
Title Design of Reusable Software for Attitude Determination System of Micro/Nano Satellites in
Consideration of Modularity and Extensibility using SysML

Sub Title
Author Nguyen, Son Duong(Nishimura, Hidekazu)

西村, 秀和
Publisher 慶應義塾大学大学院システムデザイン・マネジメント研究科

Publication year 2015
Jtitle

JaLC DOI
Abstract
Notes 修士学位論文. 2015年度システムエンジニアリング学 第179号
Genre Thesis or Dissertation
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KO40002001-00002015-

0007

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって
保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or
publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


 
 

Master's Dissertation                            2015 

 

 

 

 

Design of Reusable Software  

for Attitude Determination System of Micro/Nano Satellites 

in Consideration of Modularity and Extensibility using SysML 

 

 

Nguyen Son Duong 

(Student ID Number: 81334561) 

 

 

 

 

Supervisor: Prof. Hidekazu Nishimura 
 

 

 

 

 

 

 

 

 

 

 

September 2015 
 

 

 

Graduate School of System Design and Management,  

Keio University  

Major in System Design and Management 
  



 
 

SUMMARY OF MASTER'S DISSERTATION 

Student Identification 

Number 

81334561 Name Nguyen Son 

DUONG 

Title 

Design of Reusable Software for Attitude Determination System of Micro/Nano Satellites 

in Consideration of Modularity and Extensibility using SysML 

Abstract 

Today, micro and nano satellites are being widely used for Earth observation, remote 

sensing, technology demonstration and scientific purposes with lower cost and shorter time 

development in compare with larger satellites. The micro/nano satellites projects are usually 

varied according to missions and hardware constraints. Among on-board software 

components, attitude determination software is one of the most difficult parts when coding 

because it requires complicated calculations, especially for the micro/nano satellites. The 

ratio of the attitude determination software can be estimated about 40% in total on-board 

software of satellites. Therefore, design of the reusable attitude determination software 

which can be reused for many types of the micro/nano satellite projects to save time and 

cost for satellite development is the objective of this research. 

NASA has already realized software reusability viewpoint in NASA Reuse Readiness 

Levels (RRLs). NASA RRLs is a method to measure the potential of reuse of general 

software and has 9 topic areas including documentation, modularity, extensibility, etc. After 

analyzing the context of attitude determination software reuse between micro/nano satellites 

projects, the modularity and extensibility are critical and therefore selected in this research. 

Model-based systems engineering (MBSE) is a powerful approach to model complex 

systems such as the satellites. Systems Modeling Language (SysML) is a standardized 

language to enable MBSE. Applying SysML to design the satellite and the on-board 

software has outstanding benefits and is now very promising. By using SysML, not only the 

software itself is designed but also the whole system can be modeled as well. This point is 

very important when reuse software because the attitude determination software has 

constraints and relationships with other systems of the satellite. Besides, by using SysML, 

not only the modularity and extensibility but also the documentation is well supported. 

In brief, by using SysML and utilizing the viewpoint of modularity and extensibility 

from NASA RRLs, the highly modular and extensible attitude determination software has 

been designed in this research in order to maximize the potential of reuse for micro/nano 

satellites. For future works, the necessary of applying SysML for designing satellites should 

be more persuaded to the satellite developers. 

Key Words (5 words): SysML, micro/nano satellites, attitude determination software, 

design reusable software, NASA RRLs. 

 

 



 
 

Acknowledgements 

I would like to thank my supervisor, Prof. Nishimura Hidekazu, without his supports 

and guidance during my 2 years at Keio SDM, this thesis could not be finished. He has 

provided us many professional software tools to practice SysML such as Rhapsody and 

Cameo Enterprise Architecture. I will apply knowledge about model-based system 

engineering (MBSE) and SysML learning from him to design satellites when I come back to 

my country. 

 I would like to thank Prof. Seiko Shirasaka for his regular meetings to improve the 

quality of my research. I also would like to thank Prof. Makoto Ioki for his useful advices and 

comments to my thesis. 

 I also would like to thank Shusaku Yamaura-sensei, Takashi Hiramatsu-sensei and 

Ayumu Tokaji-sensei, who have continuously help me to do this research as well as to finish 

my study at Keio SDM.  

Lastly, I would like to thank my organization, Vietnam National Satellite Center, and 

my family who gave me a great deal of encouragement.  

  



 
 

Table of Contents 

I. Introduction .......................................................................................................................................... 1 

I.1. Problem background ......................................................................................................................... 1 

I.2. Definition of software reuse .............................................................................................................. 3 

I.3. The software reusability viewpoint from NASA RRLs ....................................................................... 3 

I.4. The benefits of applying MBSE and SysML to design software for complex systems ....................... 6 

I.5. Research objective and approach ..................................................................................................... 7 

I.6. Structure of the Thesis....................................................................................................................... 8 

II. Overview of attitude determination system and constraints of design reusable attitude determination 

software ................................................................................................................................................. 10 

II.1. Overview of attitude determination and control system of satellite .............................................. 10 

II.2. The modes of attitude determination ............................................................................................. 12 

II.3.The constraints of design reusable attitude determination software for micro/nano satellites ...... 15 

III. Design of reusable attitude determination software for micro/nano satellites using SysML .......... 16 

III.1. Software architecture ................................................................................................................... 16 

III.2. Design of software modules ......................................................................................................... 24 

III.3. Design of software components of sensors processing module .................................................... 33 

III.4. Design of software components of reference vectors estimation module ..................................... 51 

III.5.Design of software components of attitude estimation module ..................................................... 53 

III.6. The modularity and extensibility in design ................................................................................... 55 

IV. Verification and Validation ............................................................................................................. 58 

IV.1.Verification .................................................................................................................................... 58 

IV.2. Validation ..................................................................................................................................... 60 

V. Conclusion ........................................................................................................................................ 62 

V.1. Summary ........................................................................................................................................ 62 

V.2. Future works .................................................................................................................................. 62 

References ............................................................................................................................................. 63 

List of Figures ....................................................................................................................................... 65 

List of Tables ......................................................................................................................................... 67 

Appendices ............................................................................................................................................ 68 

 

  



1 
 

I. Introduction 

I.1. Problem background 

 The weight of micro satellites is in the range of 10-100 kg and that of nano satellites is 

in the range of 2-10 kg [1]. The micro and nano satellites are now becoming a new trend. 

There are more and more companies and organizations who are interested in developing these 

types of satellites [1], [2]. In 2014, there were 158 micro/nano satellites launched globally, 

this showed an increase of nearly 72% compared to 2013 [3]. The characteristics of 

micro/nano satellites are low cost, short time development, varied on mission requirements 

and limited on calculation capability compare with larger satellites.  

 Software coding is always the difficult task in satellite development because it 

requires a lot of time for developing and testing, especially for the micro/nano satellite 

projects. For each project, developers need to design and implement software for satellite's 

on-board computer including attitude determination software. The attitude determination 

software is one of the most complicated parts of the on-board software because it involves 

complex calculations [4] [5]. 

 In the Table I.1.1, the estimating software components of a typical satellite are showed 

[6]. Form the Table I.1.1, the software components related to the attitude determination and 

control are the main part of the satellite on-board software, and nearly 40% is the attitude 

determination software. Therefore, development of the attitude determination software is 

more expensive and time consuming than other software components. 

   

Table I.1.1. Estimating source lines of code for typical satellite functions 

Software Component Source Lines of  Code 

Executive 1,000 

Communication 5,500 

Attitude/Orbit Sensors Processing 8,100 

Attitude Determination and Control 

   Kalman Filter 

29,800-33,800 

6,000-10,000 

Attitude Actuator Processing 3,900 

Mathematic Utilities 5,700 

Fault Detection 11,500 

Other Functions 5,000 

 



2 
 

Software reuse for the attitude determination system is expected as a solution to save 

time and cost of satellite development, especially for organizations like Vietnam National 

Satellite Center (VNSC), who need to develop not only one but several micro/nano satellites 

for different type of applications. Software reuse can help save time and cost for coding and 

testing as well as increase software reliability.  

However, according to Ref. [7], research on on-board software reusability is still low 

and its realization is urgently desired. The main reasons are the difficulties of software reuse 

in terms of the difference in CPU type, interfaces and mission requirement of the micro/nano 

satellites.  

The constraints which lead to the difficulties of software reuse between micro and 

nano satellite projects can be showed in an example in Table I.1.2. As can be shown in the 

Table I.1.2, each of the satellite projects has the different mission as well as the determination 

accuracy requirement, the calculation performance of the on-board computer and the model of 

used sensors. Therefore, in order to be reused, the attitude determination software need to be 

designed to deal with the variety of each satellite projects. For example, it is difficult to reuse 

the attitude determination software from the first satellite project (Micro Dragon) to the 

second satellite project (Nano satellite) because the second satellite does not have the Star 

Tracker as the first satellite and the performance of the on-board computer is lower. 

 

Table I.1.2. Example of the different mission requirements and hardware constraints 

between micro/nano satellites projects 

Satellite 

Projects 

Mission Determination 

Accuracy 

On-board 

Computer 

Performance 

Sensors 

Model 

MicroDragon 

(50 kg) 

Ocean color 

observation 

~0.05º 48 MIPS 

64 MB SDRAM 

1 Star Tracker 

6 Sun Sensors 

High Accuracy Gyro 

Nano 

Satellite 

(3 kg) 

Communication ~3º 16 MIPS 

8MB SDRAM 

0 Star Tracker 

3 Sun Sensors 

Low Accuracy Gyro 

Micro 

Satellite 

(100 kg) 

Astronomy ~0.003º 96 MIPS 

64 MB SDRAM 

2 Star Trackers 

6 Sun Sensors 

High Accuracy Gyro 

  



3 
 

I.2. Definition of software reuse 

 The purpose of software reuse is to improve software quality and productivity. 

Software reuse is the use of existing software or software knowledge to construct new 

software. Reusable assets can be either reusable software or software knowledge. Reusability 

is a property of a software asset that indicates its probability of reuse [8]. A software artifact 

is any item which is created during the software development life cycle. A software asset is an 

artifact which has a particular value. A software component is a clearly delineated piece of 

software that performs a useful function within a software system [9].  

 Reusable software artifacts are not limited to just code. These assets may include 

algorithms and models, architectures and design patterns, systems modules and scripts, 

technical documentation and test results, and use metrics as well as other artifacts produced 

during the software development life cycle [10]. Therefore, the software developers can reuse 

requirements documents, design structures and any other development artifact.  

 The potentially reusable aspects of software projects are shown in Table I.2.1 [11]. 

 

   Table I.2.1. Reusable aspects of software projects 

1. Architectures 6. Templates 

2. Source code 7. Human Interfaces 

3. Data 8. Plans 

4. Designs 9. Requirements 

5. Documentation 10. Test Cases 

 

I.3. The software reusability viewpoint from NASA RRLs  

 In order to design highly reusable software, it is necessary to know how the reusability 

of software can be evaluated. This information will be utilized as a viewpoint when design 

reusable software. 

The NASA Earth Science Data Systems – Software Reuse Working Group has been 

developed Reuse Readiness Levels (RRLs) since 2008 for use as a measure to evaluate the 

potential reusability of software. Initially developed for the Earth science domain, but it is 

applicable to general. The RRLs are being developed to offer capabilities for developers and 

reusers of software to measure the reusability of software [12].  

