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AAbstract 
 

In this thesis, we study the practicality and applicability of the dendritic geothermal heat 

exchanger with Y-shaped design components by using numerical analysis, to use economically 

geothermal heat. 

There is growing interest in designs that improve the performance of ground coupled heat pump 

systems. The classical design of ground coupling consists of pipes or channels with simple shapes 

(U-shaped, serpentines), and it has been used widely. Since the classical design requires a deep 

borehole to install the heat exchanger, to affect the construction difficulty and the engineering cost. 

In order to more promote usage of ground heat sources, we need engineering challenges that make 

good use of various configurations from Biomimetic. In industrial, Biomimetic was applied for an 

innovative engineering approach, for example the design of a pantograph and a nose of Shinkansen. 

It shows that the approach with Biomimetic is produced good results. 

In this study, we design the new type of geothermal heat exchanger using Consructal theory 

which is proposed by Professor Adrian Bejan at Duke University. Consructal theory shows the 

generation of design (configurations, patterns, geometry) in nature, to apply for the good way of 

design for the optimum shape. It produces good results to reduce a depth of excavation, and to 

increase heat transfer rate between the channel and the conducting medium in which it is buried. 

Here we propose tree-shaped structures with Y-shaped design that are configured as two palms 

facing each other. The angle between branches of Y-shaped design can vary freely. Along this process 

of morphing and optimizing at every step, the best configuration (bifurcation angles) emerges, and it 

is a lung or a root-like tree with Y-shaped bifurcations that fill the available volume. 

We compared the heat transfer performance of the evolutionary Y-shape, T-shape and classical 

design when tree with the same number of bifurcation levels and each design was constructed with 

same porosity. (T-shaped design has been proposed as tree shaped structure in earlier study.)  As 

the results Y-shaped designs outperform the reference T-shaped and classical designs. 

For the practicality study, we compared the depth of excavation of Y-shape and U-shape design, 

and made a rough estimate of the engineering cost. Although the engineering cost at present of 

Y-shape is higher than U-shape, Y-shaped structure can reduce to half of the depth of U-shaped 

structure. When it is difficult to dig the soil deeply, Y-shape will be suitable choice. It is hoped the 

technology development of drilling engineering for reduction of the digging cost of Y-shape. 

Finally, in this study, we showed the utility and the possible application of tree structure with a 

Y-shaped model for the geothermal heat exchanger. 
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NNomenclature  

Symbol  Definition, Unit 

A = effective heat transfer area, (m2) 
c, cP = specific heat at constant pressure, (J kg 1 K 1) 
D = diameter of channel, (m) 
G = depth of a solid volume shape, (m) 
h = effective heat transfer coefficient, (W m 2 K 1) 
H = height of a solid volume shape, (m) 
k = thermal conductivity, (W m 1 K 1) 
L = total pipe length, (m) 

m = mass flow rate of working fluid in pipe, (kg s 1) 
n  = unit normal vector, ( ) 
N = number of bifurcation levels, ( ) 
N(r) = number of boxes, (pcs.) 
P = pressure, (Pa) 
Pe = Péclet number, ( ) 

Pr = Prandtl number, ( ) 
R = Flow resistance, (N) 
Q = Heat quantity, (J) 
Red = Reynolds number, ( ) 
r = length, (pixel) 
S = spacing between pipe centers, (m) 
T = temperature, (K) 
t = time, (s) 
tb = time of boundary layer development in a solid, (s) 
tss = characteristic response time, (s) 
u,v,w = velocity components, (m s 1) 
U = mean velocity, (m s−1) 
V = volume of the cube, (m3) 
V0 = initial velocity, (m2 s 1) 
W = width of a solid volume shape, (m) 
x,y,z = Cartesian coordinates, (m) 
                        
  



 

iv 
 

GGreek Symbols 

Symbol  Definition, Unit 

 = thermal diffusivity, (m2 s 1) 
β = bifurcation angle, (°C) 
 = boundary layer thickness, (m) 
μ = viscosity, (Pa s) 
ν = kinematic viscosity, (m2 s 1) 
 = density, (kg m 3) 
θ = dimensionless temperature, ( ) 
φ = composite volume fraction (porosity), ( ) 
 
