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SUMMARY OF DOCTORAL DISSERTATION 
 

Title 

Health Information System-of-Systems Management by Engineering Systems Multiple-Domain 

Modeling Approach Considering Spatiotemporal Dynamics 
 

Abstract 

Despite the substantial effort of various stakeholders, numerous people do not have sufficient 

access to healthcare services. Though the reliability and timeliness of health information collected 

in the healthcare system play critical roles in realizing appropriate healthcare resource allocation, 

the quality of health information continues to be of concern. Because the health information 

system is a system-of-systems that transforms over time in response to the changing environment 

and needs of stakeholders, it is important to understand the conditions of transitioning it 

continuously to improve the data quality.  

This thesis aims to develop the continuous management cycle of the health information 

system through the iterative process of the mapping approach to estimate spatial heterogeneity of 

disease burden and its application for the modeling and analysis of the health information system 

for the purpose of better healthcare resource deployment while improving the quality of health 

information in the case of malaria issue in western Cambodia. The mapping approach with 

malaria spatial risk modeling is an effective tool and widely used for malaria containment actions, 

which was established through the long journey of effort by numerous contributors. However, as 

the disease burden of malaria decreases along the way malaria elimination effort progresses, this 

approach needs some adjustment in accordance with situational changes surrounding malaria 

epidemiology. The quality (accuracy) and reliability of data reported in the health information 

system continue to be of concern. The lack of quality health information is particularly alarming 

in situations with limited healthcare resources.    

First, we applied the mathematical modeling approach to develop the spatiotemporal risk 

distribution model of malaria adjusted for the low-to-moderate malaria transmission setting by 

considering environmental context disparities surrounding human communities using routinely 

collected surveillance data, remote sensing data, and publicly available data to create the risk 

maps in fine-scale of two provinces (Pailin and Preah Vihear) in western Cambodia. The model 

was fitted to estimate the standardized morbidity ratio of malaria at each area. Fine-scale maps 

were created by the inverse distance weighed method and ordinal kriging interpolation of 
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estimated risk. This approach was validated through comparing with the actual reported data from 

other sources. 

Next, we developed an approach for modeling and analyzing the health information 

system-of-systems to understand the transitional complexities originated from the changes in the 

architecture, the process, and the surrounding environment of the system. We proposed the 

engineering systems multiple-domain modeling approach to model and analyze the transforming 

health information system-of-systems in the case of Cambodian malaria surveillance system. By 

using the attributes of the architecture, the process, and the environment within the model, relative 

weights of constituent systems were scored at each interval of time. This approach was validated 

through the comparison with the results of agent-based modeling simulation.  

Finally, we demonstrated the transitions of the relative weights of constituent systems in the 

health information system-of-systems and its application for the adaptive resource allocation for a 

data quality intervention. By including the spatiotemporal dynamics of environmental attributes in 

the model along with the architectural and the process transformation, transitions of relative 

weights of constituent systems were scored at each interval of time. These score could be used to 

optimize the healthcare resource allocation continuously, whereas the considered architectural, 

process, and environmental changes could contribute to the sustained healthcare access by people. 
 

Key Word (6 words) 

System-of-systems; Health information system; Engineering systems; Spatiotemporal dynamics; Modeling; 

Complex systems. 
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1. INTRODUCTION 

 

1.1 Background 

1.1.1 Problems of the access to healthcare  

Despite substantial efforts by numerous stakeholders and advancements in health 

technologies, numerous people do not have sufficient access to healthcare services. 

According to the estimates by the World Health Organization (WHO), around 1.7 billion 

– approximately a third of the global population – did not have regular access to 

essential medicines and vaccines [1]. Furthermore, the situation has continued in the 

same range in recent years [2]. The issue of the access to healthcare services is a major 

problem and regarded as one of the prioritized global health agenda. In fact, the goal 

“Achieving universal health coverage, including financial risk protection, access to 

quality healthcare services, and access to safe, effective, quality, and affordable essential 

medicines and vaccines for all” has its place in the United Nation’s sustainable 

development goal [3]. One of the major obstacles among wide ranging causes of the 

healthcare access inequality is the cost. There are substantial gaps of healthcare 

expenditure between low and high-income countries [4]. However, the cost is rather a 

part of complex web of factors. Various challenges such as the limited capacity of 

public health system and difficulties in distributing, prescribing, delivering, and using 

products still abound and require solutions in many places. The issue of healthcare 

resource gap is typically relevant in a remote places where the geographical access 

cannot be retained all time. It is also important to understand that the access to 

healthcare resources, e.g., a drug, vaccine, diagnostic, or other health product, does not 

automatically mean the improved health, especially in poor countries. Too often, 

patients are obtaining poor quality drugs that may cost money but have no impact on 

their health status. In many parts of the developing world, medicines are provided in 

bits of paper to the patients, with no instructions and no information for appropriate use. 

This practice can deleteriously affect quality and use of the health products and 

eventually the health outcomes of the patients [2]. Many stakeholders have made 

substantial efforts in a number of studies and projects to address the issue of healthcare 

access inequality. As a case, the geographical information system (GIS) is an effective 

tool for healthcare resource management. The methodology of spatial epidemiology is 
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widely applied to understand the geospatial distributions of disease burdens and the 

level of health of people to reduce the risk of health [5]. In recent years, a number of 

technologies related to this research area, such as the people mobility analysis using 

mobile phone log [6], the application of remote sensing technology [7], big data 

analysis and simulation technologies to predict the effectiveness of interventions, have 

made significant progresses [8]. These technologies require the data and information 

collected in the healthcare system in any situations. Hence, reliable and timely health 

information plays critical roles for evidence-based decision-making of healthcare 

resource management. 

 

1.1.2 Engineering challenges of the health information system 

A health information system is the foundation that serves as a resource for such 

health information. Although the phrase “health information system” is not sufficiently 

clear, it was previously defined as “a set of components and procedures organized with 

the objective of generating information that will help improve healthcare-management 

decisions at all levels of the health system” [9]. A key component of health information 

system is public health serveillance, which helps in defining problems and providing 

timely basis of actions. While the quality and timeliness of health information are one of 

the topmost priorities, measuring health is conceptually and technically complex. 

Diverse stakeholders, not limited to the healthcare practitioners, are involved in the 

health information system at multiple levels. The requirements of these stakeholders 

may differ because of various factors, such as understanding of situations, positions, and 

viewpoints. Moreover, the requirements of the system may change over time in 

accordance with the change in the environment or new technological developments [10]. 

Hay et al. discussed such changes in the case of measuring malaria endemicity. When 

malaria becomes rare, along with the containment actions, detecting ongoing 

transmission becomes increasingly difficult using the commonly used parasite rate [11]. 

Hence, it is clear that the health information system needs to consider both the 

environmental and requirement changes continuously throughout its operational cycle. 

To maintain the quality data, various regular management actions, such as local quality 

control, up-to-date training, and frequent feedback to practitioners, are important [10]. 

Studies show that practical data-quality interventions improved the quality of data [12]. 

However, such corrective actions are often considerably expensive because of which 
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they cannot be incorporated uniformly in the system. As a health information system is 

a combination of independent and interdependent systems, it can be classified as a 

system of systems (SoS) [13], which is transforming over time. This SoS can be 

characterized by the properties of the complex dynamic system such as diverse 

stakeholders and components, non linear behaviors, and capable of exhibiting 

emergence [14]. Because of the rapid technological development and growing 

complexity of the health environment and stakeholder needs, it becomes increasingly 

important to understand the condition of complex health information SoS in an ongoing 

manner for effective system engineering. This issue is particularly important in the 

situation such as the limited healthcare resource management in the complex healthcare 

system since the system serves as the supply source of data, which is used for the 

resource planning. So far, several studies have shown the quality of health information 

system [15-19]. The results were quite variable depending on the types of the tool used 

to collect the data and by countries [20]. Particulary, the lack of quality health 

information is alarming in situations with limited healthcare resources, which is 

observed in some less-individualized countries.  

 

1.1.3 Malaria problems and emerging challenges toward elimination 

Malaria is a life-threatening disease caused by parasites that are transmitted to 

people through the bites of infected mosquitoes. For many years, malaria has remained 

an important global health threat that still results in hundreds of thousands of deaths 

every year [21]. Malaria is the 5th biggest cause of death in children except neonatal 

causes [22]. Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and 

Prasmodium malariae are the parasite species that can transmit to humans. Malaria 

damages the body through a number of pathways. Malaria causes the red blood cell 

distruction leading to anemia. The waves of parasites are bursting red blood cells, which 

can be a trigger for the classic cycles of fever and chills. The changes of adhesive 

properties of infected redblood cells can block the blood flow in the vessels causing 

tissue hypoxia. If this tissue hypoixia is happen in brain, it can cause cerebral malaria, 

which is often fatal. Once people get infected through the bites of vectors, infected 

Anopheles mosquitoes, they get acute febrile illness and several patients are in the 

severe condition such as hypoglycemia, anemia, respiratory distress and cerebral 

malaria, which can lead to the fatal conditions. Malaria also has chronic effects such as 



 4 

anemia, neurologic cognitive and developmental disfunction which lead to the impaired 

growth and development causes malnutrition as well as infant mortality and impaired 

productivity. However, the disease burden of malaria has significantly decreased in a 

number of malaria-endemic countries, due to substantial efforts made by many 

stakeholders. Now, decades after the global malaria eradication program, malaria 

elimination has begun to feature again on the global health agenda [23]. In recent years, 

an increasing number of countries such as Cambodia with low-to-moderate transmission 

areas have implemented actions to eliminate malaria from their entire territories [24]. In 

Cambodia, the target is to be malaria free by 2025 [25]. Recent activities have decreased 

the incidence of malaria in Cambodia to less than half the incidence in the years from 

2000 to 2004 [26]. Approximately half the Cambodian population are living in 

malaria-free or in a low-transmission area [27]. However, a number of issues remain 

and new challenges are emerging in the effort to eliminate malaria. The emergence of 

artemisinin resistance, which has been reported mostly in the Greater-Mekong 

subregions, is one of the new challenges [28]. Artemisinin is a potent and rapidly acting 

blood schizonticide that is effective for all plasmodium species [29]. No alternative 

effective antimalarial treatment is available at present; therefore, the consequence could 

be dire if resistance spreads to wide geographical regions [30]. A number of reports 

have emerged of delayed parasite clearance in parasites in western Cambodia taking 

artemisinin [31-34]. In areas along the Cambodia–Thailand border, P. falciparum has 

become resistant and multi-drug resistance is a current major concern [31]. Usually in 

such areas, mobility of people is high, which contains the potential dangers of spreading 

the multi-drug resistance to larger geographical areas. One recent report showed that the 

artemisinin-resistant malaria parasite had the potential to infect vectors in other 

geographical regions [35]. The reported treatment failures in western Cambodia varied 

depending on the conditions [32, 36-38]; however, all the reports strongly emphasized 

the urgent need to address this issue. Appropriate medication is undoubtedly important 

and in areas such as those close to western Cambodia border, this approach occasionally 

needs intensive care and monitoring of patients. Several issues were reported in 

antimalarial drug use such as spreading availability of the artemisinin monotherapy, 

poor quality counterfeit medicines and unregulated antimalarial use [32, 39]. An 

important driver is said to be the use of oral artemisinins alone as monotherapy [30]. 

Along with the progresses of malaria containment activities, it becomes increasingly 
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important to protect immunologically susceptible populations from serious 

consequences resulting from the reintroduction of malaria through residual foci. 

Migrations of asymptomatic patients have made it difficult to detect remaining 

transmission risk factors, and to protect people in malaria-free areas from the 

reintroduction of malaria [40]. To attain the desired outcomes, several studies such as 

those focused on screening and treatment [41], community-based surveillance [42], and 

mass drug administration [43] have been piloted. What is common to these 

interventions was the recognition that intensive support and engagement of local 

practitioners were critical in obtaining the desired outcomes. In addition, it is commonly 

observed that securing the same degree of investment for malaria containment as that 

obtained during the highly endemic period becomes more difficult along with the 

decline in malaria endemicity. Healthcare resources cannot be used inexhaustibly; 

therefore, identification of the target hotspots in malaria endemic areas, delivery of 

sufficient stockpiles of resources, and intimate support for local healthcare providers are 

essential, especially in remote endemic regions where accessibility cannot be retained 

over whole year.  

 

1.1.4 Data quality issues in malaria surveillance 

While the surveillance system is the foundation that serves as the data supply 

source for healthcare resource management, it has been reported that the quality 

(accuracy) and reliability of the data collected at health facilities continues to be of 

concern. One of the possible reasons for this data discrepancy is an inflation of reported 

data at the facility level to show the attainment of local targets. Similarly, inflated data 

on the facility report were found to occur, largely at health facilities with fewer financial 

resources and supervisory visits [44-46]. Moreover, previous studies of intensive 

focused screening have shown that many malaria cases were asymptomatic, which made 

it difficult to identify malaria cases effectively using conventional passive surveillance 

systems [11, 47]. Given that the health facilities are playing important roles in 

surveillance data collection, identification of malaria hotspots and the provision of 

appropriate supports to health facilities are important for maintaining the quality of 

surveillance data.  
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Figure 1 Example of malaria case reporting form 

 

Figure 1 shows the example of the malaria case reporting form at a health center 

observed during the field study in a rural area of Kampong Chhnang province in 

Cambodia. At the time of the field study in February 2015, malaria cases were reported 

in the paper-based form without quality control measures such as the logical data 

quality check typically devised in the web-based case reporting system. The interview 

results with the director of health center indicate the resource inequality between health 

center staff and village malaria workers (Table 1). This case illustrates the challenges of 

reliable data collection in the health information system. If we can measure the risk and 

present it on the map, for areas not covered by current healthcare system sufficiently, 

the required amount of healthcare resource delivery and staff deployment can be 

facilitated. As healthcare resources cannot be used inexhaustibly, identification of the 

target hotspot of malaria endemic area, delivery of the sufficient stockpile of resources 

and intimate support for field healthcare providers are essential. However, regardless of 

these solutions, the quality (accuracy) and reliability of data reported in the health 

information system, i.e., the data source to develop GIS, is continued to be of concern. 
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Table 1 Questions and responses at the interview with the local health center staff 

 

No Questions Responses 

1 How many patients have come to this center?  

(Today/ This week/ This month) 
50 / 350 / 1,500 

2 What kind of disease do patients have most? Fever and Gastroenteritis  

3 How about malaria patients, how much is the 

proportion? 
Not a serious issue 

4 Can you spare enough time for each patient? Yes 

5 Once patients are treated at this hospital do they come 

back here to check to ensure they are fully recovered? 
Yes  

6 For how long do you prescribe antimalarials – is it 3 

Day, 6 Day, or 1 week? 
3 days 

7 Are health resources and staffs enough to cover all the 

patients? 
Yes 

8 What kind of information do you need to provide 

enough care? 
Medical consultation 

9 Are you regularly cooperating with village malaria 

worker? 
Yes 

10 Do they have enough knowledge, experience and skills 

for treating patients appropriately? 
Not enough 

11 What is the issue in cooperating with village malaria 

worker? 
Need more training and budget 

12 How many patients are going to private health care 

facilities such as private pharmacy or clinics? 
Almost 50% 

13 Do you need more budget for providing quality care for 

patients? 
Yes 

14 
Do you think patients will adhere to the treatment more 

and keep taking medications up to prescribed terms if 

they are followed up more intimately? 
Yes 

15 Do you have any other things to worry about? 

I worry about some people move 

their home to other living and 

education is low. 

 

This issue is particularly important in the situation such as the limited healthcare 

resource management in the complex healthcare system since the system serves as the 

supply source of data, which is used for the resource planning. Furthermore, Cambodian 

malaria surveillance system was reformed its architecture and process to fulfill the 

changing stakeholders’ requirements and transitioning environmental conditions, which 

makes it difficult to capture the overall conditions of the system. Corrective actions such 

as data quality intervention are often considerably expensive because of which they 

cannot be incorporated uniformly in the system. Hence, it becomes increasingly 
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important to understand the condition of complex health information SoS in an ongoing 

manner. The strengthening of surveillance by improving the quality of data in the health 

information system, together with improving the treatment of infection, leads to a more 

sustainable effort to eliminate malaria. 

 

1.2 Research objective 

This thesis aims to develop the continuous management cycle of health information 

system through the iterative process of the mapping approach to estimate the spatial 

heterogeneity of disease burdens and its application for the modeling and analysis of the 

health information system for the purpose of better healthcare resource deployment 

while improving the quality of health information in the case of the malaria issue in 

western Cambodia. A schematic figure of the proposed system is shown in figure 2. The 

mapping approach with malaria spatial risk distribution modeling is an effective tool 

and widely used for malaria containment actions, which was established through the 

long journey of effort by many contributors. However, as the disease burden of malaria 

decreases along the way malaria elimination effort progresses, this approach needs some 

adjustment in accordance with the situational changes in the malaria epidemiology. The 

quality (accuracy) and reliability of data reported in the health information system 

continue to be of concern. The lack of quality health information is particularly 

alarming in situations with limited healthcare resources. The health information system 

is transforming over time while considering both the environmental and requirement 

changes continuously throughout its operational cycle. Hence, it is clearly important to 

understand the condition of complex health information SoS in an ongoing manner for 

effective healthcare resource management. 

 

The specific objectives of this study were as follows:  

(1) To develop the spatiotemporal malaria risk model of malaria adjusted for the 

low-to-moderate malaria transmission settings, considering environmental context 

disparities surrounding human communities using routine surveillance data in the 

health information system, remote sensing data, and publicly available data. 

(2) To develop an approach for modeling and analyzing health information SoS to 

understand the transitional complexities originated from the changes in the 
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architecture, the process, and the surrounding environment for effective system 

management. 

(3) To demonstrate the transitions of the relative weights of the constituent systems in 

the health information SoS and its applicaiton for the adaptive resource allocation 

for data quality interventions.  

 

 

 

Figure 2 Schematic figure of proposed system 

 

 

1.3 Contributions of this work 

My original contributions are; (1) the demonstration of the mathematical modeling 

approach of spatial risk distribution of malaria adjusted for the low-to-moderate 

transmission setting from routinely aggregated surveillance reports considering the 

environmental context disparities surrounding human communities with low operating 

cost, (2) the development of the practical approach for the modeling and the analysis for 

continuous management of the transforming health information SoS, and (3) the 

demonstration of the transitional complexities of the health information SoS by scoring 

relative weights of constituent systems and its application for adaptive optimization of 

the health resource deployment for data quality interventions in the system. 

Figure 3 presents the typical program phase of malaria elimination. The 
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low-to-moderate transmission setting is the situation where the many of the countries 

aiming for malaria elimination will soon be facing and thus an important step toward 

the goal. At this stage, the program reorientation is needed for moving the program 

effort forward. The approach and implications described here will provide the method 

for more efficient resource allocation applicable not only in operating phase but also in 

design phase with low operating cost for countries under such situations. 

This study covers not only the spatial risk distribution modeling of malaria but also 

its application in the health information management. The quality of data collected 

through the routine health information system continues to be of concern. Hence, there 

is a clear need for the practical approach for the effective health information SoS 

management. To the best knowledge of the author, this is the first study to provide the 

practical solution for addressing such questions by taking changes in the architectural, 

the process, and the environmental aspects of the SoS simultaneously and continuously 

in the sustainable cycle of the system. This study may also provide the useful insight for 

the future research and potential expansion to the health information SoS engineering in 

the other domains.  