 



4 
 

 Table I.3.1. The summary of 9 levels of software reuse according to RRLs [12]: 

Level Summary 

RRL 1  Limited reusability; the software is not recommended for reuse.  

RRL 2  Initial reusability; software reuse is not practical  

RRL 3  Basic reusability; the software might be reusable by skilled users at 

substantial effort, cost, and risk.  

RRL 4  Reuse is possible; the software might be reused by most users with some 

effort, cost, and risk.  

RRL 5  Reuse is practical; the software could be reused by most users with 

reasonable cost and risk.  

RRL 6  Software is reusable; the software can be reused by most users although 

there may be some cost and risk.  

RRL 7  Software is highly reusable; the software can be reused by most users with 

minimum cost and risk.  

RRL 8  Demonstrated local reusability; the software has been reused by multiple 

users.  

RRL 9  Demonstrated extensive reusability; the software is being reused by many 

classes of users over a wide range of systems.  

 

 Using NASA RRLs to measure software reusability has many advantages. RRLs can 

be used by different types of stakeholders in different situations. Software can be evaluated 

either by using the RRLs in a simple manner by the summary RRLs or more extensively by 

each of the nine topic areas to get a precise assessment. The project managers have a single 

number by the summary RRLs that is quick and easy to understand. Software developers have 

a simple way to quickly estimate the readiness of software assets to be reused. Although an 

estimation of reuse readiness will not reduce the tasks of testing candidate reusable assets, it 

will enable software developers to more easily determine how ready the software is for their 

purposes. The software developers also can have more detailed information by the RRL topic 

area levels [12]. Software providers need to evaluate whether their software can be used by 

others, whether the software is ready for reuse, and which parts need to be enhanced for use 

by others. Software reusers need to check whether to consider reusing a software asset, 

compare software assets available for reuse, assess strengths and weaknesses of such 

software, and recognize where additional development is necessary for reuse [13]. 



5 
 

 In NASA RRLs, there are 9 topic areas to measure software reuse including:  

Portability, Extensibility, Documentation, Support, Packaging, Intellectual Property Issues, 

Standards Compliance, Verification and Testing, and Modularity. 

 Examples of the difference between limited reusable software and highly reusable 

software when comparing software by each topic area in NASA RRLs are shown in Table 

I.3.2 and Table I.3.3. 

 

 Table I.3.2. Comparison by Documentation, Extensibility and Modularity 

 Documentation Extensibility Modularity 

Limited 

reusable 

software 

Source code is available 

without documentation. 

Parameters cannot be 

changed. 

Not designed with 

modularity 

Highly 

reusable 

software 

Documentation on design, 

customization, testing, use, 

and reuse is available. 

Use configuration files. 

The extensibility 

capability for the 

software is well defined. 

Organize software 

components into 

libraries 

 

Table I.3.3. Comparison by Portability, Standards Compliance and Verification and Testing 

 Portability Standards Compliance Verification and 

Testing 

Limited 

reusable 

software 

The software is not 

portable. 

No standards compliance. No testing performed 

Highly 

reusable 

software 

The software can be 

ported to all systems. 

The software and software 

development process 

comply with internationally 

recognized standards. 

Software application 

tested and validated in 

a relevant context 

 

 In this research, after analyzing these topic areas in NASA RRLs, the modularity and 

extensibility are focused in this research because they are very important for attitude 

determination software. 

 Modularity is a software design technique that increases the extent to which software 

is composed from separate components, called modules. Conceptually, modules represent a 

separation of and encapsulation of concern, purpose, and function [12]. To achieve modularity 



6 
 

of level 7 in NASA RRLs, in software, modules should be created for all specified functions 

and organized into libraries with consistent features within interfaces. 

Extensibility is an important dimension to be able to incorporate an asset and add to or 

modify its functionality [12]. To achieve extensibility of level 6 in NASA RRLs, software 

should be designed to allow extensibility across a moderate to broad range of application 

contexts, provides many points of extensibility. 

I.4. The benefits of applying MBSE and SysML to design software for complex systems 

 Traditionally, large projects have employed a document-based system engineering 

approach. However, the document-based approach has some critical limitations. The 

completeness, consistency, and relationships between requirements, design, engineering 

analysis, and test information are hard to assess because this information is spread across 

several documents. To understand a particular aspect of the system and to perform the 

necessary traceability and change impact assessments are also difficult and leads to poor 

synchronization between system-level requirements and lower-level hardware and software 

design. As a result, to reuse the system requirements and design information for the design of 

the new systems is limited [14]. 

Compare with document-based system engineering, model-based systems engineering 

(MBSE) is proved as a more effective approach to manage complexity, improve design 

quality and communication between developers. MBSE applies systems modeling as part of 

the system engineering process to support analysis, specification, design, and verification of 

the developed system [14].  

Systems Modeling Language (SysML) is a standardized language to enable MBSE. 

SysML is an extension of the Unified Modeling Language (UML) version 2, which has 

become the standard software modeling language. SysML supports the specification, design, 

analysis, and verification of systems which may include not only software but also data, 

hardware, etc.  

SysML is a graphical modeling language for representing requirements, behaviors, 

structure, and properties of the system and its components [14]. SysML has capability to 

model complex systems from a broad range of domain such as satellites. By using SysML, the 

design of attitude determination software is consistent with the other sub-systems of satellite. 

Therefore, SysML is more suitable to design software components of satellite than UML. 

The type of diagrams of SysML is showed in Figure I.4.1 [14]. The requirement 

diagram and parametric diagram are the new diagrams compare to UML. One benefit of 

SysML is allowing traceability between requirements and design model. 



7 
 

 

Figure I.4.1. SysML diagram taxonomy 

I.5. Research objective and approach 

The objective of this research is to design highly modular and extensible attitude 

determination software which can be reused for a variety of micro/nano satellite projects to 

save time and cost of satellite development. 

The context of software reuse here is mainly for the software design and source code 

reuse. The software will be designed and implemented in C code files, so that the other 

programmers can utilize reusable parts in their projects. They only need to modify the 

changing parts for each micro/nano satellite projects. By doing so, they can save time and cost 

in developing attitude determination software for their satellites. 

The approach of this research is to design the reusable attitude determination software 

by using SysML with the focus on modularity and extensibility from the viewpoint of NASA 

RRLs.  

The modularity in my research is the degree of decomposition of the attitude 

determination software. There are three steps of decomposition in my research. 

In the first step, based on functional analysis, the attitude determination software is 

decomposed into software modules such as sensor processing, reference vectors estimation, 

attitude estimation. The sensor processing module is to process the data outputs of sensors. 

The reference vectors estimation module is to calculate the reference vectors in Earth-

Centered Inertial (ECI) frame. The attitude estimation module contains the algorithms for 

attitude estimation which will be which can be selected based on different accuracy 

requirements and hardware constraints of each micro/nano satellites projects. 

In the second step, each software module is decomposed into components. For 

example, the sensor processing module is decomposed into the components correspond to 

each types of sensors. 



8 
 

In the third step of decomposition, each component is decomposed into basic 

functions and the standard interfaces are defined between basic functions. For example, the 

software component “Gyro Processing” is decomposed into two basic functions including 

“Get Angular Rates in Gyro Frame” and “Calculate Angular Rates in Satellite Body Frame”. 

The modularity is also to support the extensibility. In my research, the extensibility is 

the ability to change the sensors model and performance of onboard computer of satellite 

projects. For example, there are 6 Sun sensors, 1 Star tracker in Micro Dragon satellite 

project; however, there is no Star tracker in Nano satellite project, and the performance of 

onboard computer of Nano satellite is lower.  

To achieve the extensibility in my research, there are two steps. Firstly, mission and 

sensor dependent parameters are separated by data store which can be easily modified when 

reuse. Secondly, for each satellite project, the attitude estimation algorithms are selected 

based on the time constraint of calculation. 

I.6. Structure of the Thesis 

 In this research, chapter 1 discusses about the problem background, the objective and 

approach of the research. The research problem is how to design the reusable attitude 

determination software to apply for variety of micro/nano satellite projects to save time and 

cost of satellite development. The approach of this research is to design by using SysML and 

selecting viewpoint of modularity and extensibility from NASA RRLs base on analyzing the 

difference between micro and nano satellites projects in term of mission and hardware. 

Chapter 2 overviews about the attitude determination and control system of satellite 

including the attitude determination system and the constraints of design reusable attitude 

determination software for micro/nano satellites. The attitude determination system is one of 

the system of the attitude determination and control system. Therefore, the design of the 

reusable attitude determination software for attitude determination system need to consider 

the attitude determination and control system of satellites in general as well as the design 

constraints of the reusable attitude determination software. 

Chapter 3 shows the detail design of reusable attitude determination software for 

micro/nano satellites by using SysML including the design of each software modules and 

components. The modularity and extensibility also are explained in this chapter. 

Chapter 4 shows the verification and validation of this research. The verification is 

done by both SysML models and calculation the ratio of software reuse. The validation is 

done by analyzing the situation of reuse attitude determination software between Micro 



9 
 

Dragon and Nano satellite projects. An interview to check whether the purpose of saving time 

and cost by using this design is also established. 

Chapter 5 is the conclusion to summarize the results of this research and discussions 

about the future works including the necessary of applying SysML for designing satellites.  

  



10 
 

II. Overview of attitude determination system and constraints of design reusable 

attitude determination software 

II.1. Overview of attitude determination and control system of satellite 

 The main satellite subsystems are attitude determination and control system (ADCS), 

communication, thermal control, power, and command & data handling.  

 ADCS is one of the most important subsystems of satellite because it helps satellite 

achieve its mission such as pointing camera to take picture, solar panel direct to the Sun for 

battery charging.   

 The ADCS has three subsystems: attitude determination system (ADS), attitude 

control system (ACS) and attitude guidance. The function of ADS is to determine the current 

attitude and position of the satellite. The current attitude will be the input of the ACS. The 

ACS will compare the current attitude and the desired attitude to calculate the required torque 

for actuators. 

 

Figure II.1.1. The block diagram of ADCS 

 In terms of the hardware, the ADCS consists of sensors, onboard computer and 

actuators. For the ADS, the hardware only consists of sensors and onboard computer. The 

usual sensors used for ADS including Sun sensors, magnetometer, gyro, star tracker and GPS 

receiver.  



11 
 

 

 Figure II.1.2. The hardware diagram of ADCS 

 ADCS software was usually developed for each individual satellite project. The 

ADCS software including ADS software will be embedded software which runs on the 

onboard computer. 

 

 Figure II.1.3. The development of ADCS software between satellite projects 



12 
 

II.2. The modes of attitude determination  

 Each satellite has the own modes for attitude determination and control system. The 

name of each mode can be different from satellites. However, the purpose of each mode 

should be the similar. For each mode, the attitude determination should be defined in order to 

consider about the reuse of attitude determination software between satellites.  

 The modes of attitude determination and control of satellite and the explanation of the 

output of attitude determination for each mode are following: 

 

Figure II.2.1. The modes of attitude determination and control of satellite 

 1. Recovery mode 

 This mode begins right after the satellite is separated from rocket. At this moment, 

almost all satellite's components are turn off except the communication system to save energy 

for survival of satellite. This is also the first time satellite communicates with ground station 

by sending the telemetries and receiving the commands. 

 At this mode, there is no attitude determination because all the satellite's sensors and 

actuators are turn off. 