Subscripts and superscripts 

Symbol  Definition 

* = dimensionless 
∞ = ground 
avg = average 
f = fluid 
in = inlet 
out = outlet 
p = pipe 
s = solid 
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Fig. 2-1  Ground heat source in winter and summer 

H.P. : Heat Pump 
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Ground Coupled Heat Pump System GCHP Ground Water Heat Pump GWHP 

Figure 

  

Situation 

Use an antifreeze solution through a closed loop 

buried in the ground to exchange heat in the heat 

pump. 

Use water as the heat exchange fluid to circulate 

directly through the heat pump system. 

 

 

Fig. 2-2a

Grand Heat Exchanger GHEX

Ground Coupled Heat Pump System GCHP

 

 

 

Fig. 2-2b

Ground Water Heat Pump

Table 2-1 Ground Source Heat Pump System 

H.P. : Heat Pump 
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Closed type 

Opened type 

Geothermal warms your house in the winter Geothermal cools your house in the summer 

Fig. 2-2  Geothermal heat pump system in winter and summer, (a) closed type, (b) opened type 

(a) 

Geothermal warms your house in the winter Geothermal cools your house in the summer 

(b) 

H.P. : Heat Pump 
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2.3.3  

 

1000

30 Table 2-2 [3]

U

100 m

 

 

 

 

 

 

 

  

 

House (residential) 

Yokohama-city 

Building (Office) 

Tokyo 

Building (Public) 

Kawasaki-city 

Building 

(Commercial)  

Fukuoka-city 

Heating/cooling 

area 
21 2 3030 2 80 2 9496 2 

Geothermal heat 

exchanger 

Double U-tube 

 

90 ×1unit 

Double U-tube 

 

75 ×8units 

Rotary penetration 

pile(φ165.2 ) 

30 ×8units 

Double U-tube 

 

100 ×70units 

Geothermal heat 

pump system 

Cool 4kW 

Hear 5kW 

Cool 56kW 

Heat 63kW 

Cool 28kW 

Heat31.5kW 

Cool 527kW 

Heat 530kW 

The date of 

introduction 
August, 2012 November, 2008 March, 2009 April, 2012 

Table 2-2 The example of actual case on geothermal heat pump system [3] 
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Table 2-3 [3-6]  
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(1) (5)

 

a   

 

b   

 

c   

 

 

 

 

 

Countermeasure  

Developing new geothermal heat 
exchanger 

To decrease in difficulty for excavating work 

To increase in efficiency for geothermal heat exchanger 

Improving  publicity 
Advertise the merit of geothermal usage 

Proactively introduce for public facility 

Facilitation geology information Facilitate the data base of geology information 

Environment assessments 
Continuous research of a change in the underground 
temperature 

Dissemination of technology 
Standardization of know/how to use a geothermal heat 

Human resources development 

Table 2-3 The task for the dissemination of the Geothermal Heat Pump system [3] 
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2.5.4 Constructal theory  

 

Constructal theory

 

Fig. 2-3

Fig. 2-4

2

Fig. 2-3 Lena river, Siberia [41] Fig. 2-4 Chikuma river, Nagano [Google earth] 
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2.6  Constructal theory  

 

Constructal theory

Constructal 

theory [43]

Fig. 2-5
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  D2 / D1

 

 (2-1) 

 (2-2) 
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Fig. 2-5 T-shaped assembly of round pipes [43] 
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Fig. 3-1
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Figure 3-1 
 U-shaped pipe inside a cube when S/D = 5. 

