EfEAXFZZHMBHRI NI U
Keio Associated Repository of Academic resouces

Title Design of Reusable Software for Attitude Determination System of Micro/Nano Satellites in
Consideration of Modularity and Extensibility using SysML

Sub Title

Author Nguyen, Son Duong(Nishimura, Hidekazu)
A,

Publisher BEZBRZFRZRSATALATH A - XXX NHZER

Publication year 2015

Jtitle
JaLC DOI
Abstract
Notes L ZMML. 2015FEVATLAIV DT I J% 81795
Genre Thesis or Dissertation
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=K0O40002001-00002015-

0007

BRESBAZZMERVARD NU(KOARA)ICEBHEATVWAR AV TV OEEER., ThThOEESE, ZLFTLFHRLWRTECREL. TOEINEEEEEICELST
REETNTVET, 5lACHLE>TR., EFEELZZEFLTIRAEZTL,

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

http://www.tcpdf.org

Master's Dissertation 2015

Design of Reusable Software
for Attitude Determination System of Micro/Nano Satellites
in Consideration of Modularity and Extensibility using SysML

Nguyen Son Duong
(Student ID Number: 81334561)

Supervisor: Prof. Hidekazu Nishimura

September 2015

Graduate School of System Design and Management,
Keio University
Major in System Design and Management

SUMMARY OF MASTER'S DISSERTATION

Student Identification 81334561 Name Nguyen Son
Number DUONG

Title

Design of Reusable Software for Attitude Determination System of Micro/Nano Satellites
in Consideration of Modularity and Extensibility using SysML

Abstract
Today, micro and nano satellites are being widely used for Earth observation, remote

sensing, technology demonstration and scientific purposes with lower cost and shorter time
development in compare with larger satellites. The micro/nano satellites projects are usually
varied according to missions and hardware constraints. Among on-board software
components, attitude determination software is one of the most difficult parts when coding
because it requires complicated calculations, especially for the micro/nano satellites. The
ratio of the attitude determination software can be estimated about 40% in total on-board
software of satellites. Therefore, design of the reusable attitude determination software
which can be reused for many types of the micro/nano satellite projects to save time and
cost for satellite development is the objective of this research.

NASA has already realized software reusability viewpoint in NASA Reuse Readiness
Levels (RRLs). NASA RRLs is a method to measure the potential of reuse of general
software and has 9 topic areas including documentation, modularity, extensibility, etc. After
analyzing the context of attitude determination software reuse between micro/nano satellites
projects, the modularity and extensibility are critical and therefore selected in this research.

Model-based systems engineering (MBSE) is a powerful approach to model complex
systems such as the satellites. Systems Modeling Language (SysML) is a standardized
language to enable MBSE. Applying SysML to design the satellite and the on-board
software has outstanding benefits and is now very promising. By using SysML, not only the
software itself is designed but also the whole system can be modeled as well. This point is
very important when reuse software because the attitude determination software has
constraints and relationships with other systems of the satellite. Besides, by using SysML,
not only the modularity and extensibility but also the documentation is well supported.

In brief, by using SysML and utilizing the viewpoint of modularity and extensibility
from NASA RRLs, the highly modular and extensible attitude determination software has
been designed in this research in order to maximize the potential of reuse for micro/nano
satellites. For future works, the necessary of applying SysML for designing satellites should
be more persuaded to the satellite developers.

Key Words (5 words): SysML, micro/nano satellites, attitude determination software,
design reusable software, NASA RRLs.

Acknowledgements

I would like to thank my supervisor, Prof. Nishimura Hidekazu, without his supports
and guidance during my 2 years at Keio SDM, this thesis could not be finished. He has
provided us many professional software tools to practice SysML such as Rhapsody and
Cameo Enterprise Architecture. | will apply knowledge about model-based system
engineering (MBSE) and SysML learning from him to design satellites when I come back to

my country.

I would like to thank Prof. Seiko Shirasaka for his regular meetings to improve the
quality of my research. | also would like to thank Prof. Makoto loki for his useful advices and

comments to my thesis.

I also would like to thank Shusaku Yamaura-sensei, Takashi Hiramatsu-sensei and
Ayumu Tokaji-sensei, who have continuously help me to do this research as well as to finish
my study at Keio SDM.

Lastly, 1 would like to thank my organization, Vietnam National Satellite Center, and

my family who gave me a great deal of encouragement.

Table of Contents

L INEFOOUCTION ..ttt bbbttt b e bbb s e b e e et e e ebeebesbeeneneens 1
[.1. Problem DACKGIOUNG...........coiriiiiieiee ettt nae s 1
1.2. Definition Of SOIWAIE FEUSEc..cviieiieeieiirtertetet ettt et sbe b e 3
1.3. The software reusability viewpoint from NASA RRLS........ccciveeviiieiereseeeseeeee et 3
I.4. The benefits of applying MBSE and SysML to design software for complex systems.........c.c.c........ 6
I.5. Research objective and apProachcceieeieiecieieceeeee ettt st s reennas 7
1.6. SErUCTUIE OF the TRESIS. ..c..eiviitiieiceee ettt naeas 8

I1. Overview of attitude determination system and constraints of design reusable attitude determination

10 10117 - TP 10
I1.1. Overview of attitude determination and control system of satellitec.ccoceveveveininincnennenee 10
I1.2. The modes of attitude determMiNationccccvvieierinieereeee et eneens 12
11.3.The constraints of design reusable attitude determination software for micro/nano satellites...... 15
I11. Design of reusable attitude determination software for micro/nano satellites using SysML 16
1.1, SOftWAre @rChItECIUIE ..ottt ettt et e e e tesneensesreennens 16
[11.2. Design of SOftWAre MOAUIESoouieieieceeece ettt s re et e sre b e aesreennens 24
111.3. Design of software components of sensors processing Module...........oveeveeevieiieceneseereseenns 33
I11.4. Design of software components of reference vectors estimation module............ccccceevevvecennennnns 51
111.5.Design of software components of attitude estimation Moduleccceeveverereneneninenerene 53
[11.6. The modularity and extensibility iN AeSIgN.......cccvevivieiiricee e 55
IV. Verification and Validation..........cc.oveiriririnineeeee et 58
IV LVEIITICALION ...ttt sttt et b e bbb e b et e st beebe b nbe e 58
IV.2. VAHAAIION ..ottt ettt b s bbbt e e st besbe b b e 60
[@0 o [1S o OO SPRRSR RPN 62
VL SUMMEEY weiiieeieeriee sttt ettt et st e st e st e et et e e st e e s bt e setessteebeesbaesseesasesaseenbaenbeessaessnesasesnseensessseesssenns 62
V.2, FULUIE WOTKS ...ttt st sttt b e bbbt et e et et e st enenbesbenbenten 62
RETEIBNCES ...ttt sttt ettt s b e st et et et et e st e se e b e e be e b e st et e st et eneeneeneeneeneseenan 63
TS 0 o 0 TR 65
LST OF TADIES ...ttt et b bbb st sttt et e bbb b e 67

F N 0] 01 0 o= TSRS 68

I. Introduction
I.1. Problem background

The weight of micro satellites is in the range of 10-100 kg and that of nano satellites is
in the range of 2-10 kg [1]. The micro and nano satellites are now becoming a new trend.
There are more and more companies and organizations who are interested in developing these
types of satellites [1], [2]. In 2014, there were 158 micro/nano satellites launched globally,
this showed an increase of nearly 72% compared to 2013 [3]. The characteristics of
micro/nano satellites are low cost, short time development, varied on mission requirements
and limited on calculation capability compare with larger satellites.

Software coding is always the difficult task in satellite development because it
requires a lot of time for developing and testing, especially for the micro/nano satellite
projects. For each project, developers need to design and implement software for satellite's
on-board computer including attitude determination software. The attitude determination
software is one of the most complicated parts of the on-board software because it involves
complex calculations [4] [5].

In the Table 1.1.1, the estimating software components of a typical satellite are showed
[6]. Form the Table 1.1.1, the software components related to the attitude determination and
control are the main part of the satellite on-board software, and nearly 40% is the attitude
determination software. Therefore, development of the attitude determination software is

more expensive and time consuming than other software components.

Table 1.1.1. Estimating source lines of code for typical satellite functions

Software Component Source Lines of Code

Executive 1,000
Communication 5,500
Attitude/Orbit Sensors Processing 8,100
Attitude Determination and Control 29,800-33,800

Kalman Filter 6,000-10,000
Attitude Actuator Processing 3,900
Mathematic Utilities 5,700
Fault Detection 11,500
Other Functions 5,000

Software reuse for the attitude determination system is expected as a solution to save
time and cost of satellite development, especially for organizations like Vietnam National
Satellite Center (VNSC), who need to develop not only one but several micro/nano satellites
for different type of applications. Software reuse can help save time and cost for coding and
testing as well as increase software reliability.

However, according to Ref. [7], research on on-board software reusability is still low
and its realization is urgently desired. The main reasons are the difficulties of software reuse
in terms of the difference in CPU type, interfaces and mission requirement of the micro/nano
satellites.

The constraints which lead to the difficulties of software reuse between micro and
nano satellite projects can be showed in an example in Table 1.1.2. As can be shown in the
Table 1.1.2, each of the satellite projects has the different mission as well as the determination
accuracy requirement, the calculation performance of the on-board computer and the model of
used sensors. Therefore, in order to be reused, the attitude determination software need to be
designed to deal with the variety of each satellite projects. For example, it is difficult to reuse
the attitude determination software from the first satellite project (Micro Dragon) to the
second satellite project (Nano satellite) because the second satellite does not have the Star
Tracker as the first satellite and the performance of the on-board computer is lower.

Table 1.1.2. Example of the different mission requirements and hardware constraints

between micro/nano satellites projects

Satellite Mission Determination On-board Sensors
Projects Accuracy Computer Model
Performance
MicroDragon | Ocean color ~0.05° 48 MIPS 1 Star Tracker
(50 kg) observation 64 MB SDRAM 6 Sun Sensors
High Accuracy Gyro
Nano Communication ~3° 16 MIPS 0 Star Tracker
Satellite 8MB SDRAM 3 Sun Sensors
(3 k) Low Accuracy Gyro
Micro Astronomy ~0.003° 96 MIPS 2 Star Trackers
Satellite 64 MB SDRAM 6 Sun Sensors
(100 kg) High Accuracy Gyro

1.2. Definition of software reuse

The purpose of software reuse is to improve software quality and productivity.
Software reuse is the use of existing software or software knowledge to construct new
software. Reusable assets can be either reusable software or software knowledge. Reusability
is a property of a software asset that indicates its probability of reuse [8]. A software artifact
Is any item which is created during the software development life cycle. A software asset is an
artifact which has a particular value. A software component is a clearly delineated piece of
software that performs a useful function within a software system [9].

Reusable software artifacts are not limited to just code. These assets may include
algorithms and models, architectures and design patterns, systems modules and scripts,
technical documentation and test results, and use metrics as well as other artifacts produced
during the software development life cycle [10]. Therefore, the software developers can reuse
requirements documents, design structures and any other development artifact.

The potentially reusable aspects of software projects are shown in Table 1.2.1 [11].

Table 1.2.1. Reusable aspects of software projects

1. Architectures 6. Templates

2. Source code 7. Human Interfaces
3. Data 8. Plans

4. Designs 9. Requirements

5. Documentation 10. Test Cases

1.3. The software reusability viewpoint from NASA RRLs

In order to design highly reusable software, it is necessary to know how the reusability
of software can be evaluated. This information will be utilized as a viewpoint when design
reusable software.

The NASA Earth Science Data Systems — Software Reuse Working Group has been
developed Reuse Readiness Levels (RRLs) since 2008 for use as a measure to evaluate the
potential reusability of software. Initially developed for the Earth science domain, but it is
applicable to general. The RRLs are being developed to offer capabilities for developers and

reusers of software to measure the reusability of software [12].

Table 1.3.1. The summary of 9 levels of software reuse according to RRLs [12]:

Level Summary

RRL 1 Limited reusability; the software is not recommended for reuse.

RRL 2 Initial reusability; software reuse is not practical

RRL 3 Basic reusability; the software might be reusable by skilled users at
substantial effort, cost, and risk.

RRL 4 Reuse is possible; the software might be reused by most users with some
effort, cost, and risk.

RRL 5 Reuse is practical; the software could be reused by most users with
reasonable cost and risk.

RRL 6 Software is reusable; the software can be reused by most users although
there may be some cost and risk.

RRL 7 Software is highly reusable; the software can be reused by most users with
minimum cost and risk.

RRL 8 Demonstrated local reusability; the software has been reused by multiple
users.

RRL 9 Demonstrated extensive reusability; the software is being reused by many
classes of users over a wide range of systems.

Using NASA RRLs to measure software reusability has many advantages. RRLs can
be used by different types of stakeholders in different situations. Software can be evaluated
either by using the RRLs in a simple manner by the summary RRLs or more extensively by
each of the nine topic areas to get a precise assessment. The project managers have a single
number by the summary RRLs that is quick and easy to understand. Software developers have
a simple way to quickly estimate the readiness of software assets to be reused. Although an
estimation of reuse readiness will not reduce the tasks of testing candidate reusable assets, it
will enable software developers to more easily determine how ready the software is for their
purposes. The software developers also can have more detailed information by the RRL topic
area levels [12]. Software providers need to evaluate whether their software can be used by
others, whether the software is ready for reuse, and which parts need to be enhanced for use
by others. Software reusers need to check whether to consider reusing a software asset,
compare software assets available for reuse, assess strengths and weaknesses of such

software, and recognize where additional development is necessary for reuse [13].
4

In NASA RRLs, there are 9 topic areas to measure software reuse including:

Portability, Extensibility, Documentation, Support, Packaging, Intellectual Property Issues,

Standards Compliance, Verification and Testing, and Modularity.

Examples of the difference between limited reusable software and highly reusable

software when comparing software by each topic area in NASA RRLs are shown in Table
1.3.2 and Table 1.3.3.

Table 1.3.2. Comparison by Documentation, Extensibility and Modularity

Documentation Extensibility Modularity
Limited | Source code is available | Parameters cannot be | Not designed with
reusable | without documentation. changed. modularity
software
Highly Documentation on design, | Use configuration files. | Organize software
reusable | customization, testing, use, | The extensibility | components into
software | and reuse is available. capability for the | libraries

software is well defined.

Table 1.3.3. Comparison by Portability, Standards Compliance and Verification and Testing

Portability Standards Compliance Verification and
Testing

Limited | The software is not | No standards compliance. No testing performed
reusable | portable.
software
Highly The software can be | The software and software | Software application
reusable | ported to all systems. development process | tested and validated in
software comply with internationally | a relevant context

recognized standards.

In this research, after analyzing these topic areas in NASA RRLs, the modularity and

extensibility are focused in this research because they are very important for attitude

determination software.

Modularity is a software design technique that increases the extent to which software

is composed from separate components, called modules. Conceptually, modules represent a

separation of and encapsulation of concern, purpose, and function [12]. To achieve modularity

of level 7 in NASA RRLs, in software, modules should be created for all specified functions
and organized into libraries with consistent features within interfaces.

Extensibility is an important dimension to be able to incorporate an asset and add to or
modify its functionality [12]. To achieve extensibility of level 6 in NASA RRLs, software
should be designed to allow extensibility across a moderate to broad range of application
contexts, provides many points of extensibility.

1.4. The benefits of applying MBSE and SysML to design software for complex systems

Traditionally, large projects have employed a document-based system engineering
approach. However, the document-based approach has some critical limitations. The
completeness, consistency, and relationships between requirements, design, engineering
analysis, and test information are hard to assess because this information is spread across
several documents. To understand a particular aspect of the system and to perform the
necessary traceability and change impact assessments are also difficult and leads to poor
synchronization between system-level requirements and lower-level hardware and software
design. As a result, to reuse the system requirements and design information for the design of
the new systems is limited [14].

Compare with document-based system engineering, model-based systems engineering
(MBSE) is proved as a more effective approach to manage complexity, improve design
quality and communication between developers. MBSE applies systems modeling as part of
the system engineering process to support analysis, specification, design, and verification of
the developed system [14].

Systems Modeling Language (SysML) is a standardized language to enable MBSE.
SysML is an extension of the Unified Modeling Language (UML) version 2, which has
become the standard software modeling language. SysML supports the specification, design,
analysis, and verification of systems which may include not only software but also data,
hardware, etc.

SysML is a graphical modeling language for representing requirements, behaviors,
structure, and properties of the system and its components [14]. SysML has capability to
model complex systems from a broad range of domain such as satellites. By using SysML, the
design of attitude determination software is consistent with the other sub-systems of satellite.
Therefore, SysML is more suitable to design software components of satellite than UML.

The type of diagrams of SysML is showed in Figure 1.4.1 [14]. The requirement
diagram and parametric diagram are the new diagrams compare to UML. One benefit of

SysML is allowing traceability between requirements and design model.

6

SysML

Diagram
Package Requirement Behavior Parametric Structure
Diagram Diagram Diagram Diagram Diagram
- State Block Internal
ACtMty Se_quence Machine Us_;e Case Definition Block
Diagram Diagram . Diagram - .
Diagram Diagram Diagram

Figure 1.4.1. SysML diagram taxonomy
1.5. Research objective and approach

The objective of this research is to design highly modular and extensible attitude
determination software which can be reused for a variety of micro/nano satellite projects to
save time and cost of satellite development.

The context of software reuse here is mainly for the software design and source code
reuse. The software will be designed and implemented in C code files, so that the other
programmers can utilize reusable parts in their projects. They only need to modify the
changing parts for each micro/nano satellite projects. By doing so, they can save time and cost
in developing attitude determination software for their satellites.

The approach of this research is to design the reusable attitude determination software
by using SysML with the focus on modularity and extensibility from the viewpoint of NASA
RRLs.

The modularity in my research is the degree of decomposition of the attitude
determination software. There are three steps of decomposition in my research.

In the first step, based on functional analysis, the attitude determination software is
decomposed into software modules such as sensor processing, reference vectors estimation,
attitude estimation. The sensor processing module is to process the data outputs of sensors.
The reference vectors estimation module is to calculate the reference vectors in Earth-
Centered Inertial (ECI) frame. The attitude estimation module contains the algorithms for
attitude estimation which will be which can be selected based on different accuracy
requirements and hardware constraints of each micro/nano satellites projects.

In the second step, each software module is decomposed into components. For
example, the sensor processing module is decomposed into the components correspond to

each types of sensors.

In the third step of decomposition, each component is decomposed into basic
functions and the standard interfaces are defined between basic functions. For example, the
software component “Gyro Processing” is decomposed into two basic functions including
“Get Angular Rates in Gyro Frame” and “Calculate Angular Rates in Satellite Body Frame”.

The modularity is also to support the extensibility. In my research, the extensibility is
the ability to change the sensors model and performance of onboard computer of satellite
projects. For example, there are 6 Sun sensors, 1 Star tracker in Micro Dragon satellite
project; however, there is no Star tracker in Nano satellite project, and the performance of
onboard computer of Nano satellite is lower.

To achieve the extensibility in my research, there are two steps. Firstly, mission and
sensor dependent parameters are separated by data store which can be easily modified when
reuse. Secondly, for each satellite project, the attitude estimation algorithms are selected
based on the time constraint of calculation.

1.6. Structure of the Thesis

In this research, chapter 1 discusses about the problem background, the objective and
approach of the research. The research problem is how to design the reusable attitude
determination software to apply for variety of micro/nano satellite projects to save time and
cost of satellite development. The approach of this research is to design by using SysML and
selecting viewpoint of modularity and extensibility from NASA RRLs base on analyzing the
difference between micro and nano satellites projects in term of mission and hardware.

Chapter 2 overviews about the attitude determination and control system of satellite
including the attitude determination system and the constraints of design reusable attitude
determination software for micro/nano satellites. The attitude determination system is one of
the system of the attitude determination and control system. Therefore, the design of the
reusable attitude determination software for attitude determination system need to consider
the attitude determination and control system of satellites in general as well as the design
constraints of the reusable attitude determination software.

Chapter 3 shows the detail design of reusable attitude determination software for
micro/nano satellites by using SysML including the design of each software modules and
components. The modularity and extensibility also are explained in this chapter.

Chapter 4 shows the verification and validation of this research. The verification is
done by both SysML models and calculation the ratio of software reuse. The validation is

done by analyzing the situation of reuse attitude determination software between Micro

Dragon and Nano satellite projects. An interview to check whether the purpose of saving time
and cost by using this design is also established.
Chapter 5 is the conclusion to summarize the results of this research and discussions

about the future works including the necessary of applying SysML for designing satellites.

Il1. Overview of attitude determination system and constraints of design reusable
attitude determination software
11.1. Overview of attitude determination and control system of satellite

The main satellite subsystems are attitude determination and control system (ADCS),
communication, thermal control, power, and command & data handling.

ADCS is one of the most important subsystems of satellite because it helps satellite
achieve its mission such as pointing camera to take picture, solar panel direct to the Sun for
battery charging.

The ADCS has three subsystems: attitude determination system (ADS), attitude
control system (ACS) and attitude guidance. The function of ADS is to determine the current
attitude and position of the satellite. The current attitude will be the input of the ACS. The
ACS will compare the current attitude and the desired attitude to calculate the required torque
for actuators.

Environmental
Disturbance

External
Control § Torque .
T ! o Satellite
ofY® \ satellite | State
Actuators —> a . > Sensors
. Dynamic
N |
Required Sensor
Torque Output
. Aftitude [_ . Attitude !
i Control " Current . Determination |
Attitude
Desired
Attitude Current
T T Orbit Position
Gﬁ:g;g(?e < ' Command/ '
Target Pointing . Modes !

e

Figure I1.1.1. The block diagram of ADCS

In terms of the hardware, the ADCS consists of sensors, onboard computer and
actuators. For the ADS, the hardware only consists of sensors and onboard computer. The
usual sensors used for ADS including Sun sensors, magnetometer, gyro, star tracker and GPS

receiver.

10

Sun
Sensors
Magnetometer
On-board Magnetic
Gyro Computer Torquer
Star Tracker Reaction
Wheel
GPS Receiver Actuators
Sensors

Figure 11.1.2. The hardware diagram of ADCS

ADCS software was usually developed for each individual satellite project. The
ADCS software including ADS software will be embedded software which runs on the

onboard computer.

Satellite Project 1 Satellite Project 2

Mission 1 Mission 2
Hardware 1 Hardware 2

ADCS Team Make ADCS Model 1 reuse | ADCS Model 2

on [T B on
Matlab/Simulink Matlab/Simulink
convert i convert
ADCS develop n .
Programmers
Embedded Embedded
ADCS Software 1 ADCS Software 2

Figure 11.1.3. The development of ADCS software between satellite projects

11

11.2. The modes of attitude determination
Each satellite has the own modes for attitude determination and control system. The

name of each mode can be different from satellites. However, the purpose of each mode
should be the similar. For each mode, the attitude determination should be defined in order to
consider about the reuse of attitude determination software between satellites.

The modes of attitude determination and control of satellite and the explanation of the

output of attitude determination for each mode are following:

ecovery
Mode

Detumbling

®R

Figure 11.2.1. The modes of attitude determination and control of satellite

1. Recovery mode

This mode begins right after the satellite is separated from rocket. At this moment,
almost all satellite’'s components are turn off except the communication system to save energy
for survival of satellite. This is also the first time satellite communicates with ground station

by sending the telemetries and receiving the commands.

At this mode, there is no attitude determination because all the satellite's sensors and

actuators are turn off.

2. Detumbling mode

12

This is the second mode of satellite operation following the recovery mode. At this
mode, the satellite is rotating very fast. Therefore, the purpose of this mode is to make the

satellite rotate slowly.

At this mode, only the magnetometer is turn on. This sensor measure the B-Field

vectors on satellite body frame.
3. Safe mode (Sun pointing mode)

This is the first time the satellite gets energy from the Sun. There are two kinds of

Sun pointing mode including:

+ Spin Sun pointing: the satellite does not need to turn on the reaction wheels, only

need to turn on the magnetometer and the Sun sensors.

+ 3axis Sun pointing: the satellite need to turn on the reaction wheels, the control
algorithm is PD. Therefore, the attitude should be the quaternion output from the attitude

determination function.

In order to save battery of the satellite, in this research, the Sun pointing mode should

be Spin Sun pointing, therefore only the magnetometer and Sun sensors are turn on.

Sun shine time

+

Sun Vector
in BODY Frame

+

+

Sun

+

+

+

Eclipse time
Figure 11.2.2. Attitude determination at Sun Pointing mode

4. Standby mode (Idle mode)

The purpose of this mode is to save energy. The satellite faces to the Sun or to the

Earth depend on the design.

13

Sun shine time ="~ >Quaternion = f1(Sun vectors, B-Field vectors)

Eclipse time..___ Sun

Commmmmm ==

Quaternion = f2(Previous_Quaternion, Angular rate)

Figure 11.2.3. Attitude determination at Standby mode

5. Mission mode

At this mode, depend on the mission of each satellite projects, satellite controls its
camera to take images of the Earth by nadir pointing or target pointing; or moving its antenna
for communication with other satellites. At this mode, almost all sensors are turn on and the
attitude determination is similar to the Standby mode. However, the star tracker is used in
case of high accuracy pointing.

The considering of the attitude determination for each mode is the application of the
modular design in this research. The attitude determination algorithms should be designed for
each mode of satellite depend on the constraint of satellite's power consumption, the accuracy
requirements and the availability of the sensors. In brief, the outputs of attitude determination
function for each mode are defined in the table I1.1.

Table 11.2.1. The output of attitude determination function of each mode

Sensors
Modes Output of
Sun Magnetom | Gyro Star GPS Attitude Determination
Sensor eter Sensor Receiver
Recovery OFF OFF OFF OFF OFF No Attitude
Determination
Detumbling OFF ON OFF OFF OFF B-Field Vectorin
Satellite’s BODY Frame
from Magnetometer
Sun Pointing ON ON OFF OFF OFF Sun Vector
(safe Mode) in Satellite’s BODY Frame
Standby ON ON ON OFF ON Quaternion
Mission ON ON ON ON/ ON Quaternion
OFF

14

11.3.The constraints of design reusable attitude determination software for micro/nano

satellites

11.3.1.The constraints of onboard computers
The constraints of onboard computers including calculation performance, size of

memory storage and development environment.

Table 11.3.1. The constraints of onboard computers

Onboard computers Constraints

Calculation Performance Processing speed should be feasible for reuse

attitude determination algorithms

Size of memory storage

Memory for working area of reusable functions and
models should be enough

Development Environment

The difference in programming language

11.3.2.The constraints of sensors

The constraints of sensors are showed in the Table 11.3.2.

Table 11.3.2. The constraints of sensors

Sensors Power Update | Availability Accuracy Formats of
Consumption | Rate outputs

Sun Sensor Low Always | Only insun Low Depend on
shine time (~1 deg) driver

Magnetometer Low Always | Continuous Low Depend on
(2-5 deQ) driver

Gyro Mid/High | ~20Hz | Continuous Accumulative Depend on
Error driver

Star Tracker High ~1Hz Depend on High Depend on
image of stars driver

GPS Receiver Low ~1 Hz Continuous Mid/Low Depend on
driver

11.3.3.The constraints of satellite mission

Satellite missions will effect to design constraints including the determination

accuracy requirements, the sensor models for attitude determination and the mounting

locations of sensors.

15

I11. Design of reusable attitude determination software for micro/nano satellites using
SysML

I11.1. Software architecture
In this design the Satellite Domain is developed to show the relationship between

satellite and the external environment.

ablocks
Satellite Domain
blocks wblockn
cblocky ablocks — DG T
Ground Station Satellite External Objects Eg;’;;:;'b";:g?'
T wblocky
The GPS ablockn
| Magnetic Field
<biocks Disturbance
|| TheEarth's
Magnetic Field ablocks
ablocke «blocks ablocks «blocks | Solar Radiation
Attitude Determination and Control System Satellite Dynamics Command&Data Other Systems Il ablocks Pressure
Handling System The Sun
«blocks
=—=1 «block» L 3 .
The Stars Gravity Gradient

Figure III.1.1. The block definition diagram of “Satellite Domain”

The activity of control orientation of satellite for pointing to the target is showed in
Figure 111.1.2.

act [Activity] Control Satelite [Control Satelite JJ

«allocates «allocates «allocates «allocates
: Ground Station : Satellite : Environmental Disturbance : External Objects
o
Send Command
‘ (Ground Station::) |
Ll
| lcumrnand
|
é]anmand
— Provide Positional

and Directional
Information

Receive Command
(Command&Data Handling System::)
N E—
Target Pointing

Positional and]l‘)irem\una! Information

ﬁsaleme Body Rotating State ,[Target Pointing Pusmuna:[a nd Directonal informatifn
[1 [1 [1
Attitude Determination and Control
(Attitude Determination and Control System:)
1 . L

ExternalTorque

Generate External Torque ‘

énntrolTorque

|Control Torque \ExternalTarque
[1 [

(Satelite Dynamics)
LT
JSatelite Body Rotating State

Figure III.1.2. The activity diagram of “Control Satellite”
16

As described in the Chapter 2, the structure of Attitude Determination and Control
System is showed in Figure 111.1.3.

blocky
Attitude Determination and Control System

ublock» ublock» «blocks
Attitude Guidance System Attitude Determination System Attitude Control System

Figure 111.1.3. The structure of Attitude Determination and Control System

The main function of Attitude Determination System is to estimate the current attitude
of the satellite from measuring the state of satellite body rotation and processing the positional
and directional information provided from external objects.

After estimated, the current attitude of satellite and the desired attitude will become
the inputs for the Attitude Control System to calculate the control torque.

The activity diagram “Attitude Determination and Control” is showed in Figure

111.1.4.

act [Activity] Attitude Determination and Control[Attitude Determination and ControIU

«alocates wdlocates wallocates
+ Attitude Determination System : Attitude Guidance System + Attitude Control System
rTarget Iioiinting 1
‘ !
Satellite Body i Target Pointing
G ng ke |](Satellﬁe Body Rotating State B e
™ Calculate Desired \ ; ;
S — ‘ Attitude b Desired Afttude
:Estimate | ¢ 5 S
" Postional and Ciant | (Atttude Guidance System.,)”\ o
Positional and Directional Attitude S ——— \F esired Atttude
Directional Information h L
Information

I y Calculate Required Torque | Control Torque |
| | — 3 Control Torque
1] ‘ (Atttude Control System:) | w—a’E;l ‘

Current Atttude S R ——

®l
|}

j&turrent Attitude

Figure I1I.1.4. The activity diagram of “Attitude Determination and Control”
17

The Attitude Determination System consists of the Attitude Determination Software
and the Attitude Determination Hardware. The Attitude Determination Hardware consist of
the Onboard Computer and Sensors including Gyro, Star Tracker, GPS Receiver,
Magnetometer and Sun Sensor as mentioned in Chapter 2.

The block definition diagram of “Attitude Determination System”

«blocks
Attitude Determination System

«block» «block»
Attitude Determination Software Attitude Determination Hardware
«blocks «blocks
Sensors Onboard Computer

Sens.;}dozﬁtputs
Update Rate

«block» «block» «blocks «block» «block»

Gyro Star Tracker GPS Receiver Magnetometer Sun Sensor

Figure III.1.5. The block definition diagram of “Attitude Determination System”

The functions of attitude determination software are analyzed from the use case
diagram. The main use case of Attitude Determination Software is “Determine Attitude of
Satellite” in which the actor “Attitude Determination Software” interacts with the other actors
including “External Objects”, “Satellite Dynamics” and “Models in Reference Frame” to

determine the current attitude of the satellite.

uc [Model] Attitude Determination System|[Attitude Determination Main Use Case l,’

Attitude Determination System

(

<
External Objects

= /
<~ t\—
Attitude Determination Soﬂware_x/ = — =

> Determine Attitude

\ - A
f 1l e):
of Satelkte Satellite Dynamics
< Z‘i
Attitude Control System

o~
Models in Reference Frame

Figure 111.1.6. The main use case of Attitude Determination Software

18

The External Objects including the GPS, the Earth’s Magnetic Field, the Sun and the
Stars provide the positional and directional information to the satellite.

