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Abstract 
Since 1982, numerous GARCH (Generalized Autoregressive Conditional Heteroskedascity) models 

have been developed. Some of the more popular ones include the GJR-GARCH, and EGARCH. Even 

though these models are effective at mapping out the “true volatility” of an asset, they fail to 

capture periods of extremely high “true volatility” (>0.08). When modeling the American subprime 

crisis from 2008 to 2009 as out-of-sample data, the maximum volatilities that the GJR-GARCH and 

GARCH model provided were much less than the maximum “true volatility”. Therefore, these 

GARCH models are not quite suitable for risk management applications as they greatly 

underestimate the volatility during periods of extremely high volatility (>0.08). 

In this paper, we modified the GARCH model, while using the GJR-GARCH as inspiration, and 

proposed a new model named GARCH-S. We used the Nikkei 225 and S&P 500 as the two asset 

inputs required by the GARCH-S model. The GARCH-S makes use of a secondary market (S&P 

500) to increase the volatility forecast of the target market (Nikkei 225). This is possible when the 

returns of the secondary market at time 1t  is correlated (>0.20) with the returns of the target 

market at time t . Even though we developed a MLE program to estimate the model parameters, the 

Gibbs Sampling method was used in general to estimate the parameters of the models.   

The GARCH-S is found to effective in modeling the “upper range” of “true volatility”. It greatly 

reduces underestimate errors as compared to the GARCH, GJR-GARCH and EGARCH models. 

Under the several assumptions we made, the GARCH-S was found to be ranked second best in 

forecasting accuracy while effectively capturing the peaks of high volatility better than other 

GARCH type models. Therefore, the GARCH-S model is an excellent candidate for risk 

management purposes as it greatly reduces the underestimate errors while still providing 

competitive forecast accuracy against other GARCH type models. 
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Chapter 1  Introduction 

 

1  Introduction 
 
Financial volatility modeling has become an increasingly active research area. After the 

financial crisis of 2008 and 2009, people around the world are becoming more aware of 

the financial markets. The Japanese financial market has certainly been through some 

tough time, and financial volatility modeling would be an excellent tool that we can use 

to understand the Japanese financial market and even apply it to risk management. 

However, modeling the volatility of the financial markets is not a simple task.  

 
 
1.1 Background of Research 
 
Before we even begin to research about financial market volatility, we need to under-

stand volatility. Different people often have different ways of interpreting volatility. But 

what is volatility exactly? Can a statistical model describe its features?  

 
 

1.1.1 What is Volatility? 

 

In the field of volatility modeling, there is a general consensus of defining volatility. In 

the financial markets, we are concerned with the spread of the returns of the asset. 

Mathematically, volatility can be measured as standard deviation, 

2

1

1ˆ ( ) ,
1

T

t
t

r
T

 


 
                           (1.1) 

where tr is defined as the return on the asset at time ,t and  is the average return over 

the time period T .  

 

We could also use the variance, 2 ,  as a measure of volatility. However, using variance 

would be much less stable for computer simulations and forecast evaluations. Compa-

ratively, the standard deviation does not fluctuate as much as variance. Another ad-

vantage of using the standard deviation is that it has the same units as the mean. Thus, 
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it would be easier to interpret our simulations and forecast using standard deviation. 

 

Volatility can be seen as a measure of the financial market stability. When the volatility 

is high, the financial market becomes unstable, and when volatility is low, the financial 

market becomes stable. However, it is important to note that although volatility is re-

lated to risk, it is not the same as risk. This is because risk is associated with undesir-

able outcomes but volatility is uncertainty that could potentially result in a positive 

outcome. Huge volatilities could cause the financial markets to move either upwards or 

downwards. This fact is often overlooked. Take the Sharpe ratio [Sharpe (1996)] for 

example. The Sharpe ratio measures the performance of an investment by comparing 

the mean return in relation to its ‘risk’ proxy by its volatility.  

Average Risk-free interest
return, μ rate, e.g. U.S. Treasury Rate

Sharpe Ratio= .
Standard deviation of returns, σ

   
   

             (1.2) 

However, it is interesting to note that periods of high volatility in the financial markets 

usually corresponded with periods of greater risk in the financial markets. This is due 

to the intrinsic nature of the financial markets where you only see the financial market 

“crash down” and not “crash up”. This is one of the reasons volatility can be used as a 

tool to manage financial market risk, especially during periods of extremely high vola-

tility such as the financial crisis of 2008 and 2009.  

 

Although volatility is not the only determinant of asset return distribution, it is an im-

perative input to many different financial applications. Understanding financial market 

volatility will ultimately lead to us to better understand the returns of the financial 

markets, and potentially better manage financial market risk. 

 
The main purpose of financial volatility modeling is to be able to apply the derived 

models on the financial markets. Financial markets are entities that allow people from 

all over the world to trade financial securities, commodities, and other various goods. 

There is a plethora of financial markets around the world. For our research, we are 

mainly concerned with the Japanese financial stock market, and its relationship with 



3 
Chapter 1  Introduction 

 

other financial stock markets around the world. For the first part of research, we are 

concerned with the Nikkei 225 index and the S&P 500 index.  

 

 

1.1.2  Nikkei 225 

 

The Nikkei 225 is a stock market index based on prominent Japanese companies that 

are publicly traded on the Tokyo Stock Exchange (TSE). These companies include 

Toyota Corporation, Nomura Holding and Mitsubishi Corporation. It is designed to re-

flect the overall trend of the Japanese stock market. Therefore, it could be used to re-

flect the state of the Japanese economy. The only downside of the using the Nikkei 225 

index to reflect the state of the Japanese economy is that it might not reflect the eco-

nomical situation of small and medium sized companies. From figure 1.1, we can see 

that the Japanese financial market is really quite unique and different when compared 

to other developed countries’ financial markets. Just before the infamous Japanese as-

set bubble “burst”, the Nikkei 225 reached its peak of around 38512 on 20th December 

1989 
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Figure 1.1 Nikkei 225 Index from 4th January 1984 to 28th May 2010 
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1989. Thereafter, the Nikkei 225 and the Japanese economy went drastically downhill, 

losing more than half its value in just a period of 3 years. The Nikkei 225 ended up 

fluctuating around 14309 on 18th August 1992. The period after the bubble “burst” 

corresponded to a period of extremely high volatility.  

 

Other periods of extremely high volatility occurred between 2000 and 2002 as a result of 

the Information Technology (IT) bubble “burst”; and between 2008 and 2009 as a result 

of the American subprime mortgage crisis. The Japanese financial market has faced 

much turbulence in the past and it would definitely be an interesting financial market 

to research on.  

 

Volatility describes the spread of an asset. In other words, it describes how an asset 

changes over time. By just using the Nikkei 225 index, we are unable to extract any 

volatility information. In order to model the volatility of the financial markets, we need 

to use some form of information that is able to describe the spread of an asset. In fi-

nancial volatility modeling, the general consensus is to use the logarithm return of an 

asset. The logarithm allows us to assume that the distribution of the asset is conti-

nuously compounded, and it also allows us to model the returns with time additive 

property. The logarithm return is defined as, 

1

ln ,t
t

t

xy
x 

 
  

 
                              (1.3) 

where ty is defined as the return at time t , and tx is defined as the index value at 

time t . 
 

Using equation 1.3, we could then model the return of the Nikkei 225 index. From figure 

1.2, we can observe that the historical daily returns fluctuate greatly around 1987, and 

the year 2008, resulting in extremely volatile periods. The volatile period in 1987 was 

caused by the financial event known as the “Black Friday”. The 2008 volatile period was 

caused by the American subprime mortgage crisis. By observing figure 1.2, we can 

roughly get an image of what the volatility graph would look like for the Nikkei 225.  
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Figure 1.2 Historical daily returns for the Nikkei 225 from 5th Jan 1984 to 28th May 

2010 

 

 

1.1.3  Standard and Poor 500 

 

The Standard and Poor 500 (S&P 500) is the American counterpart of the Nikkei 225. 

The S&P 500 is a stock market index that is based on prominent American companies 

that are publicly traded either on the New York Stock Exchange or the NASDAQ. Some 

of these companies include Berkshire Hathaway, ExxonMobil, and Microsoft Corpora-

tion. The S&P 500 is designed to reflect the overall trend of the American stock market. 

Again, the downside of using the S&P 500 to reflect the state of the American economy 

is that it might not reflect the economical situation of small and middle sized compa-

nies. 

 

When comparing the Nikkei 225 index to the S&P 500 index, we immediately notice a 

huge difference between them. During 1984 to 2010, the Nikkei 225 generally displayed  
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Figure 1.3 Standard and Poor 500 Index from 4th January 1984 to 28th May 2010 
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Figure 1.4 Comparing the Nikkei 225 (left, pink) and the S&P 500 (right, blue) from 

January 1984 to May 2008 

 



7 
Chapter 1  Introduction 

 

a downward trend. However, the S&P 500 generally displayed an upward trend. This is 

mainly due to the Japanese asset bubble “burst”. The term “lost decade” is used to 

symbolize the 1990s period when the economy of Japan went stagnant.  

 

Although the Nikkei 225 and the S&P 500 index had displayed very different trends; 

recently, they have begun to display rather similar trends with each other. For example, 

take the time period from 2000 onwards, the trend is almost similar with one another. 

They both experienced the double dip from the IT bubble “burst” and the American 

subprime mortgage crisis. From figure 1.4, we can see that in recent years, the Nikkei 

225 and the S&P 500 index are rather strongly correlated with one another.  

 

However, as stated in section 1.1.2, we need to use the returns of the S&P 500 and not 

the index in order to model volatility. The graph of the historical daily returns for the 

S&P 500 is displayed in figure 1.5, and a side by side comparison is displayed in figure 

1.6. 

