = 0%, v(ya,¢) = =12/ (20%), —log(ov2r) and h(ua) = pa
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in Theorem 3, the bias term of the predictive marginal likelihood is derived.
Example 2. P-spline logistic regression model. Suppose that we have n inde-
pendent binary observations y,, each from a logistic distribution with conditional
expectation pr(Y, = 1|z,) = 7(z,). It is assumed that the probability m(z,) is of
the form: log [r(z,)/{l — 7(z4)}] = wTb(z,). Posterior inference can be done by

producing the posterior samples. Then taking

u(€a) = log{1 + exp(§a)}, V(Yar¥) =0, h(pa) = log 7 Pe_ and ¢ =1

— Lo
in Theorem 3, we derive the predictive marginal likelihood for evaluating the pre-
dictive distribution.

Ezample 3. P-spline Poisson regression model. Let y,, & = 1,...;n be indepen-
dent observations, each from a Poisson distribution with conditional expectation
E(Ya|zs) = v(z4). Then the conditioﬁél expectation is expressed as log {v(z,)} =
wTb(zq), @ = 1,2,...,n. We estimate the unknown parameter vector w by produc-
ing the posterior samples. The predictive marginal likelihood for eavluating the
constructed model can be obtained by taking u(£,) = éxp(&a), ¢ =1, V(Ya, @) =

—log(ya!) and h(ue) = log(pe) in Theorem 3.

5-4. Results

As an Gaussian example, datasets {(yq, Zo); @ = 1,...,n} are repeatedly gener-
ated from the true regression model y, = sin(4nz,) + €, for 4 = (2 — 1)/(2n).
The errors €, are independently and identicaly distributed according to a mixture of
normal distributions g(e4) = BN (£4]0, %) + (1 — )N (4|0, 02), where 3 is a mixing
proportion, and N(e|u, 0?) is the normal density function with mean p and variance

o2. The values of the mixing proportion and sample variances are set to be 3 = 0.8,
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o1 = 0.25 and o9 = 0.5, respectively. To fit the logistic model, we generated a
set of n observétions for according to pr(Y, = 1|z,) = 1/[1 + exp {3 sin(7rz,)}] for
To = (2a —1)/(2n).

The total number of Markov chain Monte Carlo iterations is chosen to be11,000.
The first 1,000 iterations are discarded. To save computational time, the initial value

of the parameter is chosen to be the posterior mode.

Tables 1 and 2 compare the average squared error between the true and estimated
conditional expectations: ASE = Y7_, {E(Ya|za) — 9(24)} /n. The means and
standard deviations of the selected smoothing parameter A and the number of basis
functions m are also given. The values in parentheses indicate standard deviations -
for the means. The value of sample sizes is set to be n € {100, 200}. The candidates
for the smoothing parameter were chosen on an evenly spaced grid of 10 values
between log;o(A) = 0 and log;o(A) = —9. The number of basis functions ranges
from 6 to 10. The simulation results were obtained from 100 repeated Monte Carlo
trials.

It may be seen from the simulation results that BPIC achieved the best per-
formance in almost all cases. However, Gaussian models evaluated by PML are
superior to those based on other criteria in n = 100; they give smaller mean val-
ues with smaller variances for ASE. When n = 200, the performances of Gaussian
model evaluated by PML and BPIC are almost the same. The mean values of the

smoothing parameter chosen by DIC and PBF were smaller than those based on
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other criteria. PML tends to choose fewer basis functions and larger values of A
than those based on DIC and PBF. It indicates that DIC and PBF are generally
more variable and more likely to undersmooth than PML. ASE indicates that the

model selected by DIC and PBF overfits to the observed data.

6 STOCHASTIC VOLATILITY MODELS

6-1. Preamble

As a hierarchical Bayes example, stochastic volatility model selection problem
is considered. We fit six different stochastic volatility models to the simulated data
including the true model from which the data are generated. An objective is to
investigate whether the proposed criterion is capable of identifying the true model
from which the data are generated.

For each model, §6.2 describes observation and state equations, their distribu-
tional assumptions and the prior distributions for the unknown parameters. §6.3

summarises the results.

6-2. Models

Model 1 is the basic stochastic volatility model: y; = exp(h¢/2)us, hy = p +
B (hs—1 — 1) + vy, where 6 = (u, ¢, 72)T, hy is an unobserved log-volatility of y; and
ug ~ N(0,1) and v; ~ N(0,1) are uncorrelated Gaussian white noise sequences.
Following Kim et al. (1998), we assume that each parameter is a priori independent

m(0) = m(u)m(¢)m(7?) and use the same prior specifications of Kim et al. (1998).
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For the prior densities of (¢ + 1)/2, 72 and ,u,‘ a beta distribution.Be(20,1.5), an
inverse-gamma distribution [ G(2..5, 0.025) and a normal distribution N(—5,5%) are
utilised.