The sequence diagram of the use case “Determine Attitude of Satellite”

sd [Interaction] Determine Attitude of Satellite [Determine Attitude of Satellite J_J

Reference Frame

[: External Objects & : Attitude Determination Software ;‘;T] l : Models in e l : Satellite Dynamics 2
T T T

|
|
'
ref | : :
Get Positional and Directional Information of Satellite : :
rh ! H
T 1 i
| ' '
- | |
ref | i
Estimate Reference Vectors from Models :
'
rh |
T |
i | i
' \ |
| ' |
| \ |
' '
_ref |

Measure Satellite Body Rotating

ref |
Estimate Current Attitude of Satellite

Figure III.1.7. The sequence diagram of the use case “Determine Attitude of Satellite”

The sequence diagram of “Get Positional and Directional Information of Satellite”

sd [Interaction] Get Positional and Directional Information of Satellite [Get Positional and Directional Information of Satelite lJ

[: Attitude Determination Software /—?— :The GPS & l [: The Sun 2 l L:The Earth's Magnetic Field - | l : The Stars -
T T T T T
| | | |
| | | |
I | | |

—0 L | |
ref | | |
Get Current Latitude, Longitude and Time of Satellite : :

th i 1
T T | I
| | | I
| | | |
1 | | |

[l |

ref_l |
Calculate Sun Vector in Satellite Body Frame :
|

'+l |

|

|

I

|

I

|

|

Calculate Magnetic Vector in Satellite Body Frame

Calculate Quaternion Vector in Satellite Body Frame

Figure I11.1.8. The sequence diagram of “Get Positional and Directional Information of
Satellite”

19

The sequence diagram of “Estimate Reference Vectors from Models”

sd [Interaction] Estimate Reference Vectors from Models [Estimate Reference Vectors from Models lJ

+ Attitude Determination Software -9— I | : Reference Sun Vector in ECI - | i : Reference Magnetic Vector in ECI 2 |

=) -} a
A I I	
ref	!
Calculate Sun Vector in ECI from Sun Model :	
th	
	‘
—) L !
ref |
Calculate Magnetic Vector in ECI from Earth Magnetic Model
th

Figure II1.1.9. The sequence diagram of “Estimate Reference Vectors from Models”

The sequence diagram of “Measure Satellite Body Rotating”

sd [Interaction] Measure Satellite Body Rotating [Measure Satellite Body Rotating l,l

[: Attitude Determination Software - [: Satellite Dynamics 2 |
T ~ T -
| |
| |
| |
| |
__l |
| ref |
Get Angular Rates in Gyro Frame
rh

| |

| |

I |

! |
[ref]

Calculate Angular Rates in Satellite Body Frame

Figure 111.1.10. The sequence diagram of “Measure Satellite Body Rotating”

After analyzing the functions of the attitude determination software, the software
modules are developed.

20

The block definition diagram of “Attitude Determination Software”

«blocky
Attitude Determination Software
«blocky
Data Storage
T
«blockn
Data Storage about Mounting
ablocks ablocks ablocks e : Location of Sensors
Attitude Reference Vectors Attitude Sensors Processing values
Estimation Module Estimation Module Representation Module Mounting Location of Sun Sensors
ior s Conversion Module :Wﬂggg I[m?on 0; g;gngfom?ters
: R ' lounting Location o eceiver
Fst@ated Quaternprl g::r\llggtt:r inEcl Mounting Location of Star Tracker
Earth Magnetic Vector in ECI Mounting Location of Gyro

Figure III.1.11. The block definition

diagram of “Attitude Determination Software”

The internal block diagram of “Attitude Determination Software”

ibd [Block] Atttude Determination Software | Atttude Determination SoﬂwarelJ

GPS Receiver Outputs GPS Recefver Outputs

StarTracker Outputs Star Tracker Outputs : - Location of Star Tracker Location of Star Tracker .- : Data Storage about
Bl 1 : Sensors Processing Module : : Mounting Location of
Locaton of Sun Sensors Location of Sun Sensors Sensors
—|Sun Sensor Outputs Sun Sensor OQutputs [ﬁ
i Location of Gyro
L Byro Outputs Gyro Oututs Location of Gyro)l
Iagnetometer Qutputs Magnetometer Outputs iLoo&tion of Wagnetometer Location of Hagnetometer
E
i

Lattude and Quaternion Vector in Satelite Body Frame
Longtude of Satelite
Current Time Angular Rates in
atelite Body Frame
I1agnetic Sun Vectorin
Vectorin Satelite Body
Satelte Bod Frame _
Lattude and Frame Angular Rates in
Longtude of Satelite Satelite Body Updated Quaternion
L Frame L from Star Tracker Estmated Quaternion from Estimated Quaternion from
{ Star Tracker and Gyro Star Tracker and Gyro -
: Reference Vectors 1 Attitude Estimation Module [7
Estimation Module Sun Vector n Satelite T Esinated Quaternion fom Estimated Quaterion from
t Body Frame TRIAD and Gyro TRIAD and Gyro
5
Magr!etic Vectorin |
Sun Vecor Earth Magnefic Satelite Body Frame .- | Updated Quaternion fromTRIAD. Estimated Quaternion from TRIAD
inEC! Vectorin ECI “ 2l

Iagnefic | Sun Vector |Direction Cosine Matrix

Vector in ECI

Dirgction Cosing Matrix

: Attitude

Representation
Conversion Module

Figure II1.1.12. The internal block diagram of “Attitude Determination Software”

21

The activity diagram of “Estimate Current Attitude”

4ot [Acty] Estimate Curent Afitude | Estimats Current Aﬂﬂudeu

Satelite Body
Rotating State

Positional and
Directional
[nformation

alocatey locates
Sensors Attitude Determination Software
dlocates alocatey dlocates alocaty dlocates
+Data Storage about Mounting Location of Sensors | : Sensors Processing Module | +Reference Vectors Estimation Module + Attitude Estimation Module + Atitude Representation Conversion Module
Afitude
representafion
- wrs Ot . Meed convered
SeteleBndy gy i Curent T and Pcousrﬁ;gg}rgeame Refetence Refeence i
Rotng S ansors Oufpts | Postion of St Vettors n lorsgql |
\ | i Estimated Atude -
{ +Clulte Sensors | . o kstinde il il
Outputs i Reference Vectors .+ Esfimate Atttude
h n h Need Convered
‘ Afftude
‘ 0 Sl *: Comert Aftude
Nl dtsstore L%?J':ﬂ"fgf Ve%ﬁ'gmme TVemrsm O — ﬁ::::semﬁgn
Drectonal fomaton Mounting Locaion of Sensors i Saelte Body
Frame ‘

Current Atttude

Figure I11.1.13. The activity diagram of “Estimate Current Attitude”

22

The requirement diagram of “Attitude Determination Software”

req Package] Requrament JJ
< Betermine Attitude of Sateiite
- - “requrements
s Estimate Attitude of Sateliite
~ Za="1
Text="1. The attitude determination system shall estimate the
current attitude of satelitte.
2. The atitude determination shall provide the current atitude of
satelite to the atttude control system.
requrements requrements — . [e
of Satellite Operation Estimate Current Attitude of Sateliite Provide estimated attitude to attitude Constraints
ig="11" i control system
‘ext = The attitude determination software shall Text = “The attitude determination software shall CEER
comespond to the operation modes of satelite” estimate the current attitude of satellite™ Text = The atitude determination software [
T shall movmo 10 estmatod stbide td T
T ie creico) avales Constraints of on-board computer
crmquiromenty - la="1.
e ENG Mmoot s s II Text = “The attitude determination software shall be
Positional and Directional timate Reference Vectors from Measure Satelite Body
Text = "Sensors shall be used correspond to the e e amane i ot " e o <requirements calculation storage.
modes of satellite operation T TET Attitude representation o
la="1 id="123 e Tt ~The atitude detsrmination
Text attitude determination Text ="The attitude determination Text = The attitude = . s software shall use sensors within
software shall be able to get software shall be able to estimate. shall [Tex = "The reprasentation of the estimat the constraints of power of satellite”
positional and directional reference vectors in Earth Centerad be avle to measure satelite ”
information of sateliite from Inertial (ECY) Frame from models of body rotating” Sl for ataide Oyio! Systany
extemnal objects” the Sun, Eartn's Magnetic Field and —_ » e co wrequrer
Stars.” = \esatsfys lg="141.1" Update Rates
= & DL e \ \ Text="The duration time of attitude 422
l \ b i \ estimation shall be less than the Tt~ e a
N ~ X <biocks cycle time of onboard computer” sotware aiference
. | 1 ~ 9 Attitude of update rates of sensors™ la="1432"
erequirement | wrequrements Representation i T oo
e O s cooni it e | B e e W
position of satel 5 from Sun Model \ e requrements satisfy the requirements of
1d="121.1" ! A 1d = 8" \ e Availability of Sensors. structure team”
Text ="The atitude determination | o= ide N = 423
software shall be able to determine i \ determination software shall be \ et e amaads defecninalion
the current time and the position of \ able to calculate sun vector in Elot KRG of eeramcn software shall be able to estimate.
the satellite” | \ ECI from the sun moder™ “ederiveReats vector estimation from models shall
e | o » not exceed the cycle time of onboard i wte Of S S evec) wheh
vy R \ = N e some sensors are not available
! erequirements \ \
Z | Calculate Magnetic Vector in ECI from \asatistys
. Earth Magnetic Model “requrements
S AN . Y Time constraint for recursive
1 I Text = The atitude determination i \ [eatimation igorithns.
| - sasistys ld="14112"
magnetic vector in ECI from the Earth i ""’“’c Text ="The duration of recursive
! | magnetic model” o estimation algorithms such as of the accuracy of sensors’
| - Kalman Filter shall not exceed the
| esatistys cycle time of onboard computer”
<requiements | \ \ crequrements
Process directional information from external Formats of Sensor Outputs
| <roquirements =
obiects | Reference Magnetic Get Angular Rate of Satellite 25
la="1212" Vector in ECI Estimation ‘Body Rotating Text= ide determination
(Tt ="The atthe detarmination sotware sha | la="1 [sofwars shal hande the ierence
be able to process direction: “The atit of the format of data outputs of
satnits burm cxernal sotecs Incuing s Sur,) e v sensors”
|
the Earth's Magnetic Field and the Stars k — be able to get angular rates
i . “roqurements -
- i X <~ - Colculate Reference Star Vectors in SR S ol ot
> ’ \ O ~r3 ECI from Stars Map ety ™ Ly
- / s Sy > I i | s
4 / N ~ ~ aderneReats Text = "The atitude determination i Y
«deriveReats 7 ederweReats, \ederveReats ™ LgereReds ks a1t e anke o ctcziate
o \ =R reference star vectors in ECI from ! e
~ ~_ . = |
- ¢ S = siars map T~ esatistys i Srrofro 2
3 \ L ~ _sderiveReats R W > | |Angules pstes n Satetae Boay Frame
. \ N ~ . ST “requrements ! Ao ks s Gy e
requrements remen S
Get Direction of the Sun Calculate Sun Vector in Satellite b e bre Mo la="12" |
la="4 Frame. | | Vectorn Seieitie Soty Frame |~ s shidibe !
Text = The attitude determination Id="5" Text = “The aftitude determination a=7 N Erohbggabyriminiosond |
software shall be able to measure Text = "Th Text="The attitude determination ~ s |
the direction of the sun® software shall be abie 1o caiculate direction of earth's magnetic fled” sofware shall be able to calculate s
‘sun vector in s: m ‘the earth's magnetic vector in =, . : !
> ™ a \ satelite body frame” «requrements |
\ ¢ 4 * Calculate Quaternion Vector in |
e Nkt soiiiive satstys — Satellite Body Frame '
N > \ 10="13"
1 N \ Text = "The aftitude I
\ / \ software shall be |
«blocks wsatstys_ — 7| qu: |
Data Storage about Mounting | vector in satellite body frame™
Sun Sensor Processing e o 3 |
e
|Sun Vector in Sensor Frame. aiues |
|Sun Vector n Satelite 8ody Frame tountng Locaton of sun Sensors i
[Mounting Location of GPS Recewer
[Mounting Location of Star Tracker
[Mounting Location of Gyro

Figure 111.1.14. The requirement diagram of “Attitude Determination Software”

23

111.2. Design of software modules
In this section, the design of “Sensors Processing Module”, “Reference Vectors

Estimation Module” and “Attitude Estimation Module” are showed.

For each software module, the diagrams including the block definition diagram, the
activity diagram and the internal block diagram are described.

The “Sensors Processing Module” consists of the software components to process the

b h N1

data outputs of each type of sensors including “Gyro Processing”, “Star Tracker Processing”,
“GPS Receiver Processing”, “Magnetometer Processing” and “Sun Sensor Processing”.

The “Reference Vectors Estimation Module” contains the software components
including “Time Conversion”, “Reference Sun Vector in ECI Estimation” and “Reference
Magnetic Vector in ECI Estimation”.

The “Attitude Estimation Module” has three software components including “Attitude
Estimation by TRIAD”, ““Attitude Estimation by TRIAD and Gyro” and ‘“Attitude
Estimation by Star Tracker and Gyro”.

For each software component, the consistency between sequence, activity and internal

block diagrams are checked by analyzing the diagrams.

24

The block definition diagram of “Sensors Processing Module”

ublocks
Sensors Processing
Module
ublocks wblocks ublock» wblock - wblocks
Star Tracker Processing ® Gyro Processing GPS Receiver Processing ™ Magnetometer Processing Sun Sensor Processing
values values values values values
Quaternion Vector in Sensor Frame Angular Rates in Satellite Body Frame Latitude of Satelite Magnetic Vector in Sensor Frame Sun Vector in Sensor Frame
Quaternion Vector in Satellte Body Frame Angular Rates in Gyro Frame Longitude of Satelite Maanetic Vector in Satellite Body Frame Sun Vector in Satelite Body Frame
Current Time of Satelite
«blocky «blocky «blocky wblocky
Quaternion Vector in Sensor — Angular Rates in Gyro — Magnetic Vector in Sensor —| Sun Vectorin Sensor
Frame Acquisition Frame Acquisition Frame Acquisition Frame Acquisition
ablocks N eblocks — ablocks) eblocks
Quaternion Vector in Satellite Angular Rates in Satellite Magnetic Vector in Satellite Sun Vector in Satellite
Body Frame Calculation Body Frame Calculation Body Frame Calculation Body Frame Calculation

Figure I11.2.1. The block definition diagram of “Sensors Processing Module”

25

The activity diagram of “Sensors Processing Module”

(act [Activity] Sensors Processing Module [Sensors Processing Module JJ

GPS Receiver

«allocaten
Sensors Processing Module

GPS Receiver Outputs Current Time

" : GPS Receiver |

Outputs

Gyro Outputs

N Current Time

Processing
|

Lattude and Longitude
of Satellite

Angular Rates in

Satelite Body Frame

Latitude and Longitude
of Satellite

Gyro Outputs : Gyro B
Processing |
Location of Gyro thi

Angular Rates in Satellite
Body Frame

Location of Gyro
e |
Magnetometer Magnetometer
Outputs Outputs (: Magnetic Vector in
I Magnetometer Satelite Body Frame Magnetic Vector in
Location of Location of Magnetometer Processing Satellite Body Frame
Magnetometer
Sun Sensor
Sun Sensor Outputs Outputs " Sun Sensor " Sun Vector in
Processmg Satollts Gody Frame Sun Vector in Satellite
Location of Sun Location of Sun Sensors Body Frame
Sensors
Star Tracker . 7
Outputs Star Tracker Outpus ™, star Tracker %‘;’:;Tﬁg‘%"og;?gn": . :
Processlng Quaternion Vector in
1 Satellite Body Frame
Location of Star Location of Star Tracker
Tracker
L 2

Figure II1.2.2. The activity diagram of “Sensors Processing Module”

26

The internal block diagram of “Sensors Processing Module”

ibd [Block] Sensors Processing Module [Sensors Processing ModuleJJ

| Star Tracker Outputs

Location of Star Tracker

Quaternion Vector in

Star Tracker Outputs . : Star Tracker | Quaternion Vector in
Al ATKeT DTS i Process(i:ng Satellte Body Frame

Epu Y

Sun Sensor Outputs
L

Location of Star Tracker i th

Sun Sensor Outputs

B

| :Sun Sensor | syn vector in Satelite Body Frame

Satelite Body Frame
£l

Sun Vector in Satellite Body Frame E
—

Ly

Processing

Location of Sun Sensors

_lLocatiun of Sun Sensors
]

Tl

Location of Gyro

Location of Gyro : Gyro

Gyro Outputs

—

Processing Angular Rates in Satellite Body Frame

Angular Rates in Satellite Body Frame -

Gyro Outputs

Location of Magnetometer

: Magnetometer

Magnetic Vector in Satellite Body Frame

jLocation of Magnetometer
E

Magnetometer Outputs

Processing

LeT

=

Magnetic Vector in Satelite Body Frame r

LT

Magnetometer Outputs th

—
L

GPS Receiver Outputs

GPS Reciver Outputs . : GPS Receiver Latitude and Longitude of Satelite

Tl

3]
|

L

Latitude and Longitude of Satelite [

Processing 2
Current Time

Current Time
B

Figure I11.2.3. The internal block diagram of “Sensors Processing Module”

The block definition diagram of “Reference Vectors Estimation Module”

«block»

Reference Vectors
Estimation Module

values
Julian Date
Sun Vector in ECI
Earth Magnetic Vector in ECI

«block» I

Time
Conversion

«xblock»

Reference Sun Vector in
ECI Estimation

«block»

Reference Magnetic
Vector in ECI Estimation

Figure I11.2.4. The block definition diagram of “Reference Vectors Estimation Module”

27

The activity diagram of “Reference Vectors Estimation Module”

(act [Activity] Reference Vectors Estimation Module [Reference Vectors Estimation IModule]J

vallocates

Reference Vectors Estimation Module

wallocates
: Time Conversion

: Reference Magnetic Vector in ECI Estimation

«allocate»

«allocaten

: Reference Sun Vector in ECI Estimation

Latitude and Longitude
of Satellite

I

Current Time

" ConvertTime

’Jéurrent Time

(Time Conversion::)

g#atitude and Longitude of Satelite

Calculate Magnetic Vector in ECI from

Earth Magnetic Model

(Reference Magnetic Vector in ECI Estimation::)

|

L

y

Julian Date

Lﬁﬂagnetic Vector in EC

Magnetic Vector
in ECI

"Calculate Sun Vector in ECI from Sun
Model J

(Reference Sun Vector in ECI Estimation::)

l
Julian Dateﬁ(

Léun Vector in ECI

.| Sun Vector in ECI
g e

Figure I11.2.5. The activity diagram of “Reference Vectors Estimation Module”

28

The internal block diagram of “Reference Vectors Estimation Module”

ibd [Block] Reference Vectors Estimation Module [Reference Vectors Estimation Modulel)

. Lattude and Longitude of Satelite

) . ; | :Reference
Latitude and Longitude of Satelite 1 Magnetic

Vect_or m' ECl E‘} Earth Magnetic Vector in ECI
Current Time . EStimation

| i
Current Time | Current Time :Time_ Julian Date
~*| Conversion

11

Earth Magnetic Vector in ECI]

71
L]

' Reference
~|Sun Vectorin [
ECI Estimation

Julian Date Sun Vector in ECI

Sun Vector mm‘:
)

Figure II1.2.6. The internal block diagram of “Reference Vectors Estimation Module”

The implementation in C code for the software component “Time Conversion” and
“Reference Sun Vector in ECI Estimation” are showed in the Appendix.

The block definition diagram of “Attitude Estimation Module”

«block»
Attitude
Estimation Module

values
Estimated Quaternion

«xblock»
Attitude Estimation
by TRIAD

«block»
Attitude Estimation
by TRIAD and Gyro

«block»
Attitude Estimation
by Star Tracker and
Gyro

Figure I11.2.7. The block definition diagram of “Attitude Estimation Module”

29

The activity diagram of “Attitude Estimation Module”

act [Activity] Attitude Estimation Module [Attitude Estimation Module JJ

Sun Vector in Satellite
Body Frame

wallocaten
Attitude Estimation Module
«allocates «allocates «allocates
: Attitude Estimation by TRIAD : Attitude Estimation by TRIAD and Gyro : Attitude Estimation by Star Tracker and Gyro

Magnetic Vector in
Satellite Body Frame

Sun Vector in Satelite
Body Frame

’ Magnetic Vector in ECI

\

Magnetic Vector in Satelite RotationMatrixFromSate
ionMatrix|
Eody Frame liteBodyFrameToECI
* Calclate Rotation Matrix

(Attitude Estimation by TRIAD::)

[
Magnetic Vector in ECI T

|

Sun Vector in ECI

|

Sun Vector in ECI

|

Updated Quaternion
from TRIAD

~| Direction Cosine Matrix ’

}'I
I

’LEstimated Quaternion

[KalmanFilterbyTRIADandGyro)
‘ (Aftitude Estimation by TRIAD and Gyro::)

pdated Quaternion from TRIAD

[

Angular Rates in
Satellite Body Frame

Angular Rates in Satelite Body Frame

Estimated Quaternion

Estimated Quaternion from
TRIAD and Gyro

]

{ KalmanFilterbyStarTrackerandGyro
!‘ (Attitude Estimation by Star Tracker and Gyro::)

Angular Rates in
Satelite Body Frame

I

Updated Quaternion
from Star Tracker

Updated Quaternion
from Star Tracker

Estimated Quaternion from
Star Tracker and Gyro

Figure I11.2.8. The

activity diagram of “Attitude Estimation Module”

30

The internal block diagram of “Attitude Estimation Module”

ibd [Block] Attitude Estimation Module [Attitude Estimation Moduleu
Sun Vector in Sun Vector in
E;] Satelite Body Frame Satelite Body Frame -7, Attitude Estimation by
2 :
TRIAD
agnetic Vector in IHagnetic Vector in
Satellte Body Frame Satelite Body Frame ranki f :
5 Y ALLE = Direction Cosine Matrix Direction Cosine Matr
] By
- Sun Vector in ECI Sun Vector in ECI
-
Iagnetic Vector in ECI Iagnetic Vector in ECI E
i ih
o Updated Quaternion from TRIAD Updated Quaternion from TRIAD FQ: Attitude Estimation |Estivated Quaternion from Estimated Quaternion from
| by TRIAD and Gyro L, TRIAD and Gyro TRIAD and Gyro ’J]
] =

Angular Rates in Satelite Body Frame -

Angular Rates in Satelte L[‘
o Body Frame ! _
4| Estimated Quaternion
from Star Tracker and

Gyro

_El

T4

Angular Rates in Satellite Body Frame = : Attitude Estimation by Estimated Quaternion
Star Tracker and Gyro | from Star Tracker and

Fupdated Quaternion from Star Tracker Updated Quaterion from St Tracker =
]

LTJ

Figure I11.2.9. The internal block diagram of “Attitude Estimation Module”

The implementation in C code for the software component “Attitude Estimation by
TRIAD” is showed in the Appendix.

31

The sequence diagram of “Estimate Current Attitude of Satellite”

sd [Interaction] Estimate Current Attitude of Satelite [Estimate Current Attitude of SateIIReJJ

«blocks = «block» = «blocks = «blocky
: Attitude : Attitude : Gyro : Star Tracker
Estimation by Determination Processing Processing
TRIAD Software T i
| i
' &
alt J: l

—

ref |

Kalman Filter by Star Tracker and Gyro

:
|
| T I
[else], | | |
Il | |
ref | |
Kalman Filter by TRIAD and Gyro I
th |
|
i T I
T t

G

opt | [

|

[ayro is not used] '1

ref
Attitude Estimation by TRIAD
th

|

|

A

|

o]

[estimate attitude onM by Star Tracker]
|

ref

Calculate Quaternion Vector in
Satellite Body Frame

th

Figure I11.2.10. The sequence diagram of “Estimate Current Attitude of Satellite”

32

111.3. Design of software components of sensors processing module
I11.3.1. GPS Receiver Processing

The sequence diagrams of “GPS Receiver Processing” software component

sd [Interaction] Get Current Latitude, Longitude and Time of Sateliite [Get Current Latitude, Longitude and Time of Satelite u

«blockx = «block» = :The GPS &

: GPS Receiver Processing : GPS Receiver
T

1: Calculate GPS Receiver Outputs

ref |

GPS Receiver Measure

e 2: GPS Receiver Outputs U

3: Get Current Latitude, Longitude and Time of Satelite

]

Figure II1.3.1.1. The sequence diagram “Get Current Latitude, Longitude and Time of
Satellite”

sd [Interaction] GPS Receiver Measure [GPS Receiver Measure D

«blocks = :The GPS -

: GPS Receiver
T

|
|
|
|
|
L

1: GPS signals

{Update Rate of GPS Receiver} ;
2: Calculate GPS Receiver Outputs

Figure 111.3.1.2. The sequence diagram “GPS Receiver Measure”

33

GPS

The activity diagram of “GPS Receiver Processing”

act [Activity] GPS Receiver Processing [GPS Receiver Processing]J

-

GPS

«allocaten
GPS Receiver

«allocatex

GPS Receiver Processing

Bignals _{
ﬂ

" Calculate GPS |
Receiver
Outputs

| (GPS Receiver::)

GPS Receiver Outputs

?EPS Receiver Outputs

[Get Current Latitude,
Longitude and Time of

Current Time

Satellite
(GPS Receiver Processing::) |Latitude and Longitudg

of Satellite

-/ Current Time |

Latitude and Longitude
of Satellite

34

Figure I11.3.1.3. The activity diagram of “GPS Receiver Processing”

111.3.2. Gyro Processing

The sequence diagrams of “Gyro Processing”

sd [Interaction] Calculate Angular Rates in Satellite Body Frame [Calculate Angular Rates in Satelite Body Frame JJ

ablocks = | «blocks = ablocks [I l : Satellite Dynamics -
: Data Storage about : Gyro Processing : Gyro | . T -

Mounting Location of T - - |
Sensors I I :

| |
| | :
! I i

ref |

Get Angular Rates in Gyro Frame

E g

1: Location of Gyro |

2: Calculate Angular Rates in
Satellite Body Frame

-

Figure I11.3.2.1. The sequence diagram “Calculate Angular Rates in Satellite Body Frame”

sd [Interaction] Get Angular Rates in Gyro Frame [Get Angular Rates in Gyro Frame JJ

«blockn = «block» = : Satellite Dynamics - l
: Gyro Processing : Gyro | T -

T
|
|
|
|
|

1: Calculate Gyro Outputs

|
|
|
I
|
|
|
I
|

Gyro Measure

3: Get Angular Rates in Gyro Frame

|

2: Gyro Outputs 7
e S yroOutputs |
|
|
|
|
I
|
|
|
|
|
|
I
|

Figure I11.3.2.2. The sequence diagram “Get Angular Rates in Gyro Frame”

35

sd [Interaction] Gyro Measure [Gyro Measure lJ

{Update Rate of Gyro}

«block» =
: Gyro

T
|
|
|
|

1: Sateliite Body Rotating

: Satellite Dynamics 2 |]

T

2: Calculate Gyro Outputs

e

Figure I11.3.2.3. The sequence diagram “Gyro Measure”

36

The activity diagram of “Gyro Processing”

(act [Activity] Gyro Processing [Gyro ProcessinglJ)
«allocaten wallocaten
Gyro Gyro Processing
«allocaten wallocaten
Angular Rates in Gyro Frame Acquisition Angular Rates in Satellite Body Frame Calculation
Safellite Body Rotating f_ atelite Body Rotating
" Calculate Gyro | Gyro Outputs
Outputs yro Outputs
(Gyro::) |
" Get Angular Rates in Gyro Frame)
“ (Angular Rates in Gyro Frame Aoquisition::)J
LEﬁmgular Rates in Gyro Frame
gﬁkngular Rates in Gyro Frame
Calculate Angular Rates in Satellite Body
Location of Gyre ke
5 1 y (Angular Rates in Satellite Body Frame Calculation::)
Location of Gyro] 2|
L[‘ Angular Rates in z
. Angular Rates in
Satelite Body Frame satellite Body Frame
\ J

Figure I11.3.2.4. The activity diagram of “Gyro Processing”

37

The internal block diagram of “Gyro Processing”

ibd [Block] Gyro Processing[Gyro ProcessinglJ

» Angular Rates in

Gyro Outputs Gyro Qutputs - Satelite Body Frame
] 0 Caletation

_ILocation of Gyro

Angular Rates in
Gyro Frame

Angular Rates in
Gyro Frame

Location of Gyro [

2 | Anqular Rates in
,m':?;,ms - Satelite Body Frame

Acquisition E’]—

Angular Rates in

Satelite Body Frame E’

Ly

Figure I11.3.2.5. The internal block diagram “Gyro Processing”

38

111.3.3. Magnetometer Processing

The sequence diagrams of “Magnetometer Processing”

sd [Interaction] Calculate Magnetic Vector in Satelite Body Frame [Calculate Magnetic Vector in Satelite Body Frame u

«block» = «blocks = «blocks = :The Earth's
: Data Storage about Mounting : Magnetometer Processing : Magnetometer Magnetic Field
Location of Sensors T = — —
S— —— — |
i | | |
A \ |
ref |

Get Magnetic Vector in Sensor Frame

th

1: Location of Magnetometer |

in Satelite Body Frame

|

|
|
|
|
|
|
|
|
|
|
|
H 2: Calculate Magnetic Vector
|
|
|
|
|
I
|
|
|

Figure I11.3.3.1. The sequence diagram “Calculate Magnetic Vector in Satellite Body Frame”

sd [Interaction] Get Magnetic Vector in Sensor Frame [Get Magnetic Vector in Senser Frame JJ

«blocks = «block» = ’ : The Earth's Magnetic Field -
: Magnetometer Processing : Magnetometer T
| |
1 B g T
| | :
| | |
: 1: Calculate Magnetometer Outputs s : :
|
!

|

ref |

Magnetometer Measure

e 2. Magnetometer Outputs U

3. Get Magnetic Vector in Sensor Frame

Figure I11.3.3.2. The sequence diagram “Get Magnetic Vector in Sensor Frame”
39

sd [Interaction] Magnetometer Measure [Magnetometer Measureu

«blocks
: Magnetometer

T
|
|
|
|
1

1: Earth's magnetic field

: The Earth's Magnetic Field -

T
|
|
|
|
|
|

{Update Rate of Magnetometer} 2: Calculate Magne\tometer Outputs

\
\

«comment»
The data outputs
of magnetometer

is the B-Filed
vector

Figure 111.3.3.3. The sequence diagram “Magnetometer Measure”

40

The activity diagram of “Magnetometer Processing”

(act [Activity] Magnetometer Processing [Magnetometer Processing JJ

«allocaten
Magnetometer

«allocates

Magnetometer Processing

«allocates
Magnetic Vector in Sensor Frame Acquisition

«allocatexs
Magnetic Vector in Satellite Body Frame Calculation

Earth's magnetic
field

| (Magnetometer::) |

Location of
Magnetometer

iarth‘s magnetic field

Calculate !
Magnetometer | Magnetometer
Outputs Outputs

IMagnetometer Outputs

Get Magnetic Vector in Sensor Frame 3
| (Magnetic Vector in Sensor Frame Aoquis'rtion::)J

Magnetic Vector in
Sensor Frame

Magnetic Vector in
’l‘ Sensor Frame

Frame

(" Calculate Magnetic Vector in Satellite Body |
’ (Magnetic Vector in Satelite Body Frame Calculation::)J

Location of l Magnetic Vector in
Magnetometer Satellite Body Frame

Magnetic Vector in
Satellite Body Frame

Figure I11.3.3.4. The activity diagram of “Magnetometer Processing”

41

The internal block diagram of “Magnetometer Processing”

ibd [Block] Hagnetometer Processing | Magnetometer ProcessinglJ

: Magnetic Vectorin Sensor

frame Acquisition fagnetic Vector in Sensor Frame

Hagnefic Veclor in Sensor Frame

Magnetic Vectorin Satelite |
Body Frame Calculation

L Location of Hagnetometer Location of Magnetometer

14

Figure II1.3.3.5. The internal block diagram of “Magnetometer Processing”

42

111.3.4. Star Tracker Processing

The sequence diagrams of “Star Tracker Processing”

sd [Interaction] Calculate Quaternion Vector in Sateliite Body Frame [Calculate Quaternion Vector in Satelite Body Frame lJ

«block» = «blocks «blocks = | : The Stars -
: Data Storage about Mounting : Star Tracker Processing : Star Tracker |
Location of Sensors T = - - :
| |
I\ I !
ref |

th

|
|
I
I
| Get Quaternion Vector in Sensor Frame
|
|
I
I
|
I

1: Location of Star Tracker :

2: Calculate Quaternion Vector
in Satellite Body Frame

|

Figure I11.3.4.1. The sequence diagram “Calculate Quaternion Vector in Satellite Body
Frame”

sd [Interaction] Get Quaternion Vector in Sensor Frame [Get Quaternion Vector in Sensor FrameJJ

«blocks =g sblock» 3 : The Stars -

: Star Tracker Processing | : Star Tracker
- T : 113

|
: 1: Calculate Star Tracker Outputs

1.

_'lll

|

|

|
ref

Star Tracker Measure

2: Star Tracker Outputs ¥ L_|

3. Get Quaternion Vector in Sensor Frame

Figure I11.3.4.2. The sequence diagram “Get Quaternion Vector in Sensor Frame”

43

sd [Interaction] Star Tracker Measure [Star Tracker Measure JJ

«block» = : The Stars & |

: Star Tracker

T

|
|
: I
|
: 1: Light of Stars I

2: Take images of Stars

L

3: Get Direction of Stars

{Update Rate of Star Tracker}

L

4: Calculate Reference Star Vectors in ECI from Stars Map

L

S: Calculate Star Tracker Outputs

i

Figure I11.3.4.3. The sequence diagram “Star Tracker Measure”

44

The activity of “Star Tracker Processing”

(act [Activity] Star Tracker Processing [Star Tracker Processing U

«allocates
Star Tracker

«allocates
Star Tracker Processing

wallocates
Quaternion Vector in Sensor Frame Acquisition

«allocates
Quaternion Vector in Satellite Body Frame Calculation

Light of Stars
2 }_]iight of Stars

Calculate Star) Star Tracker
Tracker Outputs Outputs

(Star Tracker::)

’_lstar Tracker Outputs
|

~ Get Quaternion Vector in Sensor Frame |
| (Quaternion Vector in Sensor Frame Aoquisnion::)J

!
L[(Juaternion Vector in Sensor Frame

g%luaternion Vector in Sensor Frame

Frame Satelite Body Frame

’ Calculate Quaternion Vector in Satellite Body ‘Louaternion Vector in

(Quaternion Vector in Satelite Body Frame Calculation::))5

%{ocation of Star Tracker

Location of Star Tracker IL

Quaternion Vector in
Satellite Body Frame

Figure 111.3.4.4. The activity of “Star Tracker Processing”

45

The internal block diagram of “Star Tracker Processing”

ibd [Block] Star Tracker Processing [Star Tracker ProcessinglJ

11

|

Star Tracker Outputs

[

Star Tracker Outputs

Location of Star Tracker

———ISensor Frame P——

‘Quaternion | Quaternion Vector in
Vectorin | Sensor Frame

Acquisition

Quaternion Vector in
Sensor Frame

Location of Star Tracker

Body Frame
Calculation

|

Quaternion
Vector in Satellte
Body Frame

-

Quaternion Vector in
Satelite Body Frame

L

Figure I11.3.4.5. The internal block diagram of “Star Tracker Processing”

46

111.3.5. Sun Sensor Processing

The sequence diagrams of “Sun Sensor Processing”

sd [Interaction] Calculate Sun Vector in Satelite Body Frame [Calculate Sun Vector in Satellite Body Frame lJ

«block» = «blocks = «block» = : The Sun & ll
: Data Storage about Mounting : Sun Sensor Processing : Sun Sensor

Location of Sensors T T

T | |
| |
|

A
M

ref“'
Get Sun Vector in Sensor Frame

: th

1: Location of Sun Sensors !

2: Calculate Sun Vector in
Satellite Body Frame

|

Figure I11.3.5.1. The sequence diagram “Calculate Sun Vector in Satellite Body Frame”

sd [Interaction] Get Sun Vector in Sensor Frame [Get Sun Vector in Sensor Frame JJ

«block» = «block» = : The Sun &

: Sun Sensor Processing : Sun Sensor

T T

|
|
|
|
!

g |
ref J
Sun Sensor Measure

|
|
|
: 1: Calculate Sun Sensor Outputs ()

: t
e _ _2_Sun_5e£sor_0ut_pus_ s L_]

3: Get Sun Vector in Sensor Frame

Figure I11.3.5.2. The sequence diagram “Get Sun Vector in Sensor Frame”

47

sd [Interaction] Sun Sensor Measure[Sun Sensor Measure]J

«block» = : The Sun -
: Sun Sensor —

|
|
I - .
i 1: Sun Light

{Update Rate of Sun Sensor}
2: Calculate Sun Sensor Outputs

PR [

\
\

| «comments

The data output of sun sensor can be
the sun vector in sensor frame or the
density of the sun light depend on the
type of sun sensor

Figure I11.3.5.3. The sequence diagram “Sun Sensor Measure”

48

The activity diagram of “Sun Sensor Processing”

(‘act [Activity] Sun Sensor Processing[Sun Sensor Processing JJ
«allocates wallocate»
Sun Sensor Sun Sensor Processing
«allocaten «allocaten
Sun Vector in Sensor Frame Acquisition Sun Vector in Satellite Body Frame Calculation
Sun Light %5”“ Light
" Calculate Sun |
‘ Sensor Outputs
(Sun Sensor::)
Sun Sensor Outputs ’—%Sun Sensor Outputs
Get Sun Vector in Sensor Frame
| (Sun Vector in Sensor Frame Acqguisition::)
]
Sun Vector in Sensor Frame ’iﬁSun Vector in Sensor Frame
" Calculate Sun Vector in Satellite Body
‘ Frame
(Sun Vector in Sateliite Body Frame Calculation::)
I [
Location of Location of Sun Vector in Satelite
Sun Sensor Sun Sensor Body Frame
\

Sun Vector in
Satellite Body Frame

Figure I11.3.5.4. The activity diagram of “Sun Sensor Processing”

49

The internal block diagram of “Sun Sensor Processing”

e focl] SunSensorProcessing[SunSensorProcessingU

+ 3un VeetorinSensor
Frame Acquiston

HSun\!ector 0 Sensr Framg

51 Vech Sensor Frame
—

. Loceion f Sun Snsors

Locain of S Sensorsr

3N
1 3

| S)

L

1 3un Veetor Satel!'ﬂeﬂody
FrameCakuion 1 i S oy

7

—

5in Ve el BocyFrame

Figure II1.3.5.5. The internal block diagram of “Sun Sensor Processing”

50

111.4. Design of software components of reference vectors estimation module
I11.4.1. Reference Magnetic Vector in ECI Estimation

The sequence diagram of “Calculate Magnetic Vector in ECI from Earth Magnetic Model”

sd [Interaction] Calculate Magnetic Vector in ECI from Earth Magnetic Model[Calculate Magnetic Vector in ECI from Earth Magnetic Model JJ

«blockxs = «blocks = «block» = : The GPS &=
: Time Conversion : Reference Magnetic Vector : GPS Receiver Processing
T in ECI Estimation

|

: |
T 1
| ! |
| ! |
|) |
| |
| : |
| |
|

1: Get Current Latitude, Longitude and Time of Satelme‘

ref |

Get Current Latitude,
Longitude and Time of Satellite
rh

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

3: Convert Time
<

1
l

l

|

l

l

|

|

|

l

|

|

l

4: Julian Date |
———————— > |
|

l

|

|

|

l

l

|

|

l

|

l

l

|

|

S: Calculate Magnetic Vector in ECI from Earth
Magnetic Model

|
|

|

|

|

|

|

| !
|

|

|

|

|

|

|

T
|
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 111.4.1.1. The sequence diagram of “Calculate Magnetic Vector in ECI from Earth
Magnetic Model”

111.4.2. Reference Sun Vector in ECI Estimation

The sequence diagram of “Calculate Sun Vector in ECI from Sun Model”

sd [Interaction] Calculate Sun Vector in ECI from Sun Model[Calculate Sun Vector in ECI from Sun l.|ode|lJ

«block» «block» = «block»
: Reference Sun Vector in ECI Estimation : Time Conversion : GPS Receiver Processing
T T

T
1 1 1
| | |
1 1: Convert Time ']
1

T
_ref]
Convert Current Time to Standard Time
rth
2: Julian Date
e _ _ __ _ _ZJufanDate J

3: Calculate Sun Vector in ECI from Sun Model

Figure I11.4.2.1. The sequence diagram of “Calculate Sun Vector in ECI from Sun Model”

51

111.4.3. Time Conversion

The sequence diagram of “Convert Current Time to Standard Time”

sd [Interaction] Convert Current Time to Standard Time [Convert Current Time to Standard Time JJ

«block» = «block»
: Time Conversion : GPS Receiver Processing

T T
| |
| |
| |
| |

1: Get Current Time of Satellite

2: Current Time of Satellite

3: Convert Time

]

Figure I11.4.3.1. The sequence diagram of “Convert Current Time to Standard Time”

52

111.5.Design of software components of attitude estimation module
The sequence diagram of “Attitude Estimation by TRIAD”

«blocky

: Attitude Estimation
by TRIAD

5:ICalculate Sun Vector in ECI from Sun M

T
|

|
: 1. Calculate Sun Vector in Satelite Body Frame‘ :

ablock

+ Sun Sensor
Processing

«blocks

: Magnetometer
Processing

T
|
|

T

|
|
|
|
[\
et l
Calculate Sun Vector in Satellite Body Frame 1‘
t |
|
2: Sun Vector in Satelite Body Frame u :
___________ |
3: Caleulate Magnetic Vq'ctor in Satelite Body Frame “
: 1
L ref)
Calculate Magnetic Vector in Satellite Body Frame
t

Calculate Sun Vector in ECI from Sun Model

h

6: Sun Vector in EC! from Sun Mode!

h

o

sd [Interaction] Atitude Estimation by TRIAD [Atttude Estimation by TRlAD]J
ablocke ablocks wblocks
:DCM to : Reference : Reference Sun
Quaternion Magnetic Vector in Vectorin ECI
Conversion ECI Estimation Estimation
	'
,	[T
	r_efj
	[R2ER IR ST
: :7:‘ Calculate Magnetic Vector in Ed from Earth Magnetic Model	
, ['	
r_e”	
: Calculate Magnetic Vector in ECI from Earth Magnetic Model	
U 8: Magnetic Vector in EC! from Earth Magnetic Mode!	
[————
»	10: ConveriDCHtoQuaterrion
11: Quaternion	
o A e N it o i -	

9: Calclate Rotation Matrix

4: Magnetic Vector in Satelite ﬂody Frame

Figure II1.5.1. The sequence diagram of “Attitude Estimation by TRIAD”

53

The sequence diagram of “Kalman Filter by TRIAD and Gyro”

sd [Interaction] Kalman Fitter by TRIAD and Gyro [Kalman Fitter by TRIAD and Gyro lJ

wblocks = «block» = «blocks O | | ablocks | «blocks
: Attitude Estimation : Attitude Estimation : Gyro : Gyro : Data Storage about
by TRIAD and Gyro by TRIAD Processing — Mounting Location of
—— - ——— - — Sensors
| | | T
| |
ref |

Attitude Estimation by TRIAD

) |

|
A
loop T
|

[attitude propagation]

»

]

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
T

|
|

|
|

|
|

|
|

|
|
|

|
1
|
1: Calculate Angula;' Rates in Satelite Body Frame
T
|
|
|
|
|
|
|
|

ref
Calculate Angular Rates in Satellite Body Frame
th
2: Angular Rates in Satellite Body Frame u
________ spes Wipa i i

|
3: Kalman Fiter by TRIAD and Gyro |
I |

|
|
|
|

| |
| |
| |
| |

Figure 111.5.2. The sequence diagram of “Kalman Filter by TRIAD and Gyro”

The sequence diagram of “Kalman Filter by Star Tracker and Gyro”

sd [Interaction] Kalman Fitter by Star Tracker and Gyro [Kalman Fitter by Star Tracker and Gyro lJ

«blocks = «block» = | «block» = «blocks = «blockn = «blocks =
: Attitude Estimation : Star Tracker : Star Tracker : Data Storage about : Gyro | : Gyro
by Star Tracker and F il T M ing Location of Processing
Gyro — — Sensors - — —

|
h: Calculate Quaternion Vector in Satellite Body Framf.

T

I
I
| |
| |
| |
|
i |
ref | ! !
Calculate Quaternion Vector in Satellite Body Frame | |
I
th i i
| |
| | I |
2: Quaternion Vector in Satelite Body Frame | 1 | i
———————————— | I
: . ! ! !
I I
| | \ | |
d i | I
[attitude propagation] : 3: Calculate Angular Rates in Satelite Body Frame : | e :
T T
| ! : ‘ i |
i 1 ref |
| : Calculate Angular Rates in Satellite Body Frame
|
| | th
| |
| s . e g
e e e e e e e | & Angular Rates n Satee Body Frame = o
| |
S: Kalman Filter by Star Tracker and Gyro : :
| |
| |
| |

Figure II1.5.3. The sequence diagram of “Kalman Filter by Star Tracker and Gyro”
54

111.6. The modularity and extensibility in design

The modularity is the decomposition of the attitude determination software. The
extensibility is the ability to change the sensors and performance of on-board computer of
micro/nano satellites projects. For example, there are 6 Sun sensors, 1 Star tracker in Micro
Dragon satellite project; however, there is no Star tracker in Nano satellite project, and the
performance of onboard computer of Nano satellite is lower. The modularity and extensibility
has a close relationship with each other. The modularity is also to support extensibility. There
are 3 levels of modularity and extensibility.

At level 1, based on functional analysis, the attitude determination software is
decomposed into software modules including sensors processing module, reference vectors
estimation module, attitude estimation module and attitude representation conversion module.
The sensor processing module is to process the data outputs of sensors. The reference vectors
estimation module is to calculate the reference vectors in Earth-Centered Inertial (ECI) frame.
The attitude estimation module contains the algorithms for attitude estimation which will be
which can be selected based on different accuracy requirements and hardware constraints of
each micro/nano satellites projects. The attitude representation conversion module is to
convert between the representations of attitude.

Mission dependent parameters such as mounting location of sensors and update rate of
sensors are separated in isolated database which can be easily modified when reuse. This
decomposition shows the extensibility in design. If the satellite projects are different on the
sensor mounting location (on the surface of the satellites) or the updated rates of sensors, only

this database need to be modified, the other software modules do not need to be modified.

Attitude Determination Software

Attitude ;
Representation Elso\ttitln"tnggg n Reference Vectors Pfoe clss%ﬁ Data
Conversion Estimation Module 9 Storage
Module Module
Module
. “’ S Mounting Update
The decomposition of attitude determination Location of Rate of
software into software modules Sensors Sensors

A 7
Mission dependent parameters
are separated

Figure 111.6.1. The decomposition of attitude determination software into software modules
55

At level 2, each software module is decomposed into software components. For
example, Figure 111.6.2 shows the decomposition of attitude estimation module into software
components based on types of sensors. By this decomposition, the attitude estimation
components are selected based on sensors when reuse. This decomposition shows the
extensibility because the satellites projects are different on used sensors. The nano satellites
do not have Star tracker, therefore, without this decomposition, the attitude estimation module
cannot be reuse for nano satellites. By this decomposition, the nano satellites can select two
software components including attitude estimation by TRIAD and attitude estimation by

TRIAD and Gyro when reuse.

Attitude
Estimation
Module
¢
Attitude Estimation T Attitude
by Star Tracker and Q ttlltté%ig satlggzcmrg Estimation
Gyro Y Y by TRIAD

Figure 111.6.2. The decomposition of attitude estimation module into software components

Another example is the decomposition of reference vectors estimation module into

software components in Figure 111.6.3.

Reference Vector
Estimation Module

¢

wn

Reference Magnetic Reference Sun Time
Vector in ECI Vector in ECI Conversion
Estimation Estimation

Figure 111.6.3. The decomposition of reference vectors estimation module

By this way of decomposition, the reference magnetic vector estimation component,

which requires a lot of calculation, can be replaced when reuse based on performance of on-
56

board computer. For example, with nano satellites, the on-board computers are limited on
power of processing, therefore, the simpler version of the reference magnetic vector
estimation will be chosen.

Finally, at level 3, each software component is decomposed into basic software
components. The basic software components are not decomposed any more in design. Figure
I11.6.4. is the decomposition of sun sensor processing component into basic software

components.
Mounting
Location of
Sensors
Location of
Sun Vector Sun Sensors
in Sensor Frame]
Sun Sensor Sun Vector in
Sun Vector in . , '
Outputs .| Sun Vector in Satellite Satellite Body Fram\e
Sensor Frame Body Frame Calculation
Acquisition Y

Figure 111.6.4. The decomposition of sun sensor processing component

By this way of decomposition, input and output interfaces of basic software
components are analyzed when reuse and this shows the extensibility of design. For example,
the Sun sensor outputs can be different if the Sun sensor is changed, therefore, the “Sun

Vector in Sensor Frame Acquisition” need to be modified when reuse.

57

IV. Verification and Validation
IV.1.Verification
In this research, to verify the reusability of attitude determination software, the
software reuse ratio is defined to measure the percentages of basic software components
which can be reused between satellite projects.
Steps to calculate the software reuse ratio for the new satellite project:
1. Calculate number of existing basic software components
2. List all basic software components need to be add for the new satellite (number of added
components)
3. List all basic software components need to be change for the new satellite (number of
changed components)
4. Calculate the software reuse ratio by the equation below

number of added components+number of changed components
number of added components + number of existing components

The software reuse ratio=1-

number of unchanged components
number of all components

Example 1:
The total number of existing components = 10
The number of new components = 3
The number of change components = 2
The software reuse ratio = 1 - (3+2)/(10+3) = 1 - 5/13 = 8/13

Example 2:
The total number of existing components = 10
The number of new components = 3
The number of change components = 6
The software reuse ratio = 1 - (3+6)/(10+3) = 1-9/13 = 4/13

From the draft estimation, at least 60% of basic software components designed in this
research can be reused for the new satellite projects without the need of modification.

In this thesis, there are 16 basic software components have been designed in total. All
these basic software components can be used for MicroDragon satellite. There are 10/16 basic

software components can be used for Nano Satellite (about 60%).

58

Table 1VV.1.1 All designed software components

Sensors Processing Module

Sun Sensor Processing

1 Sun Vector in Sensor Frame Acquisition

2 Sun Vector in Satellite Body Frame Calculation

Magnetometer Processing

3 Magnetic Vector in Sensor Frame Acquisition

4 Magnetic Vector in Satellite Body Frame Calculation

GPS Receiver Processing

5 Get Current Latitude, Longitude and Time of Satellite

Gyro Processing

6 Angular Rates in Gyro Frame Acquisition

7 Angular Rates in Satellite Body Frame Calculation

Star Tracker Processing

8 Quaternion Vector in Sensor Frame Acquisition

9 Quaternion Vector in Satellite Body Frame Calculation

Reference Vectors Estimation Module

10 Time Conversion

11 Reference Sun Vector in ECI Estimation

12 | Reference Magnetic Vector in ECI Estimation

Attitude Estimation Module

13 | Attitude Estimation by TRIAD

14 | Attitude Estimation by TRIAD and Gyro

15 | Attitude Estimation by Star Tracker and Gyro

Attitude Representation Conversion Module

16 | DCM to Quaternion Conversion

The reusability of the designed attitude determination software is also verified by
analyzing SysML diagrams by checking the input and output interfaces of software
components. There are only input and output interfaces between software components.
Therefore, these software components are reusable when the input and output interfaces are

the same.

59

IV.2. Validation

In this research, the design of reusable attitude determination software needs to
validate whether it can save time and cost of satellite development. By analyzing the situation
of reuse attitude determination software from MicroDragon project (the current satellite
project of Vietnamese students) to next satellite project which is the nano satellite (based on
the assumption from Table 1.1.2) the goal of saving time and cost of satellite development is
proved because the reusable software components will not need time to develop and test
again.

Attitude Determination Software Modules
Sensors .
PSenSOI’_S Reference Vectors Attitude Convert Attitude
rocessing Estimation Estimation | Representation
6xSun | |.] Sun Sensor DCM to
Sensors Processing | Estimation || Quaternion
by TRIAD Conversion
1 || Magnetometer |
Magnetometer Processing
Magnetic
- Vector in ECI
1 GI_DS N GPS REC(.E‘IVEI’ _r Estimation
Receiver Processing
Sun Vector in
G ECI Estimation
1 Gyro yro_ Estimation by
Processing TRIAD and
Gyro
Star Tracker Estimation by
1 Star Tracker Processing Staa':dTgu;rkoer

Figure 1VV.2.1. Attitude determination at Standby mode in Sunshine time for MicroDragon

Attitude Determination Software Modules
Sensors .
|:)Sensor_s Reference Vectors| Attitude Convert Attitude
rocessing Estimation Estimation Representation
S6x8un L) IS:)un Sen_sor | — DCM to
ensors rocessing Estimation ||| Quaternion
by TRIAD Conversion
1 ||| Magnetometer ‘
Magnetometer Processing
Magnetic
) Vector in ECI
1 GPS ||| GPS Receiver] Estimation
Receiver Processing
Sun Vector in
G ECI Estimation
1 Gyro N yro. N Estimation by
Processing TRIAD and
Gyro
Star Tracker Estimation by
1 Star Tracker Processing S;a;dTgfrkoer

Figure 1V.2.2. Attitude determination at Standby mode in Eclipse time for MicroDragon
60

Attitude Determination Software Modules
Sensors _
PSensor_s Reference Vectors| Attitude Convert Attitude
rocessing Estimation Estimation | Representation
6xSun L1y Sun Sen_sor DCM to
Sensors Processing | Estimation ||sl Quaternion
by TRIAD Conversion
1 | |5| Magnetometer ‘
Magnetometer Processing
Magnetic
) Vector in ECI
1 GES BN GPS Recc_alver __|_) Estimation
Receiver Processing
Sun Vector in
G ECI Estimation
1 Gyro -~ yro x Estimation by
Processing TRIAD and
Gyro
Star Tracker Estimation by
1 Stal‘ TI‘aCker F == . M Star Tracker
Processing —| and Gyro

Figure 1V.2.3. Attitude determination at Mission mode for MicroDragon

Attitude Determination Software Modules

Sensors _
PSensor_S Reference Vectors| Attitude Convert Attitude
rocessing Estimation Estimation | Representation
3xSun L) Sun Sen_sor DCM to
Sensors Processing | Estimation ||s/ Quaternion
by TRIAD Conversion
1 | |,| Magnetometer ‘
Magnetometer Processing ||
i Magnetic i
' Vectorin ECI
1GPS | | | GPS Receiver [|[[* Estimation |
Receiver Processing ' (Simple Model) !
Sun Vector in
1Gyr0 4> GY° ECI Estimation
Processing
Estimation by
TRIAD and
Gyro

Figure 1V.2.4. Attitude determination at Standby mode and Mission mode for Nano Satellite

61

V. Conclusion
V.1. Summary

There are three key points in this research. Firstly, the reusable attitude determination
software is designed by using SysML which has outstanding benefits compare with other
methods. Secondly, based on analyzing the difference between micro and nano satellites
projects in term of mission and hardware, the viewpoints of modularity and extensibility from
NASA RRLs are selected and implemented in my design. Finally, in this research, the
designed software is highly modular and extensible.

The results of this research include the design activities and the design of reusable
attitude determination software using SysML. In this research, the software modules are
designed based on functional analysis and also to support extensibility. The extensibility is the
ability to adapt to the change of sensors model and performance of onboard computer. When
comparing with levels in NASA RRLs, the modularity achieves level 7, the extensibility
achieves level 6.

In this thesis, the libraries of reusable functions in C code for attitude determination
including vector, quaternion and matrix calculations; conversion functions of attitude
representations and the implementation of TRIAD algorithm are also developed and listed in
the Appendix.

By interviewing experts and analyzing the situation of reuse attitude determination
software for MicroDragon and Nano satellite project, the designed software can significantly

save time and cost of micro/nano satellites development.

V.2. Future works
From the interviews to validate this research, there are mix feelings from the

interviewees about the utilizing SysML to design software for satellite’s systems. Almost
experts agree that design by using SysML has many advantages which are critical for design
software reuse of onboard software of satellites. However, there are concerns about the
popularity of SysML among the satellite developers. Although, SysML is being increasingly
used to model complex systems, the necessary as well as the benefits of applying SysML for
designing satellites should be more persuaded to the satellite developers.

Besides, the software tool used to design in this research is Cameo Enterprise
Architecture 18.1 which is very powerful tool and its capabilities should be more effectively

exploited to design.

62

References

[1]

(2]

3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

D. D. Elizabeth Buchen, "2014 Nano / Microsatellite Market Assessment," SpaceWorks
Enterprises, Inc. , 2014.

"Small Sat 2014 Conference," [Online]. Available:
http://digitalcommons.usu.edu/smallsat/2014/.

E. Buchen, "2015 Small Satellite Market Observations," 2015. [Online]. Available:
http://www.spaceworksforecast.com/docs/SpaceWorks_Small_Satellite_Market_Observations

_2015.pdf. [Accessed 07 2015].

L. F. L. M. a. M. D. S. E. J., "Kalman Filtering for Spacecraft Attitude Estimation," Journal of
Guidance, Control, and Dynamics, vol. 5, no. 5, pp. 417-429, 1982.

C.F.L.M.a.Y.C.J. L., "Survey of Nonlinear Attitude Estimation Methods," AIAA Journal of.
Guidance, Control and Dynamics, vol. 30, no. 1, pp. 12-28, 2007.

D. F.E.J.). P. James R. Wertz, Space Mission Engineering: The New SMAD, Microcosm Press,
2011.

S. Nakasuka, "Micro/Nano-satellites On-board Software Framework Design and Its
Implementation in Hodoyoshi Satellites," 2013.

W. a. K. K. Frakes, "Software Reuse Research: Status and Future," |IEEE Transactions on Software
Engineering, vol. 31, no. 7, pp. 529-536, 2005.

"Software Reuse FAQ," [Online]. Available: https://earthdata.nasa.gov/esdswg/software-reuse-
srwg/software-reuse-faq.

"Tools to Support the Reuse of Software Assets for the NASA Earth Science Decadal Survey
Missions," [Online]. Available:
http://gsfcir.gsfc.nasa.gov/download/authors/18943/Journal%20Articles_18943.

W. a. C. T. Frakes, "Software Reuse: Metrics and Models," ACM Computing Surveys, vol. 28, no.
2, pp. 415-435, 1996.

"Reuse Readiness Levels (RRLs), Version 1.0," [Online]. Available:
https://earthdata.nasa.gov/sites/default/files/esdswg/reuse/Resources/rrls/RRLs_v1.0.pdf.

Marshall, J.J.; Downs, R.R., "Reuse Readiness Levels as a Measure of Software Reusability," in
Geoscience and Remote Sensing Symposium, IGARSS, IEEE International Conference, 2008.

A. M. R. S. Sanford Friedenthal, A practical guide to SysML: the systems modeling language,
Second edition ed., Elsevier Inc, 2012.

63

[15] J. S.Poulin, Measuring Software Reuse: Principles, Practices, and Economic Models, Addison
Wesley Longman, Inc., 1997.

[16] "NASA Studying the Reuse of Spacecraft Software," [Online]. Available:
http://www.space.com/2304-nasa-studying-reuse-spacecraft-software.html.

64

List of Figures

Figure 1.4.1. SysML diagram taxonomy

Figure 11.1.1. The block diagram of ADCS

Figure 11.1.2. The hardware diagram of ADCS

Figure 11.1.3. The development of ADCS software between satellite projects

Figure 11.2.1. The modes of attitude determination and control of satellite

Figure 11.2.2. Attitude determination at Sun Pointing mode

Figure 11.2.3. Attitude determination at Standby mode

Figure I111.1.1. The block definition diagram of “Satellite Domain”

Figure III.1.2. The activity diagram of “Control Satellite”

Figure 111.1.3. The structure of Attitude Determination and Control System

Figure II1.1.4. The activity diagram of “Attitude Determination and Control”

Figure I1I.1.5. The block definition diagram of “Attitude Determination System”
Figure 111.1.6. The main use case of Attitude Determination Software

Figure III.1.7. The sequence diagram of the use case “Determine Attitude of Satellite”
Figure 111.1.8. The sequence diagram of “Get Positional and Directional Information of
Satellite”

Figure II1.1.9. The sequence diagram of “Estimate Reference Vectors from Models”
Figure II1.1.10. The sequence diagram of “Measure Satellite Body Rotating”

Figure 111.1.11. The block definition diagram of “Attitude Determination Software”
Figure III.1.12. The internal block diagram of “Attitude Determination Software”
Figure II1.1.13. The activity diagram of “Estimate Current Attitude”

Figure III.1.14. The requirement diagram of “Attitude Determination Software”
Figure I11.2.1. The block definition diagram of “Sensors Processing Module”

Figure I11.2.2. The activity diagram of “Sensors Processing Module”

Figure II1.2.3. The internal block diagram of “Sensors Processing Module”

Figure 111.2.4. The block definition diagram of “Reference Vectors Estimation Module”
Figure II1.2.5. The activity diagram of “Reference Vectors Estimation Module”
Figure I11.2.6. The internal block diagram of “Reference Vectors Estimation Module”
Figure 111.2.7. The block definition diagram of “Attitude Estimation Module”

Figure I11.2.8. The activity diagram of “Attitude Estimation Module”

Figure I11.2.9. The internal block diagram of “Attitude Estimation Module”

Figure I11.2.10. The sequence diagram of “Estimate Current Attitude of Satellite”
Figure I11.3.1.1. The sequence diagram “Get Current Latitude, Longitude and Time of
Satellite”

Figure II1.3.1.2. The sequence diagram “GPS Receiver Measure”

Figure II1.3.1.3. The activity diagram of “GPS Receiver Processing”

Figure I11.3.2.1. The sequence diagram “Calculate Angular Rates in Satellite Body Frame”

65

Figure I11.3.2.2. The sequence diagram “Get Angular Rates in Gyro Frame”

Figure I11.3.2.3. The sequence diagram “Gyro Measure”

Figure 111.3.2.4. The activity diagram of “Gyro Processing”

Figure I11.3.2.5. The internal block diagram “Gyro Processing”

Figure I11.3.3.1. The sequence diagram “Calculate Magnetic Vector in Satellite Body Frame”
Figure II1.3.3.2. The sequence diagram “Get Magnetic Vector in Sensor Frame”

Figure I11.3.3.3. The sequence diagram “Magnetometer Measure”

Figure I11.3.3.4. The activity diagram of “Magnetometer Processing”

Figure I11.3.3.5. The internal block diagram of “Magnetometer Processing”

Figure I11.3.4.1. The sequence diagram “Calculate Quaternion Vector in Satellite Body
Frame”

Figure I11.3.4.2. The sequence diagram “Get Quaternion Vector in Sensor Frame”

Figure I11.3.4.3. The sequence diagram “Star Tracker Measure”

Figure I11.3.4.4. The activity of “Star Tracker Processing”

Figure 111.3.4.5. The internal block diagram of “Star Tracker Processing”

Figure I11.3.5.1. The sequence diagram “Calculate Sun Vector in Satellite Body Frame”
Figure I11.3.5.2. The sequence diagram “Get Sun Vector in Sensor Frame”

Figure I11.3.5.3. The sequence diagram “Sun Sensor Measure”

Figure I11.3.5.4. The activity diagram of “Sun Sensor Processing”

Figure I11.3.5.5. The internal block diagram of “Sun Sensor Processing”

Figure I11.4.1.1. The sequence diagram of “Calculate Magnetic Vector in ECI from Earth
Magnetic Model”

Figure I11.4.2.1. The sequence diagram of “Calculate Sun Vector in ECI from Sun Model”
Figure I11.4.3.1. The sequence diagram of “Convert Current Time to Standard Time”
Figure I11.5.1. The sequence diagram of “Attitude Estimation by TRIAD”

Figure 111.5.2. The sequence diagram of “Kalman Filter by TRIAD and Gyro”

Figure II1.5.3. The sequence diagram of “Kalman Filter by Star Tracker and Gyro”

Figure 111.6.1. The decomposition of attitude determination software into software modules
Figure 111.6.2. The decomposition of attitude estimation module into software components
Figure 111.6.3. The decomposition of reference vectors estimation module

Figure 111.6.4. The decomposition of sun sensor processing component

Figure 1V.2.1. Attitude determination at Standby mode in Sunshine time for MicroDragon
Figure 1V.2.2. Attitude determination at Standby mode in Eclipse time for MicroDragon
Figure 1V.2.3. Attitude determination at Mission mode for MicroDragon

Figure IV.2.4. Attitude determination at Standby mode and Mission mode for Nano Satellite

66

List of Tables

Table 1.1.1. Estimating source lines of code for typical satellite functions

Table 1.1.2. Example of the different mission requirements and hardware constraints between
micro/nano satellites projects

Table 1.2.1. Reusable aspects of software projects

Table 1.3.1. The summary of 9 levels of software reuse according to RRLs

Table 1.3.2. Comparison by Documentation, Extensibility and Modularity

Table 1.3.3. Comparison by Portability, Standards Compliance and Verification and Testing
Table 11.2.1. The output of attitude determination function of each mode

Table 11.3.1. The constraints of onboard computers

Table 11.3.2. The constraints of sensors

Table 1V.1.1 All designed software components

67

Appendices

Appendix1. Listing C source code of reusable functions for attitude determination
//Reusable utilities

/1. Mathematical utilities

1. Vector.h

/IThis file constains basic functions related to vector calculations

/[The default dimention of vector is 3

/I\Verified 05/09/2015

/Icalc norm of vector
float NormOfVector(float *v)
{
float norm = sqrt(v[0]*v[0] + v[1]*V[1] + v[2]*V[2]);

return norm;

//Normalize vector
void NormalizeVector(float *v)
{
float norm = NormOfVector(v);
if(norm>0){
v[0] = v[0]/norm;
v[1] = v[1]/norm;
v[2] = v[2]/norm;

//calc dot product of 2 vectors a and b.
float DotProductOf2Vector(float *a, float *b)

{
return (a[0]*b[0] + a[1]*b[1] + a[2]*b[2]);

/IThe Cross Product ¢ = a x b of two vectors a and b

68

/IReference: https://www.mathsisfun.com/algebra/vectors-cross-product.html
/la x b =|a| |b] sin(a,b)
void VectorCrossProduct(float *a, float *b, float *c)
{
c[0] = a[1]*b[2] - a[2]*b[1];
c[1] = a[2]*b[0] - a[0]*b[2];
c[2] = a[0]*b[1] - a[1]*b[O];

/lcheck if 2 vectors are parallel; 1: parallel 0: not parallel
int CheckParallelVector(float *a, float *b)
{

float *c;

VectorCrossProduct(a,b,c);

/1if 2 vectors parallel

if(NormOfVector(c)==0) return 1;

/1if not parallel

return O;

/[calc angular between 2 vectors a and b
/langle output in radian
float AngleOf2Vector(float *a, float *b)

{
float c;
c=DotProductOf2Vector(a,b)/(NormOfVector(a)*NormOfVector(b));
return acos(c);

}

69

2. Quaternion.h
/IVersion 1.2:

//Date 05/08/2015
/[These are the basic functions related to quaternion calculations
IAll these functions are reusable
//The users need only call these functions with their parameters
/IReference from:
/Inttp://jp.mathworks.com/help/aeroblks/math-operations.html
//q[0] is scalar
//Normalize quaternion
void NormalizeQuaternion(float *q){
float norm; //norm of quaternion
norm = sqrt(q[0]1*q[0] + a[1]*a[1] + a[2]*q[2] + q[3]*a[3]);
//Normalize quaternion
if(norm>0)
{
q[0] = q[0]/norm;
q[1] = q[1]/norm;
q[2] = q[2])/norm;
q[3] = q[3]/norm;

}

//Properize quaternion
void ProperizeQuatternion(float *q){
/190 should alway be positive
if(q[0]<0.0){ /if g0<0 make g0 be positive
q[0]*=-1.0;
q[1]*=-1.0;
a[2]*=-1.0;
a[3]*=-1.0;

70

}

//Conjugate quaternion

void ConjugateQuaternion(float *q, float *q_conjugated)

{
g_conjugated[0] = q[O];
g_conjugated[1] = -q[1];
g_conjugated[2] = -q[2];
g_conjugated[3] = -q[3];

¥

//Inverse quaternion

void InverseQuaternion(float *q, float *g_inversed){
//ConjugateQuaternion
ConjugateQuaternion(q,q_inversed);
//Normalize quaternion
NormalizeQuaternion(qg_inversed);

¥

/ICalculate product of two input quaternion

void QuaternionMultiplication(float *q, float *r, float *t)

{
/loutput quaternion t = gxr
t[0] = r[0]*a[O]-r[1]*a[1]-r[2]*q[2]-r[3]*a[3];
t[1] = r[0*a[1]+r[1]*a[0]-r[2]*q[3] +r[3]*a[2];
t[2] = r[0]*a[2]+r[11*al3]+r[2]*q[0]-r[3]*a[1];
t[3] = r[0]*a[3]-r[1]*a[2]+r[2]*q[1]+r[3]*a[0];

71

3. Matrix.h
#define MAX 3 /Inumber of matrix row, colume

void TransposeMatrix(float AIMAX][MAX], float BIMAX][MAX])
{
inti};
float CIMAX][MAX];
for(i=0;i<MAX;i++)
for(j=0;j<MAX;j++) C[i][iI=AIl1Iil;
for(i=0;i<MAX;i++)
for(j=0;j<MAX;j++) B[i][j]=C[i][il;
¥
void MultiMatrix(float A[][MAX], float B[][MAX], float C[][MAX])
{
inti, j, k;
for(i = 0; i < MAX; i++)
{
for(j = 0; j < MAX; j++)
{
C[i]li1=0.0;
for(k = 0; k < MAX; k++){
C[i1] += Alil[k] * BIKILI;
¥
¥
¥

}
void AddMatrix(float AIMAX][MAX], float BIMAX][MAX], float CIMAX][MAX])}{

inti, j;
for(i = 0; i < MAX; i++)
for(= 0; j < MAX; j++) C[i]li] = Ali]0] + BIi][I;

72

4. TimeConversion.h

I/ Converse universal time to standard time (Julian date)

//Given year, month, day, hour, minute, second, compute the Julian date, JD

float ConverseTime2JulianDate(int year, int month, int day, int hour, int minute, int second)

{

Ireference
/Inttp://en.wikipedia.org/wiki/Julian_day
float a, y, m, jdn, jd;

a=int((14-month)/12);

y=year + 4800 - a;

m= month + 12*a -3;
//starting from a Gregorian calendar date
jdn = day + int((153*m+2)/5) + 365*y + int(y/4) - int(y/100) + int(y/400) - 32045;

jd = jdn + (hour-12)/24 + minute/1440 + second/86400;

return jd;

73

5. SunVectorCalculation.h
/l Calculate reference sun vector in ECI from sun model when input given time (julian date)

//Compute reference sun vector in ECI

Ilreference from
http://www.acsu.buffalo.edu/~johnc/space_book/sampex_control_chapt7/solar.m

/IVerified by compare with matlab results
void ComputeSunUnitVectorInECIFromJD(float jd, float *sun_i)
{

/I Get Julian Date and Centuries
float d2r = 3.14159265/180; //pi=3.14159265 deg to radian
float jd_cent=(jd-2451545)/36525;

// Mean Longtitude and Other Paramters

float lam=280.460+36000.771*jd_cent;

float m_sun=357.5277233+35999.050*jd_cent; //mean longitude of Sun

float lam_ecl=lam+1.914666471*sin(m_sun*d2r)+0.019994643*sin(2*m_sun*d2r);

float eps=23.439291-0.0130042*jd_cent; //ecliptic longitude of Sun

/lreference sun vector in eci s_eci

sun_i[0]=cos(lam_ecl*d2r); //cos lamda ecliptic

sun_i[1]=cos(eps*d2r)*sin(lam_ecl*d2r);

sun_i[2]=sin(eps*d2r)*sin(lam_ecl*d2r);

74

6. File Triad.h
// The Triad algorithm computes DCMbi from s_eci,s_b,m_eci,m_b
/IVerified 05/10/2015
//Reference from: http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/
void TRIAD(float *v1i, float *v2i, float *v1b, float *v2b, float DCMbi[3][3])
{
/lIIv1i, v2i: Sun vector and magnetic field vector in ECI
/Iv1b, v2b: Sun vector and magnetic field vector in Body
float t2i[3], t3i[3], t2b[3], t3b[3];
float Rbt[3][3], Rti[3][3];

VectorCrossProduct(v1i,v2i,t2i);
NormalizeVector(t2i);

VectorCrossProduct(v1i,t2i,t3i);
NormalizeVector(t3i);

VectorCrossProduct(vlb,v2b,t2b);
NormalizeVector(t2b);

VectorCrossProduct(v1b,t2b,t3b);
NormalizeVector(t3b);

//Construct Rbt

Rbt[0][0]=v1b[0];
Rbt[1][0]=v1b[1];
Rbt[2][0]=v1b[2];

Rbt[0][1]=t2b[0];
Rbt[1][1]=t2b[1];
Rbt[2][1]=t2b[2];

Rbt[0][2]=t3b[0];
Rbt[1][2]=t3b[1];
Rbt[2][2]=t3b[2];

/IConstruct Rti

Rti[0][0]=V1i[0];
Rti[1][0]=V1i[1];
Rti[2][0]=V1i[2];

Rti[0][1]=t2i[O];
Rti[1][1]=t2i[1];
Rti[2][1]=t2i[2];

TransposeMatrix(Rti,Rti);

MultiMatrix(Rbt,Rti, DCMbi);

75

Rti[0][2]=t3i[0];
Rti[1][2]=t3i[1];
Rti[2][2]=t3i[2];

7. ConverseAttitudeRepresentation.h

/[These are functions which convert between attitude representation
IAll these functions are reusable

/IReference from:
/Inttp://jp.mathworks.com/help/aeroblks/axes-transformations.htmi
//Convert Quaternion to DCM (Direction Cosine Matrix)
//IReference from Prof. Nakasuka Lecturers at Keio University 2013
/IDCM=Cb2i transformation from body to inertia

void ConvertQuaternion2DCMbi(float *q, float DCM[][3]){

/lcalculate elements of DCM matrix

DCMI0][0] = q[0]*a[0] + al[1]*al1] - a[2]*a[2] - a[3]*al3];
DCMI[0][1] = 2.0*(q[1]*a[2] - a[0]*a[3]);
DCMI[0][2] = 2.0*(q[1]*a[3] + a[0]*a[2]);

DCM[1][0] = 2.0*(q[1]*a[2] + q[0]*q[3]);
DCMI1][1] = q[0]*q[0] - q[1]*q[1] + q[2]*a[2] - a[3]*q[3];
DCM[1][2] = 2.0*(q[2]*q[3] - a[0]*q[1]);

DCM[2][0] = 2.0*(q[1]*q[3] - a[0]*a[2]);

DCM[2][1] = 2.0*(q[2]*a[3]+q[0]*a[1]);
DCM[2][2] = q[0]*a[0] - a[1]*q[1] - al2]*a[2] + a[3]*q[3];

76

8. File TestADS.cpp

//Verification the correctness of functions

#include <stdio.h>

#include <conio.h>

#include <stdlib.h> /* srand, rand */

#include <time.h> /* time */

#include <math.h>

//Reusable utilities

/1. Mathematical utilities

#include "Vector.h"

#include "Quaternion.h™

#include "Matrix.h"

/12. Converse universal time to standard time (Julian date)

#include "TimeConversion.h"

//3. Calculate reference sun vector in ECI from sun model when input given time (julian date)
#include "SunVectorCalculation.h™

//4. The Triad algorithm computes DCMbi from s_eci,s_b,m_eci,m_b
#include "Triad.h"

/5. Converse attitude representation

#include "ConverseAttitudeRepresentation.h”

I1#define NMAX 4 //for test quaternion
void TestQuaternion()
{

float q1[4];

float g2[4];

float q3[4];

q1[0] =0.9962;
qi[1] = 0;
qi[2] = O;
q1[3] = 0.0872;

q2[0] =0.9962;
q2[1] = O;
q2[2] = O;
q2[3] = 0.0872;

/[Test Multiplication

QuaternionMultiplication(g1,92,93);

//Show results, OK

printf("%5.3f %5.3f %5.3f %5.3f", q3[0], q3[1], g3[2], 93[3]);
1/0.9848 0 0 0.1736

77

void TestTimeConversion()
{

float jd;

float sun_eci[3];

/[Test case to check the time conversion function
int year=2015;

int month=5;

int day=8;

int hour=13;

int minute=24;

int second=20;

jd=ConverseTime2JulianDate(year, month, day, hour, minute, second);

//Result from online conversion
/Ihttp://aa.usno.navy.mil/data/docs/JulianDate.php
/[The Julian date for CE 2015 May 8 13:24:20.0 UT is
/1D 2457151.058565

ComputeSunUnitVectorInECIFromJD(jd, sun_eci);
printf("%f %f %f", sun_eci[0], sun_eci[1], sun_eci[2]);
}

void TestVector()

{
float norm, a[3], b[3], V[3];
a[0]=4; a[1]=0; a[2]=7;
b[0]=-2; b[1]=1; b[2]=3;

//VectorCrossProduct(a,b,v);
//INormalizeVector(v);

/lint i=CheckParallelVector(a,b);
lprintf(*%d",i);

float c;
c=AngleOf2Vector(a,b);

printf("%.2f"c);
Iprintf("%.2f %.2f %.2f",v[0], v[1], V[2]);

78

//Ref: http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/
void TestTriad()

{
/lIIv1i, v2i: Sun vector and Magnetic field vector in ECI
/Iv1b, v2b: Sun vector and Magnetic field vector in Body
float v1i[3], v2i[3], v1b[3], v2b[3];
float DCMbi[3][3]; //determined attitude
/ltest case from http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/
v1i[0]=-0.1517; v1i[1]=-0.9669; v1i[2]=0.2050;
v2i[0]=-0.8393; v2i[1]= 0.4494; v2i[2]=-0.3044;
v1b[0]=0.8273; v1b[1]=0.5541; v1b[2]=-0.0920;
v2b[0]=-0.8285; v2b[1]=0.5522; v2b[2]=-0.0955;
TRIAD(v1i,v2i,v1b,v2b,DCMbi);
printf("Test Triad Algorithm:\n");
intij;
for(i=0;i<3;i++)
{
for(j=0;j<3;j++) printf("%.4f ", DCMDbI[i][j]);
printf("\n");
¥
Ilresult is OK
}
int main(){

TestQuaternion();
TestTimeConversion();
TestVector();
TestTriad();

return O;

79

Appendix 2. Transformation from Sensor Frame to Satellite Body Frame

Define DCM &% is the Direction Cosine Matrix which transform the Sensor

SensorFrame

Frame to the Satellite Body Frame.
DCM&¥ s calculated from 3 Euler angles ¥, 6, ® and using Z-Y-X rotation

sequence from Sensor Frame to the Satellite Body Frame.

Y is the rotation angle about the Z-axis of Sensor Frame.

0 is the rotation angle about the Y-axis of Sensor Frame.

® is the rotation angle about the X-axis of Sensor Frame.

3 Euler angles WV, 0, ® is measured when the sensor is integrated to the satellite.

For any mounting location of sensors including Sun sensor, Gyro, Magnetometer, the
transformation from Sensor Frame to Satellite Body Frame is calculated from the equation
(2.2).

C0sH.cosy —COSA.SiNy +SiN@.siNH.CoSy SN @.Siny +C0S ¢.Sin 6.coSy
DCMZXY _ =|cos@.siny cosg.cosy +singsind.sing —sing.cosy +cosg.sind.siny | (2.1)
-sind sing.cosd cos¢.cosd

However, for Star tracker, because the output of Star tracker is the quaternion,

therefore, to convert quaternion output in Sensor Frame to the quaternion in Satellite Body

Frame, the DCM2¥ _ _ should be transformed to the quaternion g%

SensorFrame SensorFrame *

DCM,, DCM,, DCM,
Define DCM &Y _ =|DCM,, DCM,, DCM,,
DCM,, DCM,, DCM,

The conversion from DCM 2% to the g% is as below.

SensorFrame SensorFrame

Define qge%ds)nl)rlzrame :[ql 0, O q4]T! Qs is the scalar.

Firstly, q,, 0,,0, and ¢, are calculated:

%:J%G+DCMH—DCMQ—DCM%)

%=J%a—DCMn+DCMH—DCM%)

%:J%Q—DCMH—DCMH+DCM%)

%=J%a+DCMH+DCMﬂ+DCM%)

80

Secondly, q,, q,,0; and q,are re-calculated by the Table 2.1. For example, if the q,

is the maximum compare to other elements, the ¢,, g, andq,are re-calculated as the first row

of the Table 2.1.

Table 2.1. Calculating g&°% _ elements
Maximum G g, q, 0,
qs q, DCM,, -DCM,, | DCM,,-DCM,, | DCM,, —DCM,,
4q, 4q, 4q,
a, DCM,, —DCM,, q, DCM,, + DCM,, | DCM,; + DCM,,
4d, 40, 4q,
a, DCM,;,-DCM,, | DCM,, + DCM,, q, DCM,, + DCM,,
44, 44, 44,
0y DCM,, —DCM,, | DCM,, +DCM,, | DCM,, + DCM,, 0
40, 40, 4d,

In brief, the diagram of transformation function from Sensor Frame to Satellite Body

Frame is showed in Figure 2.1.

W Body
— S -
Transform D CMSen.sormee
6 — > SensorFrame to
Body Frame L gBo
0] — y qSensorF rame

Figure 2.1. Diagram of transform function from Sensor Frame to Satellite Body Frame

For Star tracker, the calculating of the quaternion in the Satellite Body Frame is as

below

__ ~Body
qBody - qSensorFrameqSensorFrame

sy 1S the quaternion in the Satellite Body Frame.

is the quaternion output in the Star tracker Frame.

qSensorFrame

For Sun sensor, the calculating of the sun vector in the Satellite Body Frame is below

_ Body
SBody - DCM SensorFrameSSensorFrame
Sgwy 1S the sun vector in the Satellite Body Frame
S is the sun vector measured in the Sun sensor Frame

SensorFrame

81

For Gyro, the Gyro Frame should be aligned with the Satellite Body Frame when

integrating, the angular rate vector in Satellite Body Frame is calculated as below

Body SensorFrame

Wx Wx d X

WBody — WSensorFrame + d
y y y
Bod SensorFrame

w; Y W d

z z z

T . - -
w¥ =[w¥ w¥ w2 | is the angular rate vector in Satellite Body Frame.

T .
WSensorFrame WSensorFrame WSensorFrame] is the angular rate VeCtor measured

SensorFrame __
w _[X y z

in Gyro Frame.

The offset vector d =[d, d, d,]" is measured during the integration of Gyro to the

Satellite.
For GPS Receiver processing, because the GPS Receiver outputs are the location of
the sensor, therefore, there is no need to transform the outputs of GPS Receiver to the Satellite

Body Frame. The location of Satellite can be considered as the location of the GPS Receiver.

82

Appendix 3. Simulation of using Kalman Filter

1. Introduction about Kalman Filter
The original Kalman Filter is only applicable for linear systems. However, it is

extended to deal with nonlinear systems by Extended Kalman Filter (EKF). The EKF is not
always optimal and can diverge if initial errors are too large or if the system model is
Inaccurate.
Defining the discrete nonlinear system as:
X, = T(X_ Uy)+W, (3.1.1)
z, =h(x,)+V, (3.1.2)
where:

X IS state vector

f () describes the system dynamics

u is control input
W IS process noise
h is the measurement model
v is the measurement noise
the subscript k denotes discrete time.
Both measurement and process noise are assumed to be zero mean Gaussian. Using the

system described above, the equations for EKF:

At Predict phase:
X = f (Xk-1,U,4)
R = FkPkaT +Q

At Update phase:
Ky =R H{ (HRH +R)"

Xk = Xk + K, (z, —H, Xk)
B =(-KH)F
where:

X denotes estimated state vector
P is covariance matrix

K is calculated Kalman gain

83

of

Fo=—
K ox

A

Xk-1,U
is the derivate of the nonlinear system with respect to the states

_oh

H =X
KX

A

is the derivate of the measurement equations with respect to the states.
R is the measurement covariance matrix.

Q is the process covariance matrix.

Due to the complexity of the EKF, it is limited when implementation on a on-board
computer of nano satellites.
2. Simulation of using Kalman Filter for satellite with one axis

Physical model:

The system model of a satellite with one axis is described in Figure 3.1. The sensors

consist of a gyro and a star tracker.

Torque_rw theta_t w_t
> Satellite
RW Sensors
n
theta m

w._m
_____________ theta s I
1 1 W S | 1
1 | - | |
i Controller 1 Kalman I
Torque_control , : I I
J 1

Figure 3.1 System model of satellite with one axis

One axis rotational angle © of satellite is measured.
The true value of € is: O,
O,=w (3.2.1)
w is white noise with 16 =0.01 rad/sec?
The true value of angular velocity of satellite:
we = 6, (3.2.2)
84

This angular velocity is measured by gyro at every 10 msec:
W =Wy +wy; +r (3.2.3)
w; is white noise with 16 =0.1 rad/sec
r is random walk with:
I =w, (3.2.4)
w,, is white noise with 16 =0.1 rad/sec?
At every 1s, the star sensor (star tracker) is used to measure ©:
On=6;+Vv (3.2.5)

with v is white noise 1o =0.01 rad

Derive the system dynamic equation and measurement equation
To estimate @ and r, the estimated of these values are included in state vector x:

Define the notation:

X1 X1
X=Xz, x=| X,
X3 X3

X1:95
XZZQS
X3 =TI

The system estimation model:

s o Sl 3l

Define the notation:

0 1 -1 1 0 O 0
A=10 0 0| B=(0 1 0o],w=|w
0 0 O 0 0 1 W,
the system dynamic equation:
& %= A +B*w (3.2.6)

dt

Figure 3.2 shows the state vector including theta © and angular velocity w without
using Kalman Filter. The state of system is not converged.

Figure 3.3 shows the states including theta ©, angular velocity w and covariance
matrix P when using Kalman Filter. The state of system is converged after 6s.

The C source code of the simulation is showed as below.

85

Figure 3.2 States using Kalman Filter

86

theta_t theta_m w_t w_m
5 4
4 3
3 // EAY| 2 /,,I \
2 1
1 i i /N
0 \ / \ 1 4 ’ 6 8 10 12
4 2 8 Y 12, \
2 3 \
3 . \%
-4 -5
r
0.1
0.09
jys J'm \' T_control = Kp*theta_m + Kd*w_m
0:06
0.04
o
0.03
000 ——— True Value
°<°; — Measured Value
2 4 6 8 10 12
Figure 3.2 States without using Kalman Filter
theta_t theta_s w_tws
25 2
2 1.5
_ =\ ,
VAR !
0.5 \ TN, ’
; \ /X o LW
05 6] 12
05 %%E—BAU—H | f
-1
N
-2 -2
225 -2.5
rr_s True Value
08 —— Estimated Value
06 —]
0.4
0.2
° 2 4 ;‘_: 8 10 12 * *
02 T_control = Kp*theta_s + Kd*w_s
-0.4 —
-0.6

P11 P22

N

-0.5 0 2 4 6 8 10

P33
12 P11

- P= P22

0.6

0.2

P33

-0.2

Figure 3.3 State of covariance matrix using Kalman Filter

C source code of simulation Kalman Filter for Gyro and Star tracker

#include <stdio.h>

#include <conio.h>

#include <math.h>

#include <stdlib.h> /* srand, rand */
#include <time.h> /* time */
#include "Matrix.h"

#include "Noise.h"

#define PI 3.14159265359 //PI
#define NMAX 1000 // number of iterations 10000
#define MAX 3 //number of matrix row, colume

//physical simulation
double dt=0.01; //dt=10 msec

//----1. Satellite Axis-—-—-—---—--——-——————-——————————— - —————
double I sat;

double T res[NMAX];

double w t[NMAX], theta t[NMAX];

//====2. SEeNSOr—————— = -
//2.1. Gyro

double r[NMAX]; //random walk

double w m[NMAX];

87

//Gyro Noise
double wl=0.1; //w noise
double w2=0.1; //noise random walk dot

//2.2. Star data
double theta m[NMAX];
//star noise

double v =0.01;

//-=--=-3. Kalman---——————————— - //
//matrixs

double A[MAX] [MAX], B[MAX] [MAX], Q[MAX] [MAX];

//state equation dx/dt=Ax+Bw Q=E[x]

double P dot[MAX] [MAX]; double PK[NMAX] [MAX] [MAX]; //covarian matrix
double KKI[NMAX] [MAX]; //Kalman Gain

double R; //=v*v //Measurement Noise

//system estimation

double theta s[NMAX]; //estimation of theta angle

double theta s dot[NMAX]; //estimation of theta dot

double r s[NMAX]; //estimation of r

//-==-=-4. Controller-——-—————————— - //
double K p = -2; double K d = -0.5;

double T target[NMAX];

//----5. Reaction Wheel---------——--—————————————— - ——— //
double I rw =0.1;

double K rw = 100;

double V dot [NMAX], V [NMAX] ;

//-—---Init values———————————————-—— - //
//init Sat Axis
void init Sat() {

I sat = 2.0;

T res[0] = 0;

w_t[0]= 10*2*PI/60;

theta t[0] =50*PI/180;

//init sensor data
void init Sensors () {
//init Gyro data
r[0]=0.03;
w m[0]= w_t[0] + genNoise(wl) + r[O0];

//init Star data
theta m[0] = 0; //before update time from Star

88

void init RW() {

//initial RW

V_dot[0]=0;
V[01=0;
}
//===storeFiles———————————————- - //
void storeFile NoKalman ()
{
FILE * fp;
int 1i;
//store theta t
fp = fopen ("l.theta t.txt", "wt+");
for (1=0; i<NMAX-1; i++)
fprintf (fp, "%4.2f\n",theta t[i]);
fclose (fp);
//store theta m
fp = fopen ("2.theta m.txt", "wt+");
for (i=0; i<NMAX-1; i++)
fprintf (fp,"%4.2f\n", theta m[i]);
fclose (fp);
//store w_t
fp = fopen ("3.w _t.txt", "w+");
for (1=0; i<NMAX-1; i++) fprintf (fp,"%4.2f\n",w_t[i]);
fclose (fp);
//store w m
fp = fopen ("4.w m.txt", "w+");
for (i=0; i<NMAX-1; i++) fprintf (fp,"%4.2f\n",w m[i]);
fclose (fp);
//store random walk
fp = fopen ("S5.r.txt", "wt+");
for (1i=0; i<NMAX-1; i++) fprintf (fp, "%4.3f\n",r[i]);
fclose (fp);
}
//----Kalman Calculation-----—--—--—-————-————————————————————————— //
//init for system estimation model
void init kalman matrix()
{
//init A
A[0]1[0]=0.0; A[0][1]=1.0;
A[0][2]=-1.0;
A[1]1[0]=K p/I sat; A[1]1[1]1=K d/I sat; A[1][2]=0.0;
A[2]1[0]1=0.0; A[2][1]1=0.0;
A[2]1[2]=0.0;

//init B

B[0][0]1=1.0; B[0][11=0.0; B[0]1[2]1=0.0;
B[(1][01=0.0; B[1]1[1]1=1.0; B[1]1[2]1=0.0;
B[2][0]=0.0; B[2][1]1=0.0; B[2][2]=1.0;
//init Q

Q[0]1[0]1=0.0; Q[0]1[11=0.0; Q[0]1[2]1=0.0;
Q[1]1[0]1=0.0; Q1] [1]=wl*wl; Q[11[21=0.0;
Q[2]1[0]=0.0; Q[2]1[11=0.0; Q2] [2]=w2*w2;
//init covarian matrix PK

PK[O0] [0]1[0]=1.0; PK[O][0][11=0.0; PK[O0] [0]1[2]=0
PK[O][1]1[0]=0.0; PK[O][1][11=1.0; PK[O] [1]1[2]=0
PK[O0][2][0]=0.0; PK[O][2][1]=0.0; PK[O][2][2]=1

void init kalman estimation ()

{

//init estimation
r s[0]=0;

theta s[0]=0;
theta s dot[0]=0;

void storeFile withKalman ()

{

FILE * fp;
int 1i;

//store theta s

fp = fopen ("5.theta s.txt", "w+");
for (1=0; 1<NMAX-1; i++)

fprintf (fp, "%4.2f\n",theta s[i]);
fclose (fp);

//store w_s

fp = fopen ("6.w s.txt", "w+");

for (1=0; 1<NMAX-1; i++)

fprintf (fp,"%4.2f\n", theta s dot[i]);
fclose (fp);

//store random walk estimate

fp = fopen ("7.r s.txt", "wt+");

for (1=0; i<NMAX-1; i++) fprintf(fp,"%4.3f\n",r_s[i]);
fclose (fp) ;

//PK
fp = fopen ("8.pll.txt"™, "wt+");

90

for (1=0; i<NMAX-1; i++)
fprintf (fp, "%$4.3f\n",PK[1] [0] [0]);
fclose (fp);

fp = fopen ("9.p22.txt", "wt+");
for (i=0; i<NMAX-1; i++)

fprintf (fp, "%4.3f\n",PK[i][1][1]);
fclose (fp);

fp = fopen ("10.p33.txt", "wt");
for (1=0; i<NMAX-1; i++)

fprintf (fp, "%$4.3f\n",PK[1][2][2]);
fclose (fp);

void init Kalman () {

init kalman matrix();
init kalman estimation();

//calc P dot (k)
void calc P dot (int k)

{

double AT [MAX] [MAX];
double BT [MAX] [MAX];
double B1[MAX] [MAX], B2[MAX] [MAX]:;
double C1[MAX] [MAX], C2[MAX][MAX],

//temp matrix
C3[MAX] [MAX];

matrix multi matrix(A,PK[k],Cl); //A*P

calc trans matrix (A, AT);

matrix multi matrix(PK[k],AT, C2); //P*AT
matrix add matrix(Cl,C2,C3); //A*P + P*AT
matrix multi matrix(B,Q,Bl); //B*Q

calc trans matrix (B, BT);

matrix multi matrix(B1,BT,B2); //B*Q

//temp matrix

matrix add matrix(C3,B2,P dot); //A*P + P*AT + B*Q*BT

//calc Covarian Matrix PK (k)
void calc PK(int k) {

int 1i,73;
for (i=0; i<MAX; i++)
{
for (3=0; j<MAX; j++)

91

PK[k][1][J] = PK[k-1][i]I[3]]
}

}

//calc Kalman Gain

void calc KK (int k)

{
double temp;
R =v*v;
temp=1/(PK[k][0][0] +R);
KK[k] [0] = temp*PK[k][0][0]
KK[k][1] = temp*PK[k][1][0]
KK[k] [2] = temp*PK[k][2][0]

}

//update Covarian Matrix
void update PK(int k)
{
int i, 3;
double P_ temp [MAX] [MAX]
//copy PK[k] -->P temp
for (i=0; i<MAX; i++)
{

I4

for (J=0;J<MAX; j++)

P temp|

i1[3]

PK[k][1][]];

PK[k] [0] [0]= (1.0-KK[k][O])*P_temp[O][O];
PK[k] [0] [1]= (1.0-KK[k][O])*P_temp[O][1];
PK[k] [0] [2]= (1.0-KK[k][O])*P_temp[O][2];

PK[k][1][0]= P temp[l
PK[k][1][1]= P_temp[1][

PK[k] [1][2]= P _temp[l][2] - KK[k][1]*P temp[O][2];
PK[k] [2][0]= P_temp[2][0] - KK[k][2]*P temp[O][O0];
PK[k] [2][1]= P_temp[2][1] - KK[k][2]*P temp[O][1];
PK[k] [2][2]= P_temp[2][2] - KK[k][2]*P temp[O][2];
}
void estimate state (int k) {
//estimate r s = constant
r s[kl=r s[k-1];

//estimate theta dot

theta s dotl[k

1= w m[k]

-r_s[k];

92

+ dt*P dot[i

10315

//Estimation for theta s
theta s[k]= theta s[k-1] + dt*theta s dot[k];

//caculate p dot
calc P dot(k-1);

//calc covarian matrix PK
calc PK(k);

}

//propagation and update

void update phase (int k)

{
calc KK(k); //calc Kalman Gain
update PK (k) ; //update Covarian Matrix

//update state vector
//update theta s dot
theta s dot[k]= theta s dot[k] + (theta m[k]-theta s[k])*KK[k][1];

//update r_s
r s[k] = r s[k] + (theta m[k]-theta s[k])*KK[k][2];

//update theta s dot

theta s[k] = theta s[k] + (theta m[k]-theta s[k])*KK[k][O];

}

//---End of Kalman Calculation-----—---—--—-——————————————————————— //
//----Calculation System Cycle--—--—--——-—————————————————————————— //

void calc requiredTorque (int k) {

//T target[k]= K p*theta m[k-1] + K d*w m[k-1]; //No KF
T target[k]= K p*theta s[k-1] + K d*theta s dot[k-1];
//KF use theta s w_s

void calc appliedTorque (int k) {
V_dot [k] = (K rw/I rw)*T target[k];
VIik] = V[k-1] + dt*V dot[k];
T resl[k] (I rw/K rw)*V dot[k];

void get data from Sensor (int k) {
//true value, can not know
w_t[k] = w_t[k-1] + dt*T res[k]/I sat;

//true value
theta tf[k]

theta t[k-1] + dt*w _t[k-1];

//simulate data , get real data from sensor if not simulation

93

r[k] = rik-1] + dt*genNoise (w2) ;

//from gyro
w_m[k] = w_t[k]

+ genNoise (wl) + r[k];

//measurement of star, use for kf

if (k%100 ==0)
{

theta m[k] = theta t[k] + genNoise (v);

else theta m[k]=theta m[

void system cycle ()
{
int k; //steps of iteration
for (k=1; k<NMAX; k++)
{
calc requiredTorque (k) ;
calc appliedTorque (k) ;
get data from Sensor (k) ;
//estimate from kalman
estimate state(k);

k=177

//from w and theta from KF

1f(k%100==0) update phase (k);

void init system() {

//init random
srand (1);

init Sat();
init Sensors();
init RW();

init Kalman();

int main ()

{
init system();
system cycle();

storeFile NoKalman();

storeFile withKalman () ;
return 0;

94