 

When comparing the correlation of the Nikkei 225 and the S&P 500 daily returns, we 

cannot be sure without a numerical value. However, by looking at the graphs of the 

daily returns, we can see that there is definitely a correlation between the Nikkei 225 

and the S&P 500 daily returns, especially during the 2000s (recent times). By observing 

the historical daily returns of the S&P 500, we can roughly image what the volatility 

will look like.  
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Figure 1.5 Historical daily returns for the S&P 500 from 5th Jan 1984 to 28th May 2010 
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Figure 1.6 Comparing the historical daily returns for the Nikkei 225 (left, pink), and the 

S&P 500 (right, blue) from 5th Jan 1984 to 28th May 2010 
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1.1.4  Facts about Financial Markets 

 

Understanding the probability density distributions is imperative in any statistical vo-

latility modeling. This is because for both frequentist and Bayesian statistics, we need 

to assume a probability distribution model for the return values in order to model the 

parameters. Depending on which probability distribution models we choose for model-

ing the returns, our accuracy of the estimated parameters might be different. When the 

Autoregressive Conditional Heteroskedascity (ARCH) models were first derived, the 

probability distributions of the returns were commonly based on the normal distribu-

tion. However, researchers began to discover that other probability distributions pro-

duce better estimates. For example, the stable Paretian innovations might provide 

better estimated parameters than the Normal distribution in financial volatility mod-

eling [Mittnk, Rachev (1999)]. Another example is that the stable Paretian innovations 

might fit the US, German and Portuguese main stock indexes better than the Normal 

distribution, and slightly better than the t-distribution [Curto, Pinto (2007)]. 
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Figure 1.7 The returns distribution of the Nikkei 225 (red) as compared to the normal 

random variable simulation (blue) 
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To see the reasoning behind this, let us take a look at the probability distribution pat-

terns for both the Nikkei 225 and the S&P 500. Using data from January 1984 to May 

2010, we plotted the returns distribution of the Nikkei 225 against a simulated Normal 

distribution and then plotted the returns distribution of the S&P 500 against a simu-

lated Normal distribution. 

 

From the figures 1.7 and 1.8, we can see that although the index values are very dif-

ferent, the density distributions of both the Nikkei 225 and the S&P 500 generally dis-

play the same pattern. This pattern is also observed from other financial markets [Poon 

(2005)].  

 

The observation made from the financial returns distribution is that the returns dis-

tributions have longer “tails” and much sharper peaks than the normal distribution. 

Also, the tails of the financial returns distributions are actually heavier (larger) than 

the normal distribution. 
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Figure 1.8 The returns distribution of the S&P 500 (red) as compared to the normal 

random variable simulation (blue) 
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Figure 1.9 The enlarged version of the tail of the returns distribution of the S&P 500 

(red) as compared to the normal random variable simulation (blue) 

 

These observations prove that the returns of financial assets are not normal. They are 

in fact closer to the t-distribution. One of the ongoing research topics in financial vola-

tility modeling is researching on which distributions fit better with which financial as-

set returns. However, using the Normal distribution is certainly not wrong. It is much 

easier and quicker to implement as compared to other distributions. The only drawback 

is that it might be a little less accurate. In thesis, only the normal distribution will be 

used, as our focus is not on the model’s forecast accuracy. Therefore, we are not ex-

tremely concerned with errors.  

 

There is another important implicit meaning from figures 1.7 and 1.8. This implicit 

meaning is that the Japanese and American stock markets will usually fluctuate within 

a smaller range than the normal distribution. However, the financial market is also 

extremely capable of fluctuating eccentrically beyond the normal distribution. In fact, it 

could fluctuate to an unimaginable extent, as it has happened during the subprime 
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mortgage crisis.  

 

For the time period from January 1984 to May 2010, the skewness of the Nikkei 225 is 

-0.22, and the kurtosis is 8.39. While the skewness of the S&P 500 is -1.35 and the 

kurtosis is 29.96. [Refer to the Appendix for more information on Skewness and Kurto-

sis.] This means that the return values of the S&P 500 are more likely to be distributed 

above the mean as compared to the Nikkei 225, a larger growth pattern. Also, the peak 

of the S&P 500 is much higher than the Nikkei 225. This can be interpreted that the IT 

bubble asset “burst” and the American subprime mortgage had a stronger effect on the 

American financial system as compared to the Japanese financial system. These skew-

ness and kurtosis statistics are very sensitive to outliers. If we remove the extreme 

outliers, such as the 1987 October crash, we would be able to greatly reduce the value of 

the kurtosis [Poon (2005)].  

 

It is important to note that one general statistical model or returns distribution does not 

apply to all the financial markets. Different financial markets require different statis-

tical models and returns distributions. What might work well for a certain financial 

market might not work as well for another financial market. It is up to the researcher to 

decide which combination of models and returns distribution will work well for their 

research.  

 

 

1.1.5  Problem Statement 

 

Ever since Robert Engle introduced the Autoregressive Conditional Heteroskedascity 

(ARCH) model in 1982, financial time series volatility modeling has become an increa-

singly important research area [Engle (1982)]. This importance was recognized by the 

world when Robert Engle was awarded the 2003 Memorial Nobel Prize in Economics.  

 

Robert Engle’s model was designed to capture and make use of the natural characteris-

tic of financial market volatility. The natural characteristic is that volatility tends to 

cluster together. This means that periods of high volatility and low volatility frequently 
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occur in clusters separating one another. We shall discuss more about these time series 

models in chapter 3. 

 

Robert Engle’s ARCH model was the beginning of a large class of time series models. 

Ever since 1982, numerous other ARCH classes of models were developed. One of the 

most famous models is the Generalized Autoregressive Conditional Heteroskedascity 

(GARCH) model [Bollerslev (1986)]. This model was derived in 1986 by Tim Bollerslev, 

who was a student of Robert Engle. 

 

Following Tim Bollerslev’s GARCH model, the GJR-GARCH (Glosten-Jagnnathan 

-Runkle) model was derived in 1993 [Glosten, Jagnnathan, Runkle (1993)], and several 

other ARCH class models were also developed in the 1990s and 2000s such as the Ex-

ponential GARCH (EGARCH) model. However, none of these univariate models made 

use of the fact that different financial market volatilities are correlated with one 

another. For example, if the American financial market was to experience a period of 

high volatility, one can assume that the Japanese financial market will also experience 

a period of high volatility. Even though multivariate GARCH models use the innovation 

of a secondary market input to forecast the volatility of the first input, multivariate 

GARCH models focus on studying the correlation between financial markets, such as 

spillover effects. The GARCH-S model will be more focused on reducing underestimated 

errors. It is also much simpler to implement than a multivariate GARCH model.  

 

Figure 1.10 shows that the Nikkei 225 and S&P 500 display similar trends from 2 

March 2009 to 28 May 2010. It is this similarity that we want to exploit. We believe that 

by using the Nikkei 225 and S&P 500’s correlation, we could provide a better repre-

sentation of the volatility for risk management purposes as the secondary market acts 

like a foreign term. This foreign term will add information, and possibly predictive 

power that does not exists in the primary market. This is an abnormal idea since we are 

actually incorporating a secondary model’s returns into the volatility model in order to 

help provide more information in modeling the primary model’s volatility.   

 

So far, all GARCH type models tend to underestimate periods of high volatility (>0.06) 
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Figure 1.10 Comparing the Nikkei 225 and the S&P 500 Indexes 

 

by a significant amount. In risk management and most applications, a user would be 

much more concerned about underestimating volatility rather than overestimating vo-

latility. This is especially true during periods of high volatility. This is because we un-

derestimate financial volatility, the consequences could be devastating such as an un-

expected lose amount. However, when we overestimate financial volatility, the conse-

quences would not be as devastating as the lose amount is within our expectations.  

 

Our proposed GARCH-S volatility model shall be tailored towards the risk management 

applications by providing smaller underestimation errors, especially during periods of 

high volatility (>0.06). The consequence is that the GARCH-S model might overestimate 

errors. Since the “true volatility” usually occurs at a low range, there are much more 

overestimate errors than underestimation errors. Therefore, we must find a balance 

between reducing underestimation errors while still providing competitive forecast ac-

curacies. 
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The second part of our research will be to focus on practical applications of the 

GARCH-S. We will use the Vector Autoregressive Model (VAR) to study the relationship 

of the returns between the Nikkei 225 and the FTSE (Financial Times Stock Exchange) 

China 25. Even though previous research papers have provided literature on the rela-

tionship of the Nikkei 225 as compared to other markets [Beikros, Georgoutsos (2006)], 

this thesis will focus on the effects of a simulated financial crisis on the Nikkei 225. For 

example, what if China has an asset bubble that “burst”? To help manage the risk as-

sociated with a financial crisis, we will implement the GARCH-S model into the Val-

ue-at-Risk (VaR). 

 

 

1.2   Goal of Research 
 

There are two primary goals of this research: 

 

1. The first goal is to successfully derive and implement the proposed GARCH-S model. 

The proposed GARCH-S model would make use of a strongly correlated (>0.70 cor-

relation in returns ) secondary market’s innovations to improve volatility modeling 

the Nikkei 225 as compared to the GARCH, GJR-GARCH and EGARCH models for 

risk management purposes. The GARCH-S would reduce overall underestimate er-

rors especially during periods of high volatility. 

2. The second goal is to demonstrate a practical application of the GARCH-S. We will 

simulate the effect of a financial crisis on the Nikkei 225 and use the GARCH-S to-

gether with the VaR as part of risk management methods. 

 

The GARCH-S model is still in development stages and its methodology might seem to 

be primitive and naive at times. The GARCH-S model also cannot be applied to markets 

that have weak or no correlation with one another. Therefore, this model cannot be ge-

neralized to all markets around the world. However, the GARCH-S model is applicable 

when using the S&P 500’s volatility at time t to model the Nikkei 225’s volatility at 

time 1t  . This is because the S&P 500 and Nikkei 225 have a strong correlation, espe-

cially during and after the American subprime mortgage crisis (0.89 for the time period 
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from 2 March 2009 to 28 May 2010).  

 

It is important to note that for different financial markets, different GARCH models 

might work better. Not one GARCH model dominates the field of time series volatility 

modeling [Poon (2005)]. As such, the focus of this thesis is not about forecasting accu-

racy, but rather on whether or not the GARCH-S model provides new information on the 

target market’s volatility as compared to other GARCH type models. In our thesis, we 

are mostly concerned with the Japanese financial market, more specifically with the 

Nikkei 225. 

 

The secondary goal of this research is: 

 

1. To estimate the parameters of the GJR-GARCH, EGARCH, and the GARCH-S 

model through Markov Chain Monte Carlo (MCMC) Bayesian Statistics and the 

classical Maximum Likelihood Estimation (MLE) method. More specifically, the 

Gibbs Sampling method will be implemented. 