 2. Detumbling mode 



13 
 

 This is the second mode of satellite operation following the recovery mode. At this 

mode, the satellite is rotating very fast. Therefore, the purpose of this mode is to make the 

satellite rotate slowly. 

 At this mode, only the magnetometer is turn on. This sensor measure the B-Field 

vectors on satellite body frame.  

 3. Safe mode (Sun pointing mode) 

 This is the first time the satellite gets energy from the Sun. There are two kinds of 

Sun pointing mode including: 

 + Spin Sun pointing: the satellite does not need to turn on the reaction wheels, only 

need to turn on the magnetometer and the Sun sensors. 

 + 3axis Sun pointing: the satellite need to turn on the reaction wheels, the control 

algorithm is PD. Therefore, the attitude should be the quaternion output from the attitude 

determination function. 

 In order to save battery of the satellite, in this research, the Sun pointing mode should 

be Spin Sun pointing, therefore only the magnetometer and Sun sensors are turn on. 

 

Figure II.2.2. Attitude determination at Sun Pointing mode 

 4. Standby mode (Idle mode) 

 The purpose of this mode is to save energy. The satellite faces to the Sun or to the 

Earth depend on the design. 

 



14 
 

 

Figure II.2.3. Attitude determination at Standby mode 

 5. Mission mode 

 At this mode, depend on the mission of each satellite projects, satellite controls its 

camera to take images of the Earth by nadir pointing or target pointing; or moving its antenna 

for communication with other satellites.  At this mode, almost all sensors are turn on and the 

attitude determination is similar to the Standby mode. However, the star tracker is used in 

case of high accuracy pointing. 

 The considering of the attitude determination for each mode is the application of the 

modular design in this research. The attitude determination algorithms should be designed for 

each mode of satellite depend on the constraint of satellite's power consumption, the accuracy 

requirements and the availability of the sensors. In brief, the outputs of attitude determination 

function for each mode are defined in the table II.1.  

 

Table II.2.1. The output of attitude determination function of each mode 



15 
 

II.3.The constraints of design reusable attitude determination software for micro/nano 

satellites 

II.3.1.The constraints of onboard computers  

 The constraints of onboard computers including calculation performance, size of 

memory storage and development environment. 

 

Table II.3.1. The constraints of onboard computers 

Onboard computers Constraints 

Calculation Performance  Processing speed should be feasible for reuse 

attitude determination algorithms 

Size of memory storage Memory for working area of reusable functions and 

models should be enough 

Development Environment The difference in programming language 

 

II.3.2.The constraints of sensors  

 The constraints of sensors are showed in the Table II.3.2. 

 

Table II.3.2. The constraints of sensors 

Sensors Power 

Consumption 

Update 

Rate 

Availability Accuracy Formats of 

outputs 

Sun Sensor Low Always Only in sun 

shine time 

Low 

(~1 deg) 

Depend on 

driver 

Magnetometer  Low Always Continuous Low 

(2-5 deg) 

Depend on 

driver 

Gyro Mid/High ~20 Hz Continuous Accumulative 

Error 

Depend on 

driver 

Star Tracker  High ~1 Hz Depend on 

image of stars 

High Depend on 

driver 

GPS Receiver Low ~1 Hz Continuous Mid/Low Depend on 

driver 

 

II.3.3.The constraints of satellite mission 

 Satellite missions will effect to design constraints including the determination 

accuracy requirements, the sensor models for attitude determination and the mounting 

locations of sensors.  

 



16 
 

III. Design of reusable attitude determination software for micro/nano satellites using 

SysML  

III.1. Software architecture  

In this design the Satellite Domain is developed to show the relationship between 

satellite and the external environment. 

 

Figure III.1.1. The block definition diagram of  “Satellite Domain” 

 The activity of control orientation of satellite for pointing to the target is showed in 

Figure III.1.2. 

 

Figure III.1.2. The activity diagram of “Control Satellite” 



17 
 

As described in the Chapter 2, the structure of Attitude Determination and Control 

System is showed in Figure III.1.3. 

 

Figure III.1.3. The structure of Attitude Determination and Control System 

The main function of Attitude Determination System is to estimate the current attitude 

of the satellite from measuring the state of satellite body rotation and processing the positional 

and directional information provided from external objects.  

After estimated, the current attitude of satellite and the desired attitude will become 

the inputs for the Attitude Control System to calculate the control torque.  

The activity diagram “Attitude Determination and Control” is showed in Figure 

III.1.4. 

 

Figure III.1.4. The activity diagram of “Attitude Determination and Control” 



18 
 

 The Attitude Determination System consists of the Attitude Determination Software 

and the Attitude Determination Hardware. The Attitude Determination Hardware consist of 

the Onboard Computer and Sensors including Gyro, Star Tracker, GPS Receiver, 

Magnetometer and Sun Sensor as mentioned in Chapter 2.  

 The block definition diagram of “Attitude Determination System” 

 

Figure III.1.5. The block definition diagram of “Attitude Determination System” 

The functions of attitude determination software are analyzed from the use case 

diagram. The main use case of Attitude Determination Software is “Determine Attitude of 

Satellite” in which the actor “Attitude Determination Software” interacts with the other actors 

including “External Objects”, “Satellite Dynamics” and “Models in Reference Frame” to 

determine the current attitude of the satellite.  

 

Figure III.1.6. The main use case of Attitude Determination Software 



19 
 

 The External Objects including the GPS, the Earth’s Magnetic Field, the Sun and the 

Stars provide the positional and directional information to the satellite.  

The sequence diagram of the use case “Determine Attitude of Satellite” 

 

Figure III.1.7. The sequence diagram of the use case “Determine Attitude of Satellite” 

The sequence diagram of “Get Positional and Directional Information of Satellite” 

 

Figure III.1.8. The sequence diagram of “Get Positional and Directional Information of 

Satellite” 



20 
 

 The sequence diagram of “Estimate Reference Vectors from Models” 

 

Figure III.1.9. The sequence diagram of “Estimate Reference Vectors from Models” 

 

The sequence diagram of “Measure Satellite Body Rotating” 

 

Figure III.1.10.  The sequence diagram of “Measure Satellite Body Rotating” 

 After analyzing the functions of the attitude determination software, the software 

modules are developed.  



21 
 

 The block definition diagram of “Attitude Determination Software” 

 

Figure III.1.11. The block definition diagram of “Attitude Determination Software” 

The internal block diagram of “Attitude Determination Software” 

 

Figure III.1.12. The internal block diagram of “Attitude Determination Software” 



22 
 

The activity diagram of “Estimate Current Attitude” 

 

Figure III.1.13. The activity diagram of “Estimate Current Attitude” 

  



23 
 

The requirement diagram of “Attitude Determination Software” 

 

Figure III.1.14.  The requirement diagram of “Attitude Determination Software” 



24 
 

III.2. Design of software modules 

 In this section, the design of “Sensors Processing Module”, “Reference Vectors 

Estimation Module” and “Attitude Estimation Module” are showed. 

 For each software module, the diagrams including the block definition diagram, the 

activity diagram and the internal block diagram are described.  

 The “Sensors Processing Module” consists of the software components to process the 

data outputs of each type of sensors including “Gyro Processing”, “Star Tracker Processing”, 

“GPS Receiver Processing”, “Magnetometer Processing” and “Sun Sensor Processing”. 

 The “Reference Vectors Estimation Module” contains the software components 

including “Time Conversion”, “Reference Sun Vector in ECI Estimation” and “Reference 

Magnetic Vector in ECI Estimation”. 

 The “Attitude Estimation Module” has three software components including “Attitude 

Estimation by TRIAD”, ““Attitude Estimation by TRIAD and Gyro” and “Attitude 

Estimation by Star Tracker and Gyro”.  

 For each software component, the consistency between sequence, activity and internal 

block diagrams are checked by analyzing the diagrams. 

 



25 
 

The block definition diagram of “Sensors Processing Module” 

 

Figure III.2.1. The block definition diagram of “Sensors Processing Module” 

 



26 
 

The activity diagram of “Sensors Processing Module” 

 

Figure III.2.2. The activity diagram of “Sensors Processing Module” 

  



27 
 

The internal block diagram of “Sensors Processing Module” 

 

 

Figure III.2.3. The internal block diagram of “Sensors Processing Module” 

The block definition diagram of “Reference Vectors Estimation Module” 

 

Figure III.2.4. The block definition diagram of “Reference Vectors Estimation Module” 



28 
 

The activity diagram of “Reference Vectors Estimation Module” 

 

Figure III.2.5. The activity diagram of “Reference Vectors Estimation Module”



29 
 

The internal block diagram of “Reference Vectors Estimation Module” 

 

Figure III.2.6. The internal block diagram of “Reference Vectors Estimation Module” 

The implementation in C code for the software component “Time Conversion” and 

“Reference Sun Vector in ECI Estimation” are showed in the Appendix. 

The block definition diagram of “Attitude Estimation Module” 

 

Figure III.2.7. The block definition diagram of “Attitude Estimation Module” 



30 
 

The  activity diagram of “Attitude Estimation Module” 

 

Figure III.2.8. The  activity diagram of “Attitude Estimation Module”  



31 
 

The internal block diagram of “Attitude Estimation Module” 

 

Figure III.2.9. The internal block diagram of “Attitude Estimation Module” 

 The implementation in C code for the software component “Attitude Estimation by 

TRIAD” is showed in the Appendix. 

  



32 
 

The sequence diagram of “Estimate Current Attitude of Satellite” 

 

Figure III.2.10. The sequence diagram of “Estimate Current Attitude of Satellite” 



33 
 

III.3. Design of software components of sensors processing module 

III.3.1. GPS Receiver Processing 

The sequence diagrams of “GPS Receiver Processing” software component 

 

Figure III.3.1.1. The sequence diagram “Get Current Latitude, Longitude and Time of 

Satellite” 

 

Figure III.3.1.2. The sequence diagram “GPS Receiver Measure” 

 



34 
 

The activity diagram of “GPS Receiver Processing”  

 

Figure III.3.1.3. The activity diagram of “GPS Receiver Processing”  



35 
 

III.3.2. Gyro Processing 

The sequence diagrams of “Gyro Processing” 

 

Figure III.3.2.1. The sequence diagram “Calculate Angular Rates in Satellite Body Frame” 

 

Figure III.3.2.2. The sequence diagram “Get Angular Rates in Gyro Frame” 

 

 



36 
 

 

Figure III.3.2.3. The sequence diagram “Gyro Measure” 

 

 



37 
 

The activity diagram of “Gyro Processing” 

 

Figure III.3.2.4. The activity diagram of “Gyro Processing” 

  



38 
 

The internal block diagram of “Gyro Processing” 

 

Figure III.3.2.5. The internal block diagram “Gyro Processing” 



39 
 

III.3.3. Magnetometer Processing 

The sequence diagrams of “Magnetometer Processing” 

 

Figure III.3.3.1. The sequence diagram “Calculate Magnetic Vector in Satellite Body Frame” 

 

 

Figure III.3.3.2. The sequence diagram “Get Magnetic Vector in Sensor Frame” 



40 
 

 

Figure III.3.3.3. The sequence diagram “Magnetometer Measure” 



41 
 

The activity diagram of “Magnetometer Processing” 

 

Figure III.3.3.4. The activity diagram of “Magnetometer Processing” 

  



42 
 

The internal block diagram of “Magnetometer Processing” 

 

Figure III.3.3.5. The internal block diagram of “Magnetometer Processing” 