Model 2 utilises AR(2) structure for the state transitions: h; = p+@(he_y —p) +
zp(ﬁ,;_z — ) + 7v;, v; ~ N(0,1) The observation equations are equal to the basic
model. We use the same prior for ¢, 1, 72 as for the basic stochastic volatility model
and center the prior for 1 around zero using a uniform distribution U[—1, 1].

Model 3 is equivalent to the basic stochastic volatility model including a leverage
or asymrﬁetric effect by allowing for correlation p between u; and v;,;. Following
Berg et al. (2004), we specify a uniform prior distribution U[—1, 1] for p.

In Model 4, the normal distribution of u; in the observation equation is replaced
by independent central Student-t distributions with v degrees of freedom St(v):
ye = exp(6;/2)ut, uy ~ St(v). We use the same prior for ¢, u, 72 as for Model 1 aﬁd
use the uniform prior distribution U[2,100] for v.

Model 5 is equivalent to Model 4 including a leverage effect by allowing for
correlation between u; and vi1. We specify a uniform prior distribution U[—1, 1]
for p.

Model 6 is similar to the basic stochastic volatility model except that it contains
a jump component in the observ.ation equation to allow for large movements: y; =
5:qs + exp(0:/2)us, us ~ N (0,1), where ¢ follows a Bernoulli distribution which
takes the value one with unknown probability « and the time-varying variable s,
represents the size of the jump when a jump occurs. For the parameters, we follow

the prior specifications of Chib et al. (2002).

6-3. Results
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In the simulation design, Model 4 and Mode 5 are employed for the true model.
Datasets are generatéd from the true model with parameter values ¢ = 0.8, u =
—8.0, 7 = 0.2, p = —0.4 and v = 10, respectively. We simulate 50 data series of
n = 800 observations. In our application, the total number of MCMC iterations
is chosen to be 1,000,000 in which the first 100,000 iterations are discarded as a
burn-in period sample. After a burn-in period, we stored every 1,000th posterior
sample.

Table 3 reports the model selection results obtained from 50 repeated Monte
Carlo trials. Sinbe the asymptotic bias of PML in (5) is not be available in closed
form and requires numerical integration and derivatives, the PML in (6) is utilised.
To compute the Bayes factor, we utilise Chib (1995)’s marginal likelihood method
(Chib’s BF).

As shown in Table 3, the proposed criterion selects the correct model 90% of the
times against other models when the data is generated from Model 4. It may be
seen from Table 3 that the proposed criterion is superior to PBF and DIC; it chooses
the correct model frequently than DIC and PBF. Since DIC and PBF" provide much
less penalty for model complexity than that of BPIC and PML, the best models
chosen by DIC and PBF are relatively complex than those of BPIC and PML. On
the other hand, the Bayes factor ‘tends to choose the simpler models than those
selected by other criteria. In conclusion, PML relatively performs well in the full

Bayesian approach.
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APPENDIX 1
Proof of Theorem 1

We first describe some asymptotic properties of the parameter estimators. Let
8o and 0(z,, yn) be the modes of E,, . {L(2n, Yn|0)7(0)} and L(yn, 2,|0)7(6), respec-
tively. For a simplicity of notation, we used L(zp,yn|0) = L(2n|0)L(yn|0). Since
log L(yn, 2,|0) is the sum of the independently and identically distributed random
variables, it follows from the law of large numbers that log{L(yn, z,|0)7(0)} —
B, v 108{L(2n,yn|0)7(6)}] as n tends to infinity. Then 0(2n, yn) — 6o in probabil-
ity as n tends to infinity. Hereafter, we restrict our attention to a proper situation
in which the Hessian of E,_ ,.[log{L(%s,yn|0)7(8)}] is nonsingular at 6y, which is
uniquely determined and interior to ©.
Lemma Al. Assume regularity conditions similar to those of Ando (2006); i.e.,
the model zs sufficiently smooth and the Hessian of E,, . [log{L(zn,yn|0)7(6)}] is
non-singular at 6. Then v/2n{0(z, yn) — 0o} is asymptotically normally distributed
as N{0O, J;nlyn(eO)IZnyn(QO)Jz_nlyn(@D)}' Here 0(2n, yn) is the mode of L(zn, yn|0)m(6)

and I,.,.(0) and J..,,(0) are the p x p matrices respectively defined by

L. (0) = gl‘Ezn,yn [ zn: 0log{n(za, yalb)} 0log{n(za, ya|0)}} |

a=1 89 a@T
1 ", 0”1og{n(%a; Yal®)}
']znyn(0> = —%Ez'n’yn |:a2=:1 8939T .
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Proof of Lemma Al. Since 6(zn,y,) is the mode of L(z,,yn|0)m(6), it satisfies the
score equation O[log{L(zn, yn|0)7(0)}]/00]s_g, 4. = O- Taylor expansion leads to