 

In Statistics, there are two schools of thought, classical inference and Bayesian infe-

rence. In Japan, there is not so much literature focusing on Bayesian Inference. There-

fore, we believe this secondary goal of using the Gibbs Sampling method to estimate the 

parameters of the models will be an important academia contribution to Japan.  

 

The main reason we chose to use the Gibbs Sampling method is that it is extremely 

simple to implement and estimate parameters for any models including GJR-GARCH, 

GARCH-S, and EGARCH. Even though we have written the function for the MLE es-

timation method, this paper will be based on our estimates from the Gibbs Sampling 

method. Another advantage is that the Deviance Information Criterion (DIC) [section 

2.1.1] could be easily calculated from using the Gibbs Sampling method. Since the de-

velopment of modern computers, an increasing number of researchers, professors have 

begun to prefer using Bayesian statistics. 

 

Financial market volatility research is still growing in all aspects. Recent practical ap-
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plications include the Chicago Board of Exchange (CBOE) futures trading on a volatility 

index, introduced in 2004. Another practical application that had been used for awhile 

is the volatility swap contract. 

 

 

1.3  Structure of Thesis 
 

In chapter 2, we shall discuss model selection, and forecasting evaluation techniques. 

The Deviance Information Criterion (DIC) method is introduced and would be used for 

model selection. Error statistics techniques are introduced and would be used in eva-

luating our proposed GARCH-S model. Subsequently, the Diebold and Mariano (DM) 

test is introduced and would be used to check if these error statistics are significant or 

not. 

 

Chapter 3 focuses on developing our proposed GARCH-S time series volatility model. 

Data preparation is an extremely important part of our research and it is also explained 

in chapter 3. In order to compare the GARCH-S against other GARCH type models, 

parameters for other ARCH/ GARCH type models are also estimated. We will write 

programs for both the Gibbs Sampling method and the Maximum Likelihood Estima-

tion (MLE) method to estimate our parameters. However, our focus will be on the Gibbs 

Sampling method, the MLE method is mainly for comparison purposes. Subsequently, 

the accuracy of our proposed GARCH-S model will be compared and evaluated against 

other GARCH type models (GARCH, GJR-GARCH, EGARCH) using techniques de-

scribed in chapter 2.  

 

Chapter 4 focuses on evaluating our proposed GARCH-S model as compared to other 

GARCH type models. For the first part of chapter 4, we will focus on using the tech-

niques developed in chapter 2 to analyze and compare our models. The second part of 

chapter 4 will focus on evaluating the GARCH-S model’s effectiveness of providing new 

information in modeling the Nikkei 225’s volatility as compared to other GARCH type 

models. 
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In chapter 5, we will study the Japanese financial market’s returns and its relationship 

to the Chinese financial market. To study the returns’ relationship, we will use the VAR 

model. Subsequently, we will create a hypothetical financial crisis in the Chinese fi-

nancial market. This hypothetical financial crisis will be simulated using a stochastic 

drift equation. The corresponding hypothetical return values for the Nikkei 225 will be 

simulated using the VAR model and a stochastic drift equation. Lastly, a practical ap-

plication of the GARCH-S will be demonstrated using it as an input in the VaR equa-

tion. 
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2  Volatility Modeling Evaluation 
 
When modifying parameters to a statistical model, we first need to confirm whether our 

modifications are justifiable. These means that we need to deduce whether these pa-

rameters actually made a worthwhile contribute to the model or are these parameters 

just “garbage parameters” that would provide no new information in augmenting the 

statistical model. The parameter evaluation techniques we used to evaluate our models 

will be discussed in section 2.1. 

 

After we have obtained a satisfactory model, we then need to compare and evaluate the 

model against other similar models. To evaluate our model, it is important that we not 

only evaluate the in-sample forecasting performance but also the more realistic 

out-of-sample forecasting performance. The model evaluation techniques we used to 

evaluate our models will be discussed in section 2.2.  

 

 

2.1  Parameter Evaluation Techniques 
 
Parameter evaluation techniques allow us to measure and judge the extent of the 

goodness of fit for the model. By plotting the autocorrelation functions of the residuals 

for an ARCH/ GARCH fit, we can judge whether or not the model was sufficient enough 

to remove any disruptions such as seasonal effects. If the residuals of the ARCH/ 

GARCH fit do not correspond to a white noise effect, this means that our ARCH/ 

GARCH model selection might not be a sufficiently suitable. [Autocorrelation functions 

are described in section 3.3.3] If the ARCH/ GARCH model selection is not sufficiently 

suitable, we might need to use a higher order GARCH model. 

 

For most financial volatility cases, including our research, the GARCH(1,1) is sufficient. 

In our research, we made additional parameter modifications to our GARCH(1,1) model. 

After we obtained these estimated parameter values, we should check if they are sta-

tistically significant or not. If they are not statistically significant, we must then con-

clude that these parameters add no new information to the model are all not needed. If 
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they are statistically significant, we could then carry on to the next step of evaluating 

our parameters. To check whether parameters are statistically significant or not, we 

need to use the t-values. In our paper, the t-values are defined as, 

parameter valuevalue= .
standarddeviation

t                          (2.1) 

These t-values correspond to the null hypothesis 0H : the parameter has a value of 0, 

and the alternative hypothesis aH : the parameter has a non-zero value. A high t-value 

will correspond to a low p-value. Typically, we reject the null hypothesis if we obtain a 

p-value of less than 0.05, which correspond to a t-value of more than 1.96 in our case. 

Therefore, if the t-value is more than 1.96, there is evidence to reject the null hypothesis 

and the parameter is statistically significant. Otherwise, we have no evidence to reject 

the null hypothesis that the parameter has a value of 0, meaning the parameter is sta-

tistically insignificant. 

 

Besides checking the statistical significance of the parameters, we also used the De-

viance Information Criterion (DIC) to justify our additional parameters. The DIC is a 

hierarchical model generalized from the Akaike Information Criterion (AIC), and the 

Schwarz-Bayesian Information Criterion (BIC). The idea is that if our additional pa-

rameters do make a worthwhile contribution to the model, then the DIC should de-

crease. 

 

 

2.1.1  Deviance Information Criterion (DIC) 

 

Although DIC is the main selection criteria we used for our research, its’ predecessors 

the AIC and BIC are also important model selection tools we could use. The AIC [Akaike 

(1973)] is defined as, 

2 2AIC ln(likelihood) (number of parameters) ,
T T


              (2.2) 

where T is the sample size. The likelihood function is evaluated at the maxi-

mum-likelihood estimates. The first term of equation 2.2 measures the goodness of fit of 

the model. The better the fit of the model, the more negative the first term becomes. The 
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second is called the penalty function of the AIC because it penalizes a candidate model 

by the number of parameters being used. Therefore, when we add parameters to an 

existing model, the AIC of the new model should be lower than the existing model’s AIC. 

Another commonly used criterion function to evaluate model selection is the BIC, which 

is defined as, 

2 number of parameters ln( )BIC ln(likelihood) .T
T T
 

             (2.3) 

The BIC is the same as the AIC except that the penalty for each additional parameter 

used is ln( )T instead of 2. Therefore, in general, the BIC penalizes each additional pa-

rameter more severely than the AIC. The larger the sample size, the greater the penalty 

for the BIC. 

 

[Dempster (1974)] first proposed to examine the posterior distribution of the classical 

deviance defined by, 

( ) 2 ln ( | ) ,D f y A                             (2.4) 

where y is the data,  are the unknown parameters of the model and ( | )f y  is the 

likelihood function, which is the conditional joint probability density function of the 

observations given the unknown parameters. A is a constant that will cancel out in 

calculations when comparing different models. Therefore, this term does not need to be 

known. Based on the posterior distribution of ( )D  , the DIC consists of two terms, 

DIC= .DD p                                (2.5) 

In equation 2.5, the first term is a measure of the goodness of fit, and the second is a 

penalty term for increasing model complexity. This means that the more parameters 

that are added to the model, the larger will Dp become. The first term in equation 2.5, a 

Bayesian measure of model fit, is defined as the posterior expectation of equation 2.4, 

   | |( ) 2ln ( | ) .y yD E D E f y                         (2.6) 

The better the goodness of the fit, the larger the value of ( | )f y  becomes. Since D is 

defined as the posterior expectation of -2× ( | )f y  , the better the goodness of the fit, 

the smaller will D become. 

 

The second term of the DIC in equation 2.5, Dp , measures the complexity of the model 



22 
Chapter 2  Volatility Modeling Evaluation 

 

by the effective number of parameters. This term is defined as the difference between 

the posterior mean of the deviance and the deviance evaluated at the posterior 

mean  of the parameters, 

| |

|

( ) [ ( )] ( [ ])

[ 2 ln ( | )] 2ln ( | ) .
D y y

y

p D D E D D E

E f y f y
 



  

 

   

  
                 (2.7) 

By substituting equation 2.7 into equation 2.5, we could also redefine equation 2.5 as, 

DIC ( ) 2 .DD p                             (2.8) 

Therefore, the DIC could be interpreted as the classical deviance measure of fit using 

posterior parameters plus a measure of complexity. When the number of observations 

grows with respect to the number of parameters p , and the prior is nonhierarchical and 

completely specified, then the AIC will be ˆ( ) 2D p  , where ̂ denotes the maximum 

likelihood estimate. This is the same as equation 2.8 except the posterior mean is 

substituted by the ML estimate ̂ . Therefore, the DIC can be seen as a generalization of 

the AIC, and could also be compared to the BIC of equation 2.3. The idea behind DIC is 

that models with lower DIC should be preferred over models with higher DIC. It is im-

portant to note that the absolute value of DIC does not matter. What is important in 

model comparison is the difference in DIC values. Usually, a difference of more than 10 

signifies that the model with lower DIC is definitely better. 

 

One of the advantages that DIC has over AIC, and BIC is that it can be easily calculated 

from the samples generated by a Markov Chain Monte Carlo Simulation (MCMC). In 

our paper, we used the Gibbs Sampling method, which is a Bayesian MCMC, to esti-

mate the parameters of our models. The estimate of D can be calculated from the 

MCMC output by monitoring ( )D  and then taking the sample mean of the simulated 

values of ( )D  . The effective number of parameters Dp can be obtained by evaluat-

ing ( )D  at the sample average of the simulated values of  and subtracting this 

plug-in estimate of the deviance from the estimate of D . 