 

 

  



43 
 

III.3.4. Star Tracker Processing 

The sequence diagrams of “Star Tracker Processing” 

 

Figure III.3.4.1. The sequence diagram “Calculate Quaternion Vector in Satellite Body 

Frame” 

 

Figure III.3.4.2. The sequence diagram “Get Quaternion Vector in Sensor Frame” 



44 
 

 

Figure III.3.4.3. The sequence diagram “Star Tracker Measure” 



45 
 

The activity of  “Star Tracker Processing” 

 

Figure III.3.4.4. The activity of “Star Tracker Processing” 



46 
 

The internal block diagram of “Star Tracker Processing” 

 

Figure III.3.4.5. The internal block diagram of “Star Tracker Processing” 

  



47 
 

III.3.5. Sun Sensor Processing 

The sequence diagrams of “Sun Sensor Processing” 

 

Figure III.3.5.1. The sequence diagram “Calculate Sun Vector in Satellite Body Frame” 

 

Figure III.3.5.2. The sequence diagram “Get Sun Vector in Sensor Frame” 



48 
 

 

Figure III.3.5.3. The sequence diagram “Sun Sensor Measure” 

 



49 
 

The activity diagram of “Sun Sensor Processing” 

 

Figure III.3.5.4.  The activity diagram of “Sun Sensor Processing” 



50 
 

The internal block diagram of “Sun Sensor Processing” 

 

Figure III.3.5.5. The internal block diagram of “Sun Sensor Processing” 

  



51 
 

III.4. Design of software components of reference vectors estimation module 

III.4.1. Reference Magnetic Vector in ECI Estimation 

The sequence diagram of “Calculate Magnetic Vector in ECI from Earth Magnetic Model” 

 

Figure III.4.1.1. The sequence diagram of “Calculate Magnetic Vector in ECI from Earth 

Magnetic Model” 

III.4.2. Reference Sun Vector in ECI Estimation 

The sequence diagram of “Calculate Sun Vector in ECI from Sun Model” 

 

Figure III.4.2.1. The sequence diagram of “Calculate Sun Vector in ECI from Sun Model” 



52 
 

III.4.3. Time Conversion 

 The sequence diagram of “Convert Current Time to Standard Time” 

 

Figure III.4.3.1. The sequence diagram of “Convert Current Time to Standard Time” 

 



53 
 

III.5.Design of software components of attitude estimation module 

The sequence diagram of “Attitude Estimation by TRIAD” 

 

Figure III.5.1. The sequence diagram of “Attitude Estimation by TRIAD” 



54 
 

 The sequence diagram of “Kalman Filter by TRIAD and Gyro” 

 

Figure III.5.2. The sequence diagram of “Kalman Filter by TRIAD and Gyro” 

 The sequence diagram of “Kalman Filter by Star Tracker and Gyro” 

 

Figure III.5.3. The sequence diagram of “Kalman Filter by Star Tracker and Gyro” 



55 
 

III.6. The modularity and extensibility in design 

The modularity is the decomposition of the attitude determination software. The 

extensibility is the ability to change the sensors and performance of on-board computer of 

micro/nano satellites projects. For example, there are 6 Sun sensors, 1 Star tracker in Micro 

Dragon satellite project; however, there is no Star tracker in Nano satellite project, and the 

performance of onboard computer of Nano satellite is lower. The modularity and extensibility 

has a close relationship with each other. The modularity is also to support extensibility. There 

are 3 levels of modularity and extensibility.  

 At level 1, based on functional analysis, the attitude determination software is 

decomposed into software modules including sensors processing module, reference vectors 

estimation module, attitude estimation module and attitude representation conversion module. 

The sensor processing module is to process the data outputs of sensors. The reference vectors 

estimation module is to calculate the reference vectors in Earth-Centered Inertial (ECI) frame. 

The attitude estimation module contains the algorithms for attitude estimation which will be 

which can be selected based on different accuracy requirements and hardware constraints of 

each micro/nano satellites projects. The attitude representation conversion module is to 

convert between the representations of attitude.  

Mission dependent parameters such as mounting location of sensors and update rate of 

sensors are separated in isolated database which can be easily modified when reuse. This 

decomposition shows the extensibility in design. If the satellite projects are different on the 

sensor mounting location (on the surface of the satellites) or the updated rates of sensors, only 

this database need to be modified, the other software modules do not need to be modified. 

 

Figure III.6.1. The decomposition of attitude determination software into software modules 



56 
 

 At level 2, each software module is decomposed into software components. For 

example, Figure III.6.2 shows the decomposition of attitude estimation module into software 

components based on types of sensors. By this decomposition, the attitude estimation 

components are selected based on sensors when reuse. This decomposition shows the 

extensibility because the satellites projects are different on used sensors. The nano satellites 

do not have Star tracker, therefore, without this decomposition, the attitude estimation module 

cannot be reuse for nano satellites. By this decomposition, the nano satellites can select two 

software components including attitude estimation by TRIAD and attitude estimation by 

TRIAD and Gyro when reuse. 

 

 

Figure III.6.2. The decomposition of attitude estimation module into software components 

 

 Another example is the decomposition of reference vectors estimation module into 

software components in Figure III.6.3.  

 

 

Figure III.6.3. The decomposition of reference vectors estimation module 

 

 By this way of decomposition, the reference magnetic vector estimation component, 

which requires a lot of calculation, can be replaced when reuse based on performance of on-



57 
 

board computer.  For example, with nano satellites, the on-board computers are limited on 

power of processing, therefore, the simpler version of the reference magnetic vector 

estimation will be chosen. 

 Finally, at level 3, each software component is decomposed into basic software 

components. The basic software components are not decomposed any more in design.   Figure 

III.6.4. is the decomposition of sun sensor processing component into basic software 

components.  

 

 

Figure III.6.4. The decomposition of sun sensor processing component 

 

 By this way of decomposition, input and output interfaces of basic software 

components are analyzed when reuse and this shows the extensibility of design. For example, 

the Sun sensor outputs can be different if the Sun sensor is changed, therefore, the “Sun 

Vector in Sensor Frame Acquisition” need to be modified when reuse.  



58 
 

IV. Verification and Validation 

IV.1.Verification  

 In this research, to verify the reusability of attitude determination software, the 

software reuse ratio is defined to measure the percentages of basic software components 

which can be reused between satellite projects.  

Steps to calculate the software reuse ratio for the new satellite project: 

1. Calculate number of existing basic software components  

2. List all basic software components need to be add for the new satellite (number of added 

components) 

3. List all basic software components need to be change for the new satellite (number of 

changed components) 

4. Calculate the software reuse ratio by the equation below 

      
   1

        

number of added components number of changed components
The software reuse ratio

number of added components number of existing components


 



  

 = 
   

   

number of unchanged components

number of all components
  

 

Example 1: 

 The total number of existing components = 10 

 The number of new components = 3 

 The number of change components = 2 

 The software reuse ratio = 1 - (3+2)/(10+3) = 1 - 5/13 = 8/13 

 

Example 2: 

 The total number of existing components = 10 

 The number of new components = 3 

 The number of change components = 6 

 The software reuse ratio = 1 - (3+6)/(10+3) = 1-9/13 = 4/13 

 

 From the draft estimation, at least 60% of basic software components designed in this 

research can be reused for the new satellite projects without the need of modification. 

In this thesis, there are 16 basic software components have been designed in total. All 

these basic software components can be used for MicroDragon satellite. There are 10/16 basic 

software components can be used for Nano Satellite (about 60%).  



59 
 

Table IV.1.1 All designed software components 

Sensors Processing Module 

Sun Sensor Processing 

1 Sun Vector in Sensor Frame Acquisition  

2  Sun Vector in Satellite Body Frame Calculation  

Magnetometer Processing 

3  Magnetic Vector in Sensor Frame Acquisition  

4  Magnetic Vector in Satellite Body Frame Calculation  

GPS Receiver Processing 

5  Get Current Latitude, Longitude and Time of Satellite  

Gyro Processing 

6  Angular Rates in Gyro Frame Acquisition  

7  Angular Rates in Satellite Body Frame Calculation  

Star Tracker Processing 

8  Quaternion Vector in Sensor Frame Acquisition  

9  Quaternion Vector in Satellite Body Frame Calculation  

Reference Vectors Estimation Module  

10  Time Conversion  

11  Reference Sun Vector in ECI Estimation  

12  Reference Magnetic Vector in ECI Estimation  

Attitude Estimation Module 

13  Attitude Estimation by TRIAD  

14  Attitude Estimation by TRIAD and Gyro  

15  Attitude Estimation by Star Tracker and Gyro  

Attitude Representation Conversion Module 

16  DCM to Quaternion Conversion  

 

 The reusability of the designed attitude determination software is also verified by 

analyzing SysML diagrams by checking the input and output interfaces of software 

components. There are only input and output interfaces between software components. 

Therefore, these software components are reusable when the input and output interfaces are 

the same. 



60 
 

IV.2. Validation  

 In this research, the design of reusable attitude determination software needs to 

validate whether it can save time and cost of satellite development. By analyzing the situation 

of reuse attitude determination software from MicroDragon project (the current satellite 

project of Vietnamese students) to next satellite project which is the nano satellite (based on 

the assumption from Table I.1.2) the goal of saving time and cost of satellite development is 

proved because the reusable software components will not need time to develop and test 

again. 

 

Figure IV.2.1. Attitude determination at Standby mode in Sunshine time for MicroDragon 

 

Figure IV.2.2. Attitude determination at Standby mode in Eclipse time for MicroDragon 



61 
 

 

Figure IV.2.3. Attitude determination at Mission mode for MicroDragon 

 

 

Figure IV.2.4. Attitude determination at Standby mode  and Mission mode for Nano Satellite 

 



62 
 

V. Conclusion 

V.1. Summary 

 There are three key points in this research. Firstly, the reusable attitude determination 

software is designed by using SysML which has outstanding benefits compare with other 

methods. Secondly, based on analyzing the difference between micro and nano satellites 

projects in term of mission and hardware, the viewpoints of modularity and extensibility from 

NASA RRLs are selected and implemented in my design. Finally, in this research, the 

designed software is highly modular and extensible. 

The results of this research include the design activities and the design of reusable 

attitude determination software using SysML. In this research, the software modules are 

designed based on functional analysis and also to support extensibility. The extensibility is the 

ability to adapt to the change of sensors model and performance of onboard computer. When 

comparing with levels in NASA RRLs, the modularity achieves level 7, the extensibility 

achieves level 6.  

In this thesis, the libraries of reusable functions in C code for attitude determination 

including vector, quaternion and matrix calculations; conversion functions of attitude 

representations and the implementation of TRIAD algorithm are also developed and listed in 

the Appendix. 

By interviewing experts and analyzing the situation of reuse attitude determination 

software for MicroDragon and Nano satellite project, the designed software can significantly 

save time and cost of micro/nano satellites development. 

V.2. Future works 

 From the interviews to validate this research, there are mix feelings from the 

interviewees about the utilizing SysML to design software for satellite’s systems. Almost 

experts agree that design by using SysML has many advantages which are critical for design 

software reuse of onboard software of satellites. However, there are concerns about the 

popularity of SysML among the satellite developers. Although, SysML is being increasingly 

used to model complex systems, the necessary as well as the benefits of applying SysML for 

designing satellites should be more persuaded to the satellite developers.  

