
Title Development of visual programming environment for virtual reality application
Sub Title
Author 張, 純(Zhang, Chun)

小木, 哲朗(Ogi, Tetsurō)
Publisher 慶應義塾大学大学院システムデザイン・マネジメント研究科

Publication year 2020
Jtitle

JaLC DOI
Abstract
Notes 修士学位論文. 2020年度システムエンジニアリング学 第313号
Genre Thesis or Dissertation
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO40002001-00002020-

0004

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Master's Dissertation 2020

Development of Visual

Programming Environment

for Virtual Reality

Application

Chun Zhang
（Student ID Number：81834548）

Supervisor Tetsuro Ogi

July 2020

Graduate School of System Design and Management,

Keio University

Major in System Design and Management

i

 SUMMARY OF MASTER'S DISSERTATION

Student

Identification

Number

81834548

Name

Chun Zhang

Title

Development of Visual Programming Environment for Virtual Reality

Application

Abstract

Recent Virtual Reality technology implement is a slice of the field due to the

technology provide an interactive three-dimensional computer-generated

environment, which can help characters better understand the work in a

realistic simulated environment. Given the limitation of the available VR

program platform, it still arduous for nonprogrammers to develop a VR project

independently. Therefore, we developed a visual programming environment

that user can build their own VR project in a three-dimensional setting without

code, and it is easily used for nonprogrammers, which provide a simplified and

logical programming method. It allowed the user to realize the functions by

match the object with the function with the VR controller and headset in the

VR environment. The ultimate goal of the research is to allow the non-experts

to utilize VR to help them study or work efficiently.

Key Word (5 words)

VR; Visual Programming; Three-Dimension Interactive; User Interface;

Immersive Experience

ii

Table of Contents

List of Figures .. iv

List of Tables .. vi

Chapter 1. Introduction .. 1

1.1. Research Background .. 1

1.1.1 Virtual Reality Background ... 1

1.1.2 The Difficulty of VR Application to Non-programmer 2

1.2. Research Purpose .. 3

1.3. Dissertation Structure .. 6

Chapter 2. Related Research ... 8

2.1. Programming in Virtual Reality .. 8

2.2. Visual Programming .. 9

Chapter 3. VR Programming Concept Model .. 12

3.1. Requirement Analysis ... 12

3.1.1 Stakeholder Analysis ... 12

3.1.2 Stakeholder Requirements... 13

3.2. System Structure ... 15

Chapter 4. Project Introduction .. 23

4.1. Introduction ... 23

4.2. Development Tool and Platform ... 23

4.3. Function Introduction .. 34

4.3.1 Interaction in VR Environment ... 34

iii

4.3.2 3D Menu and Movement... 44

4.3.3 Function Added ... 52

Chapter 5. VR Programming Validation .. 55

Chapter 6. Conclusion and Future Works ... 65

6.1. Overall Summary .. 65

6.2. Future Work .. 65

Acknowledgments .. 67

References .. 68

Appendix .. 74

iv

List of Figures

Figure 3.1: Concept Context Diagram.. 13

Figure 3.2: System Structure .. 16

Figure 3.3: ER model ... 17

Figure 3.4: Function Flow Block Diagram... 18

Figure 3.5: Object, Properties, and Functions .. 19

Figure 3.6: Inner Model Program ... 21

Figure 3.7: Between Models Program .. 22

Figure 4.1: A-frame Developed Web Page ... 25

Figure 4.2: Unity3D WebGL Platform ... 26

Figure 4.3: Unity3D Developed Scene ... 27

Figure 4.4: Controller Model .. 28

Figure 4.5: Running in Night Firefox ... 29

Figure 4.6: Run VR Mode in Night Firefox ... 30

Figure 4.7: Supermedium ... 30

Figure 4.8: Supermedium Editor Page ... 31

Figure 4.9: A-frame Developed Web Page ... 32

Figure 4.10: Scenario Model Selection .. 36

Figure 4.11: Execution Stage of Model Selection .. 37

Figure 4.13: Normal 2D UI .. 39

Figure 4.14: Normal 2D UI in VR Environment .. 39

Figure 4.15: 3D Button ... 40

v

Figure 4.16: 3D UI ... 41

Figure 4.17: 3D Menu-1 ... 45

Figure 4.18: 3D Menu-2 ... 45

Figure 4.19: Main Menu Scene .. 46

Figure 4.20: Secondary Menu Scene .. 47

Figure 4.21: Teleport in VR .. 48

Figure 4.22: Guidance of the Flow ... 49

Figure 4.23: Movement and 3D Button Combination .. 50

Figure 4.24: Clicking the 3D Button .. 51

Figure 4.25: Function Added Scenario ... 52

Figure 4.26: Function Button ... 53

Figure 4.29: Function Space ... 54

Figure 5.1: User test Three-dimension menu by VR equipment in VR

environment .. 56

Figure 5.2: Answer Analysis 1 .. 57

Figure 5.3: Answer Analysis 2 .. 58

Figure 5.4: Answer Analysis 3 .. 59

Figure 5.5: Answer Analysis 4 .. 60

Figure 5.6: Answer Analysis 5 .. 61

Figure 5.7: Answer Analysis 6 .. 62

Figure 5.8: Answer Analysis 7 .. 63

vi

List of Tables

Table 3.1: Different Interaction Tools .. 12

Table 3.2: Stakeholder Requirments ... 14

Table 4.1: Compared Development Tools .. 33

Table 4.2: Different Interaction Tools .. 34

Table 4.3: Demos Compasison ... 42

Table 5.1: Data Statistic 1 ... 57

Table 5.2: Data Statistic 2 ... 58

Table 5.3: Data Statistic 3 ... 59

Table 5.4: Data Statistic 4 ... 60

Table 5.5: Data Statistic 5 ... 61

Table 5.6: Data Statistic 6 ... 62

Table 5.7: Data Statistic 7 ... 63

1

Chapter 1. Introduction

1.1. Research Background

1.1.1 Virtual Reality Background

VR is the abbreviation of Virtual Reality, which is a computer simulation

technology that can create and experience a virtual world[1]. It uses a computer

to generate an interactive three-dimensional dynamic scene, and its physical

behavior simulates. The system can immerse users in the environment[2]. With

economic globalization, VR applies in many aspects, such as education,

entertainment, and electronic shopping. All in all, VR has great potential and far-

reaching research directions in the future. And with the development and

improvement of VR technology, VR can provide the user with a better

experience.

Virtual worlds are persistent virtual environments in which people experience

others as

being there with them - and where they can interact with them[3]. VR technology

integrates various scientific techniques such as computer graphics technology,

computer simulation technology, sensor technology, display technology, etc. It

creates a virtual information environment on the multi-dimensional information

space, which can make users feel immersive. Therefore, immersion, interaction,

and imagination are the three primary characteristics of the VR environment

system. The core of virtual technology is modeling and simulation.

2

Regardless of whether it is a cultural relic in a museum or a historical relic that

has preserved so far, the information currently delivered to the audience is

incomplete. VR/AR technology can make up for this regret, restore as much

traditional culture as possible. VR is a crucial frontier direction for a new

generation of information technology. VR technology integrates technologies in

multiple fields such as multimedia, sensors, new displays, the Internet, and

artificial intelligence. It expects to become a primary platform for many

innovative applications, spawn many new products, new formats, and new

models, which might be leading a new round of technology and industry change.

After more than ten years of development, VR/AR technology is gradually

maturing. At present, VR/AR technology has steadily grown internationally, and

the global VR industry ecology has taken initial shape.

VR technology implement is a slice of the field due to the technology provide an

interactive three-dimensional computer-generated environment, which can help

characters better understand the work in a realistic simulated environment. Given

the limitation of the available VR program platform, it still arduous for

nonprogrammers to develop a VR project independently.

1.1.2 The Difficulty of VR Application to Non-programmer

In the beginning, I found that this problem exists because there is a group of

people who want to use VR, but because of technical limitations, they have to

3

give up this option. Therefore, I hope to seize the needs of this group of people,

so that even if you do not have professional skills, you can use VR well. For

example, if students or teachers of non-programming related majors want to use

VR technology to help their research or work, they can change the way of image

and let beginners or people without foundation can also use VR quickly.