 

 

 

 

 

 

 

 

 

Figure 3 Program phase in the malaria elimination program (created from [48]) 

 

 

 

 

Control Pre-elimination Elimination 
Prevention of 

reintroduction 

1st program reorientation 2nd program reorientation 
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1.4 Chapter organization 

Figure 4 shows the outline of this thesis that consists of following chapter 

organizations: 

 

Chapter 2 reviews previous works in related areas that include (i) Studies for 

improving the access to healthcare services, (ii) Mapping approaches of malaria disease 

burdens with spatial risk distribution modeling, and (iii) Studies of quality improvement 

and management of health related data in the health information system. Furthermore, 

the author explains the limitations of the current approaches and clarifies the 

requirement to address these issues.   

Chapter 3 presents the development and evaluation of the spatiotemporal malaria risk 

model using the hierarchical Bayesian modeling frame corresponding to the 

environmental context disparities. The author presents the fine-scale mapping with the 

model developed. This approach was evaluated through the comparison with previously 

reported maps and geocoded data.  

Chapter 4 presents the demonstrations of the modeling and analysis approach, 

engineering systems multiple-domain modeling approach, of transforming health 

information SoS in the case of Cambodian malaria surveillance system. Author 

proposes a method to calculate the relative weights of constituent systems to understand 

transitional complexities of the health information SoS. This approach was validated 

through the computational simulation and the author discusses further insights obtained 

from the results.  

Chapter 5 consolidates the results presented in chapter 3 and 4. The author integrates 

the method explained in the previous chapters to build a continuous cycle of system and 

presents the transitional complexity of the health information SoS using the output 

scores of the system. The author also demonstrates the adaptive resource allocation of 

healthcare resources as a case of application. 

Chapter 6 discusses the results and findings of this study. Author provides the insights 

obtained throughout the development and evaluation processes of the proposed system 

for future work and extensive applications of the proposed system.  

Chapter 7 concludes this thesis. This chapter summarizes contributions of this study 

and describes the future study directions. 
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2. RELATED WORKS AND EXISTING ISSUES 

 

2.1 Studies for the improvement of the access to healthcare services 

Since the healthcare access issue is one of the important global health agenda, 

many attempts to improve the access have been made in this area. However, only few of 

these efforts have been systematically and comprehensively documented and analyzed. 

Aday and Andersen, for example, developed a framework to study access to medical 

care in the United States in the 1970s [49]. In their framework, the role of health 

systems and population factors were addressed in shaping access to healthcare. A group 

at the London School of Hygiene and Tropical Medicine conducted another study of 

healthcare access and published a series of paper on “expanding access to priority health 

interventions” as the basis for analyzing the constraints to scaling up of healthcare 

technologies [50]. Frost and Reich conducted a study to develop a comprehensive 

analytical framework for access by examining six case studies [2]. They explicitly 

focused on health technologies by taking the six cases of specific health technologies 

and followed the flow of technologies through different phases of access (Figure 5) 

while incorporating global factors to develop the analytical framework. Figure 6 shows 

the access framework proposed by the research team. This analytical framework 

includes many processes involved in access to health technologies and is based on four 

A’s: architecture, the organizational structure and relationships for access; availability, 

which emphasizes the supply components of access; affordability, the cost issues for 

various payers; and adoption, which includes demand factors and acceptance. Each case 

study chosen for this study was summarized into this framework.  

 

 

 

Figure 5 The access phases of healthcare (created from [2]) 
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  Figure 6 The access framework (created from [2]) 

 

Through the case studies, the complexity of creating access for health technologies 

in developing countries was demonstrated. Problems to access occur at many points 

along the pathway to the end-user. They synthesized the insights from the analysis of 

case studies into following 6 findings: 1, Developing a safe and efficacious technology 

is necessary but not sufficient for ensuring technology access and health improvement. 

Products do not fly off the shelf on their own; 2, Creating access depends on effective 

product advocacy. The case studies showed that product advocacy has three important 

components: a product champion, a coordinating architecture, and an access plan with 

strategies; 3, Access requires the creation and shaping of product adoption by four key 

groups: global experts, national policy maker, providers, and end-users; 4, The cost of 

health technology are needed to help expand access must address affordability; 5, 

Supply-side strategies that assure the availability of a technology are needed to help 

expand access for health technologies in developing countries; 6, Limited health 

infrastructure in many developing countries impedes technology access. Efforts to scale 
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up access to technologies need to invest in health system strengthening to ensure 

sustained access. However, the case study chosen for their study did not examine the 

final access phase, where the individual countries seek to sustain the use of a technology 

for long-term prevention, control, or eradication of related disease. The aim in this 

thesis is to fulfill this space by addressing the issue of sustaining availability of 

healthcare services through the continuous cycle of improving healthcare resource 

deployment and health information system strengthening. 

 

2.2 Mapping approaches of malaria disease burdens with spatial risk 

distribution modeling 

Recent efforts to quantify the risk burden and the creation of spatial prediction map 

of malaria risk made substantial contributions toward identifying target hotspots [51-52]. 

Figure 7 shows the framework for geospatial science applied to malaria elimination [52]. 

Various kinds of data can be used such as the intervention coverage and infrastructure 

and target residences in view of operations. Also the remote sensing data, 

meteorological data from environmental side as well as malaria surveillance, survey and 

entomogical data can be used for the malaria quantifications. By integrating these data, 

GIS can be developed and the spatial statistical analysis can be conducted so that these 

data can be used for malaria containment activities as outputs. By predicting areas at 

risk and examining the effectiveness of interventions from estimated risk at the target 

hotspots, further steps closer to the efficient resource allocation can be attained. In this 

context, a world map of P. falciparum malaria endemicity was published using parasite 

rate (PR) surveillance report and the model-based geostatistical approach (Figure 8) 

[53-54]. These procedures were implemented within a Bayesian statistical framework to 

represent the uncertainty in the unknown map while retaining robustness of these 

predictions [55]. These mapping products and methodologies for spatial risk distribution 

modeling are provided by Malaria Atlas Project, which is aiming to disseminate free, 

accurate and up-to-date information on malaria. The team in the university of Oxford is 

receiving designation as a WHO Collaborating Centre in geospatial disease modeling. 
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Figure 7 Framework of geospatial science applied to disease mapping (created from [52]) 

 

        

 

Figure 8 Spatial distribution map of P. falciparum in Cambodia (created from [53]) 

 

Remote sensing technologies are the powerful tools that can be used to identify 

hotspots and to investigate malaria epidemiology [7]. Several environment-related 

indices calculated from remote sensing data, such as normalized difference vegetation 

index (NDVI), normalized difference water index (NDWI) and topological wetness 

index (TWI) have been used to predict regional malaria endemicity [56-59]. Climate 

also is closely related to the risk of malaria [60-61]. Cohen et al. created fine-scale risk 
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maps of both high endemic and low endemic seasons from routine collected individual 

case data combined with environmental indices calculated from remote sensing data 

[62]. Other variables, such as the distance from health facilities, socioeconomic status 

and/or status of containment interventions (for example, insecticide-treated net 

distribution and indoor spraying of residual insecticide) have been incorporated into risk 

models to predict regional malaria endemicity [62-63]. It is important to take human 

interactions with environment into the model when describing the risk as malaria is 

transmitted through the interaction with vectors lurking in the surrounding environment. 

In fact, several behavioral factors and human reactivity to this disease are incorporated 

in the mathematical model for the prediction of malaria transmission [64-66]. Ellis et al. 

proposed the concept of anthropogenic of the world (Figure 9) [67]. This concept is, in 

short, the conceptual thinking of “putting people in the map”, meaning environmental 

factor together with anthropogenic factor such as population density may explain how 

the people use or interact with surrounding environment, which is expected to relate to 

the geographically observed phenomenon. It is also important to consider the influence 

of the human mobility for the malaria transmissions. Using spatially explicit mobile 

phone data and malaria prevalence information, Wesolowski et al. projected the source 

and sink of malaria parasites in Kenya. By that, they could identify the dynamics of 

human carriers that may drive parasite importation between regions [6].  

 

Figure 9 Anthropogenic biome visualized in the Google Earth© (created from [67]) 



 18 

2.3 Limitations of existing malaria mapping and measurement approach 

Despite these advancements, the decrease in the prevalence of malaria causes 

several situational changes, which indicates that the risk mapping approach needs to be 

adjusted. Details of the hypothetical approaches to address these issues are discussed in 

the next chapter.  

 

2.3.1 Measurement of the malaria risk 

In terms of the measurement of malaria disease burden when malaria becomes rare, 

it becomes increasingly difficult to detect ongoing transmission monitoring by PR [11]. 

Since, these situations are the important steps toward malaria elimination, there is an 

important need for examining the modeling method of disease burden under low to 

moderate transmission settings. Annual Parasite Incidence (API) can be a reliable 

measure for reporting new malaria infections under these settings supported by good 

reporting systems [68]. However, intensive focused screening method indicated that, in 

low-transmission settings, not a few malaria cases are asymptomatic, which makes it 

difficult to identify all the cases by passive surveillance systems [41, 47]. 

 

2.3.2 Accessibility for fine-scale data 

Under low transmission settings where few infectious cases reported, the sample 

size required to estimate and spatially predict infection prevalence become very large, 

and such information usually cannot be obtained on a fine-scale. Instead, cross-scale 

predictions using the data collected on a coarser scale can be performed using the 

Bayesian modeling framework [63].  

 

2.3.3 Assessment of the effectiveness of combinations of interventional measures 

At present, there are a few examples of investigations for the benefits of combining 

different vector control measures, but further studies are needed about the assessment of 

the effectiveness of using these combined approaches. This issue has become 

increasingly important, as “One-size fits all” approach is no longer applicable to the 

areas under the low-to-moderate transmission settings. Under the ever-changing local 

endemic conditions, all interventions need to be reviewed carefully and tailored for 

regional circumstances in an ongoing way to ensure that they remain fully effective. The 

progresses of malaria containment actions are expected to affect these conditions. 



 19 

2.4 Studies of quality improvement and management of health related 

data in the health information system 

The lack of quality health information is particularly alarming in situations with 

limited healthcare resources, which is observed in some less-industrialized countries. So 

far, several studies have demonstrated measures to improve the quality of health 

information in the health information systems. Design improvements in data-collection 

tools, such as the ones in the user interface of data-entry systems, were proven effective 

in enhancing user efficiency and reducing the data-entry errors [69-70]. In addition, 

several studies have addressed the data cleaning of collected data in database literature 

works [71]. The survey design is extensively discussed. A good form design is a 

cornerstone for obtaining high-quality data [72]. Various measures have been taken to 

not only improve the surveillance tools, but also address process and operational 

improvements such as introducing the double-data entry [73], field worker training, and 

periodical site monitoring [74]. However, some of these individual measures are 

sometimes considerably expensive to be incorporated uniformly in the system; as such, 

it is necessary to analyze the aspects of the system as a whole and identify appropriate 

points of intervention. The health metrics network provided frameworks and standards 

for an integrated approach to enhance the capability of strengthening the health 

information system [10]. The technical demands are guided into the continuous system 

management to cope with the changing environment. The mathematical programming 

approach to support healthcare resource allocations of the healthcare SoS was 

previously studied [75].  

 

2.5 Limitations in current approaches for the health information systems 

In spite of substantial efforts and advancements in the previous studies, the 

practical method for addressing the system transformation and its effect on the system 

management is required given that the SoS itself transforms over time. The application 

of graph theory for SoS engineering has been extensively discussed in recent years [76]. 

The knowledge and approaches generated from this attempt can help explore ideas on 

optimizing SoS and calculating their complexity. Therefore, this study examines an 

approach to model and analyze the transforming health information SoS using the 

process, architecture, and the risk associated with the environment. 
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2.6 Summary of literature review and requirement for the system 

As explained in the previous sections in this chapter, several limitations exist in the 

previous studies that need to be addressed to realize the proposed system. In other 

words, they can be translated into the requirements of the system listed in below.  

i. The system shall sustain its operation in the context of low-to-moderate 

malaria transmission setting. 

ii. The system shall be cost-effective with reasonable operational cost by taking 

full advantage of existing resources. 

iii. The system shall take dynamic situation and its transformation and provide 

necessary information on a timely manner. 

First, the final access phase has not yet been extensively discussed in the previous 

study, where the individual countries seek to sustain the use of a technology for 

long-term prevention, control, or eradication of related disease. The aim of this study is 

to develop the continuous management cycle of improving healthcare resource 

deployment and health information system strengthening. Hence, this access phase is an 

important area of application. In this particular access phase, the contexts of the system 

need to be fully taken into account to make sustainable. They could vary and be 

depending on the system of interest. In the case of Cambodian malaria surveillance 

system, the decrease in the prevalence of malaria causes several situational changes 

such as the measurement of malaria and sustaining the access to fine-scale data, which 

indicates that the risk mapping approach needs to be adjusted. Furthermore, it is 

commonly observed that securing the same degree of investment for malaria 

containment as that obtained during the highly endemic period becomes more difficult. 

Hence, the system should be cost-effective with reasonable operational cost. Under the 

low-to-moderate malaria transmission setting, the situation may dynamically change in 

accordance with various factors such as the progress of containment interventions and 

environmental changes. The health information system is also reformed by such 

changes and requirement of stakeholders. Therefore, the system needs to take these 

situational changes and provide necessary information on a timely manner. In spite of 

substantial efforts and advancements in the previous studies, the practical method for 

addressing the system transformation and its effect on the system management has not 

been extensively discussed particularly in the area of system-of-systems engineering.  
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3. DISEASE RISK MAPPING CONSIDERING 

ENVIRONMENTAL CONTEXT DISPARITIES 

USING ROUTINE SURVEILLANCE DATA 

In this chapter, we demonstrate the development and evaluation of the 

spatiotemporal malaria risk model corresponding to the environmental context 

disparities. Subsequently, fine-scale maps using the spatiotemporal malaria risk model 

were created. While risk distribution modeling and a mapping approach are effective 

tools to assist with the efficient allocation of limited healthcare resources, these methods 

need some adjustment and reexamination in accordance with changes occurring in 

relation to malaria elimination activities. Limited available data, fine-scale data 

inaccessibility (for example, household or individual case data), and the lack of reliable 

data due to inefficiencies within the routine surveillance system, make it difficult to 

create reliable risk maps for decision-makers or healthcare practitioners in the field. 

Furthermore, the risk of malaria may dynamically change due to various factors such as 

the progress of containment interventions and environmental changes. To make the 

continuous cycle of disease mapping in the system, this complex and dynamic nature of 

situations needs to be addressed. 

 

3.1 Hypothetical questions and proposed approach 

Based on the current situations and findings from previous studies we propose 

following hypothetical questions:  

(1) Can we use standardized morbidity ratio (SMR) calculated by API in the spatial risk 

prediction model as an appropriate measure of disease burdens? 

(2) Can we predict the fine-scale risk better if human interactions with surrounding 

environment, i.e. environmental context, are considered? 

(3) Can we present the expected outcome of interventional measures by incorporating 

containment status indicators into the risk prediction model? 

Here, we applied a mathematical modeling approach for SMR calculated by API 

using routinely aggregated surveillance reports and variables related to human 

interactions to surrounding environment to create spatial risk distribution maps in 

fine-scale of two provinces (Pailin and Preah Vihear) in western Cambodia where the 
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artemisinin resistance was previously reported. In addition, we incorporated the 

combinations of containment status indicators into the model, by which the regional 

heterogeneities of the relationship between containment status and risk can be visually 

represented for the efficient healthcare resource allocations and intervention planning 

considering temporal descriptions of regional malaria endemicity. To address the 

complex and dynamic nature of situations in low-to-moderate malaria transmission 

settings, the model was expanded to consider spatial and temporal changes. We build a 

spatiotemporal model of SMR of malaria incidence by employing the hierarchical 

Bayesian frame to fit the transitioning malaria risk data onto the map. The model was 

set to estimate the SMRs of every study location at specific time intervals within its 

uncertainty range. Based on the spatiotemporal risk model developed here, we also 

estimated and visually presented the priorities of constituent bodies involved in the 

routine surveillance network, that is, the relative weights of network priorities for 

relevant constituents, using graph theory analysis. The aim of this analysis is to help 

understand the transitional complexities existing in the system, in support of better 

informed decision-making for more efficient resource allocation and intervention 

planning, through the consideration of spatiotemporal description of regional 

endemicity.  

 

  

Figure 10 Map of the research area 

Open Street Map© was used to create this map 
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3.2 The environmental context disparities 

Human interactions with surrounding environment are the important factors 

affecting the risk especially for communicable diseases transmitted through infectious 

vectors. Figure 11 shows an applied case of the epidemiologic triad of disease causation 

[77] for the malaria case. This triad consists of an external agent (Malaria), a host 

(Human) and an environment in which host and agent are brought together, causing 

disease. Vector plays as the transmission carrier of malaria parasite that does not present 

malaria symptoms.  

 

 

 

 

 

 

 

Figure 11 An applied case of the epidemiologic triad of disease causation of malaria 

 

Based on this concept, the environmental context surrounding human communities, 

i.e. how the environmental features exist and interact with people, is an important factor 

affecting the risk of this infectious disease. Thus, disparities in environmental context 

among communities could explain the extent of disease burden across areas. In this 

study, we defined this concept as “The environmental context disparities” as a key 

factor for the development of malaria risk model.    

 

 

 

 

 

 

 

 

 

Figure 12 Concept figure of environmental context 
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3.3 Materials and methods 

3.3.1 Malaria data collection 

Malaria data were collected from Cambodia malaria bulletin report from 2010 to 

2013 [78-79]. This dataset was build from case reports collected through the effort of 

the Malaria Information System (MS) and the national facility-based Health 

Information System (HIS) using a common coding system [80]. It contains API (per 

1000 people) in each health operational district (HOD) for two malaria species, 

P.falciparum and P.vivax, reported by healthcare facilities or village malaria workers. 

The SMR, standardized mortality or morbidity ratio, is expressed as a ratio or 

percentage of quantifications compared with the general population of interest 

(equations 1, 2) [81]. 

 

𝑆𝑀𝑅 =  𝜃 𝑖 = 
𝜊𝑖

ℯ𝑖
     (1) 

 

 ℯ𝑖 = ∑𝑛𝑖𝑘
𝑘

𝑃𝑘               (2) 

 

where, 𝑜𝑖  is the observed number of cases in i area, ℯ𝑖  is the expected number of cases 

in i area, nik is the population in k age group in i area, and Pk is the incidence of clinical 

cases in k age group in the reference population. ei was estimated by multiplying the 

population and reported incidence and aggregating them for each age group in 10 

provinces in western Cambodian [82]. Since, the API was reported incidence per 1,000 

people, SMR, 𝜃 𝑖 in i district, was calculated by dividing API by ℯ𝑖  per 1,000 people. 