__1—82 1Og{L<zmyn|'9)7T(0)} m{é(zmyn) _ 90}

2n 06067 =00
= o 90 ogo  \V2n) "

It follows from the central limit theorem that the right-hand side is asymptotically

distributed as N{0, I,,.,. (6o)}, while the left-hand side converges to J.,,, (80)v2n{8(zp, y») —

0o}. Thus we obtained the desired result. In the same way, we can proof that

V140(Yn, yn)—bo} is asymptotically normally distributed as N{0, J;'1, (60) Iy, (60)J; b (60) ).
Here 0(yn, ys) is the mode of L(yn,yn|9)ﬂ(0>.

Proof of Theorem 1. We assume the regularity conditions of Lemma A1l and the

Laplace approximation. For the regularity conditions of the Laplace approximation,

* we refer to Barndorfl-Nielsen & Cox (1989). Using the basic Laplace approximation

and a ratio of integrals (Gelfand & Day, 1994), we have

m(20|Yn) = /L(Zn|9)7r(0|yn)d6 = J L(2n, yn|0)7(60)dO

J Lyn|0)m(6)d6
_ L{Zm ynlé(fna yn)}ﬂA{é(Zm yn)} |:|jz_n11{n {é(Azn; yn)}q 1/2O(Tl_2)
L{yn|0(yn) }{6(yn) } |5 (0(n) ’
_ _ S L(Yn, yn|60) 7 (0)d
’m’(yniyn) - /L(ynw)ﬂ-(myn)de - fL(yn|9)7r(6')d9

1/2

O(n™?),

_ LAt Ynl0 (i, )3 {8, )} {|f@;n{égyn,yn>}l]
L{yal0(yn)}{0(ya)} 172 0(v)) |

~ where é(zn, Yn), é(yn, Yn) and é(yn) are the modes of L(z,, Yn|0)7(8), L(Yn, yn|0)7(6)
and L(y,|0)7(6), respectively. Here J,.(0) = —n~*E,, [6*{log L(y,|0)7(8)}/06067],
and jynyn, jznyn and jyn are p X p matrices obtained by replacing the expectation

operator by the empirical distribution.
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Using the above expression, we decompose the bias in (3) as
B, (7 —n) = Bi+ By + B3 + B4+ 0(n™?),

where

By = By, (108[L{Yn, Ynl0(Yn, Un) }7{8(yn, yn) })) — By, [108{L(yn, ynlo)7(60)}),
BZ = Eyn [log{L(yn’ynwO)’”(HO)}] - Ezn,yn [log{L(z‘manQO)W(BO)}]; |
Bs = E,, 4, [log{L(2n, Ynl|00)m(00)}] — B ym (log[L{zmynlé(zn,yn)}w{é(zn,yn)}]),

1
Ba = By [5108 |75, A00m i)}| = B [5108 922,00 50}

For the evaluation of By, considering 810g[L{yn, Yn|0(Yn, Yn) }1{O(Yn, yn) }]/06 =
0, the Taylor expansion of 10g{ L(y/n, yn|00)m(60)} around the posterior mode 6 (yy, y,)

gives

10g{L(yn, yn|90)7r(90>} = log[L{ym yn’é(yn: .yn)}ﬂ-{é(yn» yn)}]

=20{00 = 0(Yn, Yn)} " Jym 40 L0, yn) }{B0 — 8(¥m, yn)}/2 + Op(1//m).

Thus By = tr(By, [Jy, o {0(0n, ) W1 00—0(Yn, yn) }v/2{60=0(tm, yn) }T)+O(1/ /).

From Lemma, the variance matrix of v/n{6, — (yn, Yn)} is asymptotically given by
Tik (80)Lyyn (60)J;%, (8p). With this result and since Jy,y, {0(Yn, yn)} — Jynya (60)

in probability as n — oo, we have By = tr{J,}, (60)ly,y.(60)}.

Using the Taylor expansion of log{L(zn, yn|60)7(6)} around 6(z,,y,), we have

log{L(zn, yn|00)7r(00)} = log[L{zm ynlé(zm yn)}ﬂ{é(zm yn)}]

—2n{60 — 0(zn, yn)}" -, yn{9(zn>yn)}{90 0z, yn)}/2 + Op(1/V20).