 Besides, the software tool used to design in this research is Cameo Enterprise 

Architecture 18.1 which is very powerful tool and its capabilities should be more effectively 

exploited to design. 

  



63 
 

References 

 

[1]  D. D. Elizabeth Buchen, "2014 Nano / Microsatellite Market Assessment," SpaceWorks 

Enterprises, Inc. , 2014. 

[2]  "Small Sat 2014 Conference," [Online]. Available: 

http://digitalcommons.usu.edu/smallsat/2014/. 

[3]  E. Buchen, "2015 Small Satellite Market Observations," 2015. [Online]. Available: 

http://www.spaceworksforecast.com/docs/SpaceWorks_Small_Satellite_Market_Observations

_2015.pdf. [Accessed 07 2015]. 

[4]  L. F. L. M. a. M. D. S. E. J., "Kalman Filtering for Spacecraft Attitude Estimation," Journal of 

Guidance, Control, and Dynamics, vol. 5, no. 5, pp. 417-429, 1982.  

[5]  C. F. L. M. a. Y. C. J. L., "Survey of Nonlinear Attitude Estimation Methods," AIAA Journal of. 

Guidance, Control and Dynamics , vol. 30, no. 1, pp. 12-28, 2007.  

[6]  D. F. E. J. J. P. James R. Wertz, Space Mission Engineering: The New SMAD, Microcosm Press, 

2011.  

[7]  S. Nakasuka, "Micro/Nano-satellites On-board Software Framework Design and Its 

Implementation in Hodoyoshi Satellites," 2013.  

[8]  W. a. K. K. Frakes, "Software Reuse Research: Status and Future," IEEE Transactions on Software 

Engineering, vol. 31, no. 7, pp. 529-536, 2005.  

[9]  "Software Reuse FAQ," [Online]. Available: https://earthdata.nasa.gov/esdswg/software-reuse-

srwg/software-reuse-faq. 

[10]  "Tools to Support the Reuse of Software Assets for the NASA Earth Science Decadal Survey 

Missions," [Online]. Available: 

http://gsfcir.gsfc.nasa.gov/download/authors/18943/Journal%20Articles_18943. 

[11]  W. a. C. T. Frakes, "Software Reuse: Metrics and Models," ACM Computing Surveys, vol. 28, no. 

2, pp. 415-435, 1996.  

[12]  "Reuse Readiness Levels (RRLs), Version 1.0," [Online]. Available: 

https://earthdata.nasa.gov/sites/default/files/esdswg/reuse/Resources/rrls/RRLs_v1.0.pdf. 

[13]  Marshall, J.J.; Downs, R.R., "Reuse Readiness Levels as a Measure of Software Reusability," in 

Geoscience and Remote Sensing Symposium, IGARSS, IEEE International Conference, 2008.  

[14]  A. M. R. S. Sanford Friedenthal, A practical guide to SysML: the systems modeling language, 

Second edition ed., Elsevier Inc, 2012.  



64 
 

[15]  J. S.Poulin, Measuring Software Reuse: Principles, Practices, and Economic Models, Addison 

Wesley Longman, Inc., 1997.  

[16]  "NASA Studying the Reuse of Spacecraft Software," [Online]. Available: 

http://www.space.com/2304-nasa-studying-reuse-spacecraft-software.html. 

 



65 
 

List of Figures 

 

Figure I.4.1. SysML diagram taxonomy 

Figure II.1.1. The block diagram of ADCS 

Figure II.1.2. The hardware diagram of ADCS 

Figure II.1.3. The development of ADCS software between satellite projects 

Figure II.2.1. The modes of attitude determination and control of satellite 

Figure II.2.2. Attitude determination at Sun Pointing mode 

Figure II.2.3. Attitude determination at Standby mode 

Figure III.1.1. The block definition diagram of  “Satellite Domain” 

Figure III.1.2. The activity diagram of “Control Satellite” 

Figure III.1.3. The structure of Attitude Determination and Control System 

Figure III.1.4. The activity diagram of “Attitude Determination and Control” 

Figure III.1.5. The block definition diagram of “Attitude Determination System” 

Figure III.1.6. The main use case of Attitude Determination Software 

Figure III.1.7. The sequence diagram of the use case “Determine Attitude of Satellite” 

Figure III.1.8. The sequence diagram of “Get Positional and Directional Information of 

Satellite” 

Figure III.1.9. The sequence diagram of “Estimate Reference Vectors from Models” 

Figure III.1.10.  The sequence diagram of “Measure Satellite Body Rotating” 

Figure III.1.11. The block definition diagram of “Attitude Determination Software” 

Figure III.1.12. The internal block diagram of “Attitude Determination Software” 

Figure III.1.13. The activity diagram of “Estimate Current Attitude” 

Figure III.1.14.  The requirement diagram of “Attitude Determination Software” 

Figure III.2.1. The block definition diagram of “Sensors Processing Module” 

Figure III.2.2. The activity diagram of “Sensors Processing Module” 

Figure III.2.3. The internal block diagram of “Sensors Processing Module” 

Figure III.2.4. The block definition diagram of “Reference Vectors Estimation Module” 

Figure III.2.5. The activity diagram of “Reference Vectors Estimation Module” 

Figure III.2.6. The internal block diagram of “Reference Vectors Estimation Module” 

Figure III.2.7. The block definition diagram of “Attitude Estimation Module” 

Figure III.2.8. The  activity diagram of “Attitude Estimation Module” 

Figure III.2.9. The internal block diagram of “Attitude Estimation Module” 

Figure III.2.10. The sequence diagram of “Estimate Current Attitude of Satellite” 

Figure III.3.1.1. The sequence diagram “Get Current Latitude, Longitude and Time of 

Satellite” 

Figure III.3.1.2. The sequence diagram “GPS Receiver Measure” 

Figure III.3.1.3. The activity diagram of “GPS Receiver Processing” 

Figure III.3.2.1. The sequence diagram “Calculate Angular Rates in Satellite Body Frame” 



66 
 

Figure III.3.2.2. The sequence diagram “Get Angular Rates in Gyro Frame” 

Figure III.3.2.3. The sequence diagram “Gyro Measure” 

Figure III.3.2.4. The activity diagram of “Gyro Processing” 

Figure III.3.2.5. The internal block diagram “Gyro Processing” 

Figure III.3.3.1. The sequence diagram “Calculate Magnetic Vector in Satellite Body Frame” 

Figure III.3.3.2. The sequence diagram “Get Magnetic Vector in Sensor Frame” 

Figure III.3.3.3. The sequence diagram “Magnetometer Measure” 

Figure III.3.3.4. The activity diagram of “Magnetometer Processing” 

Figure III.3.3.5. The internal block diagram of “Magnetometer Processing” 

Figure III.3.4.1. The sequence diagram “Calculate Quaternion Vector in Satellite Body 

Frame” 

Figure III.3.4.2. The sequence diagram “Get Quaternion Vector in Sensor Frame” 

Figure III.3.4.3. The sequence diagram “Star Tracker Measure” 

Figure III.3.4.4. The activity of “Star Tracker Processing” 

Figure III.3.4.5. The internal block diagram of “Star Tracker Processing” 

Figure III.3.5.1. The sequence diagram “Calculate Sun Vector in Satellite Body Frame” 

Figure III.3.5.2. The sequence diagram “Get Sun Vector in Sensor Frame” 

Figure III.3.5.3. The sequence diagram “Sun Sensor Measure” 

Figure III.3.5.4.  The activity diagram of “Sun Sensor Processing” 

Figure III.3.5.5. The internal block diagram of “Sun Sensor Processing” 

Figure III.4.1.1. The sequence diagram of “Calculate Magnetic Vector in ECI from Earth 

Magnetic Model” 

Figure III.4.2.1. The sequence diagram of “Calculate Sun Vector in ECI from Sun Model” 

Figure III.4.3.1. The sequence diagram of “Convert Current Time to Standard Time” 

Figure III.5.1. The sequence diagram of “Attitude Estimation by TRIAD” 

Figure III.5.2. The sequence diagram of “Kalman Filter by TRIAD and Gyro” 

Figure III.5.3. The sequence diagram of “Kalman Filter by Star Tracker and Gyro” 

Figure III.6.1. The decomposition of attitude determination software into software modules 

Figure III.6.2. The decomposition of attitude estimation module into software components 

Figure III.6.3. The decomposition of reference vectors estimation module 

Figure III.6.4. The decomposition of sun sensor processing component 

Figure IV.2.1. Attitude determination at Standby mode in Sunshine time for MicroDragon 

Figure IV.2.2. Attitude determination at Standby mode in Eclipse time for MicroDragon 

Figure IV.2.3. Attitude determination at Mission mode for MicroDragon 

Figure IV.2.4. Attitude determination at Standby mode  and Mission mode for Nano Satellite 

  



67 
 

List of Tables 

 

Table I.1.1. Estimating source lines of code for typical satellite functions 

Table I.1.2. Example of the different mission requirements and hardware constraints between 

micro/nano satellites projects 

Table I.2.1. Reusable aspects of software projects 

Table I.3.1. The summary of 9 levels of software reuse according to RRLs 

Table I.3.2. Comparison by Documentation, Extensibility and Modularity 

Table I.3.3. Comparison by Portability, Standards Compliance and Verification and Testing 

Table II.2.1. The output of attitude determination function of each mode 

Table II.3.1. The constraints of onboard computers 

Table II.3.2. The constraints of sensors 

Table IV.1.1 All designed software components  



68 
 

Appendices 

Appendix1. Listing C source code of reusable functions for attitude determination 

//Reusable utilities 

//1. Mathematical utilities 

1. Vector.h 

//This file constains basic functions related to vector calculations 

//The default dimention of vector is 3 

//Verified 05/09/2015 

 

//calc norm of vector 

float NormOfVector(float *v) 

{ 

    float norm = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); 

    return norm; 

} 

 

//Normalize vector 

void NormalizeVector(float *v) 

{ 

    float norm = NormOfVector(v); 

    if(norm>0){ 

     v[0] = v[0]/norm; 

     v[1] = v[1]/norm; 

     v[2] = v[2]/norm;      

    } 

} 

 

//calc dot product of 2 vectors a and b.   

float DotProductOf2Vector(float *a, float *b) 

{ 

 return (a[0]*b[0] + a[1]*b[1] + a[2]*b[2]); 

} 

 

//The Cross Product c = a × b of two vectors a and b 



69 
 

//Reference: https://www.mathsisfun.com/algebra/vectors-cross-product.html 

//a × b = |a| |b| sin(a,b)  

void VectorCrossProduct(float *a, float *b, float *c) 

{     

    c[0] = a[1]*b[2] - a[2]*b[1]; 

    c[1] = a[2]*b[0] - a[0]*b[2]; 

    c[2] = a[0]*b[1] - a[1]*b[0]; 

} 

 

//check if 2 vectors are parallel; 1: parallel  0: not parallel 

int CheckParallelVector(float *a, float *b) 

{ 

 float *c; 

 VectorCrossProduct(a,b,c);  

 //if 2 vectors parallel 

 if(NormOfVector(c)==0) return 1; 

 //if not parallel 

 return 0; 

  

} 

 

//calc angular between 2 vectors a and b 

//angle output in radian 

float AngleOf2Vector(float *a, float *b) 

{ 

 float c; 

 c=DotProductOf2Vector(a,b)/(NormOfVector(a)*NormOfVector(b)); 

 return acos(c); 