 

3 U S/D = 2, 5, 10
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 (3-1) 

 (3-2) 

 (3-3) 

 (3-4) 

 x,y,z Fig.3-1

u,v,w P μ
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T αf αs
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 (3-9) 
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 (3-11) 

 (3-12) 

Pout Tin

V1/3 (3-1) (3-7)  

 (3-13) 

 (3-14) 

 (3-15) 

 (3-16) 

 (3-17) 

 (3-18) 

 (3-19) 
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 (3-20) 

 

 (3-21) 

 (3-22) 

 (3-23) 

 

 (3-24) 

L = 1.8 m, D = 4 cm, = 2.3×10 2 kg/s Red = 720

 

0.002 U

Fig. 3-2

U 2

θf L*  

 (3-25) 

 (3-26) 

T∞ Tf Tin Tin

θf 1 Fig. 3-2  
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Figure 3-2 
 The velocity distribution and the mean temperature θf along the length of the U-pipe. 

(θf Dimensionless fluid temperature, L*: Dimensionless total pipe length) 
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Fig. 3-3(a) θout θavg

Red = 720, S/D = 5  

 (3-27) 

 (3-28) 

T∞ Tf Tin θout θavg

Tout Tavg Tin

Fig. 3-3(b)
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Figure 3-3 (a) 
The fluid outlet and the solid average temperature versus time. 

 
(θout : Dimensionless outlet temperature, θavg : Dimensionless average temperature of the cube,  

t*: Dimensionless time) 
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Figure 3-3 (b) 
 The effect of the Reynolds number on the outlet temperature. 

 
(Red: Reynolds number, θout : Dimensionless outlet temperature, t*: Dimensionless time 

S/D: Space between pipes / Diameter of pipe) 
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Fig. 3-4(a) θout S/D

θout Tout

 
 

Figure 3-4 (a) 
 The effect of S/D on the outlet temperature. 

 
(Red: Reynolds number, θout : Dimensionless outlet temperature, t*: Dimensionless time 

S/D: Space between pipes / Diameter of pipe) 
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Fig. 3-4(b) Fig. 3-4(a)

t* S/D

S/D 5 S/D
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Figure 3-4 (b) 
 The relation between spacing, outlet temperature and time. 

 
(θout : Dimensionless outlet temperature, t*: Dimensionless time 

S/D: Space between pipes / Diameter of pipe) 
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Figure 3-5 
 Three shapes of the solid volume. 
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Figure 3-6 
The effect of volume shape on the outlet temperature. 

 
(θout : Dimensionless outlet temperature, t*: Dimensionless time 

S/D: Space between pipes / Diameter of pipe, L/D: total pipe length / Diameter of pipe) 
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3.2  

 
Fig. 3-7 4

U S/D 15 L/D = 45, G = 1

0.002 Fig. 3-7 Fig. 3-2 θf

  

 

Figure 3-7 
Four pipe shapes in a solid cube, and the fluid temperature along the length of serpentine 1. 

(θf Dimensionless fluid temperature, L*: Dimensionless total pipe length) 
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 Fig. 3-8 Fig. 3-8(a) 

2 Fig. 3-4 S/D 5

S/D 5 15

 

θout = 1 80%

tss*  

 (3-29) 

Fig. 3-8(b) tss*  

 (3-30) 

Vavg tss*

 

Fig. 3-9

3 G = 2
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Figure 3-8 (a) 
The outlet temperature in the four configurations of Fig. 3-7. 

 
(θout : Dimensionless outlet temperature, t*: Dimensionless time,  

L/D: total pipe length / Diameter of pipe, G: Depth of a solid volume shape,  
φ: porosity, Red: Reynolds number) 
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Figure 3-8 (b) 
 The relation between the time of approach to equilibrium and the Péclet number of the fluid. 

 
(tss*: Dimensionless characteristic response time, Pef: Péclet number,  

L/D: total pipe length / Diameter of pipe, G: Depth of a solid volume shape,  
φ: porosity, Red: Reynolds number)) 
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Figure 3-9  
 Three serpentine pipes in a fixed volume, and the effect of volume shape on the outlet temperature. 