The term Bs is then Bs = —E,_ . [V21{0(2n, yn) — 00} Jo 4 (60)V20{0 (2, 1) —
60)}]/2+0(1/+/2n). Considering Lemma A1, we have By = —tr{J}, (00)1.,y.(60)}/2+

18



Op(1/+/2n). The terms B, and B, are zero, because

By, [10g{L(Yn, Yn|00)7(60) }] = Ezp v, l0g{ L (2, yn|o)m (o)},

By, [log|J;%, {0(um, yn)}] = Bwy [log |73, {00z, yn)}] -

When the above results are combined, the asymptotic bias is given by E,, (1) —
n) = tr{Jy‘1 (60)Lynyn (B0)}—tr{J;} (60)Iz,y,(00)}/2. Estimating the matrices I,,,, (6o)

nYn nYn

and I,y (60) by Iyyn{0(yn, yn)} and J,.y, (60) and Jyy,. (80) by Jynyo {0(yn, yn)}, we

obtain the required result.
APPENDIX 2
Proof of Theorem 2

Under the situatiqn log7(y) = O(1), the quantity logn(za,ya|f) in the p ><vp
matrices I, (0) and J,,,,(0) reduces to logn(2a, yalf) = log f(24]0) + log f(y.|0)
as n — 00. Since the specified parametric models contain the true model, or are
similar to the true model, it can be shown that I, (0) ~ J.,,,.(6). Therefore, the

bias b in (4) reduces to a half dimension of .
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Figure 1: Simple normal example. Comparison of the true bias b (—), the esti-
mated asymptotic bias BPIC (- - -) for various sample sizes. (a) under the rather
informative prior with 7o = 0.1 and (b) under a flat informative prior with 7, = 100.
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Table 1: Comparison of the average squared errors based on various criteria. Aver-
ages are given and figures in parentheses give estimated standard deviations. The
results are for Gaussian example.

n =100 n = 200

m  logio(N) ASE m  logyo(A) ASE

PML 8.98 -4.15 0.01971 9.06  -4.26  0.0094
(0.94)  (0.70) (0.0092) (0.82)  (0.68) (0.0043)

PBF 9.64 -4.91  0.02057 9.64 -4.84  0.0100
(0.64)  (0.28) (0.0094) (0.60)  (0.36) (0.0045)

BPIC 8.07 -3.93  0.01989 8.36 -3.92  0.0093
(1.04)  (0.68) (0.0095) (0.90)  (0.55) (0.0045)

DIC 9.65 -4.81 0.02054 9.63 475  0.0098
(0.62)  (0.39) (0.0094) (0.60)  (0.43) (0.0048)

HMBF 9.63 -4.86  0.02056 9.64 -4.80  0.0099
(0.64)  (0.34) (0.0094) (0.78)  (0.39) (0.0045)

GIC 8.36 —  0.02066 8.53 — 0.0102
(1.00) (—)  (0.0090) (0.85) (—)  (0.0046)

NIC 8.60 -4.91 0.02001 8.66 -5.00  0.0098
(8.60)  (0.29) (0.0094) (0.29)  (2.276) (0.0043)

ASE, average squared error
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Table 2: Comparison of the average squared errors based on various criteria. Aver-
ages are given and figures in parentheses give estimated standard deviations.
The fitting results are for logistic model.

n = 100 n = 200

m  logy(A) ASE m- logo(N) ASE

PML 8.65 -5.39  0.01423 8.09 -5.04  0.0060
(1.39)  (0.96) (0.0068) (1.69)  (1.41) (0.0045)

PBF 9.67 -6.13  0.01630 9.77 -8.52  0.0079
(0.59)  (0.61) (0.0068) (0.44)  (0.93) (0.0039)

BPIC 6.97 -4.86 0.01198 6.27 -4.09  0.0039
(1.34)  (1.20) (0.0070) (0.84)  (0.85) (0.0035)

DIC 9.67 -6.11  0.01629 9.78 -8.13  0.0079
(0.59)  (0.55) (0.0068) (0.44)  (1.02) (0.0040)

HMBF 9.67 -6.13  0.01630 9.77 -8.53  0.0079
(1.23)  (0.61) (0.0068) (0.45)  (0.92) (0.0039)

GIC 8.12 —  0.01668 6.89 — 0.0066
(1.52) (—) (0.0079) (1.38) (—)  (0.0043)

NIC 843 -6.13  0.01507 7.81 -8.10  0.0063
(151)  (0.62) (0.0072) (1.35)  (1.06) (0.0042)

ASE, average squared error
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Table 3: Frequency distribution of selected models across 50 simulated replications.
The datasets are generated from Model 4 and Model 5.

True model; Model 4

Models 1 2 3 4 5 6
PML 3 2 0 44 1 0
PBF 2 1 0 43 4 0
BPIC 4 1 0 44 1 0
DIC 1 2 0 42 3 2
Chib’s BF 5 0 0 45 0 0
True model; Model 5

Models 1 2 3 4 5 6
PML 4 0 3 3 40 0
PBF 2 1 3 4 40 0
BPIC 6 1 0 4 39 0
DIC 0 0 2 5 40 3
Chib’s BF 5 0 0 8 37 0
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