
Title Experiential information presentation about objects using AR-VR system
Sub Title
Author 高, 翔一(Gao, Xiangyi)

小木, 哲朗(Ogi, Tetsurō)
Publisher 慶應義塾大学大学院システムデザイン・マネジメント研究科

Publication year 2019
Jtitle

JaLC DOI
Abstract
Notes 修士学位論文. 2019年度システムエンジニアリング学 第291号
Genre Thesis or Dissertation
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO40002001-00002019-

0007

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Master’s Dissertation � � � � � � � � � � � � � � � 2019

Experiential Information Presentation
About Objects Using AR-VR System

Xiangyi Gao
�Student ID Number�81734541	

Supervisor� Prof. Tetsuro Ogi

September 2019

Graduate School of System Design and Management,
Keio University

Major in System Design and Management

 SUMMARY OF MASTER’S DISSERTATION

Student

Identification

Number

81734541

Name

Xiangyi Gao

Title

Experiential Information Presentation About Objects Using AR-VR System

Abstract

With AR technology, digital information can be overlaid onto the physical world, and information

can be placed near objects to emphasized which object the information belongs to. Although AR

strengthen the relationship between objects and information, the physical space to display

information is limited. An effective way to deliver information through AR system should be

proposed. Virtual reality (VR) is an effective method to deliver information. In this research, we

propose an object detection-based AR-VR system, which delivers VR information after user

selecting objects in AR. With this system, user can not only experience a VR environment for

information, but also understanding which object the information is describing. As an

implementation, tourism promotion purpose system was developed and exhibited. Users can select

local specialties through object detection AR and experience the VR worlds which describe those

objects. The evaluation indicates that this system is effective as an information system.

Key Word(5 words)

Deep learning, Object detection, AR, VR website, User interface

 1

Table of Contents

CHAPTER 1: INTRODUCTION ... 5

1.1 BACKGROUND ... 5

1.1.1 OVERVIEW OF AUGMENTED REALITY ... 5

1.1.2 OBJECT DETECTION BASED AR SYSTEM ... 6

1.2 PROBLEM STATEMENT ... 8

CHAPTER 2: PROPOSED METHOD .. 9

2.1 RELATED WORK ... 9

CHAPTER 3: SYSTEM CONSTRUCTION ... 10

3.1 SYSTEM CONCEPT .. 10

3.2 OBJECT DETECTION DEVELOPMENT .. 11

3.2.1 MECHANISM SELECTION .. 11

3.2.2 DEEP LEARNING-BASED OBJECT DETECTION ALGORITHM 12

3.3 VR CONTENTS DEVELOPMENT ... 24

3.3.1 MECHANISM SELECTION .. 24

3.3.2 VR WEBSITES DEVELOPMENT ... 24

3.3.3 360-DEGREE VIDEO MAKING ... 26

3.4 SYSTEM INTEGRATION ... 28

3.4.1 HARDWARE SELECTION ... 28

 2

3.4.2 APPLICATION DEVELOPMENT .. 30

3.4.3 PROGRAM FUNCTION FLOW ... 34

CHAPTER 4: PROTOTYPE EVALUATION ... 36

4.1 PROTOTYPE ... 36

4.2 EVALUATION ... 38

CHAPTER 5: PRACTICAL IMPLEMENTATION ... 42

5.1 SYSTEM DEVELOPMENT ... 44

5.2 EVALUATION ... 46

5.2.1 OBJECT DETECTION AR AND VR CONTENTS EVALUATION 47

5.2.2 SYSTEM EXPERIENCE EVALUATION ... 48

CHAPTER 6: FUTURE WORK ... 50

CHAPTER 7: CONCLUSION .. 51

CHAPTER 8: ACKNOWLEDGEMENT ... 52

CHAPTER 9: REFERENCES ... 53

CHAPTER 10: APPENDICES .. 58

10.1 TINY YOLO MODELING PROCEDURE .. 58

10.2 EXAMPLE A-FRAME WEBSITE CODE .. 62

 3

10.3 IOS APPLICATION CODE ... 64

List of Figures

Figure 1. AR image triggered by marker ... 7�

Figure 2. Place recommendation triggered by current location ... 7�

Figure 3. Text information triggered by detected animals ... 8�

Figure 4. System function flow .. 10�

Figure 5. Example neural network ... 13�

Figure 6. Artificial neuron ... 13�

Figure 7. Example filter which sharpen an input image .. 15�

Figure 8. Example input and output a sharpen filter .. 15�

Figure 9. Example pooling ... 16�

Figure 10. Image recognition and object recognition .. 17�

Figure 11. YOLO 7x7 output ... 18�

Figure 12. YOLOv2 7x7 output ... 19�

Figure 13. UI of labelImg .. 21�

Figure 14. Inside an XML file ... 22�

Figure 15. 360-degree video image ... 26�

Figure 16. THETA V .. 26�

Figure 17. HOMIDO PRIME .. 29�

Figure 18. User wearing the HMD .. 30�

Figure 19. System layout ... 31�

Figure 20. Object Detection AR View ... 33�

 4

Figure 21. Program Function Flow .. 34�

Figure 22. Prototype Object Detection AR .. 36�

Figure 23. VR spring when “bottle” selected .. 37�

Figure 24. VR car interior when “car” selected ... 37�

Figure 25. VR laboratory when “person” selected .. 38�

Figure 26. Age Variance ... 39�

Figure 27. Gender Variance ... 39�

Figure 28. Object detection AR evaluation .. 40�

Figure 29. VR contents evaluation ... 40�

Figure 30. System experience evaluation .. 42�

Figure 31. Event booth ... 43�

Figure 32. Detectable objects: lychee, beach panel and market panel 44�

Figure 33. VR lychee farm ... 45�

Figure 34. VR beach .. 45�

Figure 35. VR market .. 46�

Figure 36. Event age variance .. 46�

Figure 37. Event gender variance .. 47�

Figure 38. Event object detection AR experience evaluation .. 48�

Figure 39. Event VR contents experience evaluation .. 48�

Figure 40. Event system experience evaluation ... 49�

 5

CHAPTER 1: INTRODUCTION

1.1 Background

1.1.1 Overview of Augmented Reality

Augmented reality (AR) is a revolutionary information delivering technology which overlays

virtual information on the physical world. AR delivers information differently from the traditional

way. An AR system have the following properties [1]:

n combines real and virtual objects in a real environment;

n runs interactively, and in real time;

n registers (aligns) real and virtual objects with each other.

Instead of displaying digital contents independently on a device screen, AR presents digital

information in the real word, often near to the object which strongly related to the information.

For example, when a person meets a fruit he or she never seen before, instead of searching for it

on the internet using a mobile device, he or she can directly see the introduction about the fruit

on top of it as an AR information. Other than the convenience, AR technology provides strong

connection between object and information which helps users to understand the information

intuitively. Even though displaying digital information on top of real object sounds like science

fiction concept, the fact is that AR has the potential to play a big role in the next generation

information system in the near future [2]. AR technology have been applied various industries.

AR technology is utilized to create learning experiences [3]. In a research of augmented reality

enhanced artifacts, the system can recognize parts of the Minkisi artifact and augmented with

 6

information, making the object observable with information [4]. In a research of augmented

remote laboratory, the system offers a greater sense of realism, the same physical laboratory

settings can be used for different experiments, and easier experiment verification and generation

since [5].

In manufacturing industries, AR technology can also be applied. AR can be used as a comparison

tool in the automotive industry to compare actual parts with correct construction data. With the

help of AR, real parts can be check whether they are manufactured with appropriate design [6].

In aerospace industries, AR is used in servicing projects, such as space station filter change and

engine maintenance [7].

1.1.2 Object Detection Based AR system

One of the major types of AR system is object detection-based AR system. This AR system is

triggered by object detection mechanisms and presents information in the form of AR to introduce

the detected objects. The system consists of two main functions which are object detection and

information presentation. The common mechanisms to detect object are marker-based, location-

based, sensor-based, and deep-learning-based. The common formats of information presented are

texts, images, 3D objects. Figure 1 shows a marker-based AR system in which the actual panel is

registered as a marker, and when it is detected, an image related to the panel will be displayed in

AR. Figure 2 shows a location-based AR system in which recommended place to visit near current

location will be displayed in AR [8]. Figure 3 shows a deep learning-based AR system in which

introduction texts about detected animals will be displayed [9].

 7

Figure 1. AR image triggered by marker

Figure 2. Place recommendation triggered by current location

 8

Figure 3. Text information triggered by detected animals

1.2 Problem Statement

Even though object detection-based AR system strengthens the relationship between information

and objects by displaying digital information close to physical objects, the space for information

presentation in AR system becomes limited. In object detection-based AR system, information

has to be placed near the detected object to lead users to intuitively understand that the piece of

information is describing the object. Thus, information must be concise enough to maintain the

connection to objects. Concise information often leads to missing information which wanted to

be delivered. The problem statement of this research is how to present comprehensive information

while maintaining the connection between information and described objects.

 9

CHAPTER 2: PROPOSED METHOD

We propose using virtual reality (VR) to deliver comprehensive information about objects. VR is

a simulated digital environment created by computer where users can immerse into. VR usually

provide users a 360-degree view and users can experience and explore the virtual environment. A

large amount of information can be integrated into a VR scene since VR provides a completely

virtual environment. Another advantage of using VR is that the experience in VR can deliver

information which is hard to describe in words. For example, the best way to tell a person how

beautiful a place is, is to take that person to the place and let him or her to have a look. 	