 
(θout : Dimensionless outlet temperature, t*: Dimensionless time) 
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3.3  

 

Fig. 3-4

S/D 5

 

(t > 0) Fig. 3-11(a)

δ ~ (αst)1/2 (3-6)

δ 

δ 

t ~ tb

δ(ts) ~ S/2

 

 (3-36) 

 

ms cs

tb

 

 (3-37) 

Tout Tin T Tavg T Tavg  

(3-37)  
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 (3-38) 

(3-36) (3-39)  

 (3-39) 

Fig. 3-4 3 ms = 2050 kg, cs = 

1840 J/kgK, αs = 1.38×10 7 m2/s,  = 2.3×10 2 kg/s, cP = 4183 J/kg K D = 4 cm

(3-39) 2 S/D

U

 

  



3  

55 
 

 

Figure 3-11 
(a) The solid sleeve of cooled solid that grows around the buried pipe, and designs for high density 

packing: (b) Packing in one layer, (c) Packing in two layers. 
 

(m: mass flow rate of working fluid in pipe, D: Diameter of pipe, δ: boundary layer thickness) 
   

(a)

(b)

(c)
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Fig. 4-1

T

 

 (4-1) 

T Fig. 4-2

 

V = 2L1 × 2L1 × 2L1

T1 T0

 

  = 0.023 kg/s cp = 4183 J/kg Tout(t) Tin

tf = 100 s  Qf = cp[Tout(t) Tin]tf

Tout(t) t Tin

ms = 2050 kg cs = 1840 J/kg K

T Tavg(t) Qs = mscs[T Tavg(t)] T
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Qf Qs 0.25%
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Figure 4-1  Tree structures with T-shaped bifurcations. Top: view from above. Bottom: two trees in 
counter flow, for heat transfer between a point and a volume. 
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Figure 4-2 
 Tree architecture with freely varying angles, and with lengths according to Eqs. (4-1) 
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D1 L1

Hess-Murray Rule [41]  

 (4-2) 
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Figure 4-3 
 The effect of the bifurcation angle β1 on the average temperature. 

 
(θavg: Dimensionless average temperature of the cube) 
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Figure 4-4  (a) The optimization of bifurcation angle β2 when the first angle was set at β1 = 110°, and (b) The 
effect of the symmetric vascular design on the average temperature when β1 = 110° and β2 = 115°. 
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Figure 4-5  Temperature field around the tree when (a) β1 = 110°, (b) β1 = 110° and β2 = 115° with 
symmetric design, and (c) β1 = 110°, β2A = 80° and β2B = 35°. 
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Figure 4-6  (a) Comparison Y-shaped design with T-shaped, (b) Temperature field around Y-shaped tree when β1 

= 110°, β2A = 80° and β2B = 35°, (c) Temperature field around T-shaped tree when β1 = 180° and β2 = 180°. 
(θavg: Dimensionless average temperature of the cube, t*: Dimensionless time) 
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Figure 4-7 
 Vascular composites inside a larger cube. 
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Figure 4-8 
 The effect of the bifurcation angle β1 on the average temperature in a larger cube. 

(θavg: Dimensionless average temperature of the cube) 
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Figure 4-9  (a) The optimization of bifurcation angle β2 when the first angle was set at β1 = 95° in a larger cube, and 
(b) The effect of the symmetric vascular design on the average temperature when β1 = 95° and β2 = 80°. 
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Figure 4-10  Repeating the optimization of bifurcation angle β1, while keeping second angle optimized 
value, β2 = 80° (symmetry) in a larger cube. 

 
(θavg: Dimensionless average temperature of the cube) 
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Figure 4-11  The optimization of bifurcation angle β3 when β1 = 100° and β2 = 80° in a large cube, and (b) The 

effect of the symmetric design on average temperature when β1 = 100°, β2 = 80° and β3 = 85° in a larger cube. 
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Figure 4-12(a) Repeating the optimization of bifurcation angle β1, while keeping second angle optimized value, β2 = 80° 
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Figure 4-15 The temperature field around the tree in a large solid: (a) Trunk; (b) Tree when β1 = 95°; (c) Tree when β1 = 

95° and β2 = 80° (β2A = β2B = 40°); (d) Tree when the optimization is repeated and β1 = 100°, β2 = 80° (β2A = β2B = 