It is arduous for nonprogrammer to develop a VR project-related their work or

study. The conventional way for developing a VR project requiring developers to

master at least one programming language and use VR engine, but for the people

who do not have related knowledge such as English teachers, it a burdensome

work to develop a VR demo by themselves. Consequently, how to make it easy

and time-saving for a person without a programming background to use VR to

help them develop a VR application used in their work? The problem is too

significant to solve by myself, so I want to narrow the scope of the problem and

change it to how to help a teacher without programming background use VR to

help them develop a VR application used in teaching?

1.2. Research Purpose

The purpose of my research is to make users without programming experience to

develop VR projects by themselves in a convenient, time-saving, visible way. So

the system should provide a simple program method that immerses users in the

VR environment and can create an object and write function by VR controller

4

instead of learning a new programming language from the beginning. It allows

the user without programming experience can efficiently and effectively use VR

technology to help their work or research.

How to provide a three-dimension and virtual reality environment for

nonprogrammers to develop virtual reality applications? The virtual reality

technology is implemented in many fields and has full applications in medical,

educational, scientific and technological, gaming, and many other areas. The

virtual reality system uses computer simulation to create a three-dimensional

space of the virtual world, allowing users to immerse themselves in the virtual

environment, and have an immersive experience. However, it is still arduous for

nonprogrammer to develop a VR project-related their work or study. The

conventional way for developing a VR project requiring developers to master at

least one programming language and use VR engine, but for the people who do

not have related knowledge such as English teachers, it a burdensome work to

develop a VR demo by themselves. Consequently, how to make it easy for people

who are not good at programming to build VR applications by themselves?

To realize this goal, we first developed a VR programming environment to

immerse users in the three-dimensional environment, which is for users to

understand better VR and how to create VR. Because users can directly develop

their project in the three-dimension climate and see what they create in this

virtual world, thus users skip the step of development in a two-dimension

5

environment and then execute the plan in three-dimension the environment. In

other words, users need not transform the code or functions in the two-dimension

environment to the result in the three-dimension environment. Besides, it will

spend too much time on nonprogrammers learning a new programming language.

Therefore, it is indispensable to provide a programming method using easily

understood language rather than machine language. The original programming

method needs to consider the equipment used in the VR environment as well.

However, when I started my research, I found out that if my target user is

someone who doesn't know how to program but wants to do VR development,

this research goal is too big for me to start, so I narrowed my research scope.

Among the people who want to develop VR but don't have a programming

foundation, I have locked one of the them-language education teachers. First of

all, language education teachers generally do not have a programming

background. Secondly, they have corresponding needs in class and need to use

VR technology to assist their work. So I said that my research object is to locate

the teacher. At the same time, the problem I hope to solve is also narrowed down

to how to enable language education teachers to quickly use VR technology to

develop a VR scene to help them use in class?

Overall, the objective lies in providing a simple program method that immerses

users in the VR environment and can create an object and write function by VR

controller instead of learning a new programming language from the beginning.

6

But because the scope of this research is too broad, I narrowed the scope of the

study to how to enable teachers in the education industry who want to use VR to

help them improve their classrooms simply and quickly use VR for development.

1.3. Dissertation Structure

This dissertation includes six chapters, followed by acknowledgment reference

and appendix.

Chapter 1 is an overview of this dissertation. In this section, the research

background is discussed, and the problem that VR development hard for

nonprogrammers is found based on the current situation of VR after that led to

the purpose of research.

Chapter 2 analyzes two related studies and compares my research direction with

their similarities and differences. The research direction is more explicit.

Chapter 3 contains the requirement analysis of this system and the system

structure. The requirements analyze based on the stakeholder analysis of the

system. From the elements, the system structure can be designed.

Chapter 4 is the main body of this dissertation. In this chapter, the development

process and the functions designed are explained. It shows how users use this

7

system to create a VR program in the VR environment with headset and

controllers instead of a keyboard and mouse.

Chapter 5 is a validation part of the 3D menu and analyzes the questionnaire's

data in a statistic way.

Chapter 6 is the last section concluding my research and then talks about this

project's future work.

8

Chapter 2. Related Research

2.1. Programming in Virtual Reality

In October of 2014, Brian released a video of Rift Sketch: a programming

interface that uses the Three.js library to render real-time models in virtual

reality. Not only can you fully code in VR, but you could simply look to your left

and see 3D objects performing live beside the text input window[4].

Another one is Primitive, a startup that pitched at an HTC venture capital

accelerator this week in San Francisco. Primitive represents one of the most

exciting use-cases I've seen for VR so far—it creates 3D visualizations of source

code that can be collaboratively explored and analyzed in VR. It's creators

believe that bringing a spatial understanding to otherwise flat code enhances the

development process of complex code created by distributed development

teams[5].

However, these two research of programming in VR still require user coding,

which means that even if the programming environment is changed to a virtual

environment, programming is again using code to program. For those without a

programming background, they still need to re-learn how to program to use, if

they want to do VR program development.

9

What are the challenges to using VR technology for the design and development

of VR-based instructional activities, and what are the recommended approaches?

There is a research address the issues regarding identifying the appropriate

techniques for integrating VR into traditional instructional design, and the

considerations for development for non-technical educators[6]. It spends a lot of

time designing in VR, so immerse users into the VR environment can make them

better understand what VR is and how to develop their VR world.

In one study[7], they have proposed an operation method using a VR controller,

and the estimated usability of our approach comparing with a technique based on

hand gesture. As a result, they found that a VR controller had good usability in

operations other than moving blocks. Therefore, the VR controller can be a

useful interaction tool and programming tool in the VR environment.

From these studies, the VR is a more concrete and easy-to-understand

programming environment, but when the programming environment changes,

interaction methods and interactive tools will be affected. Therefore, if the

traditional programming method is transferred to the VR environment, it will be

challenging to operate and learn.

2.2. Visual Programming

10

In general, programmers describe some source codes using a text editor and

compile them to get high performance of a computer. This coding style needs

advanced knowledge of grammar and technique of programming. It takes a

considerable amount of time to learn programming languages[8].

In the text-based programming languages such as C and Java, programmers

generally develop software using a keyboard and text editors. On the other hand, in

the environment of the visual programming languages, programmers develop the

software by arranging blocks with various functions, mainly using mouse pointing

and touch operation. This environment is suitable for beginners of programming to

start learning because grammar errors that frequently occur in the text-based

programming language are challenging to occur while developing a program[7].

Even there is research found a fun-learning approach to programming[11], it

spends a long time studying a new programming language and the logic of how

to program.

A 3D virtual space development environment for end-users[9] allows users to

visualize and manipulate programs in 3D representation. That visual

programming environment is expected to enhance motivation to programming,

understanding of applications, and efficiency of programming education[10].

Innovations like the graphical user interface exposed essential elements like the

filesystem to a broader audience, and the Internet has become increasingly

11

democratized as user-friendly tools like WordPress, Youtube, and Soundcloud

allow anyone to create, publish and distribute content without writing a line of

code[12]. Scratch is a visual programming language that you can use the block to

program. Users of the site can create online projects using a block-like interface.

Scratch is taught and used in after-school centers, schools, and colleges, as well

as other public knowledge institutions. As of April 2020, community statistics on

the language's official website show more than 52 million projects shared by over

54 million users, and almost 55 million monthly website visits[13].

Even small children can program, which proves that visual programming has

deficient requirements for users and can be used without learning a programming

language. Therefore, if visual programming is put in the environment of VR, it

can satisfy users that even if they have not learned programming, they can still

start to program in the visual language in the VR environment quickly.

12

Chapter 3. VR Programming Concept

Model

3.1. Requirement Analysis

3.1.1 Stakeholder Analysis

In order to solve the target issue, it is essential to map all the stakeholders

accordingly. In order to make a proper system of functions, the stakeholders

should be taken into account; otherwise, the system can be perceived as

incomplete. The different roles of stakeholders in the system should be

emphasized to create an understanding of the operations. Also, various

stakeholders have different priorities. A proper functioning system should make a

difference in preferences into account. We specified the following stakeholders.

Table 3.1: Different Interaction Tools

Stakeholders Importance in system

Teacher Key user (Primary)

Student Key user (Secondary)

Teacher: This primary role is given to the most prominent users of our system

while the system is in operation.

13

Student: These stakeholders are the second most important in our system and

play a critical role in supporting the primary users.