Assuming small observed case numbers and relatively large dispersions under the 

low-to-moderate transmission settings, the observed case count data 𝑜𝑖 can be assumed 

to follow the negative binomial distribution, 𝑜𝑖  | 𝜇𝑖, where 𝜇𝑖 is the corresponding 

distribution mean and 𝜌 is the scale parameter (equation 3). Then, by transforming 

equation 1, 𝜇𝑖 can be derived by multiplying ℯ𝑖  and the relative malaria risk, 𝜃 𝑖 

(equation 4) [83]. Hence, SMR can be used for estimating the case number of target 

area, which is also useful for informed decision-making of healthcare resource 

allocation. 
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𝑜𝑖  | 𝜇𝑖 ~ NegBin (𝜇𝑖 , 𝜌)              (3) 

 

 𝜇𝑖 = ℯ𝑖 𝜃 𝑖                (4) 

 

Considering the small numbers of observed cases compared with population size 

under the low-to-moderate malaria transmission setting and thereby raising a concern 

for the modifiable areal unit problem in geographical analysis [84-85], the SMR for 

each HOD was smoothed using the empirical Bayesian method (EBSMR) [86] to adjust 

the influence of different population size in area units. EBSMR was calculated by 

equation 5-7, given that 𝜃 𝑖 follows gamma distribution (equation 8) and observed 𝑜𝑖 

under 𝜃𝑖 follows Poisson distribution (equation 9). 

 

𝐸𝐵𝑆𝑀𝑅 = 𝜃 𝑖 =  𝑒[𝜃𝑖|𝑜𝑖 , 𝑒𝑖] =
𝑜𝑖 + 𝜐

𝑒𝑖 + 𝛼
     (5) 

 

𝜐̂

𝛼̂
 =  

1

𝑛
∑𝜃 𝑖

𝑛

𝑖=1

                                                 (6) 

 

𝜐̂

𝛼̂2
 =  

1

𝑛 + 1
∑(1 +

𝛼̂

𝑒𝑖
) (𝜃 𝑖 − 

𝜐

𝛼̂
)

𝑛

𝑖=1

2

      (7) 

 

𝜃𝑖~ 𝐺𝑎(𝜐, 𝛼)                                                   (8) 

 

𝑜𝑖|𝜃𝑖~ 𝑃𝑜(𝜃𝑖, 𝑒𝑖)                                            (9) 

 

3.3.2 Environmental and non-environmental anthropogenic covariates 

The covariates that were incorporated into the modeling framework are described in 

Table 2. The NDVI, the NDWI, and the land surface water index (LSWI) were 

calculated from Terra-MODIS 8-day composite data (http://LPDAAC.usgs.gov) from 

2010 to 2013. Because EBSMR was represented as yearly average, these environmental 

variables were averaged to the mean values for each year. NDVI, an index correlating 

with the extent of vegetation and used for forest monitoring was calculated using the 



 26 

reflectivity of red in visible range (𝑅) and near infrared radiation range (𝐼𝑅) collected 

by satellite sensor (equation 10). For the MODIS satellite, 𝐼𝑅 corresponds to band 2 

and 𝑅 corresponds to band 1 (equation 11). 

 

𝑁𝐷𝑉𝐼 =  
𝐼𝑅 − 𝑅

𝐼𝑅 + 𝑅
                                    (10) 

 

𝑁𝐷𝑉𝐼 =  
(𝐵𝑎𝑛𝑑2) − (𝐵𝑎𝑛𝑑1)

(𝐵𝑎𝑛𝑑2) + (𝐵𝑎𝑛𝑑1)
          (11) 

 

In the same manner, NDWI and LSWI, indices of water, can be calculated by 

combinations of the reflectivity of different wave lengths (equations 12, 13). 

 

𝑁𝐷𝑊𝐼 =  
(𝐵𝑎𝑛𝑑2) − (𝐵𝑎𝑛𝑑5)

(𝐵𝑎𝑛𝑑2) + (𝐵𝑎𝑛𝑑5)
                 (12) 

 

𝐿𝑆𝑊𝐼 =  
(𝐵𝑎𝑛𝑑2) − (𝐵𝑎𝑛𝑑6)

(𝐵𝑎𝑛𝑑2) + (𝐵𝑎𝑛𝑑6)
                  (13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Example of NDVI calculation using MODIS satellite data 

Note: NDVI values were multiplied by 104. 

 

NDVI (x 104) 
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The digital elevation model at 30-m resolution was extracted from ASTER GDEM 

database (http://gdem.ersdac.jspacesystems.or.jp) [87] and used to estimate the altitude. 

The TWI was calculated using this altitude model and estimated by the method 

described in previously [88]. Considering interactions between surrounding 

environment and people in the malaria transmission process, we extracted data from 

multiple surrounding circular buffers with different radius distances (i.e., for each 1km 

from 1-5 km) from villages. Distance and surrounding circular buffers were generated 

by the Quantum GIS software. Environmental covariates extracted from each village 

were aggregated to the district level to reflect the overall condition of target district. As 

the number of villages directly relates to the aggregated value, they were taken averages 

by the number of villages in each HODs. These data, which could potentially indicate 

the human interactions with the surrounding environment, were compared by 

calculating the correlation and coefficient of determination for the models. Because 

temperature can influence the ecology of mosquito breeding habitats, and therefore 

malaria transmission [60], we collected the Plasmodium temperature suitability index 

(PfTSI) [89] from Malaria Atlas Project database [90]. Rapid urbanization is related to 

changes in the risk patterns of malaria transmission compared with rural sparsely 

populated areas [91-92] and the susceptibility of these two different populations can be 

influenced by the types of implementations of containment actions that are implemented. 

Population density per km2 was calculated as a variable reflecting the extent of 

urbanization, using records in the Cambodian Malaria Bulleting divided into the areas 

of each HOD. Furthermore, we used the reported proportion of sufficient ownership of 

long lasting insecticide-treated nets (LLIN) [82] and treatment failure rate of artemisinin 

(TFrate) [38] as containment status indicators. LLINsuf is defined as the proportion of 

households in which distributed mosquito net covers no more than two persons per net. 

Because no geographical localities could be obtained for these indicators, they were 

aggregated to the provincial level and incorporated in the model development.  
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Table 2 Variables used to build the modeling framework to estimate EBSMR 

Category Variable Data source Data collection 

Vegetation NDVI Terra-MODIS 8-day  

composite data  

2010-2013  

Extracted mean value 

from 1, 2, 3, 4, 5 km 

surrounding circular 

buffer from each 

populated village  
Water NDWI Ditto Ditto 

 LSWI Ditto Ditto 

Geography TWI Digital elevation model 

at 30 m resolution from  

ASTER GDEM 

database  

[87] 

Ditto 

Temperature P. falciparum 

Temperature suitability 

index (PfTSI) 

Malaria Atlas Project  

database [90] 

Averaged to mean value 

for each HOD 

Population Population density 

(/km2) 

Cambodia malaria  

bulletin report 

2010-2013 [78-79] 

Population record 

divided by total areas of 

each HOD 

Vector control Sufficient ownership of  

LLIN a 

Cambodia malaria 

survey 2010 [82] 

Used the values 

reported at each 

provincial level 

Treatment Treatment failure rate by 

artemisinin combination  

Therapy b  

National Center for  

Parasitology, 

Entomology and 

Malaria Control [38] 

Ditto 

a Proportion of household in which distributed mosquito net covers 2 persons or less per net. 

b Test positive for P. falciparum on day 28 or day 42 

EBSMR, Standardized morbidity ratio estimated by empirical Bayesian method; NDVI, 

Normalized difference vegetation index; NDWI, Normalized difference water index; LSWI, 

Land surface water index; LLIN, Long lasting insecticide-treated net; Topographical wetness 

index; HOD, Health operational district 

 

3.3.3 Spatial risk distribution modeling 

The relationship between EBSMR (𝜃) and spatial covariates was modeled using a 

generalized linear regression model as a function of the N predictive variables (𝛸, 𝑍), 

given that the logarithmic 𝜃 follows the Gaussian distribution. 

 

𝜃  =  𝑒𝜆                      (14) 

 

𝜆 =  𝛼 + ∑𝛽𝑁𝛸𝑁
𝑁

+∑𝛾𝑁𝑍𝑁
𝑁

+  𝜀    (15) 
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where α is the model intercept, β is the parameter associated with environmental 

covariates X and γ with non-environmental anthropogenic covariates Z. The maximum 

likelihood of observed data provided to the model and the input predictors were 

calculated based on this modeling frame (equation 14 and 15). Data modeling was 

conducted on the district level scale. For the model fitting, either maximum likelihood 

or Markov Chain Monte Carlo (MCMC) methods can be used. We first used the 

maximum likelihood method to examine the predictor variables and then, based on the 

results, we used the MCMC method in the Bayesian modeling frame to estimate the 

uncertainty about the relationships represented by α and β, and γ (equation 15) and 

cross-scale predictions. The models were fitted using the R software 

(https://www.r-project.org). Predictor variables were entered into the initial models in a 

stepwise manner to identify the variables to be incorporated into the model. This 

approach was repeated until all remaining variables in the final model were significant 

at α=0.05. An MCMC sampler in the JAGS framework [93] was used for the Bayesian 

model fitting. Three MCMC chains with 50,000 iterations as burn-in and 30,000 

iterations thinned every 30 were stored as parameter estimates. Convergence of the 

model was examined by Gelman-Rubin diagnostics [94] and visual assessment of trace 

plots of chains (see appendix). 

 

3.3.4 Mapping and validation 

The fitted model was applied in conjunction with spatial covariates extracted from 

the location of each village to estimate the village level SMR. This process can be 

considered as the disaggregation process of aggregated environmental covariates once 

used for modeling at the district level scale. Values of estimated village level SMR were 

used as skeletons of the spatial interpolation. Realized values calculated by spatial 

interpolation methods were plotted in each 250 x 250 m spatial grid. We created maps 

that visualized the risks of two provinces in western Cambodia, Pailin and Preah Vihear, 

in western Cambodia by the inverse distance weighed method (IDW) and ordinal 

kriging interpolation of estimated SMR at each village. To evaluate the accuracy of the 

cross-scale prediction from the model, the predicted SMR was compared with geocoded 

case data for Pailin [95] and Preah Vihear [96] collected from Malaria Atlas Project 

database [90] using Spearman’s rank correlation [97] and Welch’s t-tests for unequal 

variances [98]. The source data of maps created here in this study were mostly from the 
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report from VMW and HIS and were based on the rapid diagnostic kit (RDT) and 

Microscopy detection. These data were selected because of the detection method (RDT / 

Microscopy) used and were closest to the reported period from the study period. To 

exclude the incidental nature for spearman’s correlation with this sample data, we 

resampled the dataset 2,000 times with replacement to create confidence interval with 

the non-parametric bias corrected and accelerated percentile method [99] to assess the 

distribution of correlation values. Since, we aimed to provide useful information to the 

practitioners, visual representations of risk distributions in the maps were also validated 

for their agreement with those in existing risk maps and utilities of the maps for 

deciding target areas through interviews with healthcare providers in the regional health 

center and with professionals of GIS. 

 

3.4 Results of the spatial risk distribution modeling 

Of the 329,830 cases reported in 2011–2013, 124,888 cases reported from 18 

HODs in western-Cambodia provinces (Banteay Meanchey, Battambang, Oddar 

Meanchey, Pailin, Preah Vihear, Pursat, and Siam Reap, in alphabetical order) were in 

the analysis. The SMRs in each health operational district were smoothed using an 

empirical Bayesian method. In contrast to the decreasing tendency the case incidence in 

each district, estimated EBSMRs suggested remaining or even the increasing tendencies 

of API in the endemic areas (Figure 14). The observed case numbers and the estimated 

EBSMR of each HOD through the study period are shown in figure 15 and 16, 

respectively. Within 5km of villages, the absolute correlation values between 

environmental variables (NDVI, LSWI, and TWI) extracted from surrounding circular 

buffers (from 1 – 5 km) and EBSMR were highest at 5 km and at 1 km for NDWI 

(Figure 17). Correspondingly, the Pearson correlation coefficient R2 of the model 

differed at each distance. Thus, the data collection ranges chosen for the model was 5 

km for NDVI, LSWI, TWI and 1 km for NDWI. After selecting of the spatial covariates, 

the final model was used to estimate the SMR of each area (adjusted R2 = 0.774, Akaike 

information criterion AIC = 149.423). This model included NDVI, NDWI, TWI, P. 

falciparum temperature suitability index, LLINsuf and TFrate. The parameter estimates 

for each variable are shown in table 4.  
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Figure 14 Annual parasite incidence (API) of western-Cambodian health districts and 

empirical Bayes estimated standardized morbidity ratio (EBSMR) for 6 operational health 

districts with high EBSMR a. 

Bar graph represents API in each health operational district  

and dotted line represents EBSMR of 6 provinces with high EBSMR. 
a District at higher EBSMR than 1.0 
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Figure 15 Maps of annual observed case numbers of health operational districts during 

the study period (2010 – 2013) 
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Figure 16 Maps of annual EBSMR of health operational district during the study period 

(2010 – 2013). 

EBSMR, standardized morbidity ratio estimated using the empirical Bayesian method. 
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Figure 17 Absolute correlation values between environment-related covariates  

extracted from surrounding circular buffer from circular buffer from populated villages  

and EBSMR 

Values were extracted from each 1 km distance circular buffer (1, 2, 3, 4, 5 km)  

from populated villages and then averaged to mean values. 

EBSMR, Standardized morbidity ratio estimated by empirical Bayes method; NDVI, Normalized 

difference vegetation Index; NDWI, Normalized difference water index; LSWI, Land surface 

difference index; TWI, Topographical wetness index 
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Table 3 Parameter estimates selected for the final generalized linear regression model 

Category Variable Parameter estimate Standard error P-value 

Vegetation NDVI (5 km) 7.446 1.947 <0.001 

Water NDWI (1 km) -24.330 5.009 <0.001 

Geography TWI (5km) -1.707 0.6346 0.009 

Temperature P. falciparum  

Temperature suitability  

index (PfTSI) 

0.0002681 0.0000403 <0.001 

Vector control Sufficient ownership 

of LLIN a 

-0.06387 0.007157 <0.001 

Treatment Treatment failure rate 

by artemisinin 

combination  

Therapy b  

0.03611 0.008309 <0.001 

 

a Proportion of household in which distributed mosquito net covers 2 persons or less per net. 

b Test positive for P. falciparum on day 28 or day 42 

NDWI, Normalized difference water index; NDVI, Normalized difference vegetation index; 

TWI, Topographical wetness index; LLIN, Long lasting insecticide-treated net 

 

 

 

 

The calibration plot of the final model indicated good fitting of the predicted and 

actual values (Figure 18A) and the mean absolute error (MAE) of this final model was 

0.499. Figure 18B shows that 55.56% of predicted values were within the range of 

± 0.2, 75% were in ±0.5 and 87.5% were in ±1. Based on the information from 

generalized linear regression modeling, the Bayesian modeling frame was applied to 

estimate the uncertainty about the relationships represented by α and β (equation 15). 

The trace plots of the Bayesian modeling frame were monitored to examine the 

convergence of cross scale prediction (See appendix). The model was settled with given 

condition for MCMC and provided the range of posterior distribution of parameters 

(Figure 19). 
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          (a) 

           

 

          (b) 

           

Figure 18 The calibration plot (a) and proportion of predicted values within the range of 

absolute error (b) of the final model 

The dashed line in figure (a) represents 1:1 relationship of actual and predicted value. 
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     (g)   

        

 

Figure 19 Density plot of posterior distributions of each parameter 

Parameter distributions for (a): Intercept, (b): NDVI, (c): NDWI,  

(d): TWI, (e): LLIN, (f): Temperature and (g): TF 

Horizontal axis of each graph indicates estimated kernel density of each parameter 

NDWI, Normalized difference water index; NDVI, Normalized difference vegetation index;  

TWI, Topographical wetness index; LLIN, Long lasting insecticide-treated net 
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3.5 Results of the fine-scale mapping and evaluation 

The estimated SMR for each village was calculated using the Bayesian modeling 

framework. Subsequently, fine-scale maps were created by the IDW method and ordinal 

kriging interpolation. The maps created from the predictive models for Pailin and Preah 

Vihear provinces are shown in figure 20. Each map represents different risk 

representation patterns in accordance with interpolation method used. The maps created 

by IDW method showed more spotted risk, which help identifying localized risky 

hotspots, whereas the map interpolated by ordinal kriging showed broader patterns, 

which provide a perspective of overall trends for optimizing healthcare resource 

distributions. Compared with geocoded case data, corresponding predicted values in this 

map showed conformity (Spearman’s rank correlation; r = 0.662 with IDW and 0.645 

with ordinal kriging, Welch’s t-test; N.S.), which showed that the cross-scale 

predictions corresponded well with the actual case reports (Figure 21A). The 95% 

confidence intervals for the IDW and ordinal kriging methods were 0.414 – 0.827 and 

0.368 – 0.813, respectively, showing a steep peak in the kernel density plot at around 

0.65 – 0.7 (Figure 21B). The visual representations of hotspot in the fine-scale map 

created here confirmed that they were aligned with actual areas at high risk, which were 

identified by other sources [41, 90, 96], through the visual assessment by a number of 

healthcare providers and experts in the GIS. Thus, using this model, expected outcomes 

under given conditions of LLINsuf and TFrate were conducted. The visual representations 

demonstrated different patterns of expected outcomes from the combination of these 

two containment status indicators in respective areas (Figure 22). These simulation 

results could be mapped to examine the geographical effect expected from targeted 

containment status. Figure 23 shows an example of geographical analysis. The 

geographic view of the effect from each or combined containment status could be 

obtained from this analysis. 
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                 (a) Pailin, 2010 (IDW) 
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                 (b) Pailin, 2010 (Ordinal kriging) 
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(c) Preah Vihear, 2010 (IDW) 
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(d) Preah Vihear, 2010 (Ordinal kriging)  
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Risk contour              

      a  

 

                    b 
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       c 
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Figure 20 Representative maps created using the proposed model for Pailin (a, b) and 

Preah Vihear (c, d) provinces in 2010 

(a, b) Maps of Pailin province and (c, d) for Preah Vihear province in 2010. (a) and (c) were the risk 

maps created by the inverse distance weighed interpolation method (IDW) and (b) (d) correspond to 

the maps created by the ordinary kriging. 
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           (a) 

            

 

           (b) 

            

Figure 21 Comparison of the standardized morbidity ratio calculated from geocoded 

case data with corresponding predicted values (a) and the kernel density plot of the 

resampled spearman’s rank correlation (b) in the risk map created by the model. 

The dashed line represents 1:1 relationship of observed and predicted values 

IDW, Inverse distance weighed method 
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          (a)                                     

              

          (b) 

           

Figure 22 Computational simulations of expected standardized morbidity ratio (SMR) 

under various conditions of LLIN coverage and  

Treatment failure rate of artemisinin 

(a) Relationship of two containment status indicators with expected SMR  

in Pailin province. (b) Different pattern of expected outcomes from the combination of two 

containment status indicators in two provinces. The green surface corresponds to Pailiin, and the 

blue surface corresponds to Preah Vihear province. 
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           a: Current state 

               

          

         b: TF decreased to 0% (from current 14.7%)   
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         c: LLIN increased to 20% (from current 5.5%)  

             

         d 

             

Figure 23 Case of geographical analysis of expected outcomes from targeted 

containment status in Preah Vihear 

(a) Current predicted state. (b, c) Mapped geographical view of expected outcomes from targeted 

containment status. Simulation outcomes can be visualized on the same map (d), by which the effect 

can be examined. The green (for TF decrease), purple (for LLIN coverage increase) and gray 

(combined) colored area corresponds to areas at more than 5 SMR.  