40°); (e) Tree when β1 = 100°; β2 = 80° (β2A = β2B = 40°) and β3 = 85° (β3A = β3B = 42.5°); (f) Tree when the optimization 

is repeated and β1 = 101°, β2 = 81° (β2A = β2B = 40.5°) and β3 = 85° (β3A = β3B = 42.5°); (g) Tree when β1 = 101°, β2 = 81° 

(β2A = β2B = 40.5°), β3 = 85° (β3A = β3B = 42.5°) and β4 = 70° (β4A = 40° β4B = 30°) and (h) Tree when the optimization is 

repeated and β1 = 105°, β2 = 82° (β2A = β2B = 41°), β3 = 85° (β3A = β3B = 42.5°) and β4 = 70° (β4A = 40° β4B = 30°). 
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Figure 4-16 
The thermal performance of Y-shaped and T-shaped tree designs: (a) N = 1; (b) N = 2 
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Figure 4-16 
The thermal performance of Y-shaped and T-shaped tree designs: (c) N = 3; (d) N = 4 
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Figure 4-17 
Comparison between the Y and T designs when t* = 1. 
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Figure 4-18 
 Validation of the bifurcation angle β1 on the average temperature. 

 
(θavg: Dimensionless average temperature of the cube) 
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Figure 4-19 
 Validation of the bifurcation angle β2 when the first angle was set at β1 = 95° 
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Figure 4-20 

 Fractal dimension at T-shaped design (N = 1) 
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Figure 4-21 
 Fractal dimension at T-shaped design (N = 4) 

 
(r: size of the box, N(r): number of the box) 

 

y = 4125.7x-1.272 
R² = 0.9991 

1

10

100

1000

1 10 100

N
(r

) 

r 

T-shaped design (N = 4) 



4 Y  

93 
 

 

Figure 4-22 
 Fractal dimension at Y-shaped design (N = 4) 

 
(r: size of the box, N(r): number of the box) 

 

y = 4411x-1.258 
R² = 0.9985 

1

10

100

1000

1 10 100

N
(r

) 

r 

Y-shaped design (N = 4) 



5  

94 
 

5  

 
U

T 2 Y T,Y

Y 2

Y T U

 

 

5.1  

 

S Fig. 5-1

S Fig. 

5-2

D T Y

L V = 4L1 × 4L1 × 4L1

T1 T0

 

4 Combelles (2012)[34]

4



5  

95 
 

 

 

 

Figure 5-1 
Tree-tree flow and classical design. 
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Figure 5-2 
 Optimal bifurcation angles of Y-shaped designs. 
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Figure 5-2 
 Optimal bifurcation angles of Y-shaped designs. 
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Figure 5-3  Tree structure and classical design in a cube. Top: Y-shaped tree structure with four 
bifurcation levels. Middle: T-shaped tree structure with four bifurcation levels. Bottom: Classical 

design. 
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Figure 5-4 
 Thermal performance of Y-shaped, T-shaped and classical designs. 
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Figure 5-5 
  The effect of porosity on thermal performance when t* = 1. 
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Figure 5-6 
 Comparison between the Y and T designs when t* = 0.2 and 1. 
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Figure 5-7  Thermal performance of T-shaped tree structure in the four levels of bifurcation: (a) 
numerical analysis; (b) scale analysis based on Eqs. (5-13) and (5-16). 
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Figure 6-1 
  Tree-tree flow design. 
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Figure 6-2 

 Double tree model inside a solid when N = 1. 
(N: Bifurcation level) 
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Figure 6-3   
The effect of the tree palms spacing on thermal performance on Y-shaped structure, N = 1. 

(θavg: Dimensionless average temperature of the cube, S: Spacing of Y-shaped structure, 
t*: Dimensionless time , N: Bifurcation level) 
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Figure 6-4  
The effect of the tree palms spacing on thermal performance on T-shaped structure, N = 1. 

 
(θavg: Dimensionless average temperature of the cube, S: Spacing of T-shaped structure, 

t*: Dimensionless time , N: Bifurcation level) 
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Figure 6-5   

Comparison Y-shaped design with T-shaped and U-shaped. 
 