3.1.2 Stakeholder Requirements

First, I will analyze the needs of the entire system from the needs of the

stakeholder. Requirements analysis is a vital activity in research and an essential

part of the software development cycle. This stage is to analyze what the system

needs to "implement" instead of considering how to implement it. Only when it is

clear what the system needs to achieve, can we know the development direction

and function realization of the entire system.

Figure 3.1: Concept Context Diagram

As you can see from the Concept Context Diagram (Figure 3.1), I did a highly

generalized context analysis. The reason I do this is mainly to analyze the

14

relationship between stakeholders and this system, so I can weaken the internal

part of the system and focus on the interaction between the user and the system.

About the entire system, a detailed description will be given in the system

structure chapter.

Teachers need to use this system, creating a VR project and share this project to

students, so the teacher account has a higher level than the student account

because it needs one more requirement of sharing. Students can access the

system and experience the project that the teacher shares with them, but students

can not create projects by themselves.

Table 3.2: Stakeholder Requirments

Stakeholders Requirments

Teacher 1. Register teacher account

2. Login

3. Create a project

4. Share project with others

5. Log out

Student 1. Register student account

2. Login

3. Experience project

4. Log out

For teachers, there are five needs, while students have only four. It also shows

that different users have different priorities. Teachers have higher priority than

students so that they can use more functions of the system.

15

3.2. System Structure

After analyzing the relationship between the system and the user, I need to

analyze the structure of the system and discuss how to design the system.

This system consists of three parts: VR Visualization Interface, Programming in

VR Environment, Library. Next, the three parts will be introduced in sequence.

16

Figure 3.2: System Structure

➢ Library – ER model

The library is mainly used to store system data, such as user information,

functions, and models.

17

Figure 3.3: ER model

As can be seen from the ER diagram, the data storage is based on each user's

account. An account can create multiple projects, a project can contain various

scenes, a scene has numerous models, and multiple methods can be added to a

model (Figure 3.3). The data of these items will be stored in the database of the

18

system. When the user wants to access, the user can log in to the account to

access the program or share it with other users.

➢ Programming in VR Environment

In fact, in the entire system, the user is not entirely in the VR environment. When

users log in and log out and register accounts, users use the mouse and keyboard

to register traditionally. But when the project was started, the environment was

already in a VR environment.

Figure 3.4: Function Flow Block Diagram

So, you can see from the FFBD that all the methods in the Create Project block

are all in the VR environment, which also means that all other processes in the

generous of the Create VR Project are programming parts.

19

And how is 3D programming implemented in VR? Selecting a type of object, and

this type of object corresponds to specific properties. The properties correspond

to particular functions.

Figure 3.5: Object, Properties, and Functions

There are three kinds of objects that are the 3D model, UI, and audio. Moreover,

there are two kinds of 3D models, and one is living objects like an animal or

human model, anther one is the inanimate model. The reason to classify models

is that different types of models need to add corresponding methods. For

20

example, if your model is a tree, you cannot add a means of speaking to the tree,

because in general, the tree does not speak. Therefore, we need to classify the

models here, the same as that, and there are different types of functions so that

different methods can match the corresponding models.

The flow of how the user program in VR:

 Creating an object

 Adding properties to the object

 Linking functions in the library to the object

 Creating new functions and add to the object

➢ Visualization Interface

In VR programming, there are two concepts -model and function. The model is

the object user want to use in their scenarios, such as a car or person model

developer want to use in their program. Another one is a function that can add in

the model to make the model can interact with the model or user.

21

Figure 3.6: Inner Model Program

The inner model visual programming function refers to the Box Type. And the

attribution could show in the different faces of the cube. For example, if the

function box is walking, I can change the walking speed in another front of this

function box.

22

Figure 3.7: Between Models Program

The between objects' visual programming function refers to the Node and Line

Type. The two simple faces present two models (Figure 3.7). If you want to

model one model to execute the function after another one finished a task, you

can connect the flow using a line. Thus, the Walking function would run after the

Trigger finished.

23

Chapter 4. Project Introduction

4.1. Introduction

My application that can be used in the windows platform and users can create a

small VR world without code in the VR environment. The application requires a

VR headset and controllers because the whole development process is in the VR

environment.

Users can use it to create a VR scenario. In the scene, users can firstly create a

VR world by VR controllers and handset. There are environment models

provided to select, after select environment model, the user would go to the scene

and pick the character models. Then the user goes to a new stage that all the

models selected in it. In this scene, users can add functions to the model one by

one, and the function is also provided in the function library—the detail

realization expressed in 4.3.

4.2. Development Tool and Platform

The development tool for this project uses Unity3D, and the final release

platform is WebGL. The reason for choosing this tool and platform is because of

considerations such as user needs and development difficulty.

24

When I first started this project, I chose to use Unity3D for development.

Unity3D is a multi-platform comprehensive game development tool developed

by Unity Technologies that allows players to easily create interactive content

such as 3D video games, architectural visualizations, real-time 3D animations,

etc. It is a fully integrated professional game engine. Unity is similar to software

such as Director, Blender game engine, Virtools, or Torque Game Builder that

uses interactive graphical development environments as the primary method. The

most important is that Unity can provide VR development function, which is I

needed. Therefore, in the early period of my project, I use Unity3D to be the

development tool.

In the early period of my research, I planned to make a software that executes in

the windows platform. Still, my supervisor Ogi suggest me to change making the

computer software to the online page because of the would-be convenience for

users. You need not download one more application on your computer, and you

can freely use it by just search the web link. I try to develop web pages instead of

the application. Then I change my development tool to A-frame.

25

Figure 4.1: A-frame Developed Web Page

As you can see in the Web Page (Figure 4.1), it also allows the user to use VR

headset and controllers on the web page so that users can use it by searching

from the Internet, and it convenient for someone's first time to use it compare

with computer software. Hence, I changed the development tool from Unity3D to

A-frame.

26

Figure 4.2: Unity3D WebGL Platform

However, as I explained before, it needs a long time to study a new language and

master it. A-frame is not such easy to learn for me to use it to develop a project,

so I come back to Unity3D and try to find a better way to use Unity3D solving

27

the issue, then I saw the WebGL might help me. After that, I started to use

Unity3D to create my project and export it to the WebGL platform (Figure 4.2).

Figure 4.3: Unity3D Developed Scene

As you can see in the Unity3D WebGL Platform (Figure 4.3), I created a demo

with a dark blue floor and grey wall. There is a light blue ball in the scene

where the user can use controllers to interact with it. The user could press buttons

on the VR controllers to pick up the light blue ball and release it to let the ball go.

The shape of controllers in the scene using the same models as the real world

showed in figure 4.4.

28

Figure 4.4: Controller Model

Then published this demo into WebGL version, it changed to HTML file and

could be open on browse literally. At that time, the problem is the HTML file

could not open by IE or google browse, and then I found only the particular

browse with VR plug-in could execute this file, so I download Night Firefox

browse and added the plug-in. After that, the demo successfully ran in the Night

Firefox displayed in the running windows in Night Firefox (Figure 4.5).

29

Figure 4.5: Running in Night Firefox

If you click the button on the right bottom corner, you can experience

the VR mode, displayed in the figure below, with VR headset and controllers.

The original scene divided to two same views, and if you use the VR headset, the

360-degree environment will immerse you into it.

30

Figure 4.6: Run VR Mode in Night Firefox

The demo successfully ran on Firefox Nightly with VR controllers and headset. It

can use these interaction functions wrote in Unity; also, the hand modes can

show in browse.

The problem is the controllers did not work when I execute the demo on Night

Firefox. The screen changed to VR mode successfully, but the controllers still not

work on the Web page. For this reason, my lab member found a new browse

totally for VR named Supermedium, then introduced it to me. Supermedium, the

team behind the native virtual reality browser that lets you interact with web-

based VR content, says its namesake project is no longer in active development,

and that it's effectively been put "on ice" in search of something that consumers

might use in VR on a daily basis[14].

Figure 4.7: Supermedium

31

Figure 4.7 is shown on the home page of Supermedium immersing the user into

the VR environment and interact with the UI use VR controllers.

Supermedium is available on a range of PC VR headsets, including Oculus Rift,

HTC Vive, Valve Index, and Windows VR headsets. You'll find it on Steam and

the Oculus Store[14].