 

For our research, we implemented the WinBUGS (Bayesian inference Using Gibbs 

Sampling) and JAGS (Just Another Gibbs Sampler) statistical packages through the R 

statistical program. The WinBUGS and JAGS statistical packages provide the DIC 
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values with the results of the estimated parameters. Therefore, these Gibbs Sampling 

statistical packages are rather convenient to use. 

 

In summary, we modify the GARCH model by adding in new parameters and then check 

whether the DIC values decreased or remained the same. If the DIC values did indeed 

decrease by a substantial amount, then we could justify that our new modifications to 

the model was worthwhile. 

 

 

2.2  Model Evaluation Techniques 
 
After simulating the parameters of our modified GARCH, GARCH-S models, we would 

then need to compare the forecasting results of these models with other GARCH type 

models. The models we compared against each other were the GARCH(1,1), 

GJR-GARCH(1,1), our modified GARCH(1,1), our proposed GARCH-S(1,1), and the 

EGARCH(1,1) model. Our proposed GARCH-S(1,1) is a descendant of the GARCH(1,1) 

model and the GJR-GARCH(1,1) model. Therefore a comparison between these models 

would be necessary to show that the GARCH-S(1,1) model does provide an intriguing, 

and new perspective to the GARCH class of volatility modeling.  

 

Comparing forecasting performance of competing models is one of the most important 

aspects of any forecasting exercise. However, in contrasts to the efforts made in the 

construction of volatility models and forecasts, little attention has been paid to forecast 

evaluation. The forecast error can be defined as, 

ˆ ,t t tX X                                 (2.9) 

where ˆ
tX is defined as the predicted variable by using our models, and tX is the actual 

outcome. tX should be t , and not 2
t . Once a shock has entered the system, the merit of 

the volatility model depends on how well it captures these effects in predicting the vo-

latility of subsequent days. Conditional variance 2
t will give too much weight to errors 

caused by these shocks, especially the large ones, distorting the less extreme forecasts 

where the models are to be assessed. While using ln t as tX to rescale the size of the 

forecast errors might be one step too far. This is because the magnitude of the error di-
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rectly impacts option pricing, risk management, and investment decisions. Distorting 

the magnitude of the errors might cause a decision maker to misjudge since a decision 

maker is more likely to be more risk-averse towards larger errors. Therefore, we should 

use t as tX , and not 2
t nor 2ln t . 

 

 

2.2.1  Error Statistics 

 

In practice, often simple evaluation measures suggested by statisticians are used. The 

evaluation measures used in this paper include the Mean Square Error (MSE), 

2

1 1

1 1 ˆ( ) ,
N N

t t t
t tN N
  

 

                          (2.10) 

and the Root Mean Square Error (RMSE),  

2

1 1

1 1 ˆ( ) ,
N N

t t t
t tN N
  

 

                        (2.11) 

and the Mean Absolute Error (MAE), 

1 1

1 1 ˆ ,
N N

t t t
t tN N

  
 

                          (2.12) 

and the Mean Absolute Percent Error (MAPE), 

1 1

ˆ1 1 .
N N

t t t

t tt tN N
  
  


                         (2.13) 

These are the four error statistics we will use in our paper. Nowadays, it is standard to 

use out-of-sample forecasting results to compare the errors of the models. In our paper, 

we will compare both the in-sample and out-of-sample errors, but our main focus would 

be on the out-of-sample errors. 

 

 

2.2.2  Linex loss function 

 

As stated in section 1.1.5, for risk management and other purposes, it is better to over-

estimate volatility rather than underestimate the volatility. In order to evaluate which 
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models give smaller underestimate errors, we need to implement an asymmetric loss 

function. The linex asymmetric loss function in which positive errors are weighted dif-

ferently from negative errors is defined as, 

1

1 ˆ ˆlinex = [exp{ ( )} ( ) 1].
N

t t t t
t

a a
N

   


                  (2.14) 

The choice of parameter a is subjective. The larger positive a becomes, the larger the 

penalty for underestimating errors. This is because if 0a  , the lose function is ap-

proximately linear for overprediction and exponential for underprediction.  

 

Given that most investors would treat gains and losses the differently, the use of an 

asymmetric lose function would be favored. However, they are not commonly used in 

literature. 

 

 

2.2.3  Diebold and Mariano (DM) Test for Predictive Accuracy 

 

If the forecasting error distribution of one model dominates the forecasting error dis-

tribution of another model, then the comparison is straightforward [Granger (1999)]. 

However, this is rarely the case in practice. In practice, most of the comparisons are 

based on the error statistics described in section 2.2.1. It is important to note that these 

error statistics are themselves subjected to error and noise. Therefore, if the difference 

is not significant enough, we cannot conclude that model B is better than model A based 

on the conclusion that the error statistic of model A is higher than model B. In order to 

make an accurate conclusion, we need to perform tests of significance.  

 

Usually when evaluating out-of-sample forecasting, the rolling scheme method is used. 

However, since our time series models intrinsically do not put much weight on earlier 

forecasts, it is not necessary to use the rolling scheme method. A good test to compare 

the errors for both the recursive scheme and the rolling scheme along with small sam-

ples inefficiencies would be the Diebold and Mariano (DM) test for predictive accuracy. 

 

Let 1
ˆ{ }Tit tX  and 1

ˆ{ }Tjt tX  be the two competing sets of forecasts from models i and j re-
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spectively for the time series 1{ } Tt tX  . Subsequently, let us define the associated forecast 

errors as, 

1 1 1

1 1 1

ˆ{ } { } { }
ˆ{ } { } { } ,

T T T
it t t t it t

T T T
jt t t t jt t

e X X

e X X
  

  

 

 
                       (2.15) 

where 1{ }Tit te  are the error terms for model i and 1{ }Tjt te  are the error terms for model j . 

The accuracy of the forecast is measured by a particular loss function (Error Statistics 

in section 2.2.1) ( )g  such that, 

ˆ( , ) ( )
ˆ( , ) ( ).

t it it

t jt jt

g X X g e

g X X g e




                           (2.16) 

To determine if there is indeed a statistically significant difference between the error 

statistics of the two models, we set to null hypothesis and alternative hypothesis to be, 

0
ˆ ˆ: ( , ) ( , )

ˆ ˆ: ( , ) ( , ) .

t it t jt

a t it t jt

H E g X X E g X X

H E g X X E g X X

      
      

                  (2.17) 

If we were to reject the null hypothesis, that means that there is a statistically signi-

ficance difference between the error statistics of model i and model j . Therefore, the 

model with the lesser error statistics will be the better model. If we cannot reject the 

null hypothesis, this means that there is no statistically difference between the two 

models’ error statistics, and we cannot come to a conclusive conclusion. Let us define the 

loss differential as, 

( ) ( ).t it jtd g e g e                             (2.18) 

Therefore, the mean of the loss differential is defined as, 

1

1 ( ) ( ) ,
T

it jt
t

d g e g e
T 

                           (2.19) 

and the test statistic is defined as, 

where (0, 1) ,
1

d̂

dS S N
f

T

                       (2.20) 

where, 

0
1

ˆ 2 , cov( , ) ,j j t t jd
j

f d d  





                      (2.21) 
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and d̂f is the consistent estimate of the asymptotic variance of Td . The asymptotic 

variance is used in the statistic to reduce serial correlations in the loss differentials. 

Since S is normally distributed, we could reject the null hypothesis at a 5% level 

if 1.96S  .  

 

When forecasting evaluations, it is important to distinguish between in-sample and 

out-of-sample forecasts. A good forecasting model is one which can withstand the ro-

bustness of an out-of-sample test. It is also important to note that different forecasting 

methods are better suited to different financial markets, trading environment and eco-

nomic conditions. 



28 
Chapter 3  ARCH 

 

3  ARCH 
 

As stated in Chapter 1, the financial markets returns distributions are far from being 

stable and constant. Volatility in these markets tends to cluster together, causing the 

financial markets to either fluctuate erratically sometimes, or remain relatively calm 

during other times. Another characteristic of financial market volatility is the time va-

rying nature of the returns. However, all these features are important as it allows us to 

extract information and model it.  

 

The first person to discover and implement a new class of time series was Robert Engle. 

He was awarded the 2003 Memorial Nobel Prize in Economics for this contribution. He 

named this new class of time series models the Autoregressive Conditional Heteroske-

dascity (ARCH) model. This chapter will focus on subsequent modifications of the 

ARCH class of models, and also introduce our proposed GARCH-S model. The 

GARCH-S model was derived from our own proposed Modified-GARCH model. Ever 

since Robert Engle proposed his ARCH model, several other ARCH type models have 

been developed. The popular ones include GARCH, GJR-GARCH and EGARCH. 

 

In section 3.7, we shall propose our own GARCH-S model, and evaluate the GARCH-S 

model against other ARCH type models in section 3.9. In this chapter, we will use the 

Nikkei 225 daily values from 5th January 2006 to 28th May 2010. The corresponding 

Nikkei 225 log returns will be from 6th January to 28th May 2010.  

 

 

3.1  Data Preparation 
 
Before we can start modeling, we need suitable data. For our proposed mod-

ified-GARCH and GARCH-S model, we need to make use of both the Nikkei 225 data 

and the S&P 500 data as input variables for the model. Our proposed models make use 

of time 1t   S&P 500 data together with time 1t  Nikkei 225 data as inputs to produce 

a time t output.  
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Unfortunately, Japan and America have different public holidays. This means that, for 

a few days a year, the Nikkei 225 and S&P 500 operate on different days. This difference 

can cause a major problem for us. Even if just one day is off, it will mean that the re-

maining data will be off. From figure 3.1, we can see that just a difference of one day 

will create a chain of undesirable effects. It could potentially everything to be wrong. 

 

Therefore, it is necessary to prepare the data before using. There are two scenarios: 

either the Nikkei 225 is on holiday and the S&P 500 is not, or the Nikkei 225 is not on 

holiday but the S&P 500 is. For scenario one, for the Nikkei 225 holiday at time t , we 

need to delete the previous one-day S&P 500 index value at time 1t  . Then we need to 

move back the S&P 500 data by one time unit. 