(θavg: Dimensionless average temperature of the cube, t*: Dimensionless time 
φ: Porosity, N: Bifurcation level) 
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Figure 6-6 
The optimal tree spacing on thermal performance on Y-shaped structure, N = 2. 

 
(θavg: Dimensionless average temperature of the cube, S: Spacing of T-shaped structure, 

t*: Dimensionless time, N: Bifurcation level) 
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Figure 6-7 
 The optimal tree spacing on thermal performance on T-shaped structure, N = 2. 

 
(θavg: Dimensionless average temperature of the cube, S: Spacing of T-shaped structure, 

t*: Dimensionless time, N: Bifurcation level) 
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Figure 6-8 
 Double tree model inside a smaller and larger solid when N = 1. 
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Figure 6-9 
 The effect of the cube size on tree palms spacing on Y-shaped structure in a smaller cube, N = 2. 

 
(θavg: Dimensionless average temperature of the cube, S: Spacing of T-shaped structure, 

t*: Dimensionless time, N: Bifurcation level) 
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Figure 6-10 
The effect of the cube size on tree palms spacing on T-shaped structure in a larger cube, N = 2. 

 
(θavg: Dimensionless average temperature of the cube, S: Spacing of T-shaped structure, 

t*: Dimensionless time, N: Bifurcation level) 
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Figure 6-11  Thermal performance when 1st and 2nd bifurcation level were changed to be the same 
porosity in a cube, Y-shaped structure. 
 

(θavg: Dimensionless average temperature of the cube, S: Spacing of T-shaped structure, 
t*: Dimensionless time, N: Bifurcation level) 
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Table 6-1 
The comparison of the optimal spacing obtained for the three cubes. 

(N: Bifurcation level, S: Spacing of T-shaped structure, φ: Porosity, 
V: Volume of cube, L1: length of the truck) 
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Figure 6-12 Thermal performance when 1st and 2nd bifurcation level were changed to be the same 
porosity in a cube (b) T-shaped structure. 

 
(θavg: Dimensionless average temperature of the cube, S: Spacing of T-shaped structure, 

t*: Dimensionless time, N: Bifurcation level) 
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Figure 6-13  Thermal performance when 1st and 2nd bifurcation level of Y-shaped structure were 
changed to be the same porosity in a smaller cube. 

 
(θavg: Dimensionless average temperature of the cube, S: Spacing of T-shaped structure, 

t*: Dimensionless time, N: Bifurcation level) 
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U

 

 

 

 

 

 U-shaped design Y-shaped design (N = 4) 

Pipe 25A (1B) 27  27  

Penetration depth about 130 m about 60 m 

Going pipe 1unit 1unit 

Returning pipe 1unit 1unit 

Area of heat 
exchanger 

22 m2 22m2 

 *Assumed single U-shaped tube *Diameter and length of each pipe 

Note 

 L1 23.8 m D1 27 mm 1 pipe 

 L2 11.9 m D2 21.4 mm 2 pipes 

 L3 11.9 m D3 17 mm 4 pipes 

 L4 6.0 m D4 13.5 mm 8 pipes 

 L5 6.0 m D5 10.7 mm 16 pipes 

*Regarding on calculating the area of heat exchanger, the joint parts aren't included. 

  

Table 6-2 The comparison of penetration depth on each model 
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Fig. 6-14 
Geothermal heat pump system with U-shaped and Y-shaped design for residential house 
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Table 6-3 
ring cost of geothermal heat pump system with Y-shaped design 
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Table 6-4 
neering cost of geothermal heat pump system with U-shaped design 
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*In the case of single U-shaped design 
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Constructal theory 

 Tasks Targets Results 

1. 
Keep an enough heat 

transfer area 

To effectively utilize site area 

Proposed the tree-tree structure that 

prevent from interference with each 

pipe. 

2. 
Reduce an excavation 

depth 

Reduced an excavation depth to half of 

U-shaped design*.  

Table 7-1 Tasks and Targets 
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