Figure 4.8: Supermedium Editor Page

Supermedium also provides an editor page allowing the developer to make their

project better. The unfortunate thing is it also based on A-frame, the language I

do not learn before, so I gave up and tried to find another way to solve it.

32

To solve the problem, I saw a free Unity3D WebVR Assets made by Mozilla

when surfing the Internet. It is free to download and available now on the Unity

Asset Store. This tool allows creators to publish and share VR experiences they

created in Unity on the open web, with a simple URL or link. These experiences

can then be viewed with any WebVR enabled browser such as Firefox (using the

Oculus Rift or HTC VIVE) and Microsoft Edge (using a Windows Mixed Reality

headset)[15].

Figure 4.9: A-frame Developed Web Page

I create a new demo displaying in figure 4.9 with the free tool Unity3D Web VR

Assets. The assets changed the controller models from the same as the real one to

the hand models. I created a new demo displaying in figure 4.9 with the free tool

Unity3D Web VR Assets. The assets changed the controller models from the

same as the real one to the hand models. Afterward, the demo published on the

33

WebGL version and successful execution on the browse. It allows us to use the

VR controller, running the demo on the web page.

Table 4.1: Compared Development Tools

Tools Model

Resource

Function

Support

VR Device

Adaptability

Web VR

Adaptability

Unity3D Rich model

resource library

and support

external import

model

Provides a large

number of

highly

integrated

functions for

development

It can be well-

matched with

VR

equipment,

and there are

few problems

in the

development

project

Exporting to

the Web VR

platform is

prone to

issues, and

the

compatibility

is weak

A-frame support

external import

model

Provide a

completed

system of

development

It is

challenging to

detect VR

devices when

the program is

running

Very

adaptable to

Web VR

platform,

strong

compatibility

34

Comparing the two development tools, we can see that each has its advantages. It

is to reduce the difficulty of the development process and the richness of

resources. I chose Unity3D, which is rich in model resources and has a complete

basic method library, as my development tool.

In the short brief, after various experiments and attempts, the development tool is

Unity3D, and the platform of this project is WebGL. Finally, choosing this

development tool and publishing platform is a combination of my capabilities

and user needs.

4.3. Function Introduction

4.3.1 Interaction in VR Environment

First of all, when the user is in a VR environment, traditional interaction methods

are no longer available，which means that users cannot use the conventional

way to interact with the system. Instead, users need to immerse themselves in the

3D environment[16].

Table 4.2: Different Interaction Tools

The traditional interaction Tool The VR interaction Tool

Keyboard VR Controller

Mouse

35

Display VR Headset

The characteristics of the traditional environment and virtual reality environment

are different. If one person wants to create a VR project, he or she has to know at

least one programming language among C#, C++ or JS, which is a big challenge

for a person without any programming experience. Although there are some VR

development engines in the market such as Unity 3D, Unreal Engine 4, and the

like, it still not an easy job to learn how to use the engine, even someone who

already has programming knowledge. The traditional environment is the usual

way programmers use a programming language to create a project, and the

virtual reality environment means the user can deep in the virtual reality

environment and directly use VR controllers and headset to program without

code. Virtual reality is the use of various computer graphics systems combined

with multiple display and interface devices to provide the effect of immersion in

an interactive three-dimensional computer-generated environment in which the

virtual objects have a spatial presence[4]. Thus, there is a massive difference in

the traditional program environment and the virtual reality environment.

First and foremost, the noticeable difference is the tool used in these two

environments. In a traditional programming environment, users need to use a

keyboard, mouse, and screen to create a new project and executed results

manifest on the screen. And in the VR environment, the tools are used only hand

controllers and headset. Compared to these tools, the programming method has

36

changed due to the limitation of input information from two-dimension to three-

dimension. The button number of VR controllers is far less than the keyboard;

accordingly, we change the traditional programming from coding to VR

programming by a new visual programming method. And the decrease of the

input button results in the program method changes, which is hard to use

controller programming as keyboard coding with the programming language.

When the programming environment switches to the 3D stereo environment, the

traditional flat UI can no longer meet user needs. The interaction of the flat UI in

the 360 stereo environment has also become convenient to use in the

conventional context example. At this time, we need to make the 2D UI three-

dimensional so that users can interact with it in the VR environment[16]–[18].

➢ Demo One：Scenario Selection

Figure 4.10: Scenario Model Selection

37

Since the establishment of all 3D scenes is based on a three-dimensional

environment, I first tried to implement the function of selecting a scene model. It

can be seen in the window of scene model selection (Figure 4.10) that the capsule

in the middle temporarily replaces the scene model here. There is a stage-like

plane below the model. A model is centered on the left and right are two plane

arrows. These two arrows are two buttons used to switch the model.

Figure 4.11: Execution Stage of Model Selection

It can be seen in the Execution Stage of Model Selection (Figure 4.11) that when

the scene is running, a laser will be emitted from the VR handle and interact with

the objects it touches after being ejected.

38

Figure 4.12: Model Changing

When the arrow button is clicked, the model is switched (Figure 4.12). In this

scenario, the 2D buttons of the 3D model are combined, but the final effect is not

very good. The main reason is that the 2D buttons limit the user's perspective.

You can see and use this button only when the user is facing this button. When

the angle changes, the buttons would quickly disappear visually in the scene.

➢ Demo Two：2D Button in VR

39

Figure 4.13: Normal 2D UI

Figure 4.14: Normal 2D UI in VR Environment

40

For better research and comparison, I created a 2D UI interface in a VR

environment (Figure 4.13). As you can see from the Normal 2D UI, when viewed

from the front, the entire UI interface can well present to the user's eyes. Still,

when the program starts to run, and the user immerses in this scene, a slight angle

change will Affect the user's interactive experience (Figure 4.14).

It follows that the traditional UI design can no longer satisfy the use in the VR

environment, so the UI needs to upgrade from the original 2D to 3D.

➢ Demo Three：3D Button in VR

Figure 4.15: 3D Button

I tried to change the button from 2D to 3D. So, I created a new demo that uses

some simple 3D models like cube and ball instead of the button in 2D. The user

41

uses the controller that is a hand model in the VR environment, to interact with

the cube (Figure 4.15). When a VR controller in the box collider and click the

button down, the ball, cube, capsule, and cylinder would display (Figure 4.16).

Figure 4.16: 3D UI

The ball, cube, capsule, and cylinder are buttons and the traditional 2D button

change to these simple geometries. Nonetheless, these geometries hard to let

people know they are buttons for the first time if no other information provided.

To make this 3D button easier to accept, I replaced the simple model with other

models that contain more information.

42

Table 4.3: Demos Comparison

Demo Demo One：
Scenario

Selection

Demo Two：
2D Button in

VR

Demo Three：
3D Button in

VR

UI Design 2D switching

buttons with 3D

models

2D buttons with

2D UI

3D buttons

Advantages Close to the

traditional UI

interface, easy

for users to

understand,

when standing

in a fixed

position, the

operation is

simple, the user

can quickly

realize the scene

selection.

The advantage

of traditional UI

design is that

users do not

need extra time

to understand or

explore how to

use this UI

interface to

interact because

all traditional UI

interfaces are

very similar.

Give users a

more intuitive

understanding

and experience.

It is very

convenient to

interact with the

VR controller.

Disadvantages The interaction

process will be

affected by the

change of angle.

It is very

difficult for

users to use the

UI in this

environment

because of the

difference in

dimensions and

interactive tools

changes.

For the first

time, users need

time to

understand and

explore.

43

The difference in programming in a real environment and virtual environment is

the programming language difference caused by the limitation of programming

tools. In the traditional programming environment, the person creates a VR

project typically with a VR development engine. For example, if I want to create

a new VR project that is an English course demo, let students can use VR

controllers and headset do communication practice. The first work is finding a

suitable VR engine after creating a new project and building or downloading

some 3D models I needed then using a programming language to realize the

functions. Therefore, the traditional environment requires that the creator has

mastered a programming language and use code to achieve the purposes.

However, the virtual environment provides a visual programming way reducing

the time of learning a programming language and engine, which means even you

do not have any programming knowledge. You also can create the same project at

the same time compared with those who know to program. The advantage of

visual programming is it saves time for a beginner but not such flexible because

the function created earlier and preserved in a library. So it can be seen the visual

programming method more friendly with people without programming

foundation, and the master may prefer the traditional programming way.