LLIN, Long lasting insecticide-treated net; TF, Treatment failure rate of artemisinin. 
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3.6 Spatiotemporal modeling and the creation of a fine-scale risk map 

3.6.1 Spatiotemporal risk modeling 

The model developed here successfully explained regional malaria risks. However, 

the risk of malaria may dynamically alter in accordance with various factors such as the 

progress of containment interventions and environmental changes. The prevalence or 

incidence of malaria at given time can be quite variable, due not only to seasonal 

oscillations but also to complex dynamic factors, including the behaviors of mosquitoes 

and people, land-cover, housing quality, and the robustness of the health system [100]. 

To address the complex and dynamic nature of situations within low-to-moderate 

malaria transmission settings, we build a spatiotemporal model of SMR of malaria 

incidence. Under the condition that the logarithmic EBSMR (𝜃) follows the Gaussian 

distribution, the relationship between 𝜃 and space-time covariates was modeled using 

a generalized linear regression model as a function of the N predictive variables (X, Z). 

However, given that the situation in respect of malaria transmission may dynamically 

change in low-to-moderate transmission settings, the model needed to incorporate 

temporal changes. Furthermore, hidden factors not considered in the model can affect 

malaria risk and situations may differ depending on areas. To incorporate specific local 

conditions and temporal changes in the studied areas, we introduced two location or 

temporal specific parameters, 𝜑 and 𝜏, to the regression model as in (16) and (17): 

 

𝜃  =  𝑒𝜆               (16) 

 

𝜆 =  𝛼 + ∑𝛽𝑁𝛸𝑁
𝑁

+∑𝛾𝑁𝑍𝑁
𝑁

+  𝜑 + 𝜏 + 𝜀   (17) 

 

where 𝛼 is the model intercept, 𝛽 is the parameter associated with environmental 

covariates X, 𝛾 associated with the non-environmental anthropogenic covariates Z, and 

𝜀  represents the residual error effects. The location parameter 𝜑  is the location 

specific effect that originates from an area’s particular conditions, and 𝜏  is the 

temporal specific effect at every time interval that the data were modeled. We set the 

time interval as 1 year, and modeled the risk of malaria every year between 2010 and 
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2013. The MCMC method in the Bayesian modeling frame was employed to estimate 

the uncertainty about the relationship represented by 𝛼, 𝛽, 𝛾, 𝜑, and 𝜏. The numbers 

within the estimated uncertainty range of location and temporal specific effects are 

greatly increased compared with a model which does not incorporate these specific 

parameters. We employed hierarchical Bayesian modeling to estimate the relatively 

large number of parameters compared with the amount of data for model building, that 

is, we introduced a hierarchical prior uniform distribution 𝑑𝑢𝑛𝑖𝑓(0,  104) for the 𝜎 of 

specified non-informative normal prior distribution 𝑁(0,  𝜎2) of 𝜑 and 𝜏 for every 

location and interval of time. For the estimation of parameters of environmental and 

non-environmental anthropogenic covariates, we specified the non-informative normal 

distribution with mean zero and large variance, 𝜎 = 104. The models were fitted using 

R software (https://www.r-project.org) on an HOD scale. An MCMC sampler in the 

JAGS framework, a program for analysis of Bayesian hierarchical models using MCMC 

simulation [93], was employed for the Bayesian model fitting. Three MCMC chains 

with 50,000 iterations as burn-in, and 30,000 iterations thinned every 30, were stored as 

parameter estimates. The convergence of the model was examined using Gelman-Rubin 

diagnostics [94] and through visual assessment of the trace plots of chains. The 

estimates of MAE were calculated to quantify the discrepancy between predicted and 

observed values. Likewise, root mean square errors (RMSE), for assessing the overall 

model performance, and Pearson’s correlation coefficient, were calculated to compare 

the predicted and observed values at the HOD level. The fitted model was applied to 

estimate the village level SMR using environmental covariates extracted from the 

location of each village, in conjunction with specific covariates for each HOD, and at 

each specific interval of time. The estimated values of the village level SMR were then 

used as skeletons of the spatial interpolation, using the IDW method. Calculated values, 

using spatial interpolation methods, were plotted in each 250 x 250 spatial grid at each 

time interval, from 2010 to 2013, in the two western Cambodian provinces, Pailin and 

Preah Vihear. 

 

3.6.2 Visual presentation of relative weights in the routine surveillance network 

In addition to the geographical analyses, we employed graph theory analysis to 

visualize the estimated priorities of constituent bodies in routine surveillance network, 

that is, the relative weights of network constituent priorities, based on the 

https://www.r-project.org/
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spatiotemporal risk model developed. We build a network model of the routine 

surveillance network in Pailin province using information collected through a survey of 

published literature, official public documents (guidelines and presentation), and 

interviews of stakeholders, such as with staff at regional health centers [45, 80, 101]. 

Health facilities, as well as village malaria workers, report the number of treated cases 

of malaria patients to higher levels of authority within the surveillance network [80]. 

Therefore, the focus of this study was on the flow of the reported data for building 

connections between constituent bodies in the network model. We then multiplied the 

SMR extracted from the map build in this study with eigenvector centrality values [102] 

of each network node, as a measure of influence to enhance sensitivity to risk changes at 

the nodes that can affect to other nodes. The average values of SMR in the surrounding 

1-km circular buffers of health facilities were extracted from the risk map in Pailin. The 

SMRs for the network nodes above the HOD level are considered to be 1, since their 

networking role is to aggregate reports from health facilities and village malaria workers 

rather than treat malaria cases. To compare results at different time points, calculated 

values were normalized to be in the range of 0 – 1, through the min-max normalization 

method, and then used to represent the size of a network node when network models 

were plotted at each interval of time. 

 

3.7 Results of spatiotemporal modeling for mapping and visualization 

of the relative weights of network constituent priorities 

The parameter estimates of each covariates, as well as their uncertainty ranges, are 

shown in Table 4. The model showed good convergence, as confirmed using visual 

assessment of trace plots of chains and Gelman-Rubin diagnostics < 1.01 for all 

parameters and a deviance information criterion of 176.9. Figure 24 presents the 

observed versus predicted uncertainty range of the EBSMR in respective HOD at each 

interval of time. The plot indicates good convergence of observed values through the 

uncertainty range of predicted values, which presents 87.5% of observed values within 

the 10th percentile to 90th percentile range, and 98.61% of values covered through a 

95% confidence interval of predicted values. The MAE and RSME of the model 

calculated, using median predicted values and observed values, were 0.328 and 0.626, 

respectively. 
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Table 4. Parameter estimates of covariates of the Bayesian modeling frame and their 

uncertainty ranges 

Parameter Mean 
Standard 

deviation 

2.5 

percentile 

25 

percentile 

50 

percentile 

75 

percentile 

97.5 

percentile 

Intercept -12.194 11.584 -34.206 -19.566 -12.455 -5.268 12.106 

NDVI (5 km) 7.391 4.083 -0.869 4.841 7.405 9.997 15.437 

NDWI (1 km) -26.992 14.684 -58.940 -35.807 -26.018 -17.248 -0.0753 

TWI (5 km) -1.653 1.408 -4.460 -2.544 -1.631 -0.765 1.001 

P. falciparum  

Temperature 

suitability  

index (PfTSI) 

0.00026 0.00009 0.00008 0.00021 0.00027 0.00032 0.00042 

Sufficient 

ownership of  

LLIN a 

-0.0632 0.0160 -0.0963 -0.0730 -0.0628 -0.0527 -0.0331 

Treatment 

failure rate by 

artemisinin 

combination  

Therapy b  

0.0377 0.0182 0.00181 0.0264 0.0374 0.0488 0.0754 

a Proportion of households in which distributed mosquito nets cover no more than 2 persons per net. 

b Positive test for P. falciparum on day 28 or day 42 

NDVI, Normalized difference vegetation index; NDWI, Normalized difference water index; TWI, 

Topographical wetness index; LLIN, Long lasting insecticide-treated net 
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Figure 24 Observed versus predicted uncertainty range of the SMR in operational 

districts at each interval of time during the study period (2010 – 2013) 

Numbers presented below the horizontal axis indicate respective health operational districts; 1: 

Sangkae, 2: Preah Net Preah, 3: Thma Koul, 4: Mobkov Borei, 5: Thma Puok, 6: Ou Chrov, 7: 

Bakan, 8: Sampov Luon, 9: Mong Russei, 10: Siem Reap, 11: Battambang, 12: Sot Nikum, 13: 

Ankor Chhum, 14: Pailin, 15: Kralanh, 16: Sampov Meas, 17: Samaraong, 18: Tbeng Meanchey 
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The Pearson’s correlation coefficient of observed and predicted median of the 

EBSMR, using the model, was 0.870 (p < 0.001). The estimated SMRs for the villages 

in the study areas were calculated using the Bayesian modeling framework, and 

interpolated using the IDW method, to create fine-scale maps of the study area. Figure 

25 and 26 show the maps of Pailin and Preah Vihear provinces created by the model 

developed at each interval of time. As shown in these maps, different patterns of malaria 

risk distributions at each interval of time are presented. Whereas the place of malaria 

hotspots did not change dramatically during the study period, the magnitude of risk at 

these places differed at each interval of time. The visual representations of hotspots in 

the fine-scale map created here were well aligned with actual areas at high risk, already 

identified through other sources [90, 96] as well as in another work which was validated 

by an examination of alignment between the estimated risk and the risk calculated by 

geocoded case data [103]. These results indicate that the maps created by the present 

approach do not misguiding presentation. 
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     (a) 2010 

              

     (b) 2011 

              



 60 

   (c) 2012 

             

  (d) 2013 

             

Figure 25 Maps of Pailin province at each time interval in 2010 – 2013 
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    (a) 2010 

 

(b) 2011 
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(c) 2012 

 

(d) 2013 

 

Figure 26 Maps of Preah Vihear province at each time interval in 2010 – 2013 
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Next, the routine malaria surveillance network in Pailin province was modeled, 

based on collected information and interviews. Figure 27 presents the visualized 

weights estimated by the risk model, and the structure of the modeled routine 

surveillance network, at each interval of time. As shown in the visualized network, the 

different patterns of the relative weights at each interval of time are also presented. In an 

association with changes in malaria risk in the locations of network constituents on the 

map, their relative weights in the network were also changed accordingly. Notably, the 

magnitude of the changes was greater in several peripheral network nodes, such as in 

health centers (e.g., HC-5 and HC-6) and with village malaria workers (e.g., VMW-5 

and VMW-6) than in those of central nodes (e.g., CNM, DPHI, NP, PHD, HOD, and 

RH). The calculated values of relative weights in the network are listed in Table 5. 

 

 

 

 

(a) 2010 
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(b) 2011 

     

(c) 2012 
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(d) 2013 

   

 

 

Figure 27 Visualized weights estimated by the risk model and the structure of the modeled 

routine surveillance network in Pailin province at each interval of time in 2010 – 2013 

Numbers follow the abbreviations of each network constituent body indicate the subdivided locations of 

them, including 1: Suon Koma, 2: Ou Chra 3: Phnom Spong, 4: Psar Prum, 5: Phnom Preal, 6: Kracharb. 

CNM: National Center for Parasitology, Entomology and Malaria Control, NP: National Program, DPHI: 

Department of Planning and Health Information at the Ministry of Health, PHD: Provincial Health 

Department, HOD: Health Operational District, RH: Referral hospital, HC: Heath center, VMW: Village 

malaria worker. 
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Table 5. Calculated values of relative weights of key network constituents at each interval 

of time during study period (2010 – 2013) 

Parameter 
Eigenvector 

centrality 

Calculated values by each year 

2010 2011 2012 2013 

CNM 0.298 0.175 0.162 0.163 0.163 

NP 0.694 0.615 0.635 0.635 0.635 

DPHI 0.162 0.023 0 0 0 

PHD 0.491 0.389 0.393 0.393 0.393 

HOD 1 0.955 1 1 1 

RH 0.679 0.598 0.617 0.617 0.617 

HC-1 0.461 0.200 0.280 0.339 0.258 

VM-1 0.342 0.109 0.159 0.203 0.142 

HC-2  0.489 0.382 0.389 0.451 0.400 

VMW-2 0.351 0.230 0.224 0.269 0.233 

HC-3 0.489 0.582 0.489 0.509 0.503 

VMW-3 0.351 0.373 0.296 0.311 0.306 

HC-4 0.416 0.589 0.446 0.500 0.510 

VMW-4 0.424 0.601 0.457 0.512 0.522 

HC-5 0.416 0.742 0.533 0.571 0.657 

VMW-5 0.424 0.758 0.546 0.584 0.671 

HC-6 0.416 0.981 0.504 0.421 0.728 

VMW-6 0.424 1 0.516 0.431 0.743 

Numbers following the abbreviations of each network constituent body indicate the subdivided 

locations of them, including 1: Suon Koma, 2: Ou Chra 3: Phnom Spong, 4: Psar Prum, 5: Phnom 

Preal, 6: Kracharb. 

CNM: National Center for Parasitology, Entomology and Malaria Control, NP: National Program, 

DPHI: Department of Planning and Health Information at the Ministry of Health, PHD: Provincial 

Health Department, HOD: Health Operational District, RH: Referral hospital, HC: Heath center, 

VMW: Village malaria worker. 
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3.8 Stakeholders interview 

3.8.1 Method 

To validate the map created, we conducted series of interviews with key 

stakeholders. At first, following 3 key questions were asked to the interviewees while 

showing the process and products of the fine-scale map created here and the map of 

Preah Vihear province from Malaria Atlas Project database as a reference comparator. 

Additional comments from stakeholders made in the interview were also recorded.  

 

 

Table 6 Key questions for the stakeholders interview 

 

No. Questions 

1 

Is this approach useful for supporting the planning of 

healthcare resource distributions and malaria containment 

actions?  

2 
From visual feature perspective, are the hotspots easily 

identified? 

3 
What kinds of improvements are needed to make this be 

more valid? Possibilities of other applications? 

 

 
a                                   b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 Visual representations of the map from Malaria Atlas Project database [90] 

and the fine-scale map created by the risk prediction model developed 

Figure (A) corresponds to the map from Malaria Atlas Project database. Figure (B) is the 

fine-scale map created by the method developed in this research. 
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3.8.2 Interview with NGO staff 

The visual representation of the fine-scale map is very similar to that of Malaria 

Atlas Project. It makes it easier for the initial selection of interventional target area and 

its control, which facilitates the impact evaluation by visualize the effectiveness of 

planned interventions. However, this does not reflect the selective effect on the targeted 

hotspot. Introducing this map to the staff in the health ministry and the health 

operational district can be recommended. There are too many reporting steps in the 

current health information system in Cambodia. The educational level is also related 

and need consideration.  

 

3.8.3 Interview with GIS professional and engineer 

This approach is very interesting and the visual representation of the fine-scale map 

is similar to that of Malaria Atlas Project. Co-kriging can be considered for interpolation 

method to reflect the regional context appropriately. The most attentive thing is that the 

map was created mainly from open data sources. However, I think this kind of approach 

has already done a lot in this research field. Therefore, the uniqueness of this approach 

needs to be clearly conveyed. The output needs to be simpler, especially for the part of 

practical application of risk model. Sequence diagram is one option. For country level, 

this map could give good view. There are many stakeholder acts locally but their action 

is too detailed. Good customer is the staff of the health ministry. Bill and Melinda Gates 

foundation could be interested in this product. As for the color presentations, hotspot 

should be presented as red like colors reminding risk.  

 

3.8.4 Interview with field healthcare provider  

He thought that the map was useful to see the hotspot and conduct intervention. By 

2025, Cambodian government is aiming for eliminating malaria. He thought that this 

map could support these activities for achieving this target. Most patients come to health 

center (HC) in January. In August, in the middle of rainy season, people get infected 

especially in mountain and forest. They regularly go to the mountain side for their work. 

24 cases came to the hospital in August. Once patients get treated at HC, they never 

come back to the HC, unless they get infected again. There are 4 species of malaria, 2 

common species are falciparum and vivax. P. falciparum is the most common case in 

this HC. He reports all the malaria cases come to the HC to HOD.  
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3.9 Discussion 

3.9.1 Implications from fine-scale maps 

As the malaria elimination effort progresses, it has became increasingly important 

to identify the residual foci of malaria transmission to address the remaining challenges 

of preventing residual transmissions and preventing the emerging artemisinin-resistant 

malaria from spreading to protect immunologically susceptible populations. The 

fine-scale maps that have created here will enable more focused containment actions, 

such as targeted surveillance, preventive measures, and monitoring for treatment failure, 

which require intensive support for local health practitioners. A previous report 

suggested that remarkable proportions of patients in western Cambodia still had 

parasitemia on day 3 after starting treatment of artemisinin combination therapy, 

although symptom resolutions were seen within this period [32]. Thus, treatment 

monitoring is important for preventing patients from discontinuing treatment and 

developing drug resistance. Interestingly, the visual representations of maps created 

were similar to those of Malaria Atlas Project; however, maps created in this study 

displayed a finer level of risk distributions. Some of the differences between the two 

sets of maps can be explained partially by spatial and temporal variations in the source 

data. The comparison of predicted risk with geocoded case data confirmed that the areas 

predicted to be at high risk, which will provide information to quantify expected 

outcomes from a combination of containment status indictors. These results suggested 

that these fine-scale maps can play important roles in current situations in Cambodia.  

 

3.9.2 Application of SMR for the spatial risk distribution modeling 

We also describe an application of SMR using API reported in routine aggregated 

surveillance data to quantify the spatial distribution of risk by capturing the 

environmental context and containment status indicators in the model under 

low-to-moderate transmission settings. We found that the remaining or even increasing 

tendency of SMR reflected the relative risk of malaria in the studied area during the 

research period, which can be a useful measure for deciding the allocation of limited 

healthcare resources. Sturrock et al. built a prediction model using routine aggregated 

case data and created a fine-scale risk map for Swaziland [63]. In their model, mean 

temperature and travel time to health facilities were the predictors of both the pixel scale 
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and the coarser district scale of risks. Lowe et al. reported various kinds of predictors 

such as altitude, living conditions, urbanizations, precipitations and temperature [83]. 

The variables that we chose for the model were similar in terms of using environmental 

and human behavior-related variables for malaria risk predictions. Although altitude 

may be related to malaria ecology, we did not incorporate this variable into the model. 

Nevertheless, the risk was well explained, probably because of the relatively flat terrain 

in most of the area that we studied. 

 

3.9.3 Environmental context disparities 

Of note, the data collection distances from each village for environment-related 

covariates affected the risk predictions made by the model. The distances selected for 

the model development for vegetation (NDVI) and water related variables (NDWI), 

which partially reflects human interactions with the living conditions that exist around 

human communities. The relationships between Anopheles mosquito numbers that cause 

malaria transmission and distance from mosquito bleeding sites have been reported 

previously [104-106]. According to surveillance reports [82, 107-108], malaria 

prevalence decreased by distance from forests. The relationship with the distance from 

environmental features for malaria risk modeling, such as the proximity of water 

puddles [109], health facilities [63], have been considered. The effect of distance for the 

vegetation and water indices used in this study indicates such environmental features are 

interrelated with human living communities in different ways. Forest workers often 

working in the forests that are several kilometers away from the communities in which 

they live, whereas the activity ranges of vectors are limited to short distances from their 

breeding habitat. The maps created in this study suggest that the spatial heterogeneity of 

disease risk can be explained by such environmental context disparities. The proposed 

approach shows that distance from living communities can be a useful reference in 

which to consider environmental context for cross-scale prediction of disease risk on a 

fine-scale. The relative risk specified from the surrounding environmental context can 

be described over a wide area, while maintaining the uniformity of unknown conditions, 

using remote sensing data by earth observations from space satellites. 

 

3.9.4 Implication of computational simulations 

It is desirable to use micro data, such as household level data, to build fine-scale 
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risk maps. However, this kind of micro data is often inaccessible and hence they cannot 

be used for mapping. The encouraging results that we obtained for fine-scale risk 

prediction in the modeling framework enabled the size of effect to be visualized from 

different combinations of containment status indicators. The simulation results 

demonstrated that the predicted outcomes were different under each environmental 

context, which provides an opportunity for evaluating interventions considering 

environmental situations in target areas. Moreover, the expected interventional 

outcomes can be mapped, allowing decision-makers to assess different combinations of 

interventional approaches considering several constraints such as detailed population 

characteristics, specific local issues, and resource constraints in a target area. The 

situation surrounding malaria containment actions differs by area. For instance, the 

coverage of LLIN is higher in some area where the high malaria prevalence was 

reported and interventional effort has been made for that. Therefore the incremental cost 

for improving the conditions of each activity may also be different. Figure 29 shows an 

example of probability sensitivity analysis using the model developed here. The 

expected outcomes attained as containment status indicators differ by actions. The 

decision needs to be made based on the predictions. This example demonstrates the 

provision of tailored information for the targeted hotspot, by which the decision maker 

can examine the action alternatives based on the required balance of cost and 

effectiveness.   

 

 

 

 

 

 

 

 

 

 

Figure 29 Example of provability sensitivity analysis under given containment status  

Red-colored grid represents likelihood of expected outcomes under given containment status. 

Darker color indicates the higher likelihood expected from this simulation. 
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3.9.5 Reliability of data 

Generally, the reliability of data is a critical factor for creating relevant models to 

be used in the real world. The current malaria reporting system in Cambodia relies on 

the aggregation of field report from village malaria workers and healthcare practitioners 

to the district, then the province and eventually the national level. Under 

low-to-moderate transmission settings, passive surveillance systems have difficulty in 

capturing enough reliable case numbers to reflect the actual situations [110]. Although 

the variations in the reliability of data reported from each area are likely to exist, the 

mapping approach described here can add more reciprocity among stakeholders than 

simply recording aggregated case numbers, which will encourage more effective 

report-and-utilization cycles and provide an opportunity for effective data utilization. 

Therefore, this will complement the recent mobile phone based real time case reporting 

system [80], providing an opportunity for effective data utilization.  

 

3.9.6 Spatiotemporal modeling and risk mapping using the developed model 

In this study, malaria risks were estimated using information regarding the 

environmental context surrounding human communities and indicators related to 

malaria containment, such as the degree of drug resistance and the status of bed net 

distribution. Not only these global parameters, which can be applied to the whole study 

area, but also the location and the temporal specific parameters that are used to describe 

locally and temporally variable malaria risk, were employed to estimate the dynamic 

nature of malaria risk in low-to-moderate transmission settings. Whereas the visual 

representations of the maps created in this study were aligned with the original map in 

which temporal dynamics were not considered [103], changes in the geographical 

distribution of malaria risk could also be observed between the maps at each interval of 

time. The greater part of malaria risk factors were explicable through the global 

covariates, that is, environmental and non-environmental anthropogenic covariates. Like 

other vector-borne diseases, malaria causation or transmission is highly related to the 

environmental context surrounding human communities. Remote sensing data captured 

by space satellites is supposed to be cost-effective in monitoring ground conditions over 

widespread areas. Furthermore, an opportunity to improve the risk model is available, 

through accumulating and fitting these data together with malaria case data collected 

through the routine surveillance system, in an iterative manner. The results also indicate 
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the significance of location and temporal parameters in assisting the ongoing malaria 

containment effort in low-to-moderate transmission settings. In this study, we employed 

hierarchical Bayesian modeling frame to incorporate location and temporal specific 

effects into the risk model. This approach was effective in estimating the uncertainty 

ranges of a relatively large number of parameters compared with the amount of data. 

This presentation of the estimated uncertainty range of location and temporal specific 

parameters gave expression of the spatiotemporal dynamics of malaria risks to identify 

changing malaria hotspots over time in low-to-moderate malaria transmission settings. 

Furthermore, the model discriminates among the effects of global parameters, that is, 

the effects of environmental and non-environmental anthropogenic covariates 

commonly observed through the study area, and location and temporal specific 

parameters. This possibility allows for the association of environmental or 

non-environmental anthropogenic factors with malaria risks to be predicted, with their 

uncertainty ranges, in nearby areas or on other geographical scales without the bias of 

each specific effect. While this approach successfully demonstrated the different 

patterns of malaria risk distributions patterns of malaria at each time interval, it is also 

important to validate this mapping approach for predictive analyses. One possible 

solution could be introducing temporal effect modeled by an autoregressive process 

instead of estimating temporal specific effect. Because of the limited amount of 

available data, we could not split the data for cross-validation. Instead, we build the 

model using all data to investigate whether the spatiotemporal analysis can capture the 

small difference of risk distribution patterns at each time interval. Based on the results 

of this study, the next step can expand this model for predictive analyses using sufficient 

amount of data. 

 

3.9.7 Transitional complexities exist in routine malaria surveillance network  

Complexities caused by the dynamics of malaria endemicity were enhanced 

through the visualization of weights estimated by the risk model and of the structure of 

the routine surveillance network. In this network model, the size of the network nodes 

represented the relative weights scored using the centricity value as a measure of 

influence, and using the SMR as a measure of relative risk of malaria in the studied area. 

These measurements can support decision-making around allocation planning of limited 

healthcare resources in low-to-moderate malaria transmission settings, based on 
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predicted malaria risk factors and the importance of the network constituents. The 

calculated score indicated that relative weights were undergoing change among several 

network bodies, for example, among regional HCs and VMWs, whereas scores were 

stable at some other network constituent bodies, such as those in a more centralized part 

of the network structure. This observation is likely to become subject to even more 

complication with changes in the network structure occurring over the course of malaria 

containment. A study in Africa reported that the loss rate of insecticide treated nets were 

faster than estimated based on the previous prediction models [111]. This finding 

indicates the needs for the continuous tracking of regional containment status. Moreover, 

the study showed that resource distribution inefficiency was caused due to several 

factors, such as an over-allocation of mosquito nets, which is commonly observed in 

malaria containment systems. Over-allocation is likely to be a result of a complex web 

of factors, such as multiple healthcare resource distribution strategies and varying 

degree of population access to services. The resource requirements at each healthcare 

facility are likely to be changing over time and influenced by multiple factors. 

Establishing a continuous feedback cycle of data collection through the surveillance 

network, and utilization of data for optimal resource allocation planning, while 

strengthening the system to improve data collection, could be a possible solution to 

overcome the transitional complexities of the system. 

 

3.9.8 Utilization of data from publicly available sources 

In this study, almost all data used to build the risk model were publicly available 

data. This approach provides particular advantages in respect of routine operational 

costs, provided that data reliability is maintained to a high level. The reliability of data 

is often a matter of concern in many real-world situations. As reported in a previous 

study, the quality of data from health facilities may vary, due to various factors. 

However, the approach described in this study can be used not only to identify target 

hotspots but also to enable more timely feedback and facilitate more information 

sharing among healthcare practitioners. This outcome will encourage more effective 

report-and-utilization cycles and eventually provide an opportunity to improve the 

quality of care and collected data throughout the entire system as it works toward the 

malaria elimination. 
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3.9.9 Limitations 

While the proposed approach generated several supportive results in terms of 

fine-scale risk predictions under a low-to-moderate transmission setting, several 

important limitations and considerations for the future work should be considered. First, 

containment status indicators other than LLINsuf and TFrate were not considered in the 

present model. The expected outcomes of interventional efforts could be obtained from 

the results of various activities, which may not be explained by a simple additive effect, 

but rather through the interaction of these activities. In the model, we considered the 

interaction between LLINsuf and TFrate, but the result did not improve. Therefore, 

interactions to describe the complex reality should be considered for practical 

applications for assessing the effectiveness of interventions. Second, the influence of 

migrant population was not considered in the modeling framework. The dynamics of 

human carriers that drive parasite transportation between regions can be quantified 

using spatially explicit mobile phone data and malaria prevalence information [6]. By 

incorporating these factors into the modeling framework, more useful models could be 

developed. Third, to ensure as many cases as possible in the risk modeling, we included 

cases with both P.falciparum and P.vivax in the analysis. Considering that treatment 

differs between these malaria species [112], it is more appropriate to identify discrete 

spatial and temporal patterns of different malaria species in the analysis. However, it is 

increasingly difficult to assemble the necessary number of cases to build rigorous risk 

models of target locations when reported cases become rare due to progress in malaria 

elimination. A study in Bangladesh reported similar patterns in the association between 

environmental covariates and the incidence of these two malaria species in the discrete 

analysis [113]. Given the situation, we consider our analysis provides useful information 

in low-to-moderate malaria transmission settings. However, complementary data, such 

as the past trend of malaria incidence arising through different malaria species may be 

required for more appropriate healthcare resource planning. It is possible to conduct 

separate analysis for both species by accumulating sufficient case data, which could 

lead to more appropriate allocations of required healthcare resources to different 

hotspots to avoid waste. As such, the separate analysis using this approach remains to be 

confirmed. Fourth, due to their limited availability from publicly available data sources, 

those covariates related to containment status indicators have not been considered as 

time dependent. As a matter of course, malaria containment interventions can change 
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along with their progress. Containment interventions are affected due to various factors 

such as the baseline level of malaria and proportion of people who have already been 

covered by the containment. As a case in point, a reduction in malaria can be different in 

respective areas with different baseline levels of malaria if identical interventions are 

implemented across the entire region [100]. Continuous monitoring of the entire region 

is important to measure the effectiveness of containment interventions, but can 

sometimes be costly. The mathematical modeling approach for predicting the 

effectiveness of containment interventions can be a good alternative for intensive 

surveillance monitoring in certain situations and may improve the present approach 

through projecting situational changes. Fifth, we employed the IDW method to study 

the changes in patterns of malaria hotspots based on the findings that the maps created 

by this method presented more spotted malaria risk compared with the other 

interpolation method [103]. However, the interpolation method is depending on several 

factors such as spatial density of villages. As such, it is more appropriate to evaluate the 

changing risk patterns using maps created by multiple interpolation methods. Sixth, the 

treatment seeking behavior varies spatially, which may affect the reporting bias of case 

data. Sturrock et al. addressed this issue in their modeling approach using Swaziland 

malaria information system [63]. Unfortunately, this kind of information in Cambodia 

was not available from publicly available sources. Thus, we need to conduct field 

survey in the sampled place of target area if this aspect needs to be incorporated. 

However, in addition to the case reported from public facilities, cases reported from 

VMWs providing primary healthcare services to the community were also counted in 

the surveillance report we used. Since the VMW program is active in northwest 

Cambodia, this structure can improve the coverage of potentially detectable cases to a 

certain extent. One of the strengths of the approach used in this study is that the maps 

were created mostly from publicly available data. Therefore, map authors need to 

collect complementary data from the field if it is necessary considering the balance of 

timeliness and reliability of the map. Finally, the network model developed in this study 

was only based on information from available sources and interviews. Hence, we could 

not fully account for the possible influence of subjective factors in building the model 

nor for differences arising from unreported situations. Using public available sources 

makes it is possible to continuously reiterate the model development of both malaria 

risk and of the healthcare network models and to assess the ongoing situation, without 
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significant cost constraints.  

3.9.10  Future prospects 

Like all programs, malaria elimination action programs need specific plans with 

realistic time limits and well-defined parasitological and entomological goals [68]. 

Maps created by the modeling framework here can provide opportunities for 

establishing realistic goals using current resources. Furthermore, the maps can provide 

useful information both quantitatively and qualitatively for monitoring and evaluating 

interventional activities, while providing decision-makers with a platform for 

cross-scale wandering to help make decisions for efficient healthcare resource use. The 

proposed approach is simply a quantitative prediction technique for using existing 

dataset, and thus can only play a part in the whole healthcare information system for 

malaria elimination. Clearly, the divergences of the prediction from real world situation 

need to be considered. Nevertheless, the adjustments in malaria quantification 

contribute further steps in a system that is working toward malaria elimination. Through 

continuous improvement cycles of the malaria risk model, and through appropriate 

revisions of healthcare system modeling with the help of various stakeholders involved 

in the healthcare system, opportunities for optimizing healthcare resource allocation 

planning in an adaptive manner are likely to be generated, which could contribute 

specifically to further progress toward malaria elimination. 

 

3.10 Chapter summary  

We demonstrated a mathematical modeling approach for identifying regional 

malaria risks, using routine aggregated surveillance report combined with 

environmental data and non-environmental anthropogenic data. We have demonstrated a 

mathematical modeling approach for SMR using API from routine aggregated 

surveillance report and generated cross-scale predictions within a modeling framework 

that correspond to environmental context disparities to create malaria risk maps on a 

fine scale. Using the mathematical mode developed, different representations of 

simulated outcomes from containment status indicators are presented, which provides 

useful insights for tailored planning of action alternatives considering regional malaria 

endemicity. A hierarchical Bayesian framework was employed to fit the transitioning 

malaria risk data onto a map. The model was fitted to estimate the SMRs of every study 
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location at specific time intervals within an uncertainty range. Using a spatial 

interpolation of the estimated SMR at village level, we created fine-scale maps of two 

provinces in western Cambodia at specific time intervals. The maps successfully 

represented different patterns of malaria risk distributions at specific time intervals. 

Moreover, the visualized weights estimated using the risk model, and the structure of 

the routine surveillance network, represent the transitional complexities emerging from 

ever-changing regional endemic situations.  
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4. MANAGING TRANSITIONAL COMPLEXITIES 

IN THE HEALTH INFORMATION SYSTEM 

 

In this chapter, we demonstrate the approach of modeling and analyzing transitional 

complexities in the health information system-of-systems. A health information system 

is a SoS that serves as a foundation of health information used for the evidence-based 

decision making of public health actions. It also act as foundation of supply source of 

health information that is used to create risk maps for resource allocation. The quality 

and timeliness of health information continue to be of concern. Hence, it is important to 

understand the condition of this SoS in an ongoing manner of effective system 

engineering. Practical solutions for addressing system transformation and its effect on 

system management are required given that the SoS transforms over time. As a case, 

along with the increase in the mobile phone usage and increasing coverage of VMWs, 

the malaria surveillance needs to collect both the information from health facilities and 

VMWs, i.e., the data sources are expanded [80]. Accordingly, changes are occurred in 

the architecture and the process. In such situation, it is required to understand the 

condition of the SoS for effective use of limited resources. The application of the graph 

theory for SoS engineering has been extensively discussed in recent years [76]. The 

knowledge and approaches generated from this attempt can help explore ideas on 

optimizing SoS and calculating their complexity. Therefore, we studied an approach to 

model and analyze the transforming health information SoS using the process, 

architecture, and the risk associated with environment in the case of Cambodian malaria 

surveillance system. The next section explains the overview of the Cambodian malaria 

surveillance system and discusses its reformation along with changing environmental 

and stakeholder needs in detail. Next, the models of the system under investigation are 

presented using the engineering systems multiple-domain matrix (ES-MDM) modeling 

framework [114]. A scoring approach is then demonstrated using attributes of the 

process, architecture, and risk associated with environment to analyze the relative 

weights of the constituent systems. By comparing the calculated scores with the results 

of the simulation test employing agent-based modeling (ABM) method, further insights 

into the progress, the limitations, and advantages of the scoring approach are discussed 

in the next section. Finally, this study is summarized, and the direction of future work 
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are outlined. To the best knowledge of the author, this approach provides the first step of 

addressing the needs for continuous management of transforming health information 

SoS by analyzing the transitional conditions of the constituent systems as well as the 

whole health information SoS. 

 

4.1 Description of the system of interest 

4.2.1 Overview of the Cambodian health information system 

Under the guidance of the MoH, the public health service is delivered through a 

vertical structure in Cambodia. The MoH oversees health-service delivery through 24 

PHDs comprising 81 HODs. Each PHD operates provincial hospitals and governs the 

HODs. Each HOD covers roughly 100,000 – 200,000 people with RHs primarily 

delivering secondary care and a number of HCs. HCs cover 10,000 – 20,000 people and 

provide a minimum amount of care, comprising largely preventive and basic curative 

services [115]. The national health information system contains information on 

day-to-day health services and health problems encountered at all levels of health 

facilities [44]. The current primary components and standardized monthly reporting 

forms of the system are as follows: HC1 form for the HCs, HO2 for the RH, DO3 for 

the aggregation of HC1 and HO2 within the HODs, and PRO4 for the aggregation of 

DO3 within the PHDs, which is sent to the MoH after compilation as the last form [45]. 

The data collected at the HCs and RHs are aggregated at the HODs. After the 

compilation of the data at the HODs, they are forwarded to PHDs and the MoH. 

 

4.2.2 Reformation of malaria surveillance system in Cambodia 

Recent malaria containment activities have decreased the occurrence of malaria in 

Cambodia by less than half of that in early 2000s [26]. Currently, approximately half the 

Cambodian population is living in malaria-free or low-transmission conditions [27]. 

Despite these facts, several issues, such as emerging artemisinin resistance [28, 32] and 

remaining foci of malaria transmission, need to be solved for the elimination of malaria. 

As malaria is one of the prioritized public health issues in Cambodia, special 

arrangements have been made in the routine malaria surveillance. In addition to the 

usual case reporting, there is a malaria-specific laboratory section in the standardized 

reporting form, slides, and diagnostic testing kit [45]. Conventionally, the main source 

of malaria case data is the national health information system, which provides 
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aggregated data at the HOD level. Although these data were useful in obtaining the 

overview conditions of broad areas, the data requirements for routine surveillance 

activities are subject to change with respect to those in the finer scale (e.g., village level), 

including case, demographic, and containment status, such as bed net distribution, to 

identify the remaining malaria hotspots. In addition, considerable resource constraints in 

funding and manpower in the field have led to a requirement of the malaria surveillance 

system to improve the efficiency of delivering the required data. With the technical 

assistance, the system was reformed to meet these requirements [80]. The modeled 

malaria information flows before and after the reformation are presented in figure 30. 

Figure 31 shows the past (before reformation) and present structure of the Cambodian 

malaria surveillance system. The notable transformation in the system include, but not 

limited to, the following: 

 Reformation of the national health information system: 

In response to the increasing demand for more convenient data management 

and accurate on-time information, the national health information system was 

reformed to the web-based system from the paper-based using the same data 

points of the previous system [46]. Although not specifically intended for the 

malaria program, this reformation provides a significant opportunity for 

prompt and direct access to facility-level malaria data. Prior to this 

reformation, there was no reliable flow of data from MoH to CNM, which is a 

national institution that plays an important role in the national malaria 

program. As such, it needed to develop its own system for data collection by 

requesting the HODs for additional reporting tasks [80]. The present 

web-based system improves the efficiency of data collection and frees them 

up to concentrate on data-quality issues. 

 Expansion of the VMW program: 

Since its introduction in the early 2000s, the VMW program has been scaled 

up in Cambodia [116-117]. VMWs are primarily tasked with reporting data on 

each rapid diagnostic test including patient information, test results, any 

treatments, and information on whether the patient were referred to the 

healthcare providing facilities [42]. Furthermore, they provide basic treatment, 

conduct active case detection, and track malaria patients [101]. Previously, the 

individual case data collected by the VMWs were reported in a paper form 
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and directly sent to the national program (NP). However, the flow of data 

from the VMWs increased exponentially; it was difficult to process the data 

using the manual data aggregation method [80]. With the development of a 

new malaria information system (MS), these data are incorporated into the 

process of the malaria surveillance system. 

 Development of the MS: 

The MS was developed to process data obtained from the VMWs, health 

facilities, and bed net distribution status. After the short pilot period, the MS 

was quickly decentralized and installed at all the targeted HODs. The 

malaria-case data of the patients of the VMWs and public health facilities are 

entered into a simple database at HOD level. The data are automatically 

applied to the national database on a monthly basis [80]. The MS helps in not 

only improving the efficiency of the data flow, but also in accessing the 

comprehensive information on the malaria status, which integrates the 

facility-level malaria data from the web-based national health information 

system with the VMWs and bed net data obtained from the MS. 

Despite having made these efforts and improvements to the system several 

challenges remain. First, multiple relevant sectors and stakeholders are related to the 

system. The data collection and validation activities are fragmented with limited 

coordination both in and outside the health sector [44]. Information from private sectors 

(PRs) is still limited despite the fact that more than half of the patients seek treatment in 

the PRs concerning primary health [108, 115]. Second, the quality (accuracy) and 

reliability of the data collected at health facilities continue to be of concern. One of the 

possible reasons for this data discrepancy is the inflation of the data at the health 

facilities with fewer financial resources and supervisory visits. In the validation study 

on the health information system conducted in 2002, there were no systemic or 

constituent patterns of data inflation across the country. This suggests that even a small 

intervention to prevent data inflation at the local facility level could have significant 

impact on the data quality [44-46]. Ideally, interventions addressing all of these issues at 

the problematic instances may be effective but not realistic considering the limited 

healthcare resources. Hence, it is critical to understand the conditions and points of 

intervention in an on going manner of system operations. 
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(a) 

 

 

(b) 

 
 

 

Figure 30 Modeled malaria information flow before (a) and after (b) the reformation 

MoH: Ministry of Health, HC: Health Center, RH: Referral Hospital, HOD: Health Operational 

District, PR: Private Sector, PHD: Provincial Health Department, MISD: Malaria Information 

System Database, CNM: National Center for Parasitology, Entomology and Malaria Control, NP: 

National Program 
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Figure 31 Past (a) and present (b) structure of malaria surveillance system 

Major differences of the structure between each time interval are highlighted by the dotted 

rectangle. The red-colored rectangle surrounds the national health information system, the 

green-colored rectangle presents the reporting pathway from HOD to the national institution, 

and the blue-colored rectangle shows the changes of case reporting from VMWs because of the 

introduction of MS. MoH: Ministry of Health, HC: Health Center, RH: Referral Hospital, 

HOD: Health Operational District, PHD: Provincial Health Department, CNM: National 

Center for Parasitology, Entomology and Malaria Control, VMW: Village Malaria Worker, 

MS: Malaria Information System. 
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4.2.3 Malaria-surveillance SoS 

Before proceeding to the system modeling and analysis, whether the malaria 

surveillance system is actually a SoS was examined. The system was characterized 

based on the five properties (autonomy, belonging, connectivity, diversity, and 

emergence), proposed by Boardman and Sauser [118-119]. The system under 

investigation is a system that aims to provide updated and precise information required 

for evidence-based decision making and day-to-day clinical management. Considering 

the ever-changing endemic situations, no single system can cover the data requirements. 

Multiple recording and reporting systems are integrated into a system to prevent 

duplication for reducing workload of staff. The reliability of the data is enhanced by 

using standardization and simplification. With the reformation of the national health 

information system from paper-based to web-based system and the development of the 

MS, the facility-based data and the report from VMWs are integrated to provide 

comprehensive data for the purpose of mitigating malaria spread (belonging). Despite 

the geographically isolated constituent systems, they are interconnected by data and 

resource flow (connectivity). They are engaged in different target and objectives fro 

those of the vertical health information system, but brought together for the purpose of 

mitigating malaria spread (autonomy). Various stakeholders are involved in the system, 

which allows for the diversity and flexibility in capability of the system (diversity). 

Considering that many of malaria patients consult with PRs such as community 

pharmacies and clinics or VMWs as a first medical contact and do not take further 

treatments at healthcare facilities, the surveillance system can be strengthened with the 

involvement of PRs and VMWs by facilitating appropriate referral of patients to the 

healthcare facilities and reporting to the system. 

 

4.2 Proposed approach for modeling and analysis 

4.2.1 Engineering Systems Multiple-Domain Matrix 

Engineering Systems (ES) is an interdisciplinary field of study that seeks solutions 

for important, large, complex sociotechnical problems [120]. ES is characterized by 

highly complex entanglement of technical and social elements [121] and is 

conceptualized as open systems that interact with environment. Both the components 

and environment of ES can change over time. Not only the components themselves but 
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also their properties can change, be added, or dropped. These emergent properties of the 

systems are characterized by the interactions between the social and technical 

components [114]. ES-MDM was proposed as an organizing modeling framework, 

which aids in the conceptualization of ES [122]. In addition, ES-MDM represents a 

system as it changes over time. The methodology of the ES-MDM is an extension of the 

design structure matrix (DSM) [123-124] and the domain mapping matrix (DMM) [125] 

methods, which contain multiple domains and relationships within the system at any 

given point of time. There are six domains (environmental or system drivers, social or 

stakeholders, functional including objectives and functions, physical or objects, process 

or activities, and temporal) that are important to describe ES using ES-MDM. This 

information can be organized and used to facilitate network and graph-theory analysis 

[126] for quantitative analysis. Based on the concept of the epidemiological triad [77] of 

malaria transmission (see Figure 11), the environment surrounding human communities 

is closely related to the disease causation and should be carefully considered while 

optimizing system management. As such, the ES-MDM was applied to system modeling 

and analysis to carefully examine the interactions of multiple domains. In this study, the 

focus was mainly placed on the interaction of process, architecture, and environment (or 

system drivers) based on the concept of epidemiological triad. However, the model can 

include several other viewpoints originated from the interaction of other domains. 

 

4.2.2 Modeling malaria surveillance system in Cambodia 

In this section, the modeling approach is presented for the malaria surveillance 

system in Pailin province, which is located in the northwestern region of Cambodia and 

is one of the places where the issue of drug-resistant malaria was reported [32]. Within 

the ES-MDM modeling framework, the DSM of the process and architecture domains 

were examined using the DMM at the intersection of the DSMs. The key deliverables of 

the system under investigation are quality (particularly for accuracy) and timeliness of 

the malaria surveillance data. Hence, to optimize these deliverables, the focus was on 

the flow of the reported data for the modeling. The DSMs for each domain were built 

using the information collected through a survey of published literature [101], official 

public documents (guideline and presentations) [45, 80], and interviews of stakeholders 

such as staffs at regional HCs. Figure 32 and 33 show the multiple-domain matrix of the 

process and architecture of the system before and after the reformation, respectively. 
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The abbreviations used in the figures are as follows: 

CNM National Center for Parasitology, Entomology and Malaria Control; 

MoH Ministry of Health; 

NP National Program; 

DPHI Department of Planning and Health Information at MoH; 

MS Malaria Information System; 

PHD Provincial Health Department; 

HOD Health Operational District; 

RH Referral Hospital; 

HC Health Center (HC-1, …, HC-6); 

VMW Village Malaria Worker; 

PR Private sector, e.g., community pharmacy, private clinic and hospital; 

MMP Mobile Migrant Population; 

HIS National Health Information System. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 88 

 

 

 
 

 

Figure 32 Multi-domain matrix (before the reformation) of the routine malaria 

surveillance system in Pailin, Cambodia 
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Figure 33 Multi-domain matrix (after the reformation) of the routine malaria surveillance 

system in Pailin, Cambodia 
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Figure 34 Architecture domain DSM (before the reformation) of the routine malaria 

surveillance system in Pailin, Cambodia 
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Figure 35 Architecture domain DSM (after the reformation) of the routine malaria 

surveillance system in Pailin, Cambodia 
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Figure 36 Process domain DSM (before the reformation) of the routine malaria 

surveillance system in Pailin, Cambodia 
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Figure 37 Process domain DSM (after the reformation) of the routine malaria surveillance 

system in Pailin, Cambodia 

 

 

 

 

 

 

 

The DSM in the top left and right present the architecture (Figures 34 and 35) and 
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the process domain (Figures 36 and 37) of the system, respectively. As shown in both 

the two matrices, connections between the architectural and process components are 

indicated by circles of different diameters in the off-diagonal cells. They are classified 

or weighed in accordance with the level of intensity or frequency of the interactions 

between them. The size of circles corresponds to those levels, i.e., the higher the level of 

interactions of the architectural components, the classification criteria are as follows: 

1) More intensive or closer relationship or communications than those 

characterized in class 2;  

2) Relationship within the level of documented official reporting pathway; 

3) Not routine or occasional-basis relationship or communications. 

Similarly, the criteria for the process components are as follows: 

1) More frequent or intensive process than those categorized in class 2; 

2) Frequency or intensity at the level of documented official reporting 

pathway; 

3) Not routine or less intensive process. 

The blue-colored square frame separates the architectural and process components 

below and above the HOD level; the red-colored square frame indicates those related to 

the data reporting paths at the national level. The DMM of the architecture and process 

domain is presented at the intersection of the DSMs. The DMM provide a more visible 

traceability of the respective process components with the corresponding architectural 

components. The connections between the architectural and process components are 

indicated using the green-colored cells. 

By observing changes between each time point, increased coverage of the VMWs 

to various stakeholders can be observed at the level of field clinical practice along with 

the increase in the VMW network. Furthermore, the reporting pathway of the 

surveillance data from VMWs is fully integrated in the HIS after developing the MS. 

Using the DSMs, these changes can be flexibly and promptly reflected in the model 

along with the transformation of the system itself or that of the environment. In this case, 

this study was performed under the condition that the system is operating appropriately 

as documented. However, it is unlikely that the system maintains such as state 

continuously in most of the real-world conditions. In addition, the modeling approach 

presented in this study can consider these deviations from the designated state, which 

provides more sophisticated or practical deliverables. This advantage may be more 
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beneficial for open systems with increased complexity, as they are subject to changes 

along with the way in which they interact with the environment. 

 

4.2.3 Analysis of the relative weights of the constituent systems 

Next, the relative weights of the constituent systems are analyzed to investigate the 

systemic influence, i.e., the magnitude of the effect on the performance of the whole 

system. The epidemiologic triad suggests that environment should be considered in 

addition to the architecture or process factors in order to manage the quality and 

timeliness of the data. Hence, the relative weights of each constituent systems were 

investigated by multiplying the three factors as in (18), where Si is the score of the 

weight, Pi is the process, Ai is the architectural component, and Ei represents the 

environmental attributes of constituent system i. 

 

𝑆𝑖 = 𝑃𝑖 ∙ 𝐴𝑖 ∙ 𝐸𝑖           (18) 

 

The process attribute is calculated by adding the inputs and outputs of each process 

component, which is identified in the process domain DSM. They are considered the 

task burden derived from the processes. The numbers presented in each green-colored 

cell in the DMM indicates the attributes of each process component. The multiple 

process components are linked to one constituent system. Hence, they are calculated by 

aggregating Pij, which are attributes of the process component j linked to the constituent 

systems i. 

 

𝑃𝑖 =∑𝑃𝑖𝑗
𝑗

            (19) 

 

Based on the network of each constituent system and graph theory analysis, 

network centrality metrics were employed as the architectural attributes. Accordingly, 

the closeness [127], eigenvector [102], and betweenness centrality Ci of the constituent 

systems were calculated as 

 

𝐴𝑖 = 𝐶𝑖(𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠,𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟,𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠)            (20). 

The risk of malaria transmission was employed to estimate the environmental 
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attributes of the constituent systems. The standardized morbidity ratio (SMR) [81] of 

the malaria transmission was calculated for estimating the standardized relative risk to 

compare the data from differently conditioned components as in (21), where oi is the 

observed number of cases and ei is the expected number of cases at the constituent 

system i. 

 

𝐸𝑖 = 𝑆𝑀𝑅𝑖 =
𝑜𝑖
𝑒𝑖⁄           (21) 

 

In this case, the environmental conditions may be highly variable at the HC or 

contained further peripheral levels. Given the condition that the risk associated the 

environmental conditions is equal in the HCs and associated lower levels covered by the 

respective HCs and associated lower levels covered by the respective HCs, the average 

values of SMR around each HC were calculated using the risk map of the SMR in Pailin 

[103]; otherwise, Ei is considered to be 1. For interpretations and comparisons across 

the scores calculated by the different centricity metrics and each time interval, the 

calculated scores were normalized to relative weights to the maximum score, i.e., by 

min-max normalization, within the same centricity metrics and time point, whereby the 

changes due to the system transformation (Si) can be measured. Table 7 lists the scores 

of the relative weights of the key constituents before and after the reformation. We 

employed the eigenvector centrality as a measure of the influence of each network node 

to investigate the relative weights, i.e., the systemic influence of the constituent system. 

The decentralization of the weights from the higher data-aggregating layers to the 

peripheral field practitioners, such as HCs and VMWs, can be observed after the system 

reformation. These scores can be visualized in the complex network within the system, 

which may facilitate the common understanding and shared decision making among 

multiple stakeholders. Figure 38 shows an example of the visualized network using the 

scores calculated by employing the eigenvector centrality values. Visualization of these 

network models was conducted using R software (https://www.r-project.org). 

Implications of results by comparing the different centrality measures are discussed in 

the next section. 

 

 

https://www.r-project.org/


 97 

Table 7 Scores of relative weights for key constituents 

Constituents *Before  After S  

CNM 0.065 0.012 -0.053 

DPHI/MoH (DPHI) 0.03 0.039 0.009 

PHD Pailin (PHD) 0.104 0.065 -0.039 

HOD Pailin (HOD) 0.772 0.572 -0.2 

RH Pailin town (RH) 0.729 0.596 -0.133 

HC-1 Suon Koma (HC-1) 0.319 0.284 -0.035 

HC-1 VMWs (VM1) 0.068 0.148 0.08 

HC-2 Ou Chra (HC2) 0.302 0.269 -0.033 

HC-2 VMWs (VM2)  0.064 0.14 0.076 

HC-3 Phom Spong (HC3) 0.546 0.485 -0.061 

HC-3 VMWs (VM3) 0.116 0.253 0.137 

HC-4 Psar Prum (HC4) 0.701 0.701 0 

HC-4 VMWs (VM4) 0.229 0.356 0.127 

HC-5 Phnom Preal (HC5) 1 1 0 

HC-5 VMWs (VM5) 0.327 0.507 0.18 

HC-6 Kracharb (HC6) 0.644 0.644 0 

HC-6 VMWs (VM6) 0.211 0.327 0.116 

 

*Architectural attributes are calculated using the eigenvector centrality value 
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Figure 38 Example of the visualized network using scores calculated by employing 

the eigenvector centrality values (a) before and (b) after the system reformation 
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4.3 Validation 

4.3.1 Capturing the transformation of the SoS 

As a part of validation of the proposed approach, the dataset of the absolute values 

of S (|S|) was resampled 2000 times to create confidence intervals by employing the 

Corrected non-parametric bias and accelerated percentile method [99] to assess the 

distribution of |S|. Figure 39 shows the kernel density plots of the resampled |S|. The 

95% confidence intervals are 0.007 – 0.037, 0.029 – 0.063, and 0.048 – 0.142 for the 

scores calculated by the closeness, for the eigenvector, and for the betweenness 

centrality, respectively. The plots do not include zero in the 95% intervals, i.e., the 

differences are statistically significant when the null hypothesis H0 |S| = 0 is discarded 

at a significance level = 0.05. Hence, this approach is assumed to help capture the 

transformation of the system under investigation at least to a particular extent. 

 

 

 

 

Figure 39 Kernel density plot of the resampled |S| before and after the reformation 

calculated by employing closeness, eigenvector, and betweenness centrality 
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4.3.2 Simulation test 

Next, we discuss whether it can help identify the correct targets of intervention in 

the health information SoS under investigation. Since, it is difficult to test large and 

complex SoS in real-world setting, we designed simulation tests to estimate the 

systemic influence of each constituent system and compared them with scores 

calculated by the method discussed in the previous section. The SoS and its constituents 

have several distinctive characteristics such as autonomy and emergence; hence, we 

employed the agent-based modeling (ABM) simulation [128] to build the simulation 

environment. ABM is a computational tool to model dynamical systems, by 

programming each element, and it has a number of applications in several field of study 

[129]. With the ABM simulation, a system is modeled as a collection of autonomous 

decision-making entities called agents. Each agent presents its behavior separately by 

assessing its situation and making decision on the basis of programmed set of rules 

[128]. Due to its advantages in modeling dynamic system functionality as a collection 

of autonomous entities, ABM was employed to simulate SoS [119]. In this study, we 

used NetLogo 5.3.1 [130] as an ABM tool. For comparison of the data obtained, we 

modeled the flow of surveillance data in the same case of the system post reformation as 

modeled in the previous section. Within the modeling environment, each SoS 

constituent was programmed to act for surveillance reporting. Figure 40 shows the 

flowchart of the processes in the system under investigation. A case of malaria first 

occurs in the villages covered by each of six HC. Assuming that the case count data can 

follow a Poisson distribution, the number of patients was calculated as in (22), where, 

Nk is the actual number of cases in area k (k = 0, 1, …, 6). In this case, ek was calculated 

by apportioning the preset total number of patients Ntotal based on the magnitude of 

environmental attributes Ek of area k (23), which was calculated in the previous section. 

Likewise, a few malaria patients were found from MMPs, which was calculated with a 

constant value of ek by (22) and added to the number of Nk. 

 

𝑁𝑖|𝑒𝑘 ~ 𝑃𝑜(𝑒 𝑘)                   (22) 

 

𝑒𝑘 = 𝑁 𝑡𝑜𝑡𝑎𝑙 ∙
𝐸𝑘   

∑𝐸𝑘
⁄     (23) 
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Figure 40 Flowchart of simulated processes in the system under investigation 

HC: Health Center, RH: Referral Hospital, HOD: Health Operational District,  

PR: Private Sector, PHD: Provincial Health Department, MISD: Malaria Information System 

Database, MMP: Mobile Migrant Population 

 

 

 

The malaria patients seek treatment at PRs, VMWs, HCs, or RHs. Certain numbers 

of patients visited PRs as the first medical contacts are referred to HCs or VMWs. In the 

same way, a few patients treated by VMWs are referred to HCs or RH, and patients in 

severe conditions among those treated at HCs are referred to RH. Thus, the number of 

patients Nk was distributed at a certain constant rates to a healthcare facility or a VMW i 

in the same area. HCs and RHs periodically report the number of treated patients to the 

HOD, which report the aggregated numbers from the HCs and the RH to the PHD. The 

VMWs report the number of patients to the MS. However, deviations between reported 

data and actual treated numbers occur at this stage for several reasons, such as 

unintentional data collection errors or data inflation. Since the occurrence of errors is 

unpredictable, we employed the probabilistic method in the model described in [70]. 
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The occurrence and magnitude of deviations Di were modeled by introducing an 

indicator variable Ri ∈ {0, 1} specifying whether an error occurred at the reporting 

process by each reporting agent (24). If Ri = 0, no errors had occurred and the correct 

number was reported, and Di = 1. However, if Ri = 1, errors occurred in the reporting 

process, and a number was selected from the fixed error distribution 𝜃𝑖. In this study, 

𝜃𝑖 was a uniform distribution over a preset range of the magnitude of deviation. 

 

{
𝐷𝑖|𝑅𝑖 = 1,                                          𝑖𝑓 𝑅𝑖 = 0
𝐷𝑖|𝑅𝑖 = 𝜃𝑖~𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠(𝜃𝑖),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (24) 

 

Ri was conditioned by the probability of the occurrence of errors 𝜆. 

 

𝑅𝑖|𝜆 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜆)                                              (25) 

 

𝜆 is an unknown random variable. Therefore, we defined it as a beta distribution, 

which is a continuous distribution over the real number from zero to one, for the 

purpose of modeling its flexibility. 

 

𝜆 ~ 𝐵𝑒𝑡𝑎(𝛼, 𝛽)                                                      (26) 

 

For mathematical convenience, a combination of a beta prior distribution for a 

Bernoulli random variable is standard practice in probabilistic modeling [131]. At the 

implementation of the model, we set fixed constants of two hyper parameters = 5 and 

= 1 of the beta distribution given that error occurrence was not frequent. By 

multiplying Di with the actual number of cases ni, the reported number ri of each agent 

was calculated (27). Since patients were not treated at the HOD, we considered the ni of 

the HOD as the aggregation of reported values ri from the HCs and the RH, by which 

the influence of the error at the HOD was calculated while distinguishing the effect of 

errors caused by the HCs and the RH. 

 

𝑟𝑖 = 𝑛𝑖 ∙ 𝐷𝑖                                                           (27) 

 

To evaluate the systemic influence of constituent systems, we measured the 
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correctness of the information reported by each agent. Although the correctness of the 

information is often regarded as a quality metric, a number of studies have quantified 

information correctness [74], [132]. In this study, correctness was measured by a 

function of distance between the actual number of cases ni and the corresponding 

reported number ri as in (28), where ci is the correctness of information reported by 

healthcare facility or VMW i: 

 

𝐶𝑖 = 1 −
|𝑛𝑖 − 𝑟𝑖|

𝑛𝑖⁄ = 1 − |1 − 𝐷𝑖|         (28) 

 

Therefore, correctness was dependent on the magnitude of deviance of each 

reporting agent. We then calculated the systemic influence Si as in (29) as a function of 

Di and the fraction of patients reported by healthcare facility or VMW i in the system: 

 

𝑆𝑖 = |1 − 𝐷𝑖| ∙
𝑛𝑖
∑𝑛𝑖
⁄                                  (29) 

 

We set the parameters for the simulation test as shown in table 8, based on the 

information from a previous report [115] and an interview. Considering Ntotal = 1200 

and ek for MMP at 5 as a constant value, we ran the simulation test for 1000 times and 

sampled the data from each execution. Since the magnitude of deviation in the reported 

information consisted of unknown variables sampled from a preset range of Di to run 

the simulation as a sensitivity analysis. The different ranges of Di were set for 

HCs/RH/VMWs and the HOD considering their different roles in the reporting process. 

The calculated systemic influence values were normalized to relative weights to the 

maximum value, whereby the value could be compared with the scores calculated in the 

previous section. 

 

 

 

 

 

 

 



 104 

Table 8 Preset parameters for the simulation test 

Parameters 

Surrounding 

area of RH 

(k = 1–3) 

Distal area 

from RH 

(k = 4–6) 

Percentage of patients visit PRs* 50% 50% 

Percentage of patients visit VMWs* 30% 30% 

Percentage of patients visit HCs* 16% 19% 

Percentage of patients directly visit RH* 4% 1% 

Referral from PR to VMW 25% 25% 

Referral from PR to HC 50% 50% 

Referral from VMW to HC/HC to RH 2% 2% 

 

*For the first medical contact when seeking treatment for malaria. 

 

 

4.3.3 Results and discussion 

In the repeated simulation tests, the actual number of malaria cases treated at HCs 

and RH was 571.996 ± 15.882, and the number of those treated by VMWs was 528.669 

± 14.71 (mean ± SD). These numbers were in close agreement with figures from a 

previous report [78]. Figure 41 shows the correctness values of the information 

provided by the entire system under investigation (global correctness) and the minimum 

correctness values of the information provided by constituent systems, under the 

condition that the possible ranges of deviation occurred were -20 to +50% at 

HCs/RH/VMWs and ±5% at the HOD. The cumulative mean of global correctness and 

the minimum correctness values were 0.958 ± 0.034 and 0.677 ± 0.137, respectively 

(mean ± SD). These results indicate the possibility of hidden imbalances in the 

performance of constituent systems due to the cancelation of the different directions of 

generated values, even though the performance of the entire system seemed acceptable. 

This test case presents the importance of the appropriate evaluation of the constituent 

systems, not only to support decision-making, but also to avoid overlooking significant 

deviations. 
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Figure 41 Calculated global correctness values and minimum correctness values 

Simulation was run under conditions where the possible ranges of deviation were -20 to +50% at 

HCs/RH/VMWs and ±5% at the HOD. Solid lines show the cumulative mean values. 
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Table 9 Scores of relative weights for key constituents 

Constituents 
Systemic 

influence 
Score  

(eigenvector) 
Score 

(betweenness) 

Score 
(closeness) 

HOD Pailin 0.233 0.572 1 0.303 

RH Pailin town 0.2 0.596 0.676 0.792 

HC1 Suon Koma 0.281 0.284 0.165 0.278 

VM1 VMWs 0.267 0.148 0.114 0.244 

HC2 Ou Chra 0.226 0.269 0.156 0.263 

VM2 VMWs 0.24 0.14 0.108 0.231 

HC3 Phom Spong 0.464 0.485 0.282 0.475 

VM3 VMWs 0.442 0.253 0.195 0.417 

HC4 Psar Prum 0.776 0.701 0.39 0.701 

VM4 VMWs 0.774 0.356 0.208 0.616 

HC5 Phnom Preal 1 1 0.557 1 

VM5 VMWs 0.991 0.507 0.296 0.879 

HC6 Kracharb 0.7 0.644 0.359 0.644 

VM6 VMWs 0.657 0.327 0.191 0.566 

 

Simulation was run under conditions where the possible ranges of deviation were -20 to +50% at 

HCs/RH/VMWs and ±5% at the HOD. Solid lines show the cumulative mean values. 

 

 

 

Table 9 presents the calculated systemic influence of key constituents and scores of 

relative weights calculated by employing the eigenvector, betweenness, and closeness 

centralities for architectural attributes. As shown in the scatter plot of the systemic 

influence values and the scores calculated by employing the eigenvector centrality of 

key constituent systems (see Figure 42), several differences can be observed among the 

values, while those of the HCs were in good agreement. The systemic influence values 

of the VMWs were consistently higher than the calculated scores. Likewise, the 

systemic influence values of RH and HOD were lower than those of the calculated 

scores. Contrasting these disagreements provided several indications for understanding 

the meanings of the scores. Given that similar numbers of malaria cases were reported 
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by the HCs and the VMWs and the same rule was applied to error incidence, it is 

reasonable to expect that similar systemic influence values were estimated for them. 

However, the effect or behaviors of the HCs and the VMWs may be different in the 

system. As shown in the architectural domain DSM in figure 33, the HCs had a direct 

connection and make a certain level of influence on the VMWs by providing advice and 

guidance for treating malaria cases [101]. Assuming the pervasive effect of the systemic 

intervention from the HCs to the VMWs, it is more appropriate to take these factors into 

account when evaluating the relative weights of the constituent systems. The same 

explanation can be applied to the relationship between the HOD or the RH and the HCs. 

 

 

 

Figure 42 Scatterplot of cumulative systemic influence value and scores calculated by 

employing eigenvector centrality of key constituent systems 

Simulation was run under conditions where the possible ranges of deviation were -20 to +50% at 

HCs/RH/VMWs and ±5% at the HOD. Solid lines show the cumulative mean values. 
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The architectural attributes Ai as component of the scoring approach can help 

capture these effects of constituent systems. As demonstrated in the previous work [114], 

information on the ES-MDM can be organized to facilitate network and graph-theory 

analysis. This advantage could provide opportunities to obtain more insight by 

calculating centrality values originated from the architecture of the SoS. However the 

scores calculated by employing betweenness centrality presented more different patterns 

from the other two types of values. As betweenness centrality measures the extent to 

which a network node lies along the shortest paths between other nodes, eigenvector 

centrality as a measure of influence of each network node can be more appropriately 

used in the case of measuring systemic influence. The closeness centrality, as a measure 

of distance between the network node and other nodes, may reflect the influence but the 

influence of connected other nodes are not considered in this measure. The process 

attribute Pi also helps identify the important group of constituent systems from the 

perspective of the process. In this case, the HCs were estimated to be the highest scores 

when considering both Ai and Pi, whereas the intermediate score was estimated to the 

HOD. The sensitivity analysis of the simulation test suggested consistent findings as 

indicated by the difference in the slopes of the effect when changing the corresponding 

values at least within the simulated range (see Figure 43). Once the important group of 

constituent systems are identified, prioritization within the group can be carried out by 

the environmental attribute Ei, as indicated by the satisfactory agreement between the 

values of the simulation test and the scoring estimates of the HCs. Hence, the 

appropriate modeling of the system and the selection of architectural and process 

measures are critically important and may determine the applicability of this scoring 

approach to the system in other domains. In the same manner, other factors related to 

environmental risk, e.g., the status of drug resistance, immunity, or susceptibility of 

local residents, can be considered when formulating Ei to reflect more precise risk. 
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Figure 43 Sensitivity analysis of the simulation test [global correctness values at any given 

pairs of max deviation at HCs/RH/VMWs (%) and precision at HOD (±%)] 

 

Although these results provide further insights of the scoring approach, other test 

option such as dynamic systems theory should be compared before reaching to more 

conclusive results. The evolutionary game theory could also be applied and proven 

effective for this type of problem since they are difficult to be analytically solved 

[133-134]. Moreover, the model of the system presented in this study is merely a result 

of a viewpoint of stakeholders. The level of detail and abstraction of the model may 

differ based on the requirement or viewpoint of the modelers. However the model can 

readily accommodate changes to the system architecture and process, which is 

convenient for managing transitional complexities of an open system that transforms 

over time, such as the ES. The scoring approach proposed here is not suitable for 

calculating the absolute importance of the constituent systems. However, it is clear that 

the relative importance of the constituent systems is also significant in several situations, 

such as planning optimal resource allocations with limited resources. 

In the context of this SoS, the modeling and scoring approach presented in this 
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study would highlight to a decision-maker some constituent systems (HC5, HC4, HC6, 

RH, HOD etc.) as the candidate for improvement efforts as they appeared to have a 

great deal of influence in the overall effectiveness of the SoS. This SoS transforms over 

time due to the changes in the various aspects of the system such as the architecture, the 

process of data collection, and the changes in the environmental risk along with the 

progress of malaria containment. The modeling and scoring approach can readily 

accommodate such changes and provide guidance to a decision-maker for the resource 

management and allocations of improvement efforts on a timely basis. There are a 

number of applicable patterns of interventions in the large complex health information 

SoS. Accordingly, by the scoring approach presented here, temporal and continual 

guidance can be provided to decision-makers, which can lead to an improvement in the 

quality of data and eventually the level of public health. 

 

4.4 Chapter summary 

The health information system is a SoS that transforms over time in an attempt to 

improve its efficiency by considering the effect of the environment. In this study, the 

process and architecture of a malaria surveillance system were modeled using the 

ES-MDM modeling framework. The models help examine the interrelationship between 

the process and architecture of the constituent systems while providing visible insights 

over multiple domains to various stakeholders. Moreover, the models can consider 

necessary revisions in an iterative manner, which can help reflect practical situations. 

Using the attributes of the process, the architecture, and the risk associated with 

environment, the relative weights of the constituent systems are scored at each interval 

of time. As indicated in the confidence intervals of the absolute differences in the scores, 

this approach yields the transformations of the system under investigation to particular 

degree. By comparing the scores with the results of the simulation test using ABM, 

further insights into the process, the limitations, and advantages of the scoring approach 

were discussed. This approach provides the first step in analyzing the transitional 

conditions of constituent systems as well as the entire health information SoS, whereby 

the informed decision-making for optimizing the continuous system management is 

facilitated. With this initial step for the scoring of the relative weights of the constituent 

systems, the study can be expanded to examining cases of effective use of scores in 
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optimizing healthcare resource allocation. Since the scores capture the transitions of 

systems while continually providing the guidance to decision-makers, the application of 

the estimated scores to the dynamic resource allocation problem for more efficient 

resource distribution is expected. Furthermore, the studies to expand the model to 

include other domains in the ES-MDM framework such as social and functional 

domains to obtain further insights from interaction between multiple domains are 

considered. Through these investigations, further progress can be made in the health 

information SoS engineering, leading to improvements in providing information 

fundamental to health. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. TRANSITIONAL COMPLEXITIES OF HELATH 
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INFORMATION SYTEM OF SYTEMS AND 

APPLICATION OF SCORE TO THE ADAPTIVE 

RESOURCE ALLOCATIONS 

 

In the previous section, we demonstrated the engineering systems multiple-domain 

modeling approach to model and analyze the transforming health information SoS using 

the attributes of the process, architecture, and risk associated with the environment in 

the case of the Cambodian malaria surveillance system. The ES-MDM modeling 

framework [114] was applied and then the scoring approach was selected using the 

process, architecture, and environment to analyze the relative weights of the constituent 

systems. Similarly, the environmental condition can change over time, affecting the 

causations of several diseases such as malaria. Hence, in this chapter, we demonstrate 

the changes in all the aspects (process, architecture, and environment) employed in the 

scoring approach to capture or manage the transitional complexities in the SoS over 

time in the case of Cambodian malaria surveillance system. The transitions in the 

relative weights of the constituent systems are presented based on the results of 

transitional scoring of SoS and environmental risks calculated by the spatiotemporal 

model developed through the routinely aggregated data and remote sensing data 

captured by space satellites. We then demonstrate the adaptive resource allocation 

approach using the score as a case of application of the score. 

  

5.1 Engineering systems multiple-domain modeling approach for the 

system 

As described in the previous section, we employed the ES-MDM modeling frame 

for the system modeling and analyses. The ES-MDM was applied to examine the 

interactions of multiple domains, i.e., not just the process and architecture but also the 

environment of the system under investigation. We employed the case of the malaria 

surveillance system in Pailin province. We developed the DSM of the process and 

architecture domains before and after the reformation of the system. The interactions of 

multiple domains were then examined using DMM at the intersection of DSMs. We 

then calculated the relative weights of the constituent systems to investigate the 
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transitional complexities caused by both the system reformation and continuous 

interactions of the environment by multiplying the three factors, i.e., the architectural, 

process, and environmental attributes of the SoS. The detail explanation of the score 

component is found in chapter 4. This time, we employed the spatiotemporal 

mathematical model of SMRs to estimate the environmental attributes of constituent 

systems at each time interval. We calculated them using the reported annual parasites 

incidence of malaria by the routine surveillance and environmental covariates captured 

from the space satellites as well as the non-environmental anthropogenic covariates, 

such as the status of the bed net distribution and reported artemisinin resistance in 

western Cambodia. The detailed description of model building and results can also be 

found in chapter 3. For interpretation and comparison at different time points, the 

calculated values were normalized in the range of 0–1 using the min–max normalization 

method at the same time point whereby the changes owing to the system transformation 

(Si) can be measured. The values were then used to represent the size of a network 

node when the network models were plotted at each time point. The visualization of 

these network models was achieved by the R software (https://www.r-project.org). We 

calculated the score of the relative weights of the key constituent systems between 2010 

and 2013. During this period, the national health information system was reformed. 

Although the reformation may have certain steps to be fully implemented rather than 

occurring at once before its completion, we calculated the score under the condition that 

the reformation was completed between 2010 and 2011. 

 

5.2 Visualization of the scores and the application to the adaptive 

resource allocation of the scores for managing transitional 

complexities of health information system 

5.2.1 Transitions in the relative weights of the constituent systems 

Table 10 lists the scores of the relative weights of the key constituents in the 

malaria surveillance system at each interval of time. As shown in Figure 44, the relative 

weights of the constituent systems vary to a particular extent in accordance with the 

changes in the architecture and process of the system and environmental risks. After the 

reformation of the system between 2010 and 2011, there is a decentralization of the 

weights from the higher data-aggregating layer to the peripheral field practitioners, such 

https://www.r-project.org/
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as the HCs, and VMWs. In association with the changes in the malaria risk at the 

locations of the constituent systems, their relative weights are also changed accordingly. 

Hence, the changes in the relative weights are observed after the reformation of the 

system between 2010 and 2013. Notably, the magnitude of the changes is larger in the 

peripheral constituent systems, such as in the HCs and with VMWs, than in the central 

data-aggregating layers. These scores can be visualized in the complex network within 

the system, which may facilitate the common understanding and shared 

decision-making of the multiple stakeholders. Figure 45 shows the visualized network 

using the scores in each interval of the study period. This study is performed under the 

condition that the system is operating appropriately as documented. However, it is 

unlikely that the system maintains such a state continuously in most real-world 

conditions. The advantage of the ES-MDM modeling frame is that the model can 

flexibly consider these changes and deviations from the designated state of the system, 

which may be more beneficial for open systems with increased complexity because they 

are subject to the changes along with the manner in which they interact with the 

environment. 
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Table 10 Scores of relative weights for key constituents 

Constituents 
Scores 

2010 2011 2012 2013 

CNM 0.055 0.017 0.016 0.014 

DPHI/MoH (DPHI) 0.025 0.056 0.053 0.044 

PHD Pailin 0.088 0.093 0.088 0.073 

HOD Pailin 0.655 0.816 0.775 0.643 

RH Pailin town 0.618 0.850 0.808 0.670 

HC1 Suon Koma 0.329 0.608 0.650 0.457 

HC1 VMWs (VMW1) 0.070 0.318 0.339 0.239 

HC2 Ou Chra 0.468 0.704 0.741 0.566 

HC2 VMWs (VMW2) 0.099 0.368 0.387 0.296 

HC3 Phom Spong 0.642 0.825 0.808 0.664 

HC3 VMWs (VMW3) 0.136 0.431 0.422 0.347 

HC4 Psar Prum 0.655 0.880 0.907 0.764 

HC4 VMWs (VMW4) 0.214 0.447 0.460 0.388 

HC5 Phnom Preal 0.790 1.000 1.000 0.923 

HC5 VMWs (VMW5) 0.259 0.507 0.507 0.468 

HC6 Kracharb 1.000 0.960 0.803 1.000 

HC6 VMWs (VMW6) 0.327 0.487 0.407 0.507 

 

MoH Ministry of Health, DPHI Department of Planning and Health Information at MoH, HC Health 

Center (HC1, ..., HC6), RH Referral Hospital, HOD Health Operational District, PHD Provincial 

Health Department, CNM National Center for Parasitology, Entomology and Malaria Control, VMW 

Village Malaria Worker. 
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Figure 44 Transition of the relative weights of the constituent systems 
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Figure 45 Visualized network using the scores of the relative weights of the constituent 

systems in each interval of time 
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5.2.2 Adaptive healthcare resource allocation using the score 

In this section, we demonstrate the adaptive healthcare resource allocation using the 

scores of the relative weights of the constituent systems as an example of application. 

Because a score can capture the transition of the architectural, process, and 

environmental attributes over time, it can be used to solve the resource allocation 

problem for more achieving a tailored resource distribution over time by considering the 

changes occurring in each constituent system. Various interventions can be considered 

such as training for field practitioners, monitoring visits, and practical interventions. In 

general, the effect of intervention is correlated with the amount of resources allocated 

for the intervention. When there is reproducibility in the relationship between the effect 

of the intervention and amount of resources allocated, the effect of intervention can be 

mathematically modeled. Under the condition of limited resources, the resources need 

to be allocated to each constituent of the system to obtain the maximum effect of the 

intervention at each time interval, t, as expressed in (30), where xi is the amount of 

resource allocated to system constituent i in n constituent systems, gi(xi) is the effect of 

the intervention, and Rt is the available amount of resource at time interval t. 

 

{
 

 𝑚𝑎𝑥 ∑𝑔𝑖
𝑖

(𝑥𝑖)                                                          

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                                                           (30)
𝑥1 + 𝑥2 + 𝑥3  +  …+ 𝑥𝑛  =  𝑅𝑡                              

 

 

Assuming a nonlinear relationship between the effect of the intervention and 

amount of resource input, the former can be modeled as (31). 

 

𝑔(𝑥) = 𝑎(1 − 𝑒𝑏𝑥)                                            (31) 

 

We employed (31) for the reason that the model crosses 0 and assumes that the 

effect of the intervention reaches a plateau after adding a certain amount of resource. 

The effect at each constituent system can be modeled by multiplying the score of the 

constituent system and the modeled effect of intervention, as expressed in (32), where Si 

is the calculated score and ci is the specific factor that needs to be considered for 

constituent system i. 
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𝑔𝑖(𝑥𝑖) = 𝑆𝑖 ∙ 𝑎(1 − 𝑒
𝑏𝑥) ∙ 𝑐𝑖                                        (32) 

 

If the effect of the intervention can be transferred to the next year, the incremental 

gain of placing additional resources in year t can be calculated by (33). 

 

𝑔𝑖𝑡(𝑥𝑖𝑡) = 𝑆𝑖𝑡 ∙ 𝑎{(1 − 𝑒
𝑏𝑥𝑡) − (1 − 𝑒𝑏𝑥𝑡−1)} ∙ 𝑐𝑖   (33) 

 

Assuming that approximately 50% of the maximum effect can be obtained by 2 

units of resource input, 75% by 5 units, and 90% by 10 units, respectively, the 

parameters, a = 0.912 and b = -0.378, as shown in Figure 46. Under the condition that 

50 units of resource are available from 2010 to 2013, the resource allocation problem 

for starting a new intervention is solved. We set specific factor ci = 0.5 for remote places 

(HC 4–6 and VMW 4–6), considering that more resources are required to be delivered 

to these locations. In this study, we employed the dynamic programming approach to 

solve the resource allocation problem. Dynamic programming [135] is a mathematical 

method for effectively obtaining the appropriate optimal or equilibrium solution by 

treating the model as a sequence of decision processes. It is commonly used to solve the 

resource allocation problem. Table 11 lists the results of the resource allocation for 

constituents. The effect of the intervention was 3.582 in 2010, 1.880 in 2011, 0.597 in 

2012, and 0.591 in 2013. The score guided the optimal resource allocation in 

accordance with the transitions in the architectural, process, and environmental 

attributes of the constituent systems, even under the condition that the reformation of 

the system occurred in the middle of the study period. One advantage of using 

ES-MDM to model the transitional condition of the health information SoS is that the 

model can be used to examine the expected effect caused by design phase, so that the 

stakeholders such as the model builder, planner, and decision-maker can visually track 

the examined changes in the SoS. The score can be calculated and used to solve the 

resource allocation problem, which enables more timely planning of the appropriate 

resources allocation immediately after the reformation of SoS.   
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Figure 46 Relationship between the healthcare resource input (unit) and the effect size of 

the intervention in the model used in the study 
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Table 11 Resource allocation at each constituent 

Constituents 
Resource allocation (units) 

2010 2011 2012 2013 

RH Pailin town 5 2 3 2 

HC1 Suon Koma 3 3 3 2 

HC1 VMWs (VMW1) 0 5 2 5 

HC2 Ou Chra 4 3 3 2 

HC2 VMWs (VMW2) 0 5 3 4 

HC3 Phom Spong 5 2 3 1 

HC3 VMWs (VMW3) 1 4 3 4 

HC4 Psar Prum 3 2 3 2 

HC4 VMWs (VMW4) 1 3 2 2 

HC5 Phnom Preal 4 2 3 2 

HC5 VMWs (VMW5) 1 3 3 3 

HC6 Kracharb 5 1 2 2 

HC6 VMWs (VMW6) 2 2 2 2 

 

HC Health Center (HC1, ..., HC6), RH Referral Hospital, HOD Health Operational District, VMW 

Village Malaria Worker. 
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6. DISCUSSION 

 

6.1 Requirement verification traceability matrix 

The Requirement Verification Traceability Matrix for the requirements need 

evaluations is shown in Table 12. 

 

Table 12 Requirement verification traceability matrix of the system 

ID Requirements Verification method Results 

1 Estimate the risk of malaria under 

the low-to-moderate malaria 

transmission setting 

Section 3.4: Analysis 

Calibration plot and the 

model examination  

Section 3.5: Analysis 

Comparison of geocoded data 

and predicted data on the 

map 

Section 3.7: Analysis 

Observed and predicted 

uncertain range of SMR 

Met 

1.1 Visualize (Provide) information Section 3.5/3.7: 

Demonstration/Inspection 

Stakeholders interview 

Met 

1.1.1 Display estimated malaria risk Section 3.5/3.7: 

Inspection 

Inspection of visual 

representation of the map 

Met 

1.1.2 Display the simulation results Section 3.5:  

Demonstration 

Simulation and visual 

inspection of the results 

Met 

1.2 Support decision-making Section 3.8: Inspection 

Stakeholders interview 

Met 

2 Provide information without 

significant cost 

Section 3.5/3.7: 

Demonstration 

Providing results with data 

from publicly available 

sources 

Met 

3 Take dynamic situation and 

transformation of the SoS itself 

Section 4.2/4.3: 

Demonstration/Analysis 

Presenting multi-domain 

matrix of the routine malaria 

surveillance system 

Validated by comparing the 

results from ABM simulation 

Met 

3.1 Reflect the changes in the 

architecture and the process before 

and after the reformation 

Section 4.2: 

Demonstration/Inspection 

Presenting multi-domain 

matrix of the system 

Met 
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3.2 Reflect the spatiotemporal 

dynamics of environmental risk 

Section 3.7/4.2/4.3: 

Demonstration/Analysis 

Estimate the spatiotemporal 

risk distribution 

Reflect environmental 

attributes of constituent 

systems for scoring relative 

weights, which was validated 

through the comparison with 

the results of ABM 

simulation 

Met 

3.3 Present the transitional changes of 

relative weights of constituent 

systems 

Section 5.2: Demonstration 

Presenting transitional 

changes in relative weights of 

key constituent systems both 

numerically and visually 

Met 

3.4 Provide necessary information that 

aids in the continuous management 

of health information system 

Section 5.2: Demonstration 

Demonstrated adaptive 

resource allocation as a case 

of application of the score 

Met 

 

 

6.2 Validation of the proposed system 

We aimed to develop the continuous management cycle of health information 

system through the iterative process of the mapping approach to estimate the spatial 

heterogeneity of disease burdens and its application for the modeling and analysis of the 

health information system for the purpose of better healthcare resource deployment 

while improving the quality of health information in the case of the malaria issue in 

western Cambodia. The specific objectives of study were: 1) To develop the spatial risk 

distribution model of malaria adjusted for the low-to-moderate transmission settings, 

considering environmental context disparities using routinely collected surveillance data 

in the health information system, remote sensing data, and publicly available data; 2) To 

develop an approach for modeling and analyzing health information SoS to understand 

the transitional complexities originated from the changes in the architecture, the process, 

and the surrounding environment for effective system management and; 3) To 

demonstrate the transitions of the relative weights of the constituent systems in the 

health information SoS and its application for the adaptive resource allocation for data 

quality interventions. Using the routinely collected surveillance data in conjunction with 

remote sensing data and publicly available containment status information, we 

developed the spatiotemporal model of disease risk of malaria and created the fine-scale 
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risk maps. One strength of the proposed approach is that the source data were mostly 

from the publicly available source as such the fine-scale risk map could be created 

cost-effectively, which is in line with the requirement of cost-effective operation of the 

system under the low-to-moderate transmission settings. Furthermore, the results were 

validated through the comparison of geocoded data and estimated risk of each places 

and interviews with stakeholders. Hence, I believe that the proposed approach is an 

effective method to estimate the spatiotemporal risk distribution of malaria under the 

situation investigated in this study. While the supportive results were obtained in this 

study, it is important to understand that the API is reliable measure under the condition 

that the data collection is supported by the rigorous surveillance system. Besides, 

continuous effort of maintaining the surveillance system and provision of data to the 

public is critical to ensure that the proposed system will be sustainable.  

 The issue found in the stakeholders interview was reliability of reported data in 

Cambodia. Not only in Cambodia, the quality of health information continues to be of 

concern, particularly in situations with limited healthcare resources in some less 

industrialized countries. Health information system is a SoS that transforms over time 

through the interaction of changing environment and requirement of various 

stakeholders. Hence, it is important to understand the transitional conditions of this SoS 

in an ongoing manner for effective systems engineering. We applied the ES-MDM 

modeling framework to present the reformation of Cambodian malaria surveillance 

system. The model presented the changes in the architecture and the process. Not only 

presenting the structural changes, the model helped score the relative weights of 

constituents using the architectural, process, and the environmental attributes in the 

model to capture the transitional changes of key constituents as well as the structure of 

entire health information SoS. This approach was validated through the simulation test 

using ABM. Although the results were not conclusive, they provided further insights in 

how these scores can be used for SoS engineering. The model of the system presented in 

this study is merely the results of a single viewpoint of stakeholders. The level of detail 

and abstraction of the model may differ based on the viewpoint of the modelers. 

However, the model can readily accommodate changes to the system architecture and 

process, which is convenient for managing transitional complexities of an open system 

that transforms over time, such as ES. Despite the growing interest and needs for the 

governance of SoS engineering, there are few SoS standards in place today [136]. 
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However, the effort toward standardization of SoS engineering may also provide the 

guidance for more standardized way.  

Using the spatiotemporal risk model in combination with the modeled SoS by the 

ES-MDM framework, the transitional changes in the relative scores of key constituents 

were scored over the study period. The score could be applied to solve the adaptive 

resource allocation problem while considering the dynamics of environmental 

conditions and changes in the architecture and the process originated from the 

reformation. Not the single approach but the combination of risk mapping and modeling 

and analyses of SoS can provide the opportunity for more effective data utilization and 

feedback cycle. The proposed mapping approach can add more reciprocity among 

stakeholders than simply recording the aggregated case numbers. Through the 

continuous effort of more effective report-and-utilization cycles, data quality and 

reliability can be improved. Routine health information systems are in place in nearly 

every country and provide routinely collected full-coverage records on all level of 

health system service delivery [137]. However, these rich sources of data are regularly 

overlooked for evaluating various aspects of heath programs due to concerns of 

completeness, timeliness, representativeness, and accuracy. With rapidly growing 

technology, the capability to share the data – and harness its potential to generate 

knowledge rapidly and inform decision – can have transformative effects that improve 

the health by establishing the system called learning health care system [138]. The 

continuous improvement of health information in the health information SoS serves as 

the foundation in realizing the learning healthcare system.  

 

6.3 Future work 

While the proposed approach generate the several supportive results and 

implications continuous improvement cycle of health information by employing the 

mathematical risk mapping approach and modeling and analysis of transforming health 

information system, several limitations exist that need to be studied.  

 

6.3.1 Limitation and future work for the risk mapping and engineering systems 

multiple-domain modeling approach 

The limitations and future work for the risk mapping and engineering systems 

multiple-domain modeling approach were already discussed in the chapter 3 and 4, 
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respectively. 

 

6.3.2 Benefit of using the proposed approach 

Although we demonstrated the transition of relative weights of key constituents in 

the health information system and the application of the scores for the adaptive resource 

allocation, it is required to examine the effectiveness of using the scores over the usual 

resource planning approach to understand more about the benefit of the proposed 

approach. One advantage of using ES-MDM to model the transitional condition of the 

health information is that the model can be applied to examine the expected effect 

caused by the changes in the architecture or process of SoS in the design phase, so that 

the stakeholders such as the model builder, planner, and decision-maker can visually 

track the examined changes in the SoS. Moreover, the model can flexibly reflect the real 

world situation, where deviations from designated state occur in most of the cases. 

However, over these qualitative advantages, the quantitative benefit such as the 

incremental gain of interventional effect and cost effectiveness to achieve the target 

effect need to be studied to facilitate the introduction of the new approach. Also, it 

might be important to consider numerous constraints and conditions when the approach 

will be applied in real cases. We demonstrated the resource allocation under the 

relatively simple conditions. As such, complementary method to cover this limitation 

such as sensitivity analyses or addition, other constraints or probabilistic approach to 

estimate the tailored resource allocation plan can be considered in future work. 

 

6.3.3 Application to the other epidemiological issues or geographic areas 

Strength of the proposed approach is utilization of existing dataset. Generally, most 

of such data sources are open to public. Hence, several more information can be added 

to the aggregated surveillance report in a real time manner. Since the proposed approach 

was demonstrated in the case of malaria surveillance in Cambodia, it is clear that the 

approach needs to be validated in other epidemiological issues or geographic areas. One 

area that we can consider this approach make contribution is the real time monitoring of 

emerging infectious disease such as Ebora [139] and recent severe acute respiratory 

syndrome (SARS) corona virus out break [140]. Also the application to 

non-communicable disease such as life-style disease needs to be elucidated considering 

future transition of disease structure globally. Recent advancement in the information 
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technology enables the real-time collection of various kinds of data surrounding people. 

The recognition of Internet of Things (IoT) [141] is expanding and was actively 

introduced into the policy development in several countries [142]. Thus, we expect that 

the environmental context related to non-communicable disease could be understood 

using these advancing technologies such as atypical information surrounding people. 
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7. CONCLUSION 

 

The health information system is a SoS that transforms over time in response to the 

changing environment and needs of the stakeholders. Though the reliability and 

timeliness of the data from the health information system play critical roles in ensuring 

sustainable access to healthcare services, the quality of the data continues to be of 

concern. In this thesis we developed the continuous management cycle of health 

information system through the iterative process of the mapping approach to estimate 

the spatial heterogeneity of disease burdens and its application for the modeling and 

analysis of the health information system for the purpose of better healthcare resource 

deployment while improving the quality of health information in the case of the malaria 

issue in western Cambodia. We developed the spatial risk distribution model of malaria 

adjusted for the low-to-moderate transmission settings, considering environmental 

context disparities using routinely collected surveillance data in the health information 

system, remote sensing data, and publicly available data. Next, we demonstrated the 

engineering systems multiple-domain modeling approach to capture the transitional 

complexities of the health information SoS for the effective system engineering. The 

engineering systems multiple domain modeling framework was applied to capture the 

reformation of the architecture and process of the Cambodian malaria surveillance 

system. The model could flexibly accommodate not only the changes resulting from the 

reformation of the system but also the deviations from the designated state, which could 

assist in reflecting practical real world situations and provide opportunities for more 

relevant analyses. Using the architectural, process, and environmental attributes of the 

constituent systems, the transitional changes in the relative weights were scored in each 

interval of time, which helped in understanding the transitional complexities of the 

health information SoS. These scores could be used to facilitate the healthcare resource 

allocation on a timely basis while causing the decision-maker to consider changes in the 

environment. This approach provided further steps for analyzing transitional conditions 

of the constituent systems as well as the entire health information SoS, whereby 

informed decision making for optimizing the continuous system management was 

facilitated. With this initial step of scoring the transitional changes in the constituent 

systems for continuous systems management, several remaining questions are identified 

that require further investigations. Further progress in the quality improvement of health 
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information can be attained by the investigation of such work. The effort of continuous 

feedback cycle of the appropriate revisions of the modeling and provisions of the 

management actions in the healthcare system can contribute to providing sustained 

healthcare access to people.  
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10. APPENDIX 

 

Following figures are the trace plots of the Bayesian modeling frame to examine 

the convergence of each parameter. 
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Figure 47 Trace plot of the parameter in the Bayesian modeling for cross prediction for 

fine-scale malaria risk 

Parameter distributions for (A): Intercept, (B): NDVI, (C): NDWI,  

(D): TWI, (E): LLIN, (F): Temperature and (G): TF 

NDWI, Normalized difference water index; NDVI, Normalized difference vegetation index;  

TWI, Topographical wetness index; LLIN, Long lasting insecticide-treated net 
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Figure 48 Trace plot of the parameter in the spatiotemporal malaria risk modeling build 

by employing hierarchical Bayesian method 

Parameter distributions for (A): Intercept, (B): NDVI, (C): NDWI,  

(D): TWI, (E): LLIN, (F): Temperature and (G): TF, (H–Y): Location specific parameters of 18 

health operational districts, (Z–c): Temporal specific parameters from 2010 to 2013 

NDWI, Normalized difference water index; NDVI, Normalized difference vegetation index;  

TWI, Topographical wetness index; LLIN, Long lasting insecticide-treated net; 
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ACRONYM LIST 

 

API  Annual Parasite Incidence 

ABM  Agent-Based Modeling 

CNM  National Center for Parasitology, Entomology and Malaria Control 

CRS  Coordinate Reference System 

CVCA  Customer Chain Value Analysis 

DEM  Digital Elevation Model 

DMM  Domain Mapping Matrix 

DPHI  Department of Planning and Health Information at Ministry of Health 

DSM  Design Structure Matrix 

EBSMR  Standardized Morbidity Ratio Calculated by Empirical Bayes Method 

ES  Engineering Systems 

ES-MDM Engineering Systems Multiple-Domain Matrix 

FFBD  Functional Flow Block Diagram 

GIS  Geographical Information System 

HC  Health Center 

HIS  Health Information System 

HOD  Health Operational District 

IoT  Internet of Things 

IDW  Inverse Distance Weighed Method 

LLIN  Long-Lasting Insecticide Treated Mosquito Net 

LSWI  Land Surface Water Index 

MAE  Mean Absolute Error 

MCMC  Markov Chain Monte Carlo 

MMP  Mobile Migrant Population 

MoH  Ministry of Health 

MS  Malaria Information System 

NDVI  Normalized Difference Vegetation Index 

NDWI  Normalized Difference Water Index 

NGO  Non Governmental Organization 

NP  National Program 

PR  Parasite Rate 

PRs  Private Sectors 

PfTSI  Prasmodium falciparum Temperature Suitability Index 
RDT  Rapid Diagnostic Testing Kit 

PHD  Provincial Health Department 

RH  Referral Hospital 

RMSE  Root Mean Square Error 

SARS  Severe Acute Respiratory Syndrome 

SMR  Standardized Morbidity Ratio 

SoS  System of Systems 

TWI  Topograhical Wetness Index 

VMW  Village Malaria Worker 

WHO  World Health Organization 
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