In our method, we combine AR and VR technology to achieve experiential information delivering

about objects, in which users can comprehensively understand the information and also recognize

the subject of the information.

2.1 Related Work

We propose using VR to deliver information about objects, thus the effectiveness of VR as

information needs to be investigated. Researches about this topic have been conducted, and the

results indicate that VR is an ideal tool for information delivering.

In a comparative study of VR education, an A/B test was held where two groups of participants

attend a lecture about Stonehenge [10]. The first group was lectured through university lecture

style PowerPoint slides, and the second group learned through VR content. The overall result of

the time-constrained assessment which consists of questions covering information mentioned in

the lecture indicates that participants who learned through VR performed better when answering

those questions. Furthermore, participants claimed that learning in VR was a more positive

experience compared to learning with text material.

 10

In the research on art appreciation learning via VR, authors examined the usefulness of VR in art

appreciation [11]. They conducted a comparative experiment of teaching using VR and existing

presentation media, which are a textbook, a poster, a replica, and a tablet. The experiment results

indicate that VR is the most preferred media for art presentation.

CHAPTER 3: SYSTEM CONSTRUCTION

3.1 System Concept

The system detects objects, and present what are recognized in AR. Then when users decide which

object information they want to see, the system presents information about that object in VR.

Users using this system will see objects in front of them are recognized and select one of the

objects they are interested in. Then they can immerse into the VR environment which describe

that object and receive information. For example, when a user interested in an object in front of

him or her which is a bottle of water, they can choose that object and immerse into VR mountain

spring which is the source of that bottle of water. In this case, user can actually see the beautiful

spring where the water comes from.

The function flow is shown in figure 4. The system first detects objects and then present detected

object information in AR. After user interaction, the system present VR information.

Figure 4. System function flow

 11

3.2 Object Detection Development

3.2.1 Mechanism Selection

One of the major functions of this system is object detection. As we discussed in CHAPTER 1,

there are several object detection mechanisms used for AR systems. Before developing object

detection function, we investigated which mechanism is suitable for our system.

In marker-based object detection [12], [13], [14], a computer recognizes an object by its image

pattern. In this mechanism, a specific 2D pattern is recognized. Since the objects which we want

computer to recognize are real 3D objects, and usually have different appearances, a pattern match

method cannot function as we expect. A walkaround way to utilize pattern matching is to prepare

a separate piece of 2D image which has simple pattern, usually a QR code like image, and place

it near to the object. When objects have their own 2D marker, it become possible for computer to

identify each object by recognizing markers near each object. The disadvantage of using this

mechanism is that we need to prepare marker for each object and place them. This becomes

unrealistic when the number of recognizable objects increase.

In location-based object detection [15], [16], [17], a computer recognizes an object by its location.

In this mechanism, objects positions are defined by their geo-location which are registered

beforehand. When system with GPS moves close to registered locations, corresponding AR

information will show up. This mechanism is usually used to display information for unmovable

objects such as buildings and sightseeing spots. The disadvantages of using location-based

method is that the system will recognize the location but no the actual object, when the object is

moved from designed location, the AR information still appears at the location instead of

following the object.

In sensor-based object detection [18], [19], [20], a computer recognizes an object by detecting

 12

the sensor signal placed close to the object. Usually radio frequency identification (RFID) tag is

used for item identification. Multiple RFID tags can be detected accurate and precisely to identify

objects. However, similar to marker-based method, to use this mechanism, we need to prepare

tags for each object and place them. This becomes unrealistic when the number of detectable

objects increase.

In deep learning-based object detection [9], [21], [22], a computer recognized an object by

running its image through trained machine learning model. With this mechanism, a computer

detects objects without extra information set with them, only with object appearance. Furthermore,

objects can be recognized from different angle, and objects which are never seen by computer

vision before, as long as that category of object is trained with datasets. Even though the training

process requires large datasets, the well-trained model has high accuracy on recognizing objects.

Since computer will recognize objects from its vision, when multiple objects exist in the view,

the precise position of objects can be presented.

Comparing object detection mechanisms, we decide to implement our system with deep learning-

based object detection. The marker-based and sensor-based mechanisms both require extra

components to link with objects physically. Location-based mechanism cannot detect moving

objects, which will largely limit our target objects. On the other hand, deep learning-based

mechanism only needs objects appearance for detection, which can be applied to detect various

objects without too much limitation.

3.2.2 Deep learning-based object detection algorithm

 Deep learning introduction

Deep learning is a class of machine learning, which is based on artificial neural networks [23],

[24]. Deep learning has been applied to different field such as image recognition, natural language

processing, speech recognition, and etcetera with its architectures such as deep neural networks,

 13

convolutional neural networks, recurrent neural networks.

The basic understanding of deep learning is that computers compute parameters in defined neural

networks with provided datasets, following defined mathematical optimization methods.

Artificial neural networks are computing structures which are inspired by biological neural

networks. For example, Figure 5 is a neural network which has 3 inputs, and 2 outputs, with 1

hidden layer in the middle.

Figure 5. Example neural network

The nodes presented in hidden layers are artificial neurons which are mathematical functions as

shown in Figure 6.

Figure 6. Artificial neuron

inputs
outputs

Input layer hidden layer output layer

∑ f(x)

inputs weights

sum-of-product

output

A1

A2

A3

AN

W1

W2

W3

WN

!
1

x
y

bias

summation
function

activation
function

 14

For each neuron, inputs are multiplied by weights and summing up with bias. Then the sum-of-

product is calculated through activation function, and the results becomes input to next neurons.

Since the fact that neural networks consist of neurons which are mathematical functions, neural

networks are large mathematical functions. When the number of inputs and hidden layers

becomes large, a neural network becomes “deep”, in other words, a giant mathematical function.

With given inputs and mathematical functions, computers can calculate the outputs. Same process

happens in deep learning-based image recognition. When an image is given, pixels of the image

become inputs, and computer calculates through given mathematical function to give outputs

which indicate, for example, whether the image is a cat or not cat. A trained neural network is the

mathematical function in this process.

Only defining the structure of a neural network is not enough for computation, because the

parameter values are not defined yet. Parameters in neural network such as weights and bias, are

all called weights. Computing values of weights in neural network is the training process of deep

learning. To compute what values should parameters in a mathematical function be, computers

need to know example inputs and outputs which are called datasets, and also the optimization

procedure which is called loss function. The loss function defines how the neural network updates

parameters to reduce the error in prediction.

Given a neural network structure, datasets, procedures to compute weights in neural network,

computers can produce a neural network with weights which is trained by the datasets. Thus,

computers can recognize images by calculating through neural networks.

Since in our research, computer vision is used for object detection, an important class of neural

network is needed to be introduced which is Convolutional neural network (CNN). CNN usually

consists of convolution layers and pooling layers.

A convolution layer is a layer which do convolution operation [25]. A convolution is a linear

 15

operation which multiply inputs with a set of weights, similar to regular neural network

introduced above. The multiplication is performed between inputs and two-dimensional arrays

which is called filters or kernels. The values in a filter is considered to be weights. An example

of what filters do in a convolution operation is shown in figures below.

Figure 7. Example filter which sharpen an input image

Figure 8. Example input and output a sharpen filter

As shown in figures above, a filter can output an image enhancing the features in original image.

In above example, edges are sharpened through filtering. A convolution layer often consists of

multiple filters, so inputting one image, a convolution layer can produce multiple images which

are filtered with different weights.

A pooling layer a layer which down sample inputs. An example is shown as figure below, which

is a max pooling process, which down sample input image by filtering with 2x2 window and

0 0

0 0

-0.5

-0.5 -0.5

-0.5

3

 16

taking the maximum values as the outputs.

Figure 9. Example pooling

A CNN is usually combination of convolution layers and pooling layers. Convolution layers

extract features from an inputs image, and pooling layers down samples outputs from convolution

layers. The training process is similar to regular neural network we discussed above. With dataset

and optimization process, parameters in filters are computed.

 Algorithm Selection

CNN is a commonly used image recognition algorithm today. However, image recognition and

object detection are close but different topic. In image recognition, computer tells what kind of

object the whole image is representing. On the other hand, in object detection, computer tells what

objects are in an image, and their position and size. Current object detection algorithms also utilize

CNN. Examples of image recognition and object detection are shown below.

1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4

6 8
3 4

max pool with
2x2 filters

and stride 2

 17

Figure 10. Image recognition and object recognition

To implement our research concept, object detection algorithm is required. There are several state-

of-the-art object detection algorithms.

In R-CNN (Regions with CNN features), an input image is proposed into regions which are pieces

of the image, and those pieces of image becomes inputs to CNN separately [26]. Thus, in this

algorithm, computer does not consider the input image as a whole. Instead, computer runs through

CNN for each region of the image, and the output indicates what objects are in which region.

Methods to propose regions have been studied and improved as R-CNN, Fast R-CNN [27], Faster

R-CNN [28].

In YOLO (You Only Look Once), an input image runs through a single CNN which predicts

bounding boxes and the class of these boxes [29]. The object detection is realized by looking once

at the input image, and this is where the name of this algorithm comes from. A square image is

input into the YOLO model, and the outputs is also a square grid information, where each grid is

“responsible” for a corresponding area of the input image. Each grid contains information about

bounding boxes which centered in the grid area, each bounding box information contains, 4

coordinates defining the box area and 1 confidence value defining how confident an object is

inside the box. Other than bounding box information, the classes probabilities of detected object

are also in each grid. An image of a 7x7 grid output, which consists of 2 bounding boxes

information and probabilities of 20 classes which can be detected, is shown in figure 11.