 

In the case of scenario two, for the S&P 500 holiday at time t , all we need to do is delete 

the corresponding Nikkei 225 index value at time t , and move back the Nikkei 225 in-

dex by one time unit. After this rather long and mundane process of preparing our data, 

we can finally proceed to modeling our volatility models. Figures 3.1, 3.2, and 3.3, pro-

vide a graphical representation of what we have just described. 

 

 

Date 

(Nikkei) 

Date  

(S&P 500) 

19 19 

20 20 

22 21 

23 22 

24 23 

25 24 

Figure 3.1 Problem caused by the Nikkei 225 and the S&P 500 operating on different 

days (red indicating mismatch) 
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Date 

(Nikkei) 

Date  

(S&P 500) 

19 19 

20 20  21 

22 21  22 

23 22  23 

24 23  24 

25 24  25 

Figure 3.2 Data preparation for scenario one where the Nikkei 225 index falls on a 

holiday but not the S&P 500. Blue Arrow indicates the direction in which the data have 

been moved forward. 

 

 

Date 

(Nikkei) 

Date  

(S&P 500) 

19 19 

20 20 

21  22 

22  23 23 

23  24 24 

24  25 25 

Figure 3.3 Data preparation for scenario two where the S&P 500 index falls on a holiday 

but not the Nikkei 225. Blue Arrow indicates the direction in which the data have been 

moved forward. 
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3.2  ARCH 
 
In 1982, Robert Engle wrote a groundbreaking research paper titled, “Autoregressive 

Conditional Heteroscedasticity with Estimates of the Variation of United Kingdom In-

flation”. The paper introduced the ARCH class of time series statistical models. These 

class of models made use of the natural time-varying clustering effects of volatility to 

model volatility. It was a simple, yet powerful method to model volatility. The ARCH(q) 

model is defined as, 

2

1

, (0, )

,

0, 0 such that 0,

t t t t

t t t
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t j t j
j

j t

r N h

z h

h

h
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

  

 




 



 

  





                     (3.1) 

where tr is defined as the return of the asset at time ,t  is the conditional mean, t is 

the error, or innovation, at time ,t and (0,1)tz N .  and j are the coefficients of the 

ARCH(q) model, and th is the conditional variance of the asset returns. The ARCH 

model is based on the conditional variance of asset returns, th , which is derived from the 

previous day’s error, 1t  . 

 

The ARCH model intrinsically provides us with a one-day volatility forecast. The mul-

ti-step-ahead forecast can be formulated by using 2[ ]t tE h    . 

 

 

3.2.1  Weaknesses of the ARCH Model 

 

It is important to note that there are a few weaknesses of the ARCH model. These 

weaknesses are mainly [Tsay (2010)], 

 

1. The ARCH model assumes that positive and negative shocks to the volatility have 

the same effect. However, this is not the case in the ARCH model [McAleer, Ver-

hoeven (2003)]. 



32 
Chapter 3  ARCH 

 

2. The ARCH model is rather restrictive in its parameters. This limits the ability of an 

ARCH model with Gaussian innovations to capture kurtosis.  

3. The ARCH model does not provide any new insight for understanding the source of 

variations of the financial time series. It gives a way to describe the behavior of the 

conditional variance but no indication as to what causes.  

4. In general, the ARCH model is likely to overpredict the volatility because it re-

sponds slowly to large isolated shocks to the returns.  

 

Since the ARCH models have these weaknesses, why do we still continue to use them? 

This is because the ARCH class of models is simple to implement and quite effective to a 

certain degree. Nothing is perfect in finance or the social sciences. Emanuel Derman, a 

famous financial engineer and physicist, once said, “In Physics there may one day be a 

Theory of Everything; in finance and the social sciences, you’re lucky if there is a usable 

theory of anything.” What he meant is that in Physics, you can model Physics equations 

and apply it to the real world with perfect accuracy. However, it impossible to model 

financial equations and apply it to real world stock markets with perfect accuracy. In 

fact, we are nowhere close to the true real world values. In financial volatility modeling, 

even if we have the best fit model for a specific financial market, it is still impossible to 

model the “true volatility” to a degree of high accuracy. In fact, there is not even a fixed 

definition of “true volatility”. The researcher could choose what his/her “true volatility” 

will be. However, in general, squared daily returns, realized volatility are the most 

commonly used “true volatility”.  

 

Therefore, we should be content with what models we have right now, while continuing 

to develop better models. Even though time series volatility modeling will never 

duplicate the “true volatility”, time series volatility modeling research is still an 

important topic. So much so that Robert Engle and Clive W.J. Granger were awarded 

the 2003 Memorial Nobel Prize in Economics for their contribution to time series 

volatility modeling.  
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3.3  Generalized ARCH (GARCH) Model 
 
As stated in section 3.2, the ARCH class is the most basic model that started everything. 

In 1986, Tim Bollerslev, a bright student of Robert Engle, developed the Generalized 

Autoregressive Conditional Heteroskedascity (GARCH) model. Since 1986, other more 

complex models have been created but they all have the roots based on the GARCH 

model.  

 

 

3.3.1  Introduction to GARCH 

 

The GARCH model is basically the same as the ARCH model except that the conditional 

variance of asset returns, th , is not only derived from the previous day’s error, 1t  but 

also from the previous day’s conditional variance of the asset return. The GARCH model 

is defined as, 

 
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            (3.2) 

where , , andj i   are the coefficients of the GARCH(p, q) model. For the GARCH(1,1), 

the constraints 1 10, 0   are needed to make sure that 0th  . The constraints 

on i i  implies that the unconditional variance of i is finite, while its conditional 

variance th evolves over time. 

 

The unconditional variance for the GARCH(p, q) is defined as, 

1 1

.
1

q p

j i
j i

h 

 
 


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                           (3.3) 
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From equation 3.3, the GARCH(p, q) is covariance stationary if and only if,  

1 1
1.

p q

i j
i j
 

 

 
  

 
                             (3.4) 

For most financial practical applications, it is sufficient enough to use the GARCH(1,1) 

model. There is no need for higher order models. Besides, the GARCH(1,1) model is the 

easiest to understand and implement, but yet is still effective enough to become widely 

used around the world.  

 

 

3.3.2  GARCH(1,1) 

 

In financial market volatility, usually, the GARCH(1,1) model is sufficient enough. The 

GARCH(1,1) model is defined as, 

 2
1 1 1 1 1 1 1 1, 0 , 1, 1.t t th h                           (3.5) 

Firstly, a large 2
1t  or 1th  gives rise to a large th . This means that a large 1th  tends to be 

followed by another large th , generating, again the well-known behavior of volatility 

clustering in financial time series. 

 

Secondly, it can be shown that if  22
1 1 11 2 0      , then 

 
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    

                   (3.6) 

[Refer to the appendix for the proof of equation 3.6] Consequently, similar to ARCH 

models, the tail distribution of a GARCH(1,1) process is heavier than that of a Normal 

distribution. This means that large changes are more often to occur as compared to a 

Normal distribution.  

 

The one-step ahead forecast for a GARCH(1,1) model is, 

2
1 1 1

ˆ .t t th h                                  (3.7) 
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Subsequently, the two-day forecast will be, 

 
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                         (3.8) 

[Please refer to Appendix for more information on proof.] By repeat substitution in eq-

uation 3.8, we can derive a general formula for forecasting the volatility of GARCH(1,1), 

    2
1 1 1 1

1 1

ˆ .
1t t th h


     
        

                (3.9) 

From equation 3.9, we are able to see that long-term forecast by the GARCH(1,1) model 

converges to the unconditional variance of  1 1/ [1 ]    . This is because as goes to 

infinity, the term on the right hand side of the general equation disappears. This is also 

known as “mean reversion”, which is another property of the GARCH models. Even 

though the GARCH model deviates around the mean, the GARCH model converges to a 

mean in the long run.  

 

 

3.3.3  Problems with Using Daily Squared Returns 

 

The GARCH models also share the same weaknesses as the ARCH models, as stated in 

section 3.2. For this chapter, we shall use both high-frequency data and daily returns to 

model volatility. However, using daily squared returns to proxy daily volatility might 

provide an imprecise estimator of the volatility, th . From equation 3.2, 

, ,t t t t tr z h                             (3.10) 

and (0, 1)tz N . Then 

2 2
1 1| | ,t t t t t tE h E z h                                 (3.11) 

where 1t is all information in the set up to time 1t  . Equation 3.11 is derived as a 

result of the assumption that 2 2
(1)tz  , where the Normal distribution squared is a 

special case of the Chi-squared distribution. However, since the median of a 2
(1) dis-

tribution is 0.46, 2
t would be less than 0.5 th more than 50% of the time. In fact, 
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2 2 2 21 3 1 3Pr , Pr , 0.26.

2 2 2 2t t t tz                         
             (3.12) 

This means that 2
t is 50% greater than or smaller than 2

t nearly 75% of the time. 

Therefore, using 2
t as a volatility proxy will lead to low 2R values and undermine the 

forecast inference’s accuracy. However, for the one-day forecast, the 2R value will in-

crease by three to four folds when intraday 5 minutes squared returns are used to proxy 

the actual volatility instead of daily squared returns [Blair, Poon, Taylor (2001)].  

 

When comparing forecast evaluations, using the daily squared returns as a proxy for 

the “true volatility” could lead to imprecise evaluations as the squared returns are an 

extremely noisy proxy of the “true volatility” [Andersen, Bollerslev (1997)]. In financial 

volatility research, it is now common to use intraday returns as a measure to proxy the 

“true volatility”. However, just by using the intraday returns does not take into account 

the overnight gain/loss of the asset price. Therefore, a definition for “true volatility” has 

still not been clearly established.  

 

In our thesis, we used the squared daily returns to proxy “true volatility”, as the vola-

tility derived from using daily returns not did differ too much from the volatility derived 

by using intraday returns for our given time period. Furthermore, as stated in section 

1.2, we are not extremely concerned with the overall forecasting accuracy but rather 

will the GARCH-S provide any new information in forecasting as compared to other 

GARCH models. 

 
 
3.3.4  Autocorrelation Function 

 

Before we can start using time series to model volatility, we need to understand the 

autocorrelation function (acf). The acf is important because it is important tool used in 

choosing the right model to fit our data. If we have some serial correlation left in the 

residuals of our models, it means that our model might be not the best fit for the data.  

 

The acf is defined as, 
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where tx is defined as a random variable x at time t , and ka is the autocorrelation 

function value at lag k . The acf is a tool that allows us to calculate the cross-correlation 

of the data within itself.  

 

A property of the autocorrelation function is that autocorrelation of the powers of an 

absolute return are highest at power one: 1 1( , ) ( , ), 1d d
t t t tcorr r r corr r r d   . [Ding, 

Granger (1995)] call this property the Taylor effect, following [Taylor (1986)].  

 

Another extremely popular tool used to check a model’s fit is the Box-Ljung test, which 

is a type of portmanteau test. The Box-Ljung is defined as, 

 
2

1

ˆ
( ) 2 ,

h
k

k
Q h T T

T k



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                         (3.14) 

where T is the sample size, 2ˆk is the sample autocorrelation at lag k , and h is the 

number of lags being tested. The null hypothesis is 0 1: ... 0kH     , and the alter-

native hypothesis is : 0aH   . The null hypothesis will be rejected if 2( )Q h  , where 
2
 denotes the 100(1 ) th percentile of a chi-squared distribution with m degrees of 

freedom. We will perform the Box-Ljung test on the residuals of our fitted model. 

 

 

3.3.5  Modeling the Nikkei 225  

 

The general guidelines for building a volatility model for a time series return are, 

 

1.) State a mean equation by testing for serial dependency in the data. To eliminate 

serial dependency in the returns, we could use an ARMA model. 

2.) Use the residuals of the mean equation to test for ARCH effects. 

3.) State a volatility model if the ARCH effects are statistically significant. 

4.) Check the fitted model and revise if necessary.  
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Figure 3.4 Historical daily returns for the Nikkei 225 

 

Let us first start by modeling the Nikkei 225 using the basic GARCH(1,1) model. The 

returns of the Nikkei 225 from 5th January 2006 to 28th May 2010 are displayed in 

figure 3.4, and the corresponding acf plot for the Nikkei 225 returns from 6th January 

2006 to 28th May 2010 is displayed in figure 3.5. 

 

From figure 3.5, even though there are some statistically significant lags at the 0.05 

level, we believe that there is no need to apply an ARMA model on the returns. The acf 

suggests that the returns are quite clearly not correlated with one another. Subse-

quently, let us take a look at figure 3.6 which is the Partial Autocorrelation Function 

(pacf) plot of the Nikkei 225 returns 5th January 2006 to 28th May 2010. The pacf is a 

function of the acf itself. 

 

The pacf plot has some statistically significant lags showing evidence that ARCH effects 

are present. We can now proceed to applying the GARCH(1,1) model to the Nikkei 225 

data.  
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Figure 3.5 acf plot for the Nikkei 225 returns from 6th January 2006 to 28th May 2010 
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Figure 3.6 pacf plot for the Nikkei 225 returns from 6th January 2006 to 28th May 2010
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Using the Gibbs Sampling method through R and JAGS [Please refer to the Appendix 

for more information on the program and type of Bayesian Markov Chain Monte Carlo 

(MCMC) method used in this thesis.] The GARCH(1,1) model summary obtained is, 

 

Model: 

GARCH(1,1) 

Parameters     Estimate     Std. Error     t value     Pr(>|t|) 

>             5.33e-06      1.91e-06       2.79       0.0053 

> 1             1.15e-01      2.07e-02       5.56       2.70e-08 

> 1             8.69e-01      2.16e-02       40.23      < 2.22e-16 

 

The p-values for all the parameters were much smaller than 0.05. Therefore, all para-

meters obtained were statistically significant to the model. From the obtained parame-

ters, our unconditional variance was estimated to be 0.00033. This results in a standard 

deviation of 0.018. 

 

The DIC value obtained for the GARCH(1,1) was -5788.5. This DIC value will be used a 

base comparison against other models’ DIC. Using the Box-Ljung test, all p-values ob-

tained were much greater than 0.05, meaning we could not reject the null hypothesis 

that the data is random. And this is extremely important, as it proves that the residuals 

of the GARCH(1,1) are not autocorrelated. As an example the (1)Q obtained had a 

p-value of 0.57.  

 

We also plotted the acf and pacf of the residuals of the GARCH(1,1) model. Figures 3.7 

and 3.8 are respectively the acf and pacf plots for the residuals of the GARCH(1,1) 

model fit on the Nikkei 225 for the time period from 6th January 2006 to 28th May 

2010. 

 

From figures 3.7 and 3.8, the residuals are clearly not statistically significant with one 

another. This is evidence agrees with the evidence provided from the Box-Ljung statis-

tics test that the GARCH(1,1) model provides a good fit for the Nikkei 225 index.  
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Figure 3.7 acf plot for the GARCH(1,1) model residuals of the Nikkei 225 

 

 

0 5 10 15 20 25 30

-0
.0

6
-0

.0
2

0.
02

0.
04

0.
06

Lag

P
A

C
F

 

Figure 3.8 pacf plot for the GARCH(1,1) model residuals of the Nikkei 225 
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Figure 3.9 Plot of the GARCH(1,1) volatility against Nikkei 225 daily squared returns 

volatility from 6th January 2006 to 28th May 2010 

 

Finally, we plotted the volatility obtained from the GARCH(1,1) against the daily 

squared returns volatility proxy. As described in section 3.3.3, please note that it will be 

quite noisy using the daily squared returns as a volatility proxy. From the graphical 

representation of figure 3.9, we can see that the GARCH(1,1) model provides a rather 

satisfactory fit of the Nikkei 225 squared returns volatility.  

 

 

3.5  GJR-GARCH 
 
The GARCH is a basic model. Since 1986, numerous other modified GARCH models 

have been created. One of the more commonly used models is the Glos-

ten-Jagannathan-Runkle GARCH (GJR-GARCH) model [Glosten, Jagannathan, Run-

kle (1993)]. This model is an asymmetrical model in which more weight is given to 

negative innovations (errors) as compared to positive innovations (errors). As stated in 

section 3.2, one of the weaknesses of the ARCH class of models is that it assumes posi-
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tive and negative shocks result in equal volatility. But in practice, negative shocks often 

produce higher volatility as compared to a positive shock of the same magnitude. This is 

also known as the leverage effect, which first appeared in [Black (1976)]. Therefore an 

asymmetrical model such as the GJR-GARCH would help in overcoming such a weak-

ness.  

 

The GJR-GARCH (p, q) model is defined as, 
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where , , andj j i    are the coefficients of the GJR-GARCH (p, q) model.  

 

The difference between the GJR-GARCH model and the GARCH model is that there is 

an additional j coefficient term. This additional term allows the model to be asymme-

trical. For the GJR-GARCH model to be covariance stationary, we need the condition 

that 

1 1
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                          (3.16) 

In financial volatility modeling, the GJR-GARCH(1,1) model can provide a satisfactory 

fit for most modeling purposes. The GJR-GARCH(1,1) is defined as, 
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                    (3.17) 

and the one-step ahead forecast for the GJR-GARCH(1,1) model is, 

2 2
1 1 1 1

ˆ .t t t t th h I                                (3.18) 

The additional 1 cause the one-day forecast volatility to be greater if the current day’s 

innovation (error) is negative. This property agrees with the observed fact that negative 

shocks result in higher volatility than positive shocks. Using R’s garchFit function, we 
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obtained the following parameters for the GJR-GARCH(1,1) model, 

Model: 

GJR-GARCH(1,1) ****Using garchFit function in R**** 

Parameters     Estimate     Std. Error     t value     Pr(>|t|) 

>             5.01e-06      1.47e-06       3.40       0.00068 

> 1             5.01e-02      3.02e-02       1.65       0.098 

> 1             9.00e-01      1.74e-02       51.61      < 2.22e-16 

> 1             7.60e-01      4.93e-01       1.54       0.12

 

Even though the parameters were all statistically significant, the obtained GJR- 

GARCH(1,1) model is not covariance stationary. This is because the estimated para-

meters from the garchFit model do not satisfy equation 3.16. 1 has an unusually large 

weight of 0.76. This unusually large weight will exert too much influence on the fitted 

model and this will completely overlap any volatility momentum or mean reversion ef-

fects that we are trying to calculate.  

 

However, we could use Bayesian statistical methods to estimate the parameters. Using 

R and JAGS (Just Another Gibbs Sampling) program, we obtain the following parame-

ters,  

 

Model: 

GJR-GARCH(1,1) 

Parameters     Estimate     Std. Error     t value     Pr(>|t|) 

>             6.03e-06      1.70e-06       3.55       0.00039 

> 1             1.16e-02      0.017          0.69       0.49 

> 1             8.85e-01      0.021        43.04       <2.22e-16

> 1             1.60e-01      0.033          4.94       7.81-07

 

The t-value for the 1 parameter is quite low, showing evidence that the 1 parameter 

might be statistically insignificant. This means that we could ignore the 1 term in the 

equation, as it is no different than 0. However, since the 1 parameter makes only a 

rather small contribution to the volatility model as compared to other parameters, there 
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is no need for any major concern, we still continued to use it in our model. The para-

meters estimated from using R and JAGS now satisfy equation 3.16, and is covariance 

stationary. The DIC obtained was -5820.3. 

 

Using the Box-Ljung test, all p-values found for lags up to 20 could not provide enough 

evidence to reject the null hypothesis. Therefore, there are no autocorrelations in the 

standardized residuals. We are now able to proceed to modeling the GJR-GARCH(1,1) 

model’s volatility using these parameters. 

 

Figure 3.10 displays the GARCH(1,1), GJR-GARCH(1,1) volatility plotted against the 

Nikkei 225 historical volatility. From figure 3.10, we can see a graphical comparison 

between the volatility models and that the GJR-GARCH(1,1) is a slightly better model 

at modeling periods of high volatility as compared to the GARCH(1,1). Numerical 

evaluations and comparison will be worked out in chapter 4. 

 

For easier comparison purposes, figure 3.11 provides a zoomed-in representation of 

figure 3.10 at the time of the American subprime mortgage crisis. 
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Figure 3.10 Plot of GARCH(1,1), GJR-GARCH(1,1) volatility against Nikkei 225 daily 

squared returns volatility 
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Figure 3.11 Enlarged plot of figure 3.10 focusing on the subprime mortgage crisis 
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3.6  Modified-GARCH 
 

Before we proposed the GARCH-S model, we would like to begin with an earlier model 

we developed. We named this model the modified-GARCH model. Our goal of this model 

was to provide a better fit of the Nikkei 225 index while improving the one-day forecast 

accuracy by using S&P 500’s as a secondary market to augment the target. While the 

overall forecast did not improve [see chapter 4], we did gained an important concept: 

that is that the modified-GARCH model was able to capture extremely high periods of 

volatility well. We then further this concept and developed our GARCH-S model. 