Due to changes in the programming environment, we have to create a 3D

environment that users can visual programming. The 3D environment provides

the user-space to create a new scene, arrange models and add function to object

by a straightforward method, such as linking objects with service or the user drag

44

and drop techniques to match tasks with objects. In the 3D environment, we have

to provide some more visual programming methods. Simultaneously, because we

use VR controllers for development, programmers can also experience this VR

program while developing. Users are immersed in the environment to create VR

projects. The development process is also the process of debugging, allowing

developers to experience VR projects in real-time. If the VR program developed

in a two-dimensional environment, the developer must develop in a non-VR

environment. Then put on a helmet and debug in the VR environment. So the

development process requires many VR helmets and then removes, while VR

Development and debugging in the background to avoid this trouble.

4.3.2 3D Menu and Movement

This demo is a 3D menu consisting of 3D buttons. `First, you can see a box in the

scene (Figure 4.17), and when a controller in the box and click button down, the

menu would display (Figure 4.18).

45

Figure 4.17: 3D Menu-1

In this scene (Figure 4.18), the pig model represents the button to select the

animal model. The character model will jump to when interacting with the

character model. The palace model indicates that you can choose the desired

scene. The apple model is the entrance to select the fruit model.

Figure 4.18: 3D Menu-2

46

Figure 4.18 shows the menu consists of four 3D models with text and one box

model in the VR environment. The traditional menu includes text and buttons.

However, figure 4.19 shows the 3D menu in the VR environment that users can

use VR controllers and headset select the 3D model type. The 3D model with text

below instead of the text and button of traditional programming provides users a

directly perceived menu in the VR environment. From the menu design, the

conventional flat menu that people imagined change into a 3D menu, which

allows users to adapt to the VR environment more quickly and develop

accordingly.

Figure 4.19: Main Menu Scene

The interaction way of this menu is moving a controller in the apple model;

meanwhile, clicking the button on the controller, then the scene switches to

another one. For example, I put the hand in the object button, and then the scene

skips to the object selection scene (Figure 4.20).

47

Figure 4.20: Secondary Menu Scene

The whole process presents how the 3D menu works in a VR environment. After

the button is converted to 3D, the jump between the main menu and the second

menu cannot be the same as the traditional menu we usually use, so here I use

scene switching to achieve the switch from the first menu to the second menu.

Another problem is the movement in the 3D environment. When we are

programming, there is no problem with action. Still, when we are programming

in the VR environment, the entire system rises from two to three dimensions, we

need to consider the problem of movement in space.

48

Figure 4.21: Teleport in VR

Regarding the realization of mobile functions, I used Unity3D Assets. In this

auxiliary tool, the Teleport function is included. This function is that users can

move freely through VR controllers in the area you want. As shown in Teleport in

VR (Figure 4.21), when the user uses the VR controller, press, and holds the

trigger button on the handle, and a light green parabola will appear in the scene.

When the last drop point of the parabola falls on the user's movable area, a green

arrow will appear on the movable drop point. At this time, the user releases the

button to move to the drop point.

49

Figure 4.22: Guidance of the Flow

To make the text prompts fit well in the VR environment, I designed an indicator

board (Figure 4.22). The user can move to the dashboard and see how the whole

process is going. The user can jump to the corresponding scene by clicking the

prompt text on the board.

50

Figure 4.23: Movement and 3D Button Combination

After combining the movement function with the 3D UI, the entire interface has

become very different from the two-dimensional interface. The User experience

has also changed. In Movement and 3D Button Combination (Figure 4.23), the

user first needs to move to the front of the button, then he or she can interact with

the button. In the VR environment, the user's interaction is more specific actions

than simple choices. But this also makes the entire menu can convey less

information, and requires multiple scenes to achieve this function.

51

Figure 4.24: Clicking the 3D Button

The user can press the apple model by hand to realize the action of clicking the

button (Figure 4.24). It achieves the goal of using the visual language ton let

implement functions.

It can be seen from the five demos that using 3D Button can provide better

interaction to the user in the VR environment. But there is also a problem: the

amount of information transmitted is reduced, and the first time the user uses it, it

isn't easy to know how to use it quickly without explanation. So, when I use 3D

Button, I also use text prompts to understand how to use this program

immediately.

52

4.3.3 Function Added

Regarding adding functions (Figure 4.25), I refer to the visual programming

language Scratch and integrate it into the VR environment. I use the cube to

represent different methods. Each model can add methods. Taking Function

Added Scenarios as an example, the character model in the scene is the model

selected by the previous user. The user wants to add a method to this model. In

the view, the model has a translucent Cube area, which is the character model's

programming area. The small square on the front table represents the method.

Figure 4.25: Function Added Scenario

53

When the user activates the method to add a function, the user can use the visual

programming method in the VR environment. The user searches the method by

voice keywords. For example, if the user wants to add a function of speaking to

the character, the user can say the keyword "Speak". If there is a "Speak"

Function in the library, the button (Figure 4.26) above the table will be displayed.

Then the user uses the VR handle to press the button, and this method is added to

the character.

Figure 4.26: Function Button

54

Figure 4.29: Function Space

If the method is successfully added to the model, the speak method will appear in

its programming space. If no way is added, the method space for the model will

be blank. It can be seen that a method cube appears in the Function Space, which

speaks on the cube, proving that the speak function has been successfully added

to this model.

55

Chapter 5. VR Programming

Validation

This chapter is mainly discussed about the verification and validation of the

system. I primarily focused on the 3D menu part of the system because this part

is the basement of the whole system, and it is very important for the simple

programming.

As shown in Figure 5.1, the developer operates with the VR controllers, and the

entire process of user interaction can be seen on the screen. The user can use the

VR controller to implement operations such as grabbing, selecting, moving

items, and the like. Since only the 3D menu part is now completed, the further

design has not yet been completed. Later, we need to do some complex

interactions, such as function implementation.

56

Figure 5.1: User test Three-dimension menu by VR equipment in the VR environment

To verify and validate the 3D menu, I created a 2D menu with the same content,

and then I asked 7 participants to experience both menus and then answer the

questionnaire.

The following are the details about the questionnaire and feedback from

participants.

⚫ Q1. Do you know the software menu?

57

Figure 5.2: Answer Analysis 1

Table 5.1: Data Statistic 1

Field Minimum Maximum Mean

Std

Deviation

Variance Count

1

Do you

know the

software

menu?

1.00 5.00 3.29 1.58 2.49 7

There are five answers for question 1, and the different answers give different

weights range from 1 to 5. The mean of this question is 3.29, and the standard

deviation is 1.58. This question is used to ensure every participant can understand

what the menu is.

58

⚫ Q2. Did you use VR before?

Figure 5.3: Answer Analysis 2

Table 5.2: Data Statistic 2

Field Minimum Maximum Mean

Std

Deviation

Variance Count

2

Did you

use VR

Before?

1.00 3.00 2.00 0.53 0.29 7

There are five answers for question 2, and the different answers give a score from

1 to 5. The mean of this question is two, and the standard deviation is 0.58, which

means most participants are not familiar with VR.

⚫ Q3. How do you think the 2D menu in you usually used?

59

Figure 5.4: Answer Analysis 3

Table 5.3: Data Statistic 3

Field Minimum Maximum Mean

Std

Deviation

Variance Count

3

How do you

think the

2D menu in

you usually

used?

2.00 4.00 2.57 0.73 0.53 7

There are five answers for question 3, and the different answers give different

weights range from 1 to 5. The mean of this question is 2.57, and the standard

deviation is 0.73. From selections of participants, they give a high score to the

2D menu used in daily life.

60

⚫ Q4. How do you think about this 3D menu?

Figure 5.5: Answer Analysis 4

Table 5.4: Data Statistic 4

Field Minimum Maximum Mean

Std

Deviation

Variance Count

4

How do

you think

about this

3D menu?

2.00 4.00 3.00 0.76 0.57 7

The mean of this question is three, and the standard deviation is 0.76. Comparing

with question 2, participants give a litter higher score to a 3D menu than 2D.

61

⚫ Q5. How do you think the 2D menu used in VR?

Figure 5.6: Answer Analysis 5

Table 5.5: Data Statistic 5

Field Minimum Maximum Mean

Std

Deviation

Variance Count

5

How do

you think

the 2D

menu used

in VR?

1.00 4.00 2.71 1.03 1.06 7

The mean of this question is 2.71, and the standard deviation is 1.03. This data

shows they are not satisfied 2D menu used in VR.

62

⚫ Q6. How do you think this 3D menu used in VR?

Figure 5.7: Answer Analysis 6

Table 5.6: Data Statistic 6

Field Minimum Maximum Mean

Std

Deviation

Variance Count

6

How do

you think

this 3D

menu used

in VR?

4.00 5.00 4.71 0.45 0.20 7

It is obvious to see that the 3D menu owns a high score in the VR environment,

and all the participants give the more than 3 to it.

63

⚫ Q7. Which one is easier to use in the VR environment compared with 2D and 3D

menu?

Figure 5.8: Answer Analysis 7

Table 5.7: Data Statistic 7

Field Minimum Maximum Mean

Std

Deviation

Variance Count

1

Which one

is easier to

use in the

VR

environment

compared

with 2D and

3D menu?

1.00 2.00 1.71 0.45 0.20 7

64

There are five people who think the 3D menu is more convenient to use in the

VR scenario, and two persons still prefer the 2D menu even in VR.

From the Q1 and Q2, all the participants are not the master of VR development,

corresponding with my target users. From Q3 and Q4, the participants are

satisfied with the general 2D menu and think 3D menu performance good. From

Q5, Q6, and Q7, the 3D menu gets a higher score in the VR environment than the

2D menu. 71% of participants think the 3D menu better adapt to the VR

environment. At the same time, the comment on the 2D menu in VR is also

positive.

After I explain what means 2D Menu, many people said they know what it is.

The mean of Q2 is -1, and the standard deviation is 0.53, which shows

participants mainly are the people who do not use VR frequently, and my target

users are these people who do not know much about VR programming. The

result shows. The result shows many participants not satisfied with the 2D menu

they used daily life. However, they also did not give a high score to the 3D menu,

just a litter higher than 2D. Compared with the 3D menu, most participants think

the 2D menu maybe not such suitable for VR. Many participants have a positive

attitude toward the 3D Menu in VR.

65

Chapter 6. Conclusion and Future

Works

6.1. Overall Summary

In my research, I mainly designed and developed a program that allows users to

develop VR projects more intuitively using VR devices. Based on traditional

visual programming, I designed a new 3D programming program. Even people

without a programming background can use this simple way to complete project

design in the VR environment.

There are still many deficiencies in this research. The first is that at the beginning

of the design, the understanding of the target user's needs is not deep enough so

that the system can be better in functional design and implementation. Secondly,

how to transform the traditional programming method into a three-dimensional

programming method in the VR environment still needs a lot of experiments and

research.

6.2. Future Work

First, the data storage and user information storage of the method was designed

during the design period. Still, this function was not implemented during actual

implementation so that the database can be partially realized in the future.

66

Secondly, in the method search, the methods that can be provided can continue to

expand and continue to be added in the future. And can offer more and more

sophisticated techniques, making users more convenient to use. Finally, I hope

that the whole system can be optimized and adjusted in the future.

67

Acknowledgments

First of all, I would like to thank my thesis supervisor Professor Ogi. Professor

Ogi made guiding opinions and suggestions on the research direction of my

thesis. In the process of writing the thesis, I gave thoughtful advice on the

difficulties and doubts I encountered, and put forward many useful and improved

opinions, and invested a lot of effort. Professor Ogi expressed my sincere

gratitude for my help and care! At the same time, I would also like to thank the

teachers and all the students of the System Design and Management for helping

my project.

Besides, I would also like to thank my friends and classmates for their great

support and help in writing the thesis, which has much inspired me. I would

also like to thank the authors in the references, through their research articles, for

making me a good starting point for the research topic.

Finally, I sincerely thank my family, friends, and classmates. It was really with

their encouragement and support that I was able to complete this thesis

successfully.

68

References

[1] J. Steuer, "Defining Virtual Reality: Dimensions Determining Telepresence,"

J. Commun., vol. 42, no. 4, pp. 73–93, Dec. 1992, doi: 10.1111/j.1460-

2466.1992.tb00812.x.

[2] M.-L. Ryan, Narrative as virtual reality: immersion and interactivity in

literature and electronic media. Baltimore: Johns Hopkins University Press,

2001.

[3] Defining Virtual Worlds and Virtual Environments. 2008.

[4] "Programming in Virtal Reality: An Interview With The Creator of

RiftSketch." https://cognitive3d.com/blog/programming-in-virtual-reality

(accessed Jul. 09, 2020).

[5] E. Craig, "Visualize Code in Virtual Reality," Digital Bodies, Jun. 10, 2019.

https://www.digitalbodies.net/vr-experience/visualize-code-in-virtual-reality/

(accessed Jul. 09, 2020).

[6] K. Hanson and B. E. Shelton, "Design and Development of Virtual Reality:

Analysis of Challenges Faced by Educators," J. Educ. Technol. Soc., vol. 11,

no. 1, pp. 118–131, 2008.

[7] A. Onishi, S. Nishiguchi, Y. Mizutani, and W. Hashimoto, "A Study of

Usability Improvement in Immersive VR Programming Environment," in

2019 International Conference on Cyberworlds (CW), Oct. 2019, pp. 384–

386, doi: 10.1109/CW.2019.00073.

69

[8] H.-J. Joo, H.-B. Song, and M.-K. Park, "A Study on Visual Programming

Platform Design for VR/AR SW Education," in Frontier Computing,

Singapore, 2019, pp. 560–565, doi: 10.1007/978-981-13-3648-5_65.

[9] T. Sugiyama, S. Konno, T. Kinoshita, K. Sugawara, and N. Shiratori,

"Interaction techniques for visual programming based design of the 3D

object's behaviors and its implementation," in Proceedings Twelfth

International Conference on Information Networking (ICOIN-12), Jan. 1998,

pp. 722–725, doi: 10.1109/ICOIN.1998.648615.

[10] K. Nagaoka, N. Osawa, K. Mochizuki, H. Takahashi, E. Nishina, and F.

Saito, "Evaluation of a 3-D visual programming environment in an

introductory course of object-oriented programming," in 30th Annual

Frontiers in Education Conference. Building on A Century of Progress in

Engineering Education. Conference Proceedings (IEEE Cat.

No.00CH37135), Oct. 2000, vol. 1, p. T4C/12 vol.1-, doi:

10.1109/FIE.2000.897664.

[11] M. Chandramouli, M. Zahraee, and C. Winer, "A fun-learning approach

to programming: An adaptive Virtual Reality (VR) platform to teach

programming to engineering students," in IEEE International Conference on

Electro/Information Technology, Jun. 2014, pp. 581–586, doi:

10.1109/EIT.2014.6871829.

[12] "Visual Programming Guide | 2019 Overview of Available Languages

and Software Tools," Postscapes. https://www.postscapes.com/iot-visual-

programming-tools (accessed Jul. 09, 2020).

70

[13] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, "The

Scratch Programming Language and Environment," ACM Trans. Comput.

Educ., vol. 10, no. 4, pp. 1–15, Nov. 2010, doi: 10.1145/1868358.1868363.

[14] S. Hayden, "VR Web Browser' Supermedium' No Longer in Active

Development," Road to VR, Oct. 29, 2019.

https://www.roadtovr.com/supermedium-vr-browser-stops-development/

(accessed Jul. 09, 2020).

[15] C. Y. P. on February 15, 2018 in Featured Article, Games, T. for V.

development, and WebVR, "Create VR on the Web using Unity3D – Mozilla

Hacks - the Web developer blog," Mozilla Hacks – the Web developer blog.

https://hacks.mozilla.org/2018/02/create-vr-on-the-web-using-unity3d

(accessed Jul. 09, 2020).

[16] A. Cannavò, C. Demartini, L. Morra, and F. Lamberti, "Immersive

Virtual Reality-Based Interfaces for Character Animation," IEEE Access, vol.

7, pp. 125463–125480, 2019, doi: 10.1109/ACCESS.2019.2939427.

[17] F. Lamberti, G. Paravati, V. Gatteschi, A. Cannavò, and P. Montuschi,

"Virtual Character Animation Based on Affordable Motion Capture and

Reconfigurable Tangible Interfaces," IEEE Trans. Vis. Comput. Graph., vol.

24, no. 5, pp. 1742–1755, May 2018, doi: 10.1109/TVCG.2017.2690433.

[18] D. Vogel, P. Lubos, and F. Steinicke, "AnimationVR - Interactive

Controller-based Animating in Virtual Reality," in 2018 IEEE 1st Workshop

on Animation in Virtual and Augmented Environments (ANIVAE), Mar. 2018,

pp. 1–6, doi: 10.1109/ANIVAE.2018.8587268.

71

[19] M. J. Schuemie, P. van der Straaten, M. Krijn, and C. A. P. G. van der

Mast, "Research on Presence in Virtual Reality: A Survey," Cyberpsychol.

Behav., vol. 4, no. 2, pp. 183–201, Apr. 2001, doi:

10.1089/109493101300117884.

[20] E. G. Milano, E. Pajaziti, S. Schievano, A. Cook, and C. Capelli, "P369

Patient specific virtual reality for education in congenital heart disease," Eur.

Heart J. - Cardiovasc. Imaging, vol. 21, no. Supplement_1, p. jez319.218,

Jan. 2020, doi: 10.1093/ehjci/jez319.218.

[21] N. V. Thuc, "Design of Adjustable Software for Fault Detection,

Isolation and Recovery of Attitude Determination and Control System in

MicroDragon Satellite," p. 122.

[22] K. Wood, R. E. Cisneros, and S. Whatley, "Motion Capturing Emotions,"

Open Cult. Stud., vol. 1, no. 1, pp. 504–513, Dec. 2017, doi: 10.1515/culture-

2017-0047.

[23] L. T. D. Paolis, "Virtual and Augmented Reality Applications," p. 23.

[24] "Programming in Virtal Reality: An Interview With The Creator of

RiftSketch." https://cognitive3d.com/blog/programming-in-virtual-reality

(accessed Jul. 09, 2020).

[25] L. Blackwell, N. Ellison, N. Elliott-Deflo, and R. Schwartz, "Harassment

in Social VR: Implications for Design," in 2019 IEEE Conference on Virtual

Reality and 3D User Interfaces (VR), Mar. 2019, pp. 854–855, doi:

10.1109/VR.2019.8798165.

72

[26] S. Gunkel, M. Prins, H. Stokking, and O. Niamut, "WebVR meets

WebRTC: Towards 360-degree social VR experiences," in 2017 IEEE

Virtual Reality (VR), Mar. 2017, pp. 457–458, doi:

10.1109/VR.2017.7892377.

[27] K. Habuka and Y. Shinagawa, "Creating VR scenes using fully

automatic derivation of motion vectors," in IEEE Virtual Reality 2004, Mar.

2004, pp. 225–226, doi: 10.1109/VR.2004.1310081.

[28] M. Zyda, "From visual simulation to virtual reality to games," Computer,

vol. 38, no. 9, pp. 25–32, Sep. 2005, doi: 10.1109/MC.2005.297.

[29] A. Cannavò, C. Demartini, L. Morra, and F. Lamberti, "Immersive

Virtual Reality-Based Interfaces for Character Animation," IEEE Access, vol.

7, pp. 125463–125480, 2019, doi: 10.1109/ACCESS.2019.2939427.

[30] B. A. Myers, "Taxonomies of visual programming and program

visualization," J. Vis. Lang. Comput., vol. 1, no. 1, pp. 97–123, Mar. 1990,

doi: 10.1016/S1045-926X(05)80036-9.

[31] M. Resnick et al., "Scratch: programming for all," Commun. ACM, vol.

52, no. 11, pp. 60–67, Nov. 2009, doi: 10.1145/1592761.1592779.

[32] "The Influences of the 2D Image-Based Augmented Reality and Virtual

Reality on Student Learning on JSTOR." https://www-jstor-

org.kras1.lib.keio.ac.jp/stable/26196123?Search=yes&resultItemClick=true&

searchText=VR+development&searchUri=%2Faction%2FdoBasicSearch%3

FQuery%3DVR%2Bdevelopment&ab_segments=0%2Fbasic_SYC-

5187_SYC-5188%2F5188&refreqid=fastly-

73

default%3A09ac78343715bbfcb02d5cc3b4d91fdc&seq=1#metadata_info_ta

b_contents (accessed Aug. 17, 2020).

[33] H. F. Manesh and M. Hashemipour, "A New Software Development

Tools with Virtual Reality for Computer Integrated Manufacturing

Requirements Analysis," SAE Trans., vol. 115, pp. 908–916, 2006.

[34] D. W. Sari et al., "Virtual reality program to develop dementia-friendly

communities in Japan," Australas. J. Ageing, doi: 10.1111/ajag.12797.

[35] M. Servera, B. Saez, and J. M. G. Mir, "Feasibility of a virtual reality

program to treat children with fear of darkness with nonexpert therapists,"

Rev. Psicol. Clin. Con Ninos Adolesc., vol. 7, no. 2, pp. 16–21, May 2020,

doi: 10.21134/rpcna.2020.07.2.2.

[36] W. R. Sherman, "VR 2012 tutorial proposal title: An in-depth

introduction to virtual reality programming," in 2012 IEEE Virtual Reality

Workshops (VRW), Mar. 2012, pp. 1–2, doi: 10.1109/VR.2012.6180944.

[37] A. Onishi, S. Nishiguchi, Y. Mizutani, and W. Hashimoto, "A Study of

Usability Improvement in Immersive VR Programming Environment," in

2019 International Conference on Cyberworlds (CW), Oct. 2019, pp. 384–

386, doi: 10.1109/CW.2019.00073.

74

Appendix

A. Local Data Saving Code

namespace ProjectLib

{

 public class Project

 {

 private const string projectName = "proName";

 public string proName

 {

 get { return PlayerPrefs.GetString(proName); }

 set { PlayerPrefs.SetString(proName, value); }

 }

private const string projectNumber = " proNumber ";

 public int proNumber

 {

 get { return PlayerPrefs.GetInt(proNumber, 0); }

 set { PlayerPrefs.SetInt(level, value); }

 }

 private const string sceneName = "sceName";

 public string sceName

 {

75

 get { return PlayerPrefs.GetString(sceName); }

 set { PlayerPrefs.SetString(sceName, value); }

 }

……

}

76

B. IntoLib Code

public class IntoLib : MonoBehaviour {

 private const string Name = "Scene_InanimateObjectMenu";

 // Use this for initialization

 void Start () {

}

// Update is called once per frame

void Update () {

}

 private void OnTriggerEnter(Collider other)

 {

 if (other.tag == "Controller")

 {

 print("aaaa");

 SceneManager.LoadScene(Name);

 }

 }

}

77

C. Show Attribution Code

public class ShowAttribution : MonoBehaviour {

 private GameObject attrbutionBox;

 private string attText;

// Use this for initialization

void Start () {

 attrbutionBox = GameObject.Find("AttributionBox");

 attrbutionBox.GetComponent<Renderer>().enabled = false;

 attText = "position:" + gameObject.transform.position.ToString();

 }

 private void OnTriggerEnter(Collider other)

 {

 if(other.tag == "Controller")

 {

 attrbutionBox.GetComponent<TextMeshPro>().SetText(attText);

 attrbutionBox.GetComponent<Renderer>().enabled = true;

 }

 }

78

 private void OnTriggerExit(Collider other)

 {

 if (other.tag == "Controller")

 attrbutionBox.GetComponent<Renderer>().enabled = false;

 }

}

79

D. Show Function Box Code

public class ShowFunctionBox : MonoBehaviour

{

 public GameObject[] func;

 bool[] funcLine;

 void Start()

 {

 gameObject.GetComponent<Renderer>().enabled = false;

 funcLine = new bool[func.Length];

 for (int i = 0; i < func.Length; i++)

 {

 func[i].GetComponent<Renderer>().enabled = false;

 funcLine[i] = false;

 }

 }

 void OnTriggerEnter(Collider other)

 {

 if(other.tag=="Function")

 {

 gameObject.GetComponent<Renderer>().enabled = true;

 other.GetComponent<Renderer>().enabled = false;

 for (int i = 0; i < funcLine.Length; i++)

80

 {

 if (funcLine[i] == false)

 {

 funcLine[i] = !funcLine[i];

 break;

 }

 }

 for (int i = 0; i < func.Length; i++)

 {

 if (funcLine[i] == true)

 func[i].GetComponent<Renderer>().enabled = true;

 }

 }

 }

 void OnTriggerExit(Collider other)

 {

 if (other.tag == "Function")

 {

 gameObject.GetComponent<Renderer>().enabled = false;

 }

 }

}

81

E. WriteToFile Code

public class WriteToFile : MonoBehaviour {

 private void OnGUI()

 {

 GUIStyle buttonStyle = new GUIStyle(GUI.skin.button);

 buttonStyle.fontSize = 25;

 if (GUI.Button(new Rect(10, 10, 450, 80), "Send information to file",

buttonStyle))

 {

 StartCoroutine(sendTextToFile());

 }

 }

 IEnumerator sendTextToFile()

 {

 bool successful = true;

 WWWForm form = new WWWForm();

 form.AddField("DataName1", "Data1balabalabala");

 form.AddField("DataName2", "Data2balabalabala");

 WWW www = new WWW("http://localhost:9000/fromunity.php",

form);

82

 yield return www;

 if(www.error != null)

 {

 successful = false;

 }

 else

 {

 Debug.Log(www.text);

 successful = true;

 }

 }

83

F. Controller Code

public class Controller : MonoBehaviour {

public GameObject ObjectMenu;

private void Awake(){

ObjectMenu.SetActive(false);

ViveInput.AddPress (HandRole.LeftHand, ControllerButton.Menu,

OnMenuPress);

}

private void OnDestory(){

ViveInput.RemovePress (HandRole.LeftHand, ControllerButton.Menu,

OnMenuPress);

}

private void OnMenuPress(){

//Debug.Log ("menu press");

ObjectMenu.SetActive(true);

}

}

84

G. Select Object Types Code

public class SelectObjectTypes : MonoBehaviour {

bool enable;

 public GameObject ObjectTypes;

// Use this for initialization

void Start () {

ObjectTypes.SetActive(false);

}

public void OnClickObjectButton()

{

Debug.Log("SELECT OBJECT TYPES");

ObjectTypes.SetActive(true);

}

}

]

85

H. Select A Scene Code

public class SelectAScene : MonoBehaviour {

public GameObject[] sceneModels;

public int length;

private int selectedIndex = 0;

// Use this for initialization

void Start () {

length = sceneModels.Length;

CharacterShow();

}

 void CharacterShow() {

 sceneModels[selectedIndex].SetActive(true);

 for (int i = 0; i < length; i++)

 {

 if (i != selectedIndex)

 {

 sceneModels[i].SetActive(false);

 }

 }

 }

86

public void OnNextButtonClick()

{

selectedIndex++;

 selectedIndex %= length;

 CharacterShow();

}

public void OnPrevButtonClick()

{

 selectedIndex--;

 if (selectedIndex == -1)

 {

 selectedIndex = length - 1;

 }

 CharacterShow();

 }

}

87

I. Write To File Code

public class WriteToFile : MonoBehaviour {

 private void OnGUI()

 {

 GUIStyle buttonStyle = new GUIStyle(GUI.skin.button);

 buttonStyle.fontSize = 25;

 if (GUI.Button(new Rect(10, 10, 450, 80), "Send information to file",

buttonStyle))

 {

 StartCoroutine(sendTextToFile());

 }

 }

 IEnumerator sendTextToFile()

 {

 bool successful = true;

 WWWForm form = new WWWForm();

 form.AddField("DataName1", "Data1balabalabala");

 form.AddField("DataName2", "Data2balabalabala");

 WWW www = new WWW("http://localhost:9000/fromunity.php",

form);

88

 yield return www;

 if(www.error != null)

 {

 successful = false;

 }

 else

 {

 Debug.Log(www.text);

 successful = true;

 }

 }

89

J. Drag Object Code

 [RequireComponent(typeof(MeshCollider))]

 public class DragObject : MonoBehaviour

 {

 private Vector3 screenPoint;

 private Vector3 offset;

 void OnMouseDown()

 {

 screenPoint =

Camera.main.WorldToScreenPoint(gameObject.transform.position);

 offset = gameObject.transform.position -

Camera.main.ScreenToWorldPoint(new Vector3(Input.mousePosition.x,

Input.mousePosition.y, screenPoint.z));

 }

 void OnMouseDrag()

 {

90

 Vector3 curScreenPoint = new Vector3(Input.mousePosition.x,

Input.mousePosition.y, screenPoint.z);

 Vector3 curPosition = Camera.main.ScreenToWorldPoint(curScreenPoint)

+ offset;

 transform.position = curPosition;

 }

 }

91

K. On Click Functions Code

public class OnClickFunctions : MonoBehaviour

{

 // Start is called before the first frame update

 public GameObject[] funcBox;

 void Start()

 {

 for (int i=0; i < funcBox.Length; i++)

 {

 funcBox[i].GetComponent<Renderer>().enabled = false;

 }

 }

 public void OnClickStand()

 {

 funcBox[0].GetComponent<Renderer>().enabled = true;

 }

 public void OnClickRun()

 {

 funcBox[1].GetComponent<Renderer>().enabled = true;

92

 }

 public void OnClickWalk()

 {

 funcBox[2].GetComponent<Renderer>().enabled = true;

 }}

93

L. Show Function Box Code

public class ShowFunctionBox : MonoBehaviour

{

 public GameObject[] func;

 bool[] funcLine;

 void Start()

 {

 gameObject.GetComponent<Renderer>().enabled = false;

 funcLine = new bool[func.Length];

 for (int i = 0; i < func.Length; i++)

 {

 func[i].GetComponent<Renderer>().enabled = false;

 funcLine[i] = false;

 }

 }

 void OnTriggerEnter(Collider other)

 {

 if(other.tag=="Function")

 {

 gameObject.GetComponent<Renderer>().enabled = true;

 other.GetComponent<Renderer>().enabled = false;

 for (int i = 0; i < funcLine.Length; i++)

94

 {

 if (funcLine[i] == false)

 {

 funcLine[i] = !funcLine[i];

 break;

 }

 }

 for (int i = 0; i < func.Length; i++)

 {

 if (funcLine[i] == true)

 func[i].GetComponent<Renderer>().enabled = true;

 }

 }

 }

 void OnTriggerExit(Collider other)

 {

 if (other.tag == "Function")

 {

 gameObject.GetComponent<Renderer>().enabled = false;

 } }}

95

M. Show Hand Code

public class ShowHand : MonoBehaviour

{

 // Update is called once per frame

 void Update()

 {

 Vector3 pos= Camera.main.WorldToScreenPoint(transform .position);

 Vector3 mousePos = new Vector3(Input.mousePosition.x,

Input.mousePosition.y, pos.z);

 transform.position = Camera.main.ScreenToWorldPoint(mousePos);

 }

}

96

N. Function Recognizer

public class FunRecognizer : MonoBehaviour

{

private PhraseRecognizer funRec;

 public string funs = "Play Sounds";

 public ConfidenceLevel confL = ConfidenceLevel.Medium;

 // Start is called before the first frame update

 void Start()

 {

 print(PhraseRecognitionSystem.isSupported);

 if(funRec == null)

 {

 funRec = new KeywordRecognizer(funs, confL);

 funRec.OnPhraseRecognized += FunRec_OnFunRecognized;

 funRec.Start();

 Debug.Log("Created Successfully");

 }

 }

 private void FunRec_OnFunRecognized(PhraseRecognizedEventArgs args)

 {

 SpeechRecognition();

97

 print(args.text);

 }

 void SpeechRecognition()

 {

 print("SpeechRecognition");

 }

 private void OnDestroy()

 {

 funRec.Dispose();

 }

}

98

O. Function Activation

public class FunctionActivation : MonoBehaviour

{

 //public bool funs;

 public AudioSource src;

 public GameObject funSpace;

 // Start is called before the first frame update

 void Start()

 {

 //funs = false;

 }

 // Update is called once per frame

 void Update()

 {

 if(funSpace.GetComponent<FunctionIn>().isFunIn == true)

 {

 src.Play();

 funSpace.GetComponent<FunctionIn>().isFunIn = false;

 }

 }

}