 18

Figure 11. YOLO 7x7 output

The core idea of YOLO is packing all information about object position, size, and class into one

single 3-dimentional array as output. Thus, to detect objects, CNN is only computed once with

YOLO. On the other hand, algorithms like R-CNN require computing through CNN multiple

times. As a result, the advantage of YOLO is fast, and the advantage of R-CNN is accurate.

YOLOv2 is an improved version of YOLO which have slightly different structure [30]. In first

version of YOLO, the output array contains bounding boxes information and class probabilities

for each grid. On the other hand, output of YOLOv2 contains class probabilities for each bounding

box, as shown in figure 12.

 19

Figure 12. YOLOv2 7x7 output

Our research focuses on AR function which requires high refresh rate, so that system can detect

objects in real time. YOLOv2 becomes our choice to implement. CNN structure in YOLOv2

algorithms can be varied, and there is a structure called Tiny YOLO which have a smaller number

of layers in CNN compared with full version of YOLOv2. Tiny YOLO is less accurate compared

to full YOLOv2 since it has simpler CNN structure, but it is much faster. Due to this fact, we

decide to implement our object detection function using Tiny YOLO function.

 YOLO Model Development

w Development Environment

CPU

Ø Architecture: x86_64

Ø CPU op-mode(s): 32-bit, 64-bit

Ø Byte Order: Little Endian

Ø CPU(s): 4

Ø On-line CPU(s) list: 0-3

Ø Thread(s) per core: 1

Ø Core(s) per socket: 4

 20

Ø Socket(s): 1

Ø NUMA node(s): 1

Ø Vendor ID: GenuineIntel

Ø CPU family: 6

Ø Model: 79

Ø Stepping: 1

Ø CPU MHz: 1199.980

Ø BogoMIPS: 6983.80

Ø Virtualization: VT-x

Ø L1d cache: 32K

Ø L1i cache: 32K

Ø L2 cache: 256K

Ø L3 cache: 10240K

Ø NUMA node0 CPU(s): 0-3

GPU

Ø Product Name: TITAN X (Pascal)

Ø Product Brand: GeForce

Operation System

Ø DISTRIB_ID=Ubuntu

Ø DISTRIB_RELEASE=14.04

Ø DISTRIB_CODENAME=trusty

Ø DISTRIB_DESCRIPTION="Ubuntu 14.04.5 LTS"

Software Environment

Ø Python 3.6.3

Ø Tensorflow_gpu-1.3.0

Ø Cuda compilation tools, release 8.0, V8.0.61

Ø Nvidia driver version 418.39

 21

x Dataset Preparation

To train a neural network, we need to prepare a dataset. For object detection, the dataset will be

images and annotations which contain object classes and their coordinates for each image. Images

of objects which we want the system to detect should be prepared. For example, if we want the

system to detect “person”, images of person or persons should be prepared. The more image data,

the better object detection model will be trained. Variety of those data is also important. Images

of different “persons” in different conditions and situations should be prepared for training.

Otherwise if only images of person in red t-shirt are used for training, the model will only identify

person with red t-shirt as “person”.

For annotation, we need to make a file containing objects information for each image. A

convenient tool labelImg1 is ready for us to use. The user interface of labelImg is shown as figure

13.

Figure 13. UI of labelImg

1 https://github.com/tzutalin/labelImg.git

 22

By drawing bounding boxes and inputting objects names, the annotations are recorded. These

annotations will be saved as an XML file containing objects names, and their coordinates. In the

example of figure 13, the image includes a dog and a ball. To annotate them, we need to drag

bounding box on the dog and input “dog” and drag bounding box on the ball and input “ball”.

The bounding coordinates of the dog and the ball will be saved as an XML file which is shown

in figure 14. The file name indicates the corresponding image file which the XML belongs to, and

it will help to pair the image and the XML file in training process. A bounding box can be

described with two coordinates which are upper left point and lower right point of the box. In a

XML file, the two coordinates are recorded for each object class as xmin, ymin, xmax, and ymax

with object name.

Figure 14. Inside an XML file

 23

y Modeling

To train a model from our dataset, we utilize deep learning frameworks. The original YOLO

algorithm is implemented in Darknet, an open source neural network framework written in C and

CUDA. We want to implement our model to hardware other than PC, which we will discuss later,

however, Darknet format model is not compatible with the format we want. A more commonly

used framework should be used, and Tensorflow, an open source framework written in Python,

C++ and CUDA, is our choice. Fortunately, the work to translate YOLO from Darknet formate to

Tensorflow formate have already done in Darkflow2. With Darkflow, we can train our own YOLO

model in Tensorflow format.

To train a YOLO model, the dataset will be place under corresponding directories. Since the

number of object classes to be detected varies, modification on the configuration file which

defines YOLO network structure is required. The detailed procedure to train a YOLO model is

described in appendix.

The input size of YOLO model has width of 416 pixels and height of 416 pixels. The training

data have various image sizes. Thus, during the training process, training data images will be

resized into 416x416 pixels images and their corresponding object coordinates will also be resized

according to the original image size and keeping the aspect ratio. While prediction process, an

input image will be resized into 416x416 pixels, and the output coordinates of objects will be

resized according to the original input size.

2 https://github.com/thtrieu/darkflow.git

 24

3.3 VR Contents Development

3.3.1 Mechanism Selection

Local VR applications can be developed with game engines such as Unity. Since these engines

are powerful, VR applications with large varieties and good qualities can be developed. The

created VR applications are designed to be processed locally, so they will be saved locally as part

of our system and waiting to be processed. Often local VR applications have big file sizes and

take a lot of data storage space to save them. Considering scalability of our system, if we develop

our VR contents as local applications, as our detectable objects increase, the storage space taken

by VR contents corresponding to each object class also increases. This implementation method is

not preferred not only because it will require large space of storage, but also the editability of VR

contents. The concept of this research is to deliver VR contents as information, and if we develop

the VR contents locally, the information cannot be modified easily.

Developing remotely accessible VR applications which do not require to store before using the

system is a solution. WebVR is a web technology to build VR application as web applications,

and the created VR content can be accessed like regular websites via accessing URLs. Even

though WebVR is not designed to develop complex and high-quality VR application as game

engines do, the VR applications created with WebVR can be accessed through internet and does

not require our system to store them beforehand. WebVR is a JavaScript API for creating

immersive VR experiencein browsers, and it can work on mobile phones and VR headsets such

as HTC VIVE, Oculus Rift and etc. Researches have been conducted utilizing WebVR technology

which promises the usability of WebVR [31], [32], [33].

3.3.2 VR Websites Development

To create VR websites utilizing WebVR technology, we used A-Frame, a web framework to build

 25

VR websites. A-Frame is a three.js framework based on top of HTML, and it can be developed

from plain HTML file without having to install anything. We used Glitch, an online code editor

that hosts and deploys for free, to develop our A-Frame websites. Users should be able to interact

with VR contents. When users turn their head to different angles and look at different direction,

the view should also change according to user’s action. It requires the application to communicate

with the device which is displaying VR contents, and A-Frame handles it. A-Frame retrieve sensor

data from devices through brewers which support WebVR. With A-Frame, we can define and

create various components to construct virtual worlds. Components can be not only pre-defined

component such as boxes, spheres, and cylinders, but also imported 3D models. We can change

their position, size, color as we want. Another important factor of A-Frame is that since it is a web

framework, many web technologies can be applied to enhance the VR world. For example, we

can link websites to components we created, and users can access to other websites when interact

with components.

Even though A-Frame provides plenty functions to construct VR websites, in this research we

will focus on making simple VR worlds which are constructed with 360- degree videos which

will be played in loop.

 26

Figure 15. 360-degree video image

3.3.3 360-degree Video Making

The background environments are important to make people immerse into virtual worlds. Our

purpose is to create VR contents for information about actual objects, and 360-degree video is

utilized to describe objects. We used THETA V to take 360-degree videos to create VR websites.

Figure 16. THETA V

 27

The specs3 of THETA V regarding 360-degree video is shown below.

Video resolution/frame

rate/bit rate

4K H264: 3840�1920/29.97fps/56Mbps

2K H264: 1920�960/29.97fps/16Mbps

Microphone 4ch

Internal memory/Number of photos that can

be recorded, time

Video (time per recording): Max. 5

minutes/25 minutes

Video (total recording time): Approx. 40

minutes (4K, H.264)/approx. 130 minutes

(2K, H.264)

Object distance Approx. 10cm - � (from front of lens)

ISO sensitivity (standard output sensitivity) Video: ISO64 - 6400

Compression method Video: MP4 (Video: MPEG-4 AVC/H.264,

H.265, Audio: AAC-LC (mono) + Linear

PCM (4ch spatial audio))

To match the view of most users, 360-degree videos should be taken at height about the average

height of an adult, and also perpendicular to ground. We used a camera stand for THETA to satisfy

these requirements.

3 https://theta360.com/en/about/theta/v.html

 28

3.4 System Integration

3.4.1 Hardware Selection

AR glasses such as HoloLens are devices that present information in AR. Users wearing them can

view digital information overlaid on real world while seeing through optically. AR glasses are

often equipped with camera to scan the real world so digital components can interact with real

objects, for example a virtual box can be placed on a real table. Even though AR glasses provide

high-quality AR experience, they are not capable of displaying VR contents because of the optical

see-through. Immersive VR environments require users to be shut down from the real world. None

of the current AR glasses can perform both AR and VR function.

VR HMDs (head mounted displays) are devices for VR experience. There are two types of VR

HMDs, wired and wireless. Wired HMDs such as Oculus Rift must be connected to PCs to display

VR contents. PCs do the computation and output to wired HMDs. With computational power

provided by PCs, users wearing wired HMDs can play large VR games. Even though wired VR

HMDs can provide high-quality VR experience, they are lacking mobility due to the wire

connected to PCs. We want our system to be movable, so users can walk around to have VR

experience about different objects. Wireless HMDs such as Oculus Go, which are also called

standalone HMDs, do not have wire connect them to PCs, instead, they are standalone device.

They cannot process VR applications which require high computational power, but they can be

used at any place, in other words, they have high mobility. Unfortunately, current wireless HMDs

are not equipped with high resolution camera to perform video see-through which is essential for

AR.

Mobile device-based HMDs can realize the functions we want to implement. A mobile device-

based HMD consists of a mobile device, usually a smartphone, and a headset device. Users

 29

wearing the headset with smartphone placed inside can view the smart phone screen with two

eyes. Object detection AR can be realized by the combination of smartphone camera and its

computational power; VR contents can be displayed on the smartphone screen and viewed

through headset. In our research an iPhoneXs and a Google Cardboard v2 headset HOMIDO

PRIME (figure 17) is utilized to implement our system. Figure 18 shows a user wearing the HMD.

HOMIDO PRIME4

Figure 17. HOMIDO PRIME

Features:

- Custom made VR lenses: 110° FOV

- Wear glasses compatible

- Compatible with most recent smartphones

(Android & iPhone)

- Optical settings: IPD

- Interchangeable face contact foam

- Wireless

4 https://homido.com/shop/prime

 30

Figure 18. User wearing the HMD

3.4.2 Application Development

Development Environment

Ø macOS 10.13.5

Ø Xcode 9.3

Ø Swift 4.1

Ø iOS 12.1.2

In this research, a combination of mobile device and VR headset is utilized to make a head

mounted display (HMD) to bring users to VR environments from physical objects. The HMD is

built with an iPhoneXs and a head mount device HOMiDO PRIME that conforms to the Google

Cardboard v2 which has a button to tap the mobile device screen. The system is implemented as

an iOS application. As described in Figure 19, the system consists of two phases of operation.

The first phase is object detection with AR output, where a user with HMD can see-through with

camera captured images, and detection results of objects are shown in the user’s view as AR

tagged bounding boxes. The second phase is selection and VR information presentation, where

the user can select one of the detected objects through aiming the cursor and pressing the button

 31

on head mount device, and a WebVR website linked to the selected object is accessed. Then the

user can explore the VR world for information. When the button is pressed again, the system

changes back to the first phase again.

Figure 19. System layout

 Deep Learning Model in iOS App

The deep learning model introduced in section 4.2.2.3 cannot be implemented into an iOS

application directly. Conversion to CoreML format is required. Apple’s Core ML is a framework

for implementing machine leaning model into iOS application.

Our trained model has Tensorflow format, and to convert it into CoreML format, we used tf-

coreml5, a Tensorflow to CoreML converter.

5 https://github.com/tf-coreml/tf-coreml.git

Main
Application

Core ML

Tiny YOLO

URL Database

WebVR
Contents

Camera Image

Image w/
Detection
Results

Image

Detection
Results

Select Action
Center
Result

URL

URLVR Content

VR Content

Object Detection AR Process
Selection and VR Information Delivering Process

iOS Application

 32

 Object Detection AR process

An open source project6 can be referenced. To realize video see-through, camera captures images

and display them side-by-side with 30 frames per second. Along with the video see-through thread,

another thread which is responsible for object detection is processing. While images are displayed

on the screen, the image saved in image buffer is retrieved and runs through object detection

process. The image is resized into 416x416 pixels because the Tiny YOLO model’s input size is

416x416 pixels. Then the resized image becomes input of Tiny YOLO model. After computation,

it outputs matrix which contains possible existing objects’ position, size and probability

information. The output is then decoded into coordinates with corresponding objects probabilities.

We filter out bounding boxes which have confidence scores lower than 0.3 to ensure bounding

boxes with high uncertainty does not show up. The predicted bounding boxes are in the coordinate

space of the model’s input image which is a square image of 416x416 pixels. Since the actual

image captured and displayed on the screen has 1920 to 1080 aspect ratio, we need to resize the

bounding boxes according to the ratio. The bounding boxes in correct coordinate space are then

displayed side-by-side on top of the displayed side-by-side image. The object names are also

displayed at the top of bounding boxes. The object detection AR view is shown in figure 20.

6 https://github.com/hollance/YOLO-CoreML-MPSNNGraph

 33

Figure 20. Object Detection AR View

 Selection and VR information delivering process

When an object bounding box bounds the center coordinate of the image, the object is chosen to

be selected. A yellow circle cursor located at the center of the image helps users to aim object

they want to select. The actual selection action happens when users press the button on the head

mount device which can trigger a tap action on screen. The selection action is confirmed by

tapping on screen, thus user users wearing HMD can perform object selection without taking it

off. VR information delivering process is trigged by selection. The selected object name is them

matched in URL database and the corresponding WebVR website is accessed. WebKit, a web

engine, is used in the application to browse websites, and it is capable to WebVR, so users can

immerse into the VR environment and interact with it. The tap action triggered in VR mode will

reactivate see-through process, so the users can come back to the real world when button pressed.

 34

3.4.3 Program Function Flow

To shift between two phases of operation, two swift files are created, and the detailed function

flow is shown below.

Figure 21. Program Function Flow

ViewController.swift

Display Cursor Set Up Views

Set Up Camera

Save Image to
Buffer

Display on Left
and Right

Object Detection

Scale Coordinates
Aspect Ratio

Save Object Name
if Centered

Display Boxes on
Left and Right

Set Up Tap Gesture

Recognize Tap

Match Object Name in
URL Database

Change to WebView

WebViewController.swift

Set Up Web View

Load URL

Set Up Tap Gesture

Recognize Tap

Change View

 35

In ViewController.swift, there are four threads. In the first thread, two yellow cursors are

displayed on the screen for left and right view. In the second thread, left and right views are set,

and camera is activated to capture images. Then the captured image is saved to the pixel buffer,

and the save image is displayed both on left and right views. In the third thread, the image saved

in the buffer runs through object detection and the box coordinates are scaled according to the

aspect ratio of views. The detected object name is saved if its bounding box is located at the center.

Then detected objects’ boxes and names are displayed on left and right views. In the fourth thread,

tap gesture is set up and when it recognizes a tap action, the saved object name is matched in the

URL database. Then the view changes to web view.

In WebViewController.swift, the web view is set up and the matched URL is accessed. The tap

gesture is also set up and when it recognizes a tap action, the view changes to the first view.

 36

CHAPTER 4: PROTOTYPE EVALUATION

4.1 Prototype

A prototype system was developed to verify the functionality. The pre-trained neural network

model Tiny YOLO which can recognize 20 classes of objects is used. Although we can build

websites for all 20 classes, we chose to develop 3 websites for 3 classes, which are “bottle”, “car”,

and “person”. The use cases are when a person becomes interested in a bottle of water and curious

where the water comes from; when a person find a cool car passing by and want to take a look

inside; when a person sees a professor and wondering what his laboratory looks like.

For “bottle”, the linked website is built with a 360-degree image of a beautiful spring in a

mountain and description texts about the water source as shown in Figure 23. For “car”, the linked

website is built with a 360-degree image taken from inside of a car and description texts about

mechanical features as shown in Figure 24. For “person”, the linked website is built with a 360-

degree image of his working environment which is a laboratory in this prototype and description

texts as shown in Figure 25.

Figure 22. Prototype Object Detection AR

 37

Figure 23. VR spring when “bottle” selected

Figure 24. VR car interior when “car” selected

 38

Figure 25. VR laboratory when “person” selected

4.2 Evaluation

A user experience evaluation experiment of the prototype was held during an exhibition. The

prototype mentioned in section 5.1 was used and a bottle of natural spring water, a model car, and

a picture of professor were put on a table. We asked participants wearing HMD to select objects

which they were interested in and see the VR worlds. The evaluation was conducted through a

survey. 30 participants answered the survey questionnaire after experiencing the system. The age

and gender variance distribution of participants are shown in Figure 26 and 27. The participants

in good variance answered four questions about object recognition AR experience, four questions

about VR websites experience, and three questions about the whole system function experience.

 39

Figure 26. Age Variance

Figure 27. Gender Variance

Same four questions about object detection AR and VR contents experiences were answered:

whether the user did not feel sickness, spatial unawareness, delay, and narrow visual field. The

answers were in five levels Likert scale (-2=Disagree, -1=Slightly Disagree, 0=Neither,

4
13%

4
13%

5
17%8

27%

8
27%

1
3%

Age
Under 9
10-19
20-29
30-39
40-49
50-59

12
40%

18
60%

Gender
Male
Female

 40

1=Slightly Agree, 2=Agree). The evaluation results are similar for both functions. The results are

shown in Figure 28 and Figure 29.

Figure 28. Object detection AR evaluation

Figure 29. VR contents evaluation

For object detection AR, the positive mean results of sickness and spatial unawareness indicate

that users are comfortable with video see-through of this system, and they can recognize the

spatial relationship between objects. The slightly positive mean results of delay and narrow visual

-4

-3

-2

-1

0

1

2

3

4

Sickness Spatial
Unawareness

Delay Narrow Visual
Field

Error bars: +/- 2 SD

-4

-3

-2

-1

0

1

2

3

4

Sickness Spatial
Unawareness

Delay Narrow Visual
Field

Error bars: +/- 2 SD

 41

field indicate compromises of using video see-through are tolerable. The overall user experience

of video see-through with object recognition on the smartphone is good. However, since the

standard deviations of all four criteria are not small, the user experience of video see-through AR

on the smartphone depends on individuals.

For VR websites, the positive mean results of sickness and spatial unawareness indicate that users

are comfortable with experiencing VR contents delivered through websites on smartphone and

they can recognize the spatial relationship between information components created inside VR

contents. The slightly positive mean results of delay and narrow visual field indicate the

processing power and hardware limitation of the smartphone are tolerable when providing VR

experience. The overall VR experience on the smartphone through websites is good. However,

since the standard deviations of all four criteria are not small, the user experience of VR websites

on the smartphone depends on individuals.

Three questions about the entire system experience were answered: whether the system is

effective as information system, whether the system is interesting, and willingness of using the

system in the future. The answers were in five levels Likert scale (-2=Disagree, -1=Slightly

Disagree, 0=Neither, 1=Slightly Agree, 2=Agree). The results are shown in Figure 30. The

positive mean and low standard deviation result for each question indicate that most users think

the object detection-based AR-VR System is effective and interesting as an information system,

and they are willing to see more information presented in VR through object detection AR.

 42

Figure 30. System experience evaluation

CHAPTER 5: PRACTICAL IMPLEMENTATION

A 2-day promotion event was held at Haneda Airport to introduce Shintomi-cho, a town in

Miyazaki prefecture, Japan and our system was exhibited as part of the event. The event was held

by Shintomi-cho’s local companies and governments to promote the town. The purpose of the

event is to market local products, promote tourism, and most importantly make more people to

know Shintomi-cho. The most famous local specialty is the Shintomi-lychee, a locally farmed

lychee with high-quality. Since the Japanese lychee is very rear, and valuable, the main role of

the event was the lychee, and the organizers want people to first be interested in the lychee and

then become interested in Shintomi-cho. The event booth consisted of town information space,

local products selling space, and our experiential AR-VR system space. The actual booth view is

shown as figure 31.

-4

-3

-2

-1

0

1

2

3

4

Effective as
Information System

Interesting Want to Use in the
Future

Error bars: +/- 2 SD

 43

Figure 31. Event booth

At the local products selling space, lychees were both for sample tasting and sale. People visiting

the booth can have free lychees for tasting. Our system was developed to be able to detect the real

lychees, and people with sample lychees can use our system to see information about the lychees.

Other than the lychee, Shintomi-cho also has beautiful beach and monthly morning market which

can be presented to attract tourists. We implemented three pairs of objects and VR information.

when a person sees a lychee, which is the local specialty, he or she will be taken to the actual

lychee farm in Shintomi-cho where the lychee was picked; when a person sees the beach scene

printed panel, he or she will be taken to the beach of Shintomi-cho; when a person sees the

morning market scene printed panel, he or she will be taken to the monthly held morning market

in Shintomi-cho.

 44

5.1 System Development

We trained the model to detect three objects which are Shintomi-cho’s lychee, beach scene printed

panel, and morning market scene printed panel. For each object class, 1000 images are used to

train the model. We built three VR contents which are actual Shintomi-cho lychee farm, beach,

and morning market, corresponding to the detectable objects. The three detectable objects are

shown as figure 32.

Figure 32. Detectable objects: lychee, beach panel and market panel

For lychee, a VR world is created with 360-degree video of the actual lychee farm as shown in

figure33. The video length is 1 minute 2 seconds. Users will immerse into the lychee farm and

experience the place. At the start of the VR content, a Shintomi-cho person standing at the center

of the farm will introduce the lychee, and then the scene will change to the view from different

position in the lychee farm while reaming the introduction talk. Users can observe and experience

the lychee farm while listening to information about the lychee.

 45

Figure 33. VR lychee farm

For beach, a VR world is created with 360-degree video of the actual beach as shown in figure

34. The video length is 25 seconds. Users who immersed into VR beach, can view the beautiful

beach under sunshine. Users can see the ling coastline while hearing the sound of waves.

Figure 34. VR beach

For market, a VR world is created with 360-degree video of the actual marketplace event as shown

in figure 35. The video length is 56 seconds. The VR contents shows different shops at the market

and users can observe the entire street where the marketplace was held. The crowd’s sound will

also enhance the immersive experience.

 46

Figure 35. VR market

5.2 Evaluation

The evaluation was conducted through a survey and 60 participants answered the survey

questionnaire after experiencing the system. The age and gender variance distribution of

participants are shown in Figure 36 and 37. The participants in good variance answered four

questions about object recognition AR experience, four questions about VR contents experience,

and three questions about over all experience.

Figure 36. Event age variance

7
11% 10

17%

13
22%

15
25%

10
17%

5
8%

Age

10~19
20~29
30~39
40~49
50~59
60~

 47

Figure 37. Event gender variance

5.2.1 Object Detection AR and VR Contents Evaluation

Same four questions about object detection AR and VR contents experiences were answered: whether the

user did not feel sickness, spatial unawareness, delay, and narrow visual field. The answers were in five

levels Likert scale (-2=Disagree, -1=Slightly Disagree, 0=Neither, 1=Slightly Agree, 2=Agree). The

evaluation results are similar for both functions. The results are shown in Figure 38 and Figure 39.

The positive mean results indicate that users are comfortable with both AR and VR functions of this system

regarding to sickness, spatial unawareness, delay, and narrow visual field. However, since the standard

deviations of all four criteria for both functions are not small, the user experience of object detection AR

and VR on the smartphone depends on individuals.

22, 37%

38, 63%

Gender

Female
Male

 48

Figure 38. Event object detection AR experience evaluation

Figure 39. Event VR contents experience evaluation

5.2.2 System Experience Evaluation

Three questions about the entire system experience were answered: whether the system is

effective as information system, whether the system is interesting, and willingness of using the

-4

-3

-2
-1

0

1
2

3

4

Sickness Spacial
Unawareness

Delay Narrow Visual
Field

Error bars: +/- 2 SD

-4

-3

-2
-1

0

1
2

3

4

Sickness Spacial
Unawareness

Delay Narrow Visual
Field

Error bars: +/- 2 SD

 49

system in the future. The answers were in five levels Likert scale (-2=Disagree, -1=Slightly

Disagree, 0=Neither, 1=Slightly Agree, 2=Agree). The results are shown in Figure 40. The

positive mean and low standard deviation result for each question indicate that most users think

the object detection-based AR-VR System is effective and interesting as an information system,

and they are willing to see more information presented in VR through object detection AR.

Figure 40. Event system experience evaluation

Other than the questionnaires, we also interviewed participants for comments. Many participants

commented that they did not know lychees are also planted in Japan, and it is their first time to

learn what a lychee farm looks like. Since they could view the VR contents triggered by the actual

lychee they have, they understood the lychee that they were holding came from a well-organized

lychee farm and it also proved that the lychee was authentic Japanese lychee. This experience

stimulated them to actually purchase lychees.

A person who likes surfing commented that Shintomi-cho’s beach must be a good place for

surfing, because in the VR beach, he could feel the wave. He could not wait to actually go to

Shintomi-cho to visit the beach. This type of understanding could only be delivered through VR,

-4

-3
-2

-1

0

1

2

3

4

Effective as
Information System

Interesting Want to Use in the
Future

Error bars: +/- 2 SD

 50

because VR made him immerse into the scene.

Some people who had been to Shintomi-cho got excited while seeing the VR morning market.

They commented that the VR experience provided them chance to revisit the place they had been

to and find out the street did not change a lot since their last visit.

CHAPTER 6: FUTURE WORK

In this research, the mobile device is utilized because it satisfies both hardware and software

requirements to implement our concept. We used the camera to capture images and display them

on the screen to realize video see-though function. There are several improvements can be done

regarding see-though AR function.

In our system, one camera captures images and display them side-by-side and the user will only

see-through the world in two-dimensional, which losses depth information. To realize more

realistic see-through experience, three-dimensional image output is needed, and using two

cameras to capture images corresponding to two eyes of human can solve this problem. Even

though the two-dimensional video see-through we developed had relatively good evaluation,

improving it into three-dimensional video see-through will lead to better user experience.

Time lag in video see-through is unavoidable because we need to wait the camera to capture

images and display them on the screen, which is considered to be a factor which will cause VR

sickness. Optical see-through is preferred to solve this problem and users can observe the real

world through optical glasses. Optical see-through devices are immerging in recent years such as

HoloLens.

Regarding the VR experience, the mobile device is not produced specifically for VR experience

and it has relatively narrow visual field compared to VR headsets for example, Oculus Rift. VR

headsets usually have higher resolution display which can show higher quality VR contents. To

 51

improve the system user experience on VR information presentation, a higher quality VR device

can be used.

The transform from AR to VR can be considered more. In our system, due to the limitation of

hardware and software, the visual field of see-through and VR contents are different, and when

the AR view transforms into VR view, users will notice obvious changes in their view. Also, the

view will transition from AR to VR directly. Further studies can be done to investigate the

transition from AR to VR, for example, animation between AR view and VR view.

As mentioned in related studies in chapter 3, even though VR is a better format of information

compared with text information, there is also advantages of using text. When details needed to be

delivered, text information will perform better. Thus, for our system, further investigation on

effectiveness of using VR contents as output of object detection AR system on different target

objects can be conducted.

CHAPTER 7: CONCLUSION

In this research, we proposed object detection-based AR-VR system which utilize VR as an

information delivering method to enhance the object detection-based AR system. When user

interested in an object, the user can select the object with box tagged, and immerse into the VR

environment for information about the object. The system is implemented on mobile device-based

head mounted display as a mobile application. To implement the object detection function, deep-

learning image recognition algorithm YOLO is applied to our system after mechanism

comparison. To output VR contents, customized VR websites are accessed. A prototype and a

practical implementation were developed to evaluate the system and the effectiveness and

potential of this system are verified.

 52

CHAPTER 8: ACKNOWLEDGEMENT

I would like to thank Professor Ogi, who guided me throughout the thesis. He has provided

valuable advices and a lot of support. I would also like to thank Professor Shirasaka, who provided

helpful feedback and comments.

I would like to thank staff of Shintomi-cho and Haneda Airport who supported me throughout the

evaluation event.

I thank all participants for answering the survey which helped me to conduct a meaningful

evaluation.

 53

CHAPTER 9: REFERENCES

[1] Azuma, R., et al. “Recent Advances in Augmented Reality.” IEEE Computer Graphics and

Applications, vol. 21, no. 6, 2001, pp. 34–47.

�

[2] Bastug, Ejder, et al. “Toward Interconnected Virtual Reality: Opportunities, Challenges, and

Enablers.” IEEE Communications Magazine, vol. 55, no. 6, 2017, pp. 110–117.

�

[3] Santos, Marc Ericson C., et al. “Augmented Reality Learning Experiences: Survey of

Prototype Design and Evaluation.” IEEE Transactions on Learning Technologies, vol. 7, no. 1,

2014, pp. 38–56.

�

[4] Simeone, Luca, and Salvatore Iaconesi. “Anthropological Conversations: Augmented Reality

Enhanced Artifacts to Foster Education in Cultural Anthropology.” 2011 IEEE 11th International

Conference on Advanced Learning Technologies, 2011.

�

[5] Andujar, Jose Manuel, et al. “Augmented Reality for the Improvement of Remote

Laboratories: An Augmented Remote Laboratory.” IEEE Transactions on Education, vol. 54, no.

3, 2011, pp. 492–500.

�

[6] Nolle, Stefan, and Gudrun Klinker. “Augmented Reality as a Comparison Tool in Automotive

Industry.” 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality, 2006.

�

[7] Regenbrecht, H., et al. “Augmented Reality Projects in the Automotive and Aerospace

 54

Industries.” IEEE Computer Graphics and Applications, vol. 25, no. 6, 2005, pp. 48–56.

�

[8] Sekiguchi, Kentaro. “Museum Exhibition Linking with the Real World by Using Augmented

Reality Technology.” Keio Gijuku Daigaku Daigakuin Shisutemu Dezain Manejimento Kenkyuka,

Mar. 2014, pp. 101.�

[9] Takesue, Yusuke. “Development of AR System Based on Deep Learning and Operation Using

Gamification.” Keiō Gijuku Daigaku Daigakuin Shisutemu Dezain Manejimento Kenkyūka, Mar.

2018.

[10] Slavova, Yoana, and Mu Mu. “A Comparative Study of the Learning Outcomes and

Experience of VR in Education.” 2018 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR), 2018.

[11] Usui, Shoko, et al. “Development and Evaluation Experiment of Display Media Using VR

for Art Appreciation Learning.” 2017 6th IIAI International Congress on Advanced Applied

Informatics (IIAI-AAI), 2017.

[12] Fiala, M. “ARTag, a Fiducial Marker System Using Digital Techniques.” 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR05).

[13] Zhang, Xiang, et al. “Visual Marker Detection and Decoding in AR Systems: a Comparative

Study.” Proceedings. International Symposium on Mixed and Augmented Reality.

 55

[14] Mohring, M., et al. “Video See-Through AR on Consumer Cell-Phones.” Third IEEE and

ACM International Symposium on Mixed and Augmented Reality, 24 Jan. 2005.

[15] Narzt, et al. “Pervasive Information Acquisition for Mobile AR-Navigation

Systems.” Proceedings DARPA Information Survivability Conference and Exposition MCSA-03,

2003.

[16] Vossiek, M., et al. “Wireless Local Positioning - Concepts, Solutions, Applications.” Radio

and Wireless Conference, 2003. RAWCON 03. Proceedings.

[17] Paucher, Remi, and Matthew Turk. “Location-Based Augmented Reality on Mobile

Phones.” 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

- Workshops, 2010.

[18] Kunkel, Sebastian, et al. “A Concept for Infrastructure Independent Localization and

Augmented Reality Visualization of RFID Tags.” 2009 IEEE MTT-S International Microwave

Workshop on Wireless Sensing, Local Positioning, and RFID, 2009.

[19] Sun, Jianqiang, et al. “RF-ISee: Identify and Distinguish Multiple RFID Tagged Objects in

Augmented Reality Systems.” 2016 IEEE 36th International Conference on Distributed

Computing Systems (ICDCS), 2016.

[20] Xie, Lei, et al. “TaggedAR: An RFID-Based Approach for Recognition of Multiple Tagged

[21] Objects in Augmented Reality Systems.” IEEE Transactions on Mobile Computing, vol. 18,

 56

no. 5, 2019, pp. 1188–1202.

[22] Lin, Cheng-Hung, et al. “A Novel Campus Navigation APP with Augmented Reality and

Deep Learning.” 2018 IEEE International Conference on Applied System Invention (ICASI), 2018,

doi:10.1109/icasi.2018.8394464.

[23] Lalonde, Jean-Francois. “Deep Learning for Augmented Reality.” 2018 17th Workshop on

Information Optics (WIO), 2018.

[24] Szegedy, Christian, et al. “Going Deeper with Convolutions.” 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[25] Girshick, Ross, et al. “Rich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation.” 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[26] Girshick, Ross. “Fast R-CNN.” 2015 IEEE International Conference on Computer Vision

(ICCV), 2015.�

�

[27] Ren, Shaoqing, et al. “Faster R-CNN: Towards Real-Time Object Detection with Region

Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,

no. 6, 2017, pp. 1137–1149.

[28] Redmon, Joseph, et al. “You Only Look Once: Unified, Real-Time Object Detection.” 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

 57

[29] Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[30] Butcher, Peter W. S., and Panagiotis D. Ritsos. “Building Immersive Data Visualizations for

the Web.” 2017 International Conference on Cyberworlds (CW), 2017.

�

[31] Gunkel, Simon, et al. “WebVR Meets WebRTC: Towards 360-Degree Social VR

Experiences.” 2017 IEEE Virtual Reality (VR), 2017.

�

[32] Pakkanen, Toni, et al. “Interaction with WebVR 360° Video Player: Comparing Three

Interaction Paradigms.” 2017 IEEE Virtual Reality (VR), 2017.�

 58

CHAPTER 10: APPENDICES

10.1 Tiny YOLO Modeling Procedure

l Download and Install Darkflow from https://github.com/thtrieu/darkflow.git

pip install -e .

l Move the training dataset to corresponding directories. Images to ‘./images/’ directory and

annotations to ‘./annotations/’.

l Copy and rename one of the configuration files that is going to be used. A configuration file

contains neural network structure information. Configuration files are located in ‘./cfg/', and

‘tiny-yolo-voc.cfg’ is our choice. We renamed the copy of it to ‘tiny-yolo-new.cfg’.

l Change several parameters in configuration file. If 2 classes of objects are annotated in

dataset, change classes to 2.

classes=2

Change filters number to boxes_number*(boxes_info+classes number). 5 is the default box

number and we keep this. Boxes_info are P(Object), X, Y, Width, Height, thus 5. We change

filters to 5*(5+2), which is 35.

Filters = 35

tiny-yolo-new.cfg

[net]
batch=64
subdivisions=8
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

 59

learning_rate=0.001
max_batches = 40100
policy=steps
steps=-1,100,20000,30000
scales=.1,10,.1,.1

[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky

 60

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky

[maxpool]
size=2
stride=1

[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky

###########

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky

[convolutional]
size=1
stride=1

 61

pad=1
filters=35
activation=linear

[region]
anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
bias_match=1
classes=2
coords=4
num=5
softmax=1
jitter=.2
rescore=1

object_scale=5
noobject_scale=1
class_scale=1
coord_scale=1

absolute=1
thresh = .5
random=1

l Modify ‘labels.txt’ file and specify names of classes. Write down “dog” and “ball”, if our

dataset has dogs and balls annotated.

l Download corresponding pre-trained weights to ‘./bin/'. In our case, ‘tiny-yolo-voc.weights’

is downloaded

l Create a python script defining training options.

import numpy as np

from darkflow.net.build import TFNet
import cv2

options = {"model": "./cfg/tiny-yolo-new.cfg",
 "load": "./bin/tiny-yolo-voc.weights",
 "batch": 8,
 "epoch": 30,
 "gpu": 1.0,
 "train": True,

 62

 "annotation": "./data/annotations/",
 "dataset": "./data/images/"}

tfnet = TFNet(options)
tfnet.train()
tfnet.savepb()

Set “model” to the configuration file we created

Set “load” to the weights we downloaded

Set “batch” to 8, where batch size defines the number of samples that will be propagated

once

Set “epoch” to 30, where epoch defines how many times a dataset will be trained through

Set “gpu” to 1.0 to enable GPU hardware

Set “train” to true to claim it is a training process

Set “annotation” to the directory with XML files

Set “dataset” to the directory with training images

10.2 Example A-Frame Website Code

<html>
 <head>
 <meta charset="utf-8">
 <title>Welcome to Shintomi</title>
 <meta name="description" content="Welcome to Shintomi">
 <meta name="apple-mobile-web-app-capable" content="yes">
 <script src="https://aframe.io/releases/0.8.0/aframe.min.js"></script>

 <script>
 AFRAME.registerComponent('auto-enter-vr', {
 init: function () {

 this.el.sceneEl.enterVR();

 }
});
 </script>

 63

A VR website can be created with a single .html file by including A-Frame in the <head>.

<head>
 <script src="https://aframe.io/releases/0.8.0/aframe.min.js"></script>
</head>

We used A-Frame version 0.8.0.

Since our system requires direct enter to VR mode, additional JavaScript is included.

<script>
 AFRAME.registerComponent('auto-enter-vr', {
 init: function () {

 this.el.sceneEl.enterVR();

 }
});
 </script>

 </head>
 <body>

 <a-scene vr-mode-ui="enabled: false" auto-enter-vr>
 <a-videosphere rotation="0 -90 0" material="side:back" src="#video" >
 </a-videosphere>

 <a-entity camera rotation = "0 0 0" id="cameraview" look-controls wasd-controls
>
 </a-entity>
 <a-assets>
 <!-- Single source video. -->
 <video id="video" style="display:none"
 autoplay loop crossorigin="anonymous" playsinline webkit-playsinline>
 <!-- MP4 video source. -->
 <source type="video/mp4"
 src="https://cdn.glitch.com/61d7c84c-8655-4084-adc1-
8b85826f1391%2Flychee.mp4?1558864370678" />
 </video>
 </a-assets>
 </a-scene>
<script>
 var v = document.querySelector('#video');
 v.play();
</script>
 </body>
</html>

 64

A camera entity is created to display the VR world.

Different contents can be created in VR website. In the example, a 360-degree video is included.

Since we want our system to play directly instead of waiting for users interact, we need to set the

video to play automatically and play in loop.

10.3 iOS application code

WebViewController.swift

//
// WebViewController.swift
//
//
// Created by XIANGYI GAO on 2018/09/09.
// Copyright © 2018i XIANGYI GAO. All rights reserved.
//
import Foundation

<a-entity camera rotation = "0 0 0" id="cameraview" look-controls wasd-controls >
 </a-entity>

<a-videosphere rotation="0 -90 0" material="side:back" src="#video" >
</a-videosphere>
<a-assets>
 <!-- Single source video. -->
 <video id="video" style="display:none"
 autoplay loop crossorigin="anonymous" playsinline webkit-playsinline>
 <!-- MP4 video source. -->
 <source type="video/mp4"
 src="https://cdn.glitch.com/61d7c84c-8655-4084-adc1-
8b85826f1391%2Flychee.mp4?1558864370678" />
 </video>
</a-assets>

<script>
 var v = document.querySelector('#video');
 v.play();
</script>

 65

import UIKit
import WebKit

class WebViewController: UIViewController, UIGestureRecognizerDelegate {
// @IBOutlet weak var myWebView1: WKWebView!
 var myWebView1 = FullScreenWKWebView()
 override func viewDidLoad() {
 super.viewDidLoad()
 let config = WKWebViewConfiguration()
 config.allowsInlineMediaPlayback = true
 config.mediaTypesRequiringUserActionForPlayback = []
 self.myWebView1 = FullScreenWKWebView(frame: CGRect(x: 0, y: 0, width:
812, height: 375), configuration: config) // config�H��?$&?$A
 self.myWebView1.isOpaque = false;
 self.view.addSubview(self.myWebView1)
 // Do any additional setup after loading the view.
 self.myWebView1.load(URLRequest(url:URL(string:webName)!))

 let tapGesture:UITapGestureRecognizer = UITapGestureRecognizer(
 target: self,
 action: #selector(ViewController.tapped(_:)))

 // *;!�+�%(+
 tapGesture.delegate = self
 self.myWebView1.addGestureRecognizer(tapGesture)
 }

 func gestureRecognizer(_ gestureRecognizer: UIGestureRecognizer,
shouldRecognizeSimultaneouslyWith otherGestureRecognizer: UIGestureRecognizer) ->
Bool{
 return true
 }

 @objc func tapped(_ sender: UITapGestureRecognizer) {
 self.myWebView1.loadHTMLString("<html/>", baseURL: nil)
 performSegue(withIdentifier: "goToSel", sender: self)

 66

 print("View Tap")
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 UIDevice.current.setValue(UIInterfaceOrientation.landscapeRight.rawValue,
forKey: "orientation")
 }
 override var shouldAutorotate: Bool {
 return false
 }
 override var supportedInterfaceOrientations: UIInterfaceOrientationMask {
 return.landscapeRight
 }
 override var preferredInterfaceOrientationForPresentation: UIInterfaceOrientation{
 return.landscapeRight
 }
}
class FullScreenWKWebView: WKWebView {
 override var safeAreaInsets: UIEdgeInsets {
 return UIEdgeInsets(top: 0, left: 0, bottom: 0, right: 0)
 }
}

ViewController.swift

//
// ViewController.swift
// tinyYoloVR
//
// Created by XIANGYI GAO on 2018/04/27.

 67

// Copyright © 2018i XIANGYI GAO. All rights reserved.
//

import UIKit
import AVFoundation
import Vision
var webName : String = "…"
var flag = 0

class ViewController: UIViewController,
AVCaptureVideoDataOutputSampleBufferDelegate,
UIGestureRecognizerDelegate,
URLSessionTaskDelegate {

 @IBOutlet weak var boxView: UIView!
 @IBOutlet weak var cameraView: UIView!

 var input:AVCaptureDeviceInput!
 var output:AVCaptureVideoDataOutput!
 var session:AVCaptureSession!
 var camera:AVCaptureDevice!
 var imageView:UIImageView!
 var firstView:UIImageView!
 var secondView:UIImageView!
 var pixelBuffer: CVPixelBuffer!
 var boundingBoxes = [BoundingBox]()
 var boundingBoxes1 = [BoundingBox]()
 var colors: [UIColor] = []
 var request: VNCoreMLRequest!
 let yolo = YOLO()
 var count = 0
 var offcount = 0
 var result : String = "…"
 var judge : String = "…"
 var objectNotAimed : Bool = true
 var firstSetUpDisplay: Bool = true

 68

 let dispatchQueueSIS = DispatchQueue(label: "ObjectDetection")

 override func viewDidLoad() {
 flag = 0
 super.viewDidLoad()

 // Display two yellow circle cursors
 if firstSetUpDisplay == true{
 drawCursorCircles()
 }
 // Set up Tap Gesture
 setUpTapGesture()

 // Set up Bounding Boxes
 setUpBoundingBoxes()

 // Set up Screen Display
 if firstSetUpDisplay == true{
 setupDisplay()
 }
 firstSetUpDisplay = false
 // �5:�Zd
 setupCamera()

 dispatchQueueSIS.async {
 sleep(UInt32(1))
 while(flag == 0){
 usleep(50000)
 self.setUpVision()
 try? VNImageRequestHandler(cvPixelBuffer:
self.pixelBuffer).perform([self.request])
 }
 }

 }

 69

 func drawCursorCircles(){
 let screenWidth = self.cameraView.bounds.width // Get device screen width
 let screenHeight = self.cameraView.bounds.height // Get device screen height
 // Draw two yellow cirlces
 let CircleDraw = circleDraw(frame: CGRect(x: 0, y: 0, width: screenWidth, height:
screenHeight))
 self.view.addSubview(CircleDraw)
 CircleDraw.isOpaque = false
 }

 func setUpTapGesture(){
 let tapGesture:UITapGestureRecognizer = UITapGestureRecognizer(
 target: self,
 action: #selector(ViewController.tapped(_:))
)
 // *;!�+�%(+
 tapGesture.delegate = self;
 // View �cB.
 self.view.addGestureRecognizer(tapGesture)
 }

 @objc func tapped(_ sender: UITapGestureRecognizer){

 if judge == "Un:�'" {
 flag = 1
 webName = "https://lychee.glitch.me"
 performSegue(withIdentifier: "goToWeb", sender: self)
 }
 if judge == "bN" {
 flag = 1
 webName = "https://asaichi.glitch.me"
 performSegue(withIdentifier: "goToWeb", sender: self)
 }
 if judge == "nel" {
 flag = 1
 webName = "https://umibe.glitch.me/"

 70

 performSegue(withIdentifier: "goToWeb", sender: self)
 }
 }
 func setUpBoundingBoxes() {
 for _ in 0..<YOLO.maxBoundingBoxes {
 boundingBoxes.append(BoundingBox())
 boundingBoxes1.append(BoundingBox())
 }

 // Make colors for the bounding boxes. There is one color for each class,
 // 20 classes in total.

 let color0 = UIColor(red: 0.2, green: 0.6, blue: 0.2, alpha: 0.5) // alpha = 0.5
 colors.append(color0)
 let color1 = UIColor(red: 0.8, green: 0.5, blue: 0.2, alpha: 0.5) // alpha = 0.5
 colors.append(color1)
 let color2 = UIColor(red: 0.2, green: 0.6, blue: 0.8, alpha: 0.5) // alpha = 0.5
 colors.append(color2)

 }

 func setUpVision() {
 guard let visionModel = try? VNCoreMLModel(for: yolo.model.model) else {
 print("Error: could not create Vision model")
 return
 }

 request = VNCoreMLRequest(model: visionModel, completionHandler:
visionRequestDidComplete)

 // NOTE: If you choose another crop/scale option, then you must also
 // change how the BoundingBox objects get scaled when they are drawn.
 // Currently they assume the full input image is used.
 request.imageCropAndScaleOption = .scaleFill
 }

 71

 func visionRequestDidComplete(request: VNRequest, error: Error?) {
 if let observations = request.results as? [VNCoreMLFeatureValueObservation],
 let features = observations.first?.featureValue.multiArrayValue {

 let boundingBoxes = yolo.computeBoundingBoxes(features: features)
 showOnMainThread(boundingBoxes)
 }
 }
 func showOnMainThread(_ boundingBoxes: [YOLO.Prediction]) {
 DispatchQueue.main.async {

 self.show(predictions: boundingBoxes)
 for box in self.boundingBoxes {
 box.addToLayer(self.boxView.layer)

 }
 for box1 in self.boundingBoxes1 {
 box1.addToLayer(self.boxView.layer)

 }
 }
 }
 func show(predictions: [YOLO.Prediction]) {
 objectNotAimed = true
 for i in 0..<boundingBoxes.count {

 if i < predictions.count {
 let prediction = predictions[i]

 // The predicted bounding box is in the coordinate space of the input
 // image, which is a square image of 416x416 pixels. We want to show
it
 // on the video preview, which is as wide as the screen and has a 4:3
 // aspect ratio. The video preview also may be letterboxed at the top
 // and bottom.

 72

 let width = cameraView.bounds.width/2
 let height = cameraView.bounds.width * (1920/1080) / 2
 let scaleX = width / CGFloat(YOLO.inputWidth)

 let scaleY = height / CGFloat(YOLO.inputHeight)
 let top = (cameraView.bounds.height - cameraView.bounds.width *
(1920/1080)) / 2

 // Translate and scale the rectangle to our own coordinate system.
 var rect = prediction.rect
 rect = rect.applying(CGAffineTransform(rotationAngle:
CGFloat(1*Double.pi/2)))
 rect.origin.x = (rect.origin.x*scaleX + (3*width/2))
 rect.origin.y *= scaleY
 rect.origin.y += top
 rect.size.width *= scaleX
 rect.size.height *= scaleY

 var rect1 = rect
 rect1.origin.y += (cameraView.bounds.height/2)-top

 // Show the bounding box.
 let label = String(format: "%@", labels[prediction.classIndex])
 let color = colors[prediction.classIndex]

 if (rect.origin.x < cameraView.bounds.width/2) && ((rect.origin.x +
rect.size.width) > cameraView.bounds.width/2) && (rect.origin.y <
(cameraView.bounds.height - height)/2) && ((rect.origin.y + rect.size.height) >
(cameraView.bounds.height - height)/2){
 objectNotAimed = false
 judge = labels[prediction.classIndex]
 }

 boundingBoxes[i].show(frame: rect, label: label, color: color)

 73

 boundingBoxes1[i].show(frame: rect1, label: label, color: color)
 } else {
 boundingBoxes[i].hide()
 boundingBoxes1[i].hide()
 }
 }
 if objectNotAimed{
 judge = "null"
 }
 }
 /* View X`O�J�R
 */
 override func viewDidDisappear(_ animated: Bool) {
 // camera stop 56;Dq
 session.stopRunning()
 for output in session.outputs {
 // session.removeOutput((output as? AVCaptureOutput)!)
 session.removeOutput(output)
 }

 for input in session.inputs {
 // session.removeInput((input as? AVCaptureInput)!)
 session.removeInput(input)
 }

 session = nil
 camera = nil
 }

 /* C]kP�G��Zd */
 func setupDisplay(){
 //$;�?�o
 //1920 1080
 //812 375
 let screenWidth = cameraView.bounds.width;
 //$;�?�L	
 let screenHeight = cameraView.bounds.width * (1920/1080);

 74

 // 1=-8�t�-8��WV
 imageView = UIImageView()
 firstView = UIImageView()
 secondView = UIImageView()
 imageView.frame = CGRect(x: 0, y: 0, width: screenWidth, height:
 screenHeight)
 firstView.frame = CGRect(x: screenWidth/4, y: (cameraView.bounds.height -
screenHeight)/2 , width: screenWidth/2, height:
 screenHeight/2)
 secondView.frame = CGRect(x: screenWidth/4, y: cameraView.bounds.height/2,
width: screenWidth/2, height:
 screenHeight/2)
 }

 /* �5:hv�-*�Rv�%(#9?�Y_ */
 func setupCamera(){
 // AVCaptureSession: �71'7�G��hv�Rv�Eu
 session = AVCaptureSession()

 // sessionPreset: �71'7� �;)��Zd
 // session.sessionPreset = AVCaptureSessionPresetHigh
 session.sessionPreset = AVCaptureSession.Preset.high

 // js�\s�5:�[a iOS10 ��pK
 camera =

AVCaptureDevice.default(AVCaptureDevice.DeviceType.builtInWideAngleCamera,
 for: AVMediaType.video, position: .back)

 // �5:���hv*�&
 do {
 input = try AVCaptureDeviceInput(device: camera) as
AVCaptureDeviceInput
 } catch let error as NSError {

 75

 print(error)
 }
 // hv�%(#9?�cB
 if(session.canAddInput(input)) {
 session.addInput(input)
 }

 // AVCaptureVideoDataOutput:fC/=�4*�&�Rv�Zd
 output = AVCaptureVideoDataOutput()
 // Rv�%(#9?�cB
 if(session.canAddOutput(output)) {
 session.addOutput(output)
 }

 // . %</��3(+� 32bit BGR + A ���
 output.videoSettings = [kCVPixelBufferPixelFormatTypeKey as AnyHashable
as!
 String : Int(kCVPixelFormatType_32BGRA)]

 // /=�4��71'7�����"0$=(,t�#;�<�8��t@
 output.setSampleBufferDelegate(self, queue: DispatchQueue.main)
 output.alwaysDiscardsLateVideoFrames = true

 session.startRunning()

 // device �>(

Zd
 do {
 try camera.lockForConfiguration()
 // /=�4=�+
 camera.activeVideoMinFrameDuration = CMTimeMake(1, 30)
 camera.unlockForConfiguration()
 } catch _ {
 }
 }

 76

 /* -*��71'7r�J���Su */
 func captureOutput(_ captureOutput: AVCaptureOutput, didOutput sampleBuffer:
 CMSampleBuffer, from connection: AVCaptureConnection) {
 // �71'7
� sampleBuffer �� UIImage �MV
 let image:UIImage = self.captureImage(sampleBuffer)
 pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer)

 //
 self.imageView.image = image
 self.firstView.image = image
 self.secondView.image = image
 // UIImageView �-8��cB
 self.cameraView.addSubview(self.firstView)
 self.cameraView.addSubview(self.secondView)

 ///////////////////////////////
// result = result.components(separatedBy: ":").first!
// judge = (result == "Penguin")
// print(result)
// message.text = result

 }
 /* �5:���C]�71'7 */
 func captureImage(_ sampleBuffer:CMSampleBuffer) -> UIImage{

 // Sampling Buffer ��C]�Qg
 let imageBuffer:CVImageBuffer =
CMSampleBufferGetImageBuffer(sampleBuffer)!

 // pixel buffer �2�$�,=$�>(
 CVPixelBufferLockBaseAddress(imageBuffer,
CVPixelBufferLockFlags(rawValue:
 CVOptionFlags(0)))

 77

 let baseAddress:UnsafeMutableRawPointer =
 CVPixelBufferGetBaseAddressOfPlane(imageBuffer, 0)!

 let bytesPerRow:Int = CVPixelBufferGetBytesPerRow(imageBuffer)
 let width:Int = CVPixelBufferGetWidth(imageBuffer)
 let height:Int = CVPixelBufferGetHeight(imageBuffer)

 // TIF
 let colorSpace:CGColorSpace = CGColorSpaceCreateDeviceRGB()

 //let bitsPerCompornent:Int = 8
 let newContext:CGContext = CGContext(data: baseAddress, width: width,
height:
 height, bitsPerComponent: 8, bytesPerRow: bytesPerRow, space:
colorSpace, bitmapInfo:

CGImageAlphaInfo.premultipliedFirst.rawValue|CGBitmapInfo.byteOrder32Little.rawValu
e)!

 let imageRef:CGImage = newContext.makeImage()!
 let resultImage = UIImage(cgImage: imageRef, scale: 1.0, orientation:
 UIImageOrientation.right)
 return resultImage
 }

 /* 56;m^O�J�R
 */
 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

}