} 

 

 

  



70 
 

2. Quaternion.h 

//Version 1.2:   

//Date 05/08/2015  

//These are the basic functions  related to quaternion calculations 

//All these functions are reusable 

//The users need only call these functions with their parameters 

//Reference from: 

//http://jp.mathworks.com/help/aeroblks/math-operations.html 

//q[0] is scalar 

//Normalize quaternion 

void NormalizeQuaternion(float *q){ 

    float norm;  //norm of quaternion     

    norm = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); 

    //Normalize quaternion 

    if(norm>0) 

    { 

     q[0] = q[0]/norm; 

     q[1] = q[1]/norm; 

     q[2] = q[2]/norm; 

     q[3] = q[3]/norm; 

    } 

} 

//Properize quaternion 

void ProperizeQuatternion(float *q){ 

 //q0 should alway be positive 

    if(q[0]<0.0){ //if q0<0 make q0 be positive 

        q[0]*=-1.0; 

        q[1]*=-1.0; 

        q[2]*=-1.0; 

        q[3]*=-1.0; 



71 
 

    } 

} 

//Conjugate quaternion  

void ConjugateQuaternion(float *q, float *q_conjugated) 

{ 

q_conjugated[0] = q[0]; 

q_conjugated[1] = -q[1]; 

q_conjugated[2] = -q[2]; 

q_conjugated[3] = -q[3]; 

} 

//Inverse quaternion 

void InverseQuaternion(float *q, float *q_inversed){ 

 //ConjugateQuaternion     

ConjugateQuaternion(q,q_inversed); 

//Normalize quaternion 

 NormalizeQuaternion(q_inversed); 

} 

//Calculate product of two input quaternion 

void QuaternionMultiplication(float *q, float *r, float *t) 

{ 

 //output quaternion t = qxr  

 t[0] = r[0]*q[0]-r[1]*q[1]-r[2]*q[2]-r[3]*q[3]; 

 t[1] = r[0]*q[1]+r[1]*q[0]-r[2]*q[3]+r[3]*q[2]; 

 t[2] = r[0]*q[2]+r[1]*q[3]+r[2]*q[0]-r[3]*q[1]; 

 t[3] = r[0]*q[3]-r[1]*q[2]+r[2]*q[1]+r[3]*q[0]; 

}   



72 
 

3. Matrix.h 

#define MAX 3 //number of matrix row, colume 

void TransposeMatrix(float A[MAX][MAX], float B[MAX][MAX]) 

{ 

  int i,j; 

  float C[MAX][MAX];   

  for(i=0;i<MAX;i++) 

   for(j=0;j<MAX;j++) C[i][j]=A[j][i]; 

  for(i=0;i<MAX;i++) 

   for(j=0;j<MAX;j++) B[i][j]=C[i][j]; 

} 

void MultiMatrix(float A[][MAX], float B[][MAX], float C[][MAX]) 

{   

    int i, j, k;   

    for(i = 0; i < MAX; i++) 

 { 

        for(j = 0; j < MAX; j++) 

  { 

            C[i][j] = 0.0; 

            for(k = 0; k < MAX; k++){ 

                C[i][j] += A[i][k] * B[k][j]; 

            } 

        } 

    } 

} 

void AddMatrix(float A[MAX][MAX], float B[MAX][MAX], float C[MAX][MAX]){ 

    int i, j; 

    for(i = 0; i < MAX; i++) 

     for(j = 0; j < MAX; j++)    C[i][j] = A[i][j] + B[i][j];     

}   



73 
 

4. TimeConversion.h 

// Converse universal time to standard time (Julian date) 

 

//Given year, month, day, hour, minute, second, compute the Julian date, JD 

 

  

float ConverseTime2JulianDate(int year, int month, int day, int hour, int minute, int second) 

{ 

 //reference 

 //http://en.wikipedia.org/wiki/Julian_day 

 float  a, y, m, jdn, jd; 

  

 a=int((14-month)/12); 

  

 y= year + 4800 - a; 

 m= month + 12*a -3; 

  

 //starting from a Gregorian calendar date 

 jdn = day + int((153*m+2)/5) + 365*y + int(y/4) - int(y/100) + int(y/400) - 32045; 

 jd = jdn + (hour-12)/24 + minute/1440 + second/86400; 

  

 return jd; 

}   



74 
 

5. SunVectorCalculation.h 

// Calculate reference sun vector in ECI from sun model when input given time (julian date) 

//Compute reference sun vector in ECI 

//reference from 

http://www.acsu.buffalo.edu/~johnc/space_book/sampex_control_chapt7/solar.m 

//Verified by compare with matlab results 

void ComputeSunUnitVectorInECIFromJD(float jd, float *sun_i) 

{ 

 // Get Julian Date and Centuries 

 float d2r = 3.14159265/180;  //pi=3.14159265   deg to radian 

 float jd_cent=(jd-2451545)/36525; 

 

 // Mean Longtitude and Other Paramters 

 float lam=280.460+36000.771*jd_cent; 

  

 float m_sun=357.5277233+35999.050*jd_cent; //mean longitude of Sun 

  

 float lam_ecl=lam+1.914666471*sin(m_sun*d2r)+0.019994643*sin(2*m_sun*d2r); 

  

 float eps=23.439291-0.0130042*jd_cent;  //ecliptic longitude of Sun 

 

 //reference sun vector in eci  s_eci 

 sun_i[0]=cos(lam_ecl*d2r);  //cos lamda ecliptic 

 sun_i[1]=cos(eps*d2r)*sin(lam_ecl*d2r); 

 sun_i[2]=sin(eps*d2r)*sin(lam_ecl*d2r);  

}   



75 
 

6. File Triad.h 

// The Triad algorithm computes DCMbi from s_eci,s_b,m_eci,m_b 

//Verified 05/10/2015 

//Reference from: http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/ 

void TRIAD(float *v1i, float *v2i, float *v1b, float *v2b, float DCMbi[3][3]) 

{ 

 ////v1i, v2i: Sun vector and magnetic field vector in ECI 

 //v1b, v2b: Sun vector and magnetic field vector in Body 

 float t2i[3], t3i[3], t2b[3], t3b[3]; 

 float Rbt[3][3], Rti[3][3]; 

  

 VectorCrossProduct(v1i,v2i,t2i); 

 NormalizeVector(t2i); 

  

 VectorCrossProduct(v1i,t2i,t3i); 

 NormalizeVector(t3i); 

  

 VectorCrossProduct(v1b,v2b,t2b); 

 NormalizeVector(t2b); 

  

 VectorCrossProduct(v1b,t2b,t3b); 

 NormalizeVector(t3b); 

 

 //Construct Rbt 

 Rbt[0][0]=v1b[0]; Rbt[0][1]=t2b[0];   Rbt[0][2]=t3b[0]; 

 Rbt[1][0]=v1b[1]; Rbt[1][1]=t2b[1]; Rbt[1][2]=t3b[1]; 

 Rbt[2][0]=v1b[2]; Rbt[2][1]=t2b[2]; Rbt[2][2]=t3b[2]; 

   

 //Construct Rti 

 Rti[0][0]=v1i[0];   Rti[0][1]=t2i[0]; Rti[0][2]=t3i[0]; 

 Rti[1][0]=v1i[1]; Rti[1][1]=t2i[1]; Rti[1][2]=t3i[1]; 

 Rti[2][0]=v1i[2]; Rti[2][1]=t2i[2]; Rti[2][2]=t3i[2]; 

 

 TransposeMatrix(Rti,Rti); 

 

 MultiMatrix(Rbt,Rti,DCMbi); 

}   



76 
 

7. ConverseAttitudeRepresentation.h 

//These are functions which convert between attitude representation 

//All these functions are reusable 

//Reference from: 

//http://jp.mathworks.com/help/aeroblks/axes-transformations.html 

//Convert Quaternion to DCM (Direction Cosine Matrix) 

//Reference from Prof. Nakasuka Lecturers at Keio University 2013 

//DCM=Cb2i  transformation from body to inertia 

void ConvertQuaternion2DCMbi(float *q, float DCM[][3]){ 

     

 //calculate elements of DCM matrix 

    DCM[0][0] = q[0]*q[0] + q[1]*q[1] - q[2]*q[2] - q[3]*q[3];  

 DCM[0][1] = 2.0*(q[1]*q[2] - q[0]*q[3]);  

 DCM[0][2] = 2.0*(q[1]*q[3] + q[0]*q[2]); 

     

    DCM[1][0] = 2.0*(q[1]*q[2] + q[0]*q[3]); 

    DCM[1][1] = q[0]*q[0] - q[1]*q[1] + q[2]*q[2] - q[3]*q[3]; 

    DCM[1][2] = 2.0*(q[2]*q[3] - q[0]*q[1]); 

     

    DCM[2][0] = 2.0*(q[1]*q[3] - q[0]*q[2]); 

    DCM[2][1] = 2.0*(q[2]*q[3]+q[0]*q[1]); 

    DCM[2][2] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3];     

}   



77 
 

8. File TestADS.cpp 

//Verification the correctness of functions 

#include <stdio.h> 

#include <conio.h> 

#include <stdlib.h>     /* srand, rand */ 

#include <time.h>       /* time */ 

#include <math.h> 

//Reusable utilities 

//1. Mathematical utilities 

#include "Vector.h" 

#include "Quaternion.h" 

#include "Matrix.h" 

//2. Converse universal time to standard time (Julian date) 

#include "TimeConversion.h" 

//3. Calculate reference sun vector in ECI from sun model when input given time (julian date) 

#include "SunVectorCalculation.h" 

//4. The Triad algorithm computes DCMbi from s_eci,s_b,m_eci,m_b 

#include "Triad.h" 

//5. Converse attitude representation 

#include "ConverseAttitudeRepresentation.h" 

 

//#define NMAX 4 //for test quaternion 

void TestQuaternion() 

{ 

 float q1[4]; 

 float q2[4]; 

 float q3[4]; 

  

  q1[0] =0.9962; 

  q1[1] =  0; 

  q1[2] =  0; 

  q1[3] = 0.0872; 

   

  q2[0] =0.9962; 

  q2[1] =  0; 

  q2[2] =  0; 

  q2[3] = 0.0872; 

  

 //Test Multiplication 

 QuaternionMultiplication(q1,q2,q3); 

 //Show results, OK 

 printf("%5.3f %5.3f %5.3f %5.3f", q3[0], q3[1], q3[2], q3[3]);  

  //0.9848         0         0    0.1736  

} 



78 
 

void TestTimeConversion() 

{ 

 float  jd; 

 float sun_eci[3]; 

  

 //Test case to check the time conversion function 

   int year=2015; 

   int month=5; 

   int day=8; 

   int hour=13; 

   int minute=24; 

   int second=20; 

    

   jd=ConverseTime2JulianDate(year, month, day, hour, minute, second); 

            

   //Result from online conversion 

   //http://aa.usno.navy.mil/data/docs/JulianDate.php 

   //The Julian date for CE  2015 May  8 13:24:20.0 UT is 

 //JD 2457151.058565 

  

   ComputeSunUnitVectorInECIFromJD(jd, sun_eci); 

   printf("%f %f %f", sun_eci[0], sun_eci[1], sun_eci[2]); 

} 

 

void TestVector() 

{ 

 float  norm, a[3], b[3], v[3]; 

 a[0]=4; a[1]=0; a[2]=7; 

 b[0]=-2; b[1]=1; b[2]=3; 

   

 //VectorCrossProduct(a,b,v); 

 //NormalizeVector(v); 

  

 //int i=CheckParallelVector(a,b); 

 //printf("%d",i); 

  

 float c; 

 c=AngleOf2Vector(a,b); 

  

 printf("%.2f",c); 

 //printf("%.2f %.2f %.2f",v[0], v[1], v[2]); 

} 

 

 



79 
 

//Ref: http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/ 

void TestTriad() 

{ 

 ////v1i, v2i: Sun vector and Magnetic field vector in ECI 

 //v1b, v2b: Sun vector and Magnetic field vector in Body 

  

 float v1i[3], v2i[3], v1b[3], v2b[3]; 

 float DCMbi[3][3]; //determined attitude  

  

 //test case from http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4140/ 

 v1i[0]=-0.1517; v1i[1]=-0.9669; v1i[2]=0.2050; 

 v2i[0]=-0.8393; v2i[1]= 0.4494; v2i[2]=-0.3044; 

  

 v1b[0]=0.8273; v1b[1]=0.5541; v1b[2]=-0.0920; 

 v2b[0]=-0.8285; v2b[1]=0.5522; v2b[2]=-0.0955; 

  

 TRIAD(v1i,v2i,v1b,v2b,DCMbi); 

  

 printf("Test Triad Algorithm:\n"); 

 int i,j; 

  

 for(i=0;i<3;i++) 

  { 

   for(j=0;j<3;j++) printf("%.4f ",DCMbi[i][j]); 

   printf("\n"); 

  } 

 //result is OK   

  

} 

int main(){ 

  

 TestQuaternion();  

 TestTimeConversion();  

 TestVector(); 

  

 TestTriad();  

  

 return 0; 

 

 

 

 

 

 



80 
 

Appendix 2. Transformation from Sensor Frame to Satellite Body Frame 

 Define Body

SensorFrameDCM  is the Direction Cosine Matrix which transform the Sensor 

Frame to the Satellite Body Frame. 

 Body

SensorFrameDCM  is calculated from 3 Euler angles Ψ, θ, Φ and using Z-Y-X rotation 

sequence from Sensor Frame to the Satellite Body Frame. 

 Ψ is the rotation angle about the Z-axis of Sensor Frame.  

 θ is the rotation angle about the Y-axis of Sensor Frame.  

 Φ is the rotation angle about the X-axis of Sensor Frame.  

 3 Euler angles Ψ, θ, Φ is measured when the sensor is integrated to the satellite. 

 For any mounting location of sensors including Sun sensor, Gyro, Magnetometer, the 

transformation from Sensor Frame to Satellite Body Frame is calculated from the equation 

(2.1). 

cos .cos cos .sin sin .sin .cos sin .sin cos .sin .cos

cos .sin cos .cos sin .sin .sin sin .cos cos .sin .sin  (2.1)

sin sin .cos cos .cos

Body

SensorFrameDCM

           

           

    

   
 

   
 
  

 

 However, for Star tracker, because the output of Star tracker is the quaternion, 

therefore, to convert quaternion output in Sensor Frame to the quaternion in Satellite Body 

Frame, the Body

SensorFrameDCM should be transformed to the quaternion Body

SensorFrameq . 

 Define 

11 12 13

21 22 23

31 32 33

Body

SensorFrame

DCM DCM DCM

DCM DCM DCM DCM

DCM DCM DCM

 
 


 
  

 

 The conversion from Body

SensorFrameDCM  to the Body

SensorFrameq  is as below. 

 Define  1 2 3 4

TBody

SensorFrameq q q q q , 4q  is the scalar.  

 Firstly, 1q , 2q , 3q  and 4q are calculated: 

 
1 11 22 33

1
(1 )

4
q DCM DCM DCM      

 
2 11 22 33

1
(1 )

4
q DCM DCM DCM      

 
3 11 22 33

1
(1 )

4
q DCM DCM DCM      

 
4 11 22 33

1
(1 )

4
q DCM DCM DCM      



81 
 

 Secondly, 1q , 2q , 3q  and 4q are re-calculated by the Table 2.1. For example, if the  4q  

is the maximum compare to other elements, the 1q , 2q  and 3q are re-calculated as the first row 

of the Table 2.1. 

Table 2.1. Calculating Body

SensorFrameq  elements 

Maximum 
4q  1q  2q  3q  

4q  4q  32 23

44

DCM DCM

q


 13 31

44

DCM DCM

q


 21 12

44

DCM DCM

q


 

1q  32 23

14

DCM DCM

q


 1q  21 12

14

DCM DCM

q


 13 31

14

DCM DCM

q


 

2q  13 31

24

DCM DCM

q


 21 12

24

DCM DCM

q


 2q  32 23

24

DCM DCM

q


 

3q  21 12

34

DCM DCM

q


 13 31

34

DCM DCM

q


 32 23

34

DCM DCM

q


 3q  

 

 In brief, the diagram of transformation function from Sensor Frame to Satellite Body 

Frame is showed in Figure 2.1.  

 

Figure 2.1. Diagram of transform function from Sensor Frame to Satellite Body Frame 

 

For Star tracker, the calculating of the quaternion in the Satellite Body Frame is as 

below 

  Body

Body SensorFrame SensorFrameq q q   

  
Bodyq  is the quaternion in the Satellite Body Frame. 

  SensorFrameq  is the quaternion output  in the Star tracker Frame. 

For Sun sensor, the calculating of the sun vector in the Satellite Body Frame is below 

  Body

Body SensorFrame SensorFrameS DCM S   

  BodyS  is the sun vector in the Satellite Body Frame 

  SensorFrameS  is the sun vector measured in the Sun sensor Frame 



82 
 

For Gyro, the Gyro Frame should be aligned with the Satellite Body Frame when 

integrating, the angular rate vector in Satellite Body Frame is calculated as below 

 

Body SensorFrame

x x x

Body SensorFrame

y y y

Body SensorFrame

z z z

w w d

w w d

w w d

     
     

      
         

  

 
T

Body Body Body Body

x y xw w w w     is the angular rate vector in Satellite Body Frame.  

 
T

SensorFrame SensorFrame SensorFrame SensorFrame

x y zw w w w     is the angular rate vector measured 

in Gyro Frame.  

 The offset vector [ ]T

x y zd d d d  is measured during the integration of Gyro to the 

Satellite. 

  For GPS Receiver processing, because the GPS Receiver outputs are the location of 

the sensor, therefore, there is no need to transform the outputs of GPS Receiver to the Satellite 

Body Frame. The location of Satellite can be considered as the location of the GPS Receiver.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



83 
 

Appendix 3. Simulation of using Kalman Filter 

1. Introduction about Kalman Filter  

 The original Kalman Filter is only applicable for linear systems. However, it is 

extended to deal with nonlinear systems by Extended Kalman Filter (EKF). The EKF is not 

always optimal and can diverge if initial errors are too large or if the system model is 

inaccurate. 

 Defining the discrete nonlinear system as: 

1 1 1( , )k k k kx f x u w     (3.1.1) 

( )k k kz h x v     (3.1.2) 

where: 

  x  is state vector  

 (.)f  describes the system dynamics 

  u  is control input 

 w  is process noise   

 h  is the measurement model  

 v  is the measurement noise 

 the subscript k  denotes discrete time. 

Both measurement and process noise are assumed to be zero mean Gaussian. Using the 

system described above, the equations for EKF: 

 At Predict phase: 

    
_

1 1( , )k k kx f x u
 

    

  T

k k k kP F P F Q       

 At Update phase: 

  1( )T T

k k k k k kK P H H P H R      

  
_ _

( )k k kk k kx x K z H x
  

     

  ( )Pk k k kP I K H     

where:  

 x


 denotes estimated state vector 

 P  is covariance matrix 

 K  is calculated Kalman gain  



84 
 

  
1 ,k

k

x u

f
F

x 







  

is the derivate of the nonlinear system with respect to the states 

  
1k

k

x

h
H

x 







 

is the derivate of  the measurement equations with respect to the states. 

 R  is the measurement covariance matrix. 

 Q  is the process covariance matrix. 

 Due to the complexity of the EKF, it is limited when implementation on a on-board 

computer of nano satellites.  

2. Simulation of using Kalman Filter for satellite with one axis 

Physical model: 

The system model of a satellite with one axis is described in Figure 3.1. The sensors 

consist of a gyro and a star tracker.  

 

Figure 3.1 System model of satellite with one axis 

 

One axis rotational angle   of satellite is measured. 

 The true value of    is:     

      
 = w   (3.2.1)  

w is white noise with 1σ =0.01 rad/     

 The true value of angular velocity of satellite: 

      =    
   (3.2.2) 



85 
 

 This angular velocity is measured by gyro at every 10 msec: 

      =     +     + r (3.2.3) 

   is white noise with 1σ =0.1 rad/sec 

r is random walk with:  

    =      (3.2.4) 

     is white noise with 1σ =0.1 rad/     

At every 1s, the star sensor (star tracker) is used to measure  : 

     =    + v   (3.2.5) 

  with v is white noise 1σ =0.01 rad 

 

Derive the system dynamic equation and measurement equation 

 To estimate   and r, the estimated of these values are included in state vector x: 

 Define the notation: 

x =  

  
  
  
 ,    =  

    
   
    
   

    =     

   =   
   

    =    

 The system estimation model: 

 
    
   
    
   =  

    
   
   

  

  
  
  
  +  

   
   
   

  
 
 
   

  

 Define the notation: 

 A=   
    
   
   

 ,   B =  
   
   
   

  , w =  
 
 
   

  

the system dynamic equation: 

  
  

  
 =     = A*x + B* w  (3.2.6) 

 

Figure 3.2 shows the state vector including theta   and angular velocity w without 

using Kalman Filter. The state of system is not converged. 

Figure 3.3 shows the states including theta  , angular velocity w and covariance 

matrix P when using Kalman Filter. The state of system is converged after 6s. 

The C source code of the simulation is showed as below. 



86 
 

 

 

Figure 3.2 States without using Kalman Filter 

 

 

 

Figure 3.2 States using Kalman Filter 



87 
 

 

Figure 3.3 State of covariance matrix using Kalman Filter 

 

C source code of simulation Kalman Filter for Gyro and Star tracker 

#include <stdio.h> 

#include <conio.h> 

#include <math.h> 

#include <stdlib.h>     /* srand, rand */ 

#include <time.h>       /* time */ 

#include "Matrix.h" 

#include "Noise.h" 

 

#define PI 3.14159265359 //PI 

#define NMAX 1000  // number of iterations 10000 

#define MAX 3 //number of matrix row, colume 

 

//physical simulation 

double dt=0.01;  //dt=10 msec 

 

//----1. Satellite Axis-------------------------------------------//  

double I_sat; 

double T_res[NMAX]; 

double w_t[NMAX], theta_t[NMAX]; 

 

//----2. Sensor---------------------------------------------------//  

//2.1. Gyro 

double r[NMAX]; //random walk 

double w_m[NMAX];     



88 
 

//Gyro Noise 

double w1=0.1; //w_noise  

double w2=0.1; //noise random walk_dot 

 

//2.2. Star data 

double theta_m[NMAX]; 

//star noise 

double v =0.01;  

 

//----3. Kalman---------------------------------------------------//  

//matrixs 

double A[MAX][MAX], B[MAX][MAX], Q[MAX][MAX];  

//state equation dx/dt=Ax+Bw  Q=E[x] 

double P_dot[MAX][MAX]; double PK[NMAX][MAX][MAX]; //covarian matrix 

double KK[NMAX][MAX]; //Kalman Gain 

double R; //=v*v //Measurement Noise 

 

//system estimation 

double theta_s[NMAX];  //estimation of theta angle 

double theta_s_dot[NMAX]; //estimation of theta_dot  

double r_s[NMAX];  //estimation of r 

 

//----4. Controller-----------------------------------------------//  

double K_p = -2; double K_d = -0.5; 

double T_target[NMAX]; 

 

//----5. Reaction Wheel-------------------------------------------//  

double I_rw =0.1; 

double K_rw = 100; 

double V_dot[NMAX], V[NMAX]; 

 

//----Init values-------------------------------------------------//   

//init Sat Axis 

void init_Sat(){ 

 I_sat = 2.0; 

 T_res[0] = 0; 

 w_t[0]= 10*2*PI/60;   

 theta_t[0] =50*PI/180;  

} 

 

//init sensor data 

void init_Sensors(){ 

 //init Gyro data  

 r[0]=0.03;  

 w_m[0]= w_t[0] + genNoise(w1) + r[0]; 

  

 //init Star data  

 theta_m[0] = 0; //before update time from Star   

} 



89 
 

void init_RW(){ 

 //initial RW 

 V_dot[0]=0;  

 V[0]=0; 

} 

 

//---storeFiles---------------------------------------------------//   

void storeFile_NoKalman() 

{ 

 FILE * fp; 

 int  i; 

  

    //store theta_t 

 fp = fopen ("1.theta_t.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) 

 fprintf(fp,"%4.2f\n",theta_t[i]); 

    fclose(fp); 

 //store theta_m 

 fp = fopen ("2.theta_m.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) 

 fprintf(fp,"%4.2f\n",theta_m[i]); 

    fclose(fp);     

     

    //store w_t 

 fp = fopen ("3.w_t.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) fprintf(fp,"%4.2f\n",w_t[i]); 

    fclose(fp); 

     

 //store w_m 

 fp = fopen ("4.w_m.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) fprintf(fp,"%4.2f\n",w_m[i]); 

    fclose(fp); 

     

    //store random walk 

 fp = fopen ("5.r.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) fprintf(fp,"%4.3f\n",r[i]); 

    fclose(fp); 

} 

 

//----Kalman Calculation------------------------------------------//   

//init for system estimation model 

void init_kalman_matrix() 

{ 

 //init A 

 A[0][0]=0.0;    A[0][1]=1.0;           

 A[0][2]=-1.0;  

 A[1][0]=K_p/I_sat;    A[1][1]=K_d/I_sat;          A[1][2]=0.0;  

 A[2][0]=0.0;    A[2][1]=0.0;           

 A[2][2]=0.0;  



90 
 

 //init B 

 B[0][0]=1.0;   B[0][1]=0.0;          B[0][2]=0.0;  

 B[1][0]=0.0;     B[1][1]=1.0;          B[1][2]=0.0;  

 B[2][0]=0.0;   B[2][1]=0.0;          B[2][2]=1.0;  

  

 //init Q 

 Q[0][0]=0.0;   Q[0][1]=0.0;         Q[0][2]=0.0;  

 Q[1][0]=0.0;     Q[1][1]=w1*w1;      Q[1][2]=0.0;  

 Q[2][0]=0.0;   Q[2][1]=0.0;         Q[2][2]=w2*w2;  

  

 //init covarian matrix PK 

 PK[0][0][0]=1.0; PK[0][0][1]=0.0;          PK[0][0][2]=0.0;  

 PK[0][1][0]=0.0; PK[0][1][1]=1.0;          PK[0][1][2]=0.0;  

 PK[0][2][0]=0.0; PK[0][2][1]=0.0;          PK[0][2][2]=1.0;  

} 

 

void init_kalman_estimation() 

{ 

 //init  estimation 

 r_s[0]=0;  

 theta_s[0]=0; 

 theta_s_dot[0]=0; 

} 

 

void storeFile_withKalman() 

{ 

 FILE * fp; 

 int  i; 

   

 //store theta_s 

 fp = fopen ("5.theta_s.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) 

 fprintf(fp,"%4.2f\n",theta_s[i]); 

    fclose(fp);  

     

    //store w_s 

 fp = fopen ("6.w_s.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) 

 fprintf(fp,"%4.2f\n",theta_s_dot[i]); 

    fclose(fp); 

       

 //store random walk estimate 

 fp = fopen ("7.r_s.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) fprintf(fp,"%4.3f\n",r_s[i]); 

    fclose(fp);     

     

    //PK 

    fp = fopen ("8.p11.txt", "w+"); 



91 
 

    for(i=0;i<NMAX-1; i++) 

 fprintf(fp,"%4.3f\n",PK[i][0][0]); 

    fclose(fp);  

     

 fp = fopen ("9.p22.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) 

 fprintf(fp,"%4.3f\n",PK[i][1][1]); 

    fclose(fp);        

     

    fp = fopen ("10.p33.txt", "w+"); 

    for(i=0;i<NMAX-1; i++) 

 fprintf(fp,"%4.3f\n",PK[i][2][2]); 

    fclose(fp);     

} 

 

void init_Kalman(){   

 init_kalman_matrix(); 

 init_kalman_estimation();   

} 

 

//calc P_dot (k) 

void calc_P_dot(int k) 

{ 

 double AT[MAX][MAX]; 

 double BT[MAX][MAX]; 

 double B1[MAX][MAX], B2[MAX][MAX]; //temp matrix 

 double C1[MAX][MAX], C2[MAX][MAX], C3[MAX][MAX]; //temp matrix 

  

  

 matrix_multi_matrix(A,PK[k],C1); //A*P 

  

 calc_trans_matrix(A, AT); 

 matrix_multi_matrix(PK[k],AT, C2); //P*AT 

  

 matrix_add_matrix(C1,C2,C3); //A*P + P*AT  

  

 matrix_multi_matrix(B,Q,B1); //B*Q 

 calc_trans_matrix(B, BT); 

 matrix_multi_matrix(B1,BT,B2); //B*Q 

  

 matrix_add_matrix(C3,B2,P_dot); //A*P + P*AT + B*Q*BT  

} 

 

//calc Covarian Matrix PK(k) 

void calc_PK(int k){ 

 int i,j; 

 for(i=0;i<MAX;i++) 

  { 

   for(j=0;j<MAX;j++)  



92 
 

    PK[k][i][j] = PK[k-1][i][j] + dt*P_dot[i][j];  

  } 

}   

  

//calc Kalman Gain 

void calc_KK(int k) 

{ 

 double temp; 

  

 R =v*v; 

  

 temp=1/(PK[k][0][0] +R); 

 KK[k][0] = temp*PK[k][0][0]; 

 KK[k][1] = temp*PK[k][1][0]; 

 KK[k][2] = temp*PK[k][2][0]; 

} 

 

//update Covarian Matrix 

void update_PK(int k) 

{ 

 int i,j; 

 double P_temp[MAX][MAX] ; 

 //copy PK[k] -->P_temp 

 for(i=0;i<MAX;i++) 

  { 

   for(j=0;j<MAX;j++)  

    P_temp[i][j] = PK[k][i][j];  

  } 

   

 PK[k][0][0]= (1.0-KK[k][0])*P_temp[0][0];  

 PK[k][0][1]= (1.0-KK[k][0])*P_temp[0][1];           

 PK[k][0][2]= (1.0-KK[k][0])*P_temp[0][2];  

  

 PK[k][1][0]= P_temp[1][0] - KK[k][1]*P_temp[0][0];      

 PK[k][1][1]= P_temp[1][1] - KK[k][1]*P_temp[0][1];           

 PK[k][1][2]= P_temp[1][2] - KK[k][1]*P_temp[0][2]; 

   

 PK[k][2][0]= P_temp[2][0] - KK[k][2]*P_temp[0][0];    

 PK[k][2][1]= P_temp[2][1] - KK[k][2]*P_temp[0][1];           

 PK[k][2][2]= P_temp[2][2] - KK[k][2]*P_temp[0][2];  

} 

 

void estimate_state(int k){ 

   

  //estimate r_s = constant 

  r_s[k]=r_s[k-1];   

 

  //estimate theta_dot 

  theta_s_dot[k]= w_m[k]-r_s[k]; 



93 
 

  //Estimation for theta_s  

  theta_s[k]= theta_s[k-1] + dt*theta_s_dot[k]; 

   

  //caculate p_dot 

  calc_P_dot(k-1);  

  //calc covarian matrix PK 

  calc_PK(k); 

     

} 

//propagation and update 

void update_phase(int k) 

{ 

 calc_KK(k);  //calc Kalman Gain 

 update_PK(k); //update Covarian Matrix 

     

//update state vector     

//update theta_s_dot 

theta_s_dot[k]= theta_s_dot[k] + (theta_m[k]-theta_s[k])*KK[k][1]; 

  

//update r_s 

r_s[k] = r_s[k] + (theta_m[k]-theta_s[k])*KK[k][2]; 

  

//update theta_s_dot 

theta_s[k] = theta_s[k] + (theta_m[k]-theta_s[k])*KK[k][0]; 

} 

//---End of Kalman Calculation------------------------------------// 

 

//----Calculation System Cycle------------------------------------//   

void calc_requiredTorque(int k){  

 

 //T_target[k]= K_p*theta_m[k-1] + K_d*w_m[k-1]; //No KF 

 T_target[k]= K_p*theta_s[k-1] + K_d*theta_s_dot[k-1];

 //KF use theta_s  w_s   

} 

  

void calc_appliedTorque(int k){ 

  V_dot[k] = (K_rw/I_rw)*T_target[k];    

  V[k]  = V[k-1] + dt*V_dot[k];   

  T_res[k] = (I_rw/K_rw)*V_dot[k];  

} 

 

void get_data_from_Sensor(int k){ 

 //true value, can not know 

 w_t[k]  =  w_t[k-1] + dt*T_res[k]/I_sat;   

 

 //true value 

theta_t[k]  =  theta_t[k-1] + dt*w_t[k-1];   

   

//simulate data , get real data from sensor if not simulation 



94 
 

 r[k]  = r[k-1] + dt*genNoise(w2);  

 //from gyro 

 w_m[k]  = w_t[k] + genNoise(w1) + r[k];  

   

//measurement of star, use for kf 

 if(k%100 ==0 )  

 { 

  theta_m[k] =  theta_t[k] + genNoise(v); 

 }     

  else theta_m[k]=theta_m[k-1];  

} 

 

void system_cycle() 

{ 

 int k; //steps of iteration 

 for(k=1; k<NMAX; k++)  

 { 

  calc_requiredTorque(k); //from w and theta from KF 

  calc_appliedTorque(k); 

  get_data_from_Sensor(k); 

  //estimate from kalman   

  estimate_state(k); 

  if(k%100==0) update_phase(k); 

 } 

} 

 

void init_system(){ 

 

 //init random 

 srand (1);  

 init_Sat(); 

 init_Sensors(); 

 init_RW(); 

  

 init_Kalman();  

     

} 

 

int main() 

{ 

 init_system();  

 system_cycle();   

 

 storeFile_NoKalman(); 

 storeFile_withKalman(); 

 return 0; 

}  

 

 