 

The idea behind our proposed modified-GARCH model is to make use of the strong 

correlation between Nikkei 225 and the S&P 500 returns, especially in recent years. 

From 6th January 2006 to 28th May 2010, the correlation between the time t Nikkei 

225 returns and time 1t  S&P 500 returns was 0.61.  

 

The S&P 500 index is an index designed to reflect the state of the largest financial 

market in the world, and as such has a huge influence on other financial markets. 

Therefore, we expect that the Nikkei 225’s volatility could potentially increase if the 

S&P 500’s volatility increases or correspondingly, a higher absolute return of the S&P 

500 at time 1t  would likely result in Nikkei 225 having higher volatility at time t . If 
we could extract information from the S&P 500, it could be potentially used to better 

model and forecast the Nikkei 225 volatility. 

 

 

3.6.1  Programming the Modified-GARCH Model  

 

In developing our modified-GARCH model, we used the GJR-GARCH(1,1) model for 

inspiration. Our proposed modified-GARCH (p, q) model is defined as, 
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               (3.19) 

where 1ty  is the S&P 500 (correlated secondary market) returns at time 1t  , and  is 

an arbitrary parameter that the user can set according to the data. It is extremely im-

portant that 1ty  (secondary market) is chosen from an influential market. The 1t  re-

turns of the influential market (secondary market) should be correlated to the t returns 

of the influenced market. The influenced market in this case is the Nikkei 225 (primary 

market). The  chosen should correspond to a relatively large number on the magnitude 

scale of the absolute returns of the S&P 500 (secondary market). Typically, only the top 

22% of the absolute returns should occur above  in magnitude. The user could use a 

different value other than 22%. But the typical range is from 15% to 30%. If the number 

is used is too small, the modified GARCH would not be able to capture the peaks of high 

volatility, and be no different than a GARCH model. If the number used is too large, 

then the modified GARCH model would drift away from the mean “true volatility” ren-

dering it rather useless. 

 

The modified GARCH model drastically differs from other GARCH models because it 

introduces a foreign term, the secondary market. This is important because a foreign 

term allows the modified GARCH model to grasp the peaks of high volatility. If the 

primary market were to replace the secondary market in the modified GARCH model, 

the model would not be able to grasp the peaks of high volatility and be not much dif-

ferent as compared to the GARCH or GJR-GARCH models. We need to model the pri-

mary Nikkei 225 market while adding a pinch of information from the secondary S&P 

500 market to grasp the peaks of high volatility. 

 

From figure 3.12, we obtain a graphical representation of the absolute returns of the 

S&P 500. The  value was chosen to be 0.015. On figure 3.12, the  value of 0.015 is 
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Figure 3.12 Absolute returns of S&P 500 from 5th January 2006 to 27th May 2010 and 

the straight line (red) with a value of 0.015 on the y-axis.  

 

represented by a red line. From figure 3.12, it is clear that only the absolute returns 

that are higher in magnitude are above the red line.  

 

Since this is an original model, there are no statistical programs or packages that could 

model this modified-GARCH model. Therefore, we have to create and program our 

model. There are 5 main steps that we must undertake when creating any GARCH type 

models using the Maximum Likelihood Method (MLE) are, 

 

1. The initialization of the time series, model parameters and boundaries. 

2. Setting the conditional distribution function (Normal Distribution) and composing 

the composition of the log-likelihood function. 

3. Optimizing the model parameters and computing the numerical Hessian if using 

Newton-type optimization methods. 

4. The summary of the optimization results.    

5. Testing and verification. 
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[Please refer to the Appendix for a detailed description of our program and code.] For 

our program, we used the modified-GARCH(1,1) model and choose 0.015 for  , 
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                    (3.20) 

Using our modified-GARCH program, we obtained the following estimated parameters, 

 

Model: 

Modified-GARCH(1,1)  ****Using Maximum Likelihood Estimation**** 

Parameters     Estimate     Std. Error     t value     Pr(>|t|) 

>             7.25e-06      2.19e-06       3.32       0.00091 

> 1             6.71e-02      1.95e-02       3.45       0.00056  

> 1             8.85e-01      2.32e-02       37.64      < 2.22e-16 

> 1             1.60e-01      3.85e-02       3.14       0.001

The t-values and p-values provide evidence that the estimated parameters were statis-

tically significant to the model.  

 

The above stated MLE using Newton type estimation method is one method to esti-

mated parameters. However, our program might run into problems such as the opti-

mization not converging to the “true” parameters. 

 

Therefore, for stability and comparison purposes, we shall concentrate on the more 

dynamic and flexible Bayesian MCMC (Gibbs Sampling) method to estimate parame-

ters. Since Gibbs Sampling and MLE using Newton type estimation methods are two 

different concepts, the values of the parameters obtained from each of these estimation 

methods will be different. In general, Bayesian Statistics and frequentist MLE estima-

tions should be treated as two different cases. Although in some cases, they could agree 

with one another [Casella, Berger (1987)]. The advantage of having both methods 

available to us is that we can always compare our results using both methods. The 

values obtained through the Gibbs Sampling method are, 
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Model: 

Modified-GARCH(1,1) 

Parameters     Estimate     Std. Error     t value     Pr(>|t|) 

>             9.11e-06      2.90e-06       3.19       0.0014 

> 1             7.41e-02      0.021          3.49       0.00050  

> 1             8.58e-01      0.029          29.95      < 2.22e-16 

> 1             1.43e-01      0.048          2.98       0.0029 

 

All the t-values obtained were sufficiently high, showing evidence that all parameters 

are statistically significant. The DIC value obtained was -5798.3. When compared to the 

GARCH(1,1) DIC value of -5788.5, the DIC value decreased by around 10. This means 

that the extra term we introduced in the Modified-GARCH(1,1) was able to provide new 

information as compared to the GARCH(1,1). Using these evidences, we can conclude 

that all the parameters made a statistically significant contribution to the model.  

 

In this case, the parameters estimated from the Gibbs Sampling method are generally 

within one standard deviation from the parameters estimated using the MLE method. 

Therefore, in this case, the estimates derived by the MLE and Gibbs Sampling method 

did agree to a certain extent.  

 

Using the Box-Ljung test, we found no evidence against the null hypothesis that the 

residuals are random. Therefore, the modified-GARCH(1,1) was found to be a satisfac-

tory fit for the Nikkei 225’s volatility. We can now proceed to calculating and plotting 

volatilities from the modified-GARCH(1,1). 

 

From figures 3.13 and 3.14 we can see that the modified-GARCH(1,1) typically depicts a 

more accurate representation of high volatility as compared to the GARCH(1,1) and 

GJR-GARCH(1,1). The GARCH(1,1) and GJR-GARCH(1,1) tends to underestimate vo-

latility, especially during the subprime mortgage crisis period, as compared to the mod-

ified-GARCH(1,1) model. This is because the Nikkei 225’s daily volatility and the S&P 

500’s daily volatility have a higher correlation with each other during periods of high 

volatility. Thus, the modified-GARCH(1,1) model is able to more accurately use the in-
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formation from the S&P 500 to model the Nikkei 225’s volatility during periods of high 

volatility. The result is a reduction in underestimated errors. However, the overesti-

mated errors increase as a direct consequence. 
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Figure 3.13 Plot of GARCH(1,1), GJR-GARCH(1,1), Mod-GARCH(1,1) volatility against 

the Nikkei 225 daily squared returns volatility 
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Figure 3.14 Enlarged plot of figure 3.13 focusing on the subprime mortgage crisis 
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3.7  GARCH-S 
 
The GARCH-S model is the main focus of our research. Using information gained from 

our modified-GARCH model, we will take the modifications one step further. From sec-

tion 3.6, we have shown that our additional parameter does provide new information in 

modeling the volatility to a certain extent. Our GARCH-S model takes this additional 

parameter one step further by using the S&P 500’s innovations (secondary market) as 

an actual term in model. We believe this idea works because the absolute returns of the 

S&P 500 in figure 3.12 closely resembles the Nikkei 225 (primary market) daily squared 

returns volatility. Furthermore, it might even provide new information that is not 

available just by using the Nikkei 225’s (primary market) daily returns. 

 

The main idea behind the GARCH-S model is that high volatility in the S&P 500 at 

time 1t  has a strong correlation to high volatility in the Nikkei 225 at time t . There-

fore if the returns for the S&P 500 at time 1t  were large, then the volatility for the 

Nikkei 225 at time t will be large. Our proposed GARCH-S (p, q) model is defined as, 
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          (3.21) 

where t is the innovation (error) of the S&P 500 (correlated secondary model) at time t . 

The main difference between equation 3.20 and equation 3.18 is that equation 3.20 now 

has an additional 2
t j  term in the equation.  

 

For our simulation, we used the GARCH-S(1,1) model, which is defined as, 
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                (3.22) 

Before we can begin simulating the GARCH-S model, we first need to remove any serial  



55 
Chapter 3  ARCH 

 

 

0 5 10 15 20 25 30

-0
.1

5
-0

.0
5

0.
05

Lag

A
C

F

 

Figure 3.15 Autocorrelation function plot for the model residuals of the S&P 500 

 

correlations in the S&P 500 returns. From figure 3.15, the acf plot of the S&P 500 re-

turns shows evidence that there is indeed serial correlation present. 

 

From the pacf plot of figure 3.16, we can see that lags 1 and 2 are significant lags. This 

hints that an ARMA (2, 0) (Autoregressive Moving Average) model might be useful in 

reducing the serial correlation of the S&P 500’s return.  

 

Subsequently, we proceed to implement the ARMA (2, 0). The estimated parameters for 

the ARMA (2, 0) fit are,  

 

Model: 

ARMA(2,0) 

Parameters     Estimate     Std. Error     t value      Pr（＞|t|） 

> ar1            -0.20          0.031        -6.51       7.64e-11 

> ar2            -0.086         0.031        -2.80       0.0005  

> Intercept      -0.00021       0.00052      -0.40       0.69 
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Figure 3.16 Partial autocorrelation function plot for the model residuals of the S&P 500  
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Figure 3.17 Autocorrelation function plot for the model residuals of the S&P 500 ARMA 

(2, 0) model from 6th January 2006 to 28th May 2010 
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We can see that the p-values for the ar1 and ar2 coefficients are extremely low indicat-

ing that they are statistically significant. The intercept is not statistically significant 

but we can ignore this as the intercept’s value is extremely low and would be inconse-

quential when modeling. 

 

Figure 3.17 displays the acf for the S&P 500 ARMA (2, 0) model. From figure 3.17, we 

can see that the ARMA (2, 0) model did indeed reduce serial correlations in the S&P 500 

returns. 

 

We can now use the ARMA (2, 0) to calculate the innovations of our S&P 500 returns, 

1 20.00021 0.20 0.086 .t t t ty y y                        (3.23) 

After we have obtained our innovations for the S&P 500, we can now move on to esti-

mating our GARCH-S(1,1) using the Gibbs Sampling method. The following parameters 

were obtained, 

 

Model: 

GARCH-S(1,1) 

Parameters     Estimate     Std. Error     t value      Pr（＞|t|） 

>              2.08e-05      8.60e-06      2.41        0.016 

> 1             6.73e-02      0.022         3.02        0.0025  

> 1             7.47e-01      0.069         10.88       <2.22e-16 

> 1             1.29e-01      0.040         3.22        0.0013 

 

All the p-values obtained were sufficiently small, showing evidence that the parameters 

are all statistically significant. The DIC value obtained was -5833.7. This DIC value 

was much lower than any other DIC values we have obtained in the past. Therefore, 

adding the S&P 500 returns to the volatility model did provide significant new infor-

mation in modeling the Nikkei 225 volatility. 

 

Using the Box-Ljung test, we found no evidence against the null hypothesis that the 

residuals are random. Therefore, the GARCH-S(1,1) was found to be a satisfactory fit 
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for the Nikkei 225’s volatility. We can now proceed to calculating and plotting volatili-

ties from the GARCH-S(1,1). 

 

From figures 3.18 and 3.19, we can see that the GARCH-S(1,1) and mod-

ified-GARCH(1,1) models indeed have reduced the underestimated errors. From 2006 to 

2007, the GARCH-S(1,1) and Mod-GARCH(1,1) were not as effective because the cor-

relation was not as strong between the Nikkei 225 and the S&P 500. However, during 

the American subprime mortgage, which was caused by the USA, the correlation was 

rather strong. Subsequently, the GARCH-S(1,1) and modified-GARCH(1,1) models used 

this correlation to add new information to the volatility. Therefore, from figures 3.18 

and 3.19, we can see that the GARCH-S(1,1) and modified-GARCH(1,1) differ in trend 

(less underestimate errors) as compared to the GARCH(1,1) and GJR-GARCH(1,1).  

 

However, it is difficult to make any conclusions without numerical tests. In chapter 4, 

we will perform evaluations using numerical tests. 
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Figure 3.18 Plot of GARCH(1,1), GJR-GARCH(1,1), Mod-GARCH(1,1), GARCH-S(1,1) 

volatility against the Nikkei 225 daily squared returns volatility 
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Figure 3.19 Enlarged plot of figure 3.18 focusing on then subprime mortgage crisis 
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3.8  EGARCH 
 
Before we undergo any forecast evaluations, we would like to introduce the EGARCH 

model [Nelson (1991)]. The EGARCH model is an extremely popular and widely used 

model. In fact, it has been favored for the volatility of specific stock indices and ex-

change rates by several authors [Cao, Tsay (1992)] [Heyen, Kat (1994)] [Pagan, Stewart 

(1990)]. The theory behind the EGARCH model is rather different than our GARCH, 

GJR-GARCH, and GARCH-S models. However, we would still like to compare the ef-

fectiveness of the GARCH-S model against the popular EGARCH model. 

 

The advantage of the EGARCH (p, q) model is that it specifies conditional variance in 

logarithmic form, which means that there is no need to impose an estimation constraint 

in order to avoid negative variance. The EGARCH (p, q) is defined as, 
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The conditional variance, th , depends on both the size and sign of t . With appropriate 

conditioning of the parameters, the EGARCH model will capture the stylized fact that a 

negative shock leads to a higher conditional variance in the subsequent period as com-

pared to a positive shock. The EGARCH model is covariance stationary if and only if 

1
1q

jj



 . 

 

We simulated the parameters for the EGARCH(1,1) model by using the Gibbs Sampling 

method. The following parameters were obtained, 
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Model: 

EGARCH(1,1) 

Parameters     Estimate     Std. Error     t value      Pr（＞|t|） 

>              -0.26        0.039          -6.63        3.36e-11 

> 1              0.97        0.0046         208.42      <2.22e-16  

> 1              -0.13        0.018         -7.32        2.48e-13 

> 1              0.16        0.029          5.36        8.32e-08 

 

All the p-values obtained are extremely small, showing evidence that the parameters 

are all statistically significant. The DIC obtained was -5823.8. And using the Box-Ljung 

test, we cannot reject the null hypothesis that the residuals of the fit are not random. 

Therefore, we can proceed to calculating and plotting volatilities using the 

EGARCH(1,1) model.   

 

From figure 3.20 and 3.21, we can see that the EGARCH(1,1) model does provide a ra-

ther good fit. In fact, just by looking at the graphs, the EGARCH(1,1) model seems to be 

the one closest to the “true volatility” mean. However, during the American subprime 

mortgage crisis, it could grossly underestimate volatility in some days. Therefore, 

compared to the GARCH-S, it might not be as suitable for risk management as it un-

derestimates the Nikkei 225 volatility during periods of high volatility.  

 

From figure 3.20 and 3.21, we can see a property of the GARCH class of models. The 

property is that no specific GARCH model is the best for everything. Even within a 

specific market, some GARCH models do outperform others depending on the time pe-

riod used. 
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Figure 3.20 Plot of GARCH(1,1), GJR-GARCH(1,1), EGARCH(1,1), GARCH-S(1,1) vo-

latility against daily squared returns Nikkei 225 volatility 

 

0.
00

0.
05

0.
10

0.
15

Year

V
ol

at
ili

ty

2009

Nikkei 225
GARCH(1,1)
GJR-GARCH
EGARCH(1,1)
GARCH-S(1,1)

 

Figure 3.21 Enlarged plot of figure 3.20 focusing on the subprime mortgage crisis 
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4  Evaluation 
 
In this chapter, we will evaluate and compare our models. The first part of this chapter 

is about using the more traditional error statistics found in section 2.2.1 to evaluate our 

models. Both in-sample (6th January 2006 to 28th May 2010) and out-of-sample (29th 

May 2010 to 28th January 2011) forecast accuracies will be evaluated. 

 

Since we consider the period of time around the American subprime mortgage crisis to 

be the most interesting, we will perform another evaluation analysis in section 4.3. In 

this section, we will use the in-sample data from 6th January 2006 to 13th March 2008, 

and the out-of-sample data from 14th March 2008 to 28th May 2010. By doing so, we 

can classify the period of time around the American subprime mortgage crisis as 

out-of-sample data. 

 

 

4.1  Difficulties in Forecast Evaluations 
 

Compared to other research areas, literatures on GARCH forecast evaluations have 

been much less. The main reason why so little research is being on forecast evaluations 

is because a forecast evaluation is not a worthwhile research area. This is because there 

are so much numerous assumptions we have to make. For example, we do not even have 

a proper definition of “true volatility”. What one person defines as “true volatility” might 

not be the “true volatility” definition for another person. There is a general consensus 

that realized volatility using intraday returns will provide the most accurate depiction 

of “true volatility”. But even then, using intraday returns will not account for overnight 

volatility. Furthermore, intraday returns are affected by market microstructure effects 

including non-synchronous trading, discrete price observations, and intraday periodic 

volatility patterns.  

 

Another problem with forecasting accuracy is that for different markets, different pe-

riods of time, different returns probably density function assumptions, can all lead to 

different results. This is due to the intrinsic nature of the financial markets. No single 
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model can accurately describe the financial markets, and there is no exception in fi-

nancial market volatility modeling. Furthermore, in this paper, we used, 

 

1. The Normal distributions as our returns’ probability density function. 

2. Daily squared returns as our model inputs and proxy for volatility. 

3. Bayesian MCMC (Gibbs Sampling) method to estimate the parameters. 

 

Therefore, there is a huge amount of noise and uncertainty when we perform forecast-

ing accuracies. However, all is not lost; a conclusive and important conclusion about the 

GARCH-S will be evaluated in section 4.3.  

 

 
4.2  Error Statistics Evaluation 
 

Despite the difficulties involved with forecasting accuracy evaluation, we still need to 

perform some tests in order to compare models. However, we need to make several as-

sumptions before we can begin our evaluation. For our forecast evaluation purposes, the 

following assumptions were made, 

 

1. The probability density function of the returns is assumed to follow the Gaussian 

Normal distribution. 

2. The time frame for in-sample the Nikkei 225 data is from January 6th, 2006 to May 

28th, 2010. 

3. The out-of-sample time frame for the Nikkei 225 data is from May 28th, 2010 to 

January 28th, 2011. 

4. For our first definition of “true volatility” we will use is the daily squared returns. 

5. For our second definition of “true volatility” will we use is a hybrid mixture of the 

daily square returns and the high-low measure. The high-low measure [Bollen, In-

der (2002)] is defined as, 
2

2 (ln ln )ˆ ,
4ln 2
t t

t
H L




                          (4.1) 

where tH is the highest price and tL is the lowest price on day t . And our hybrid 
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mixture volatility proxy will be defined as, 

2
2 2 ln( )1ˆ .

2 8ln 2
t t

t t
H Lr


                          (4.2) 

Our hybrid volatility proxy of equation 4.2 is equal to half the daily squared returns 

volatility proxy plus half the high-low measure described in equation 4.1. 

6. All data used have undergone the data preparation methods as described in section 

3.1. 

7. The methods used to evaluate forecasting accuracy are based on the methods as 

described in chapter 2 of this thesis.  

8. Our parameter estimates were estimated using the Gibbs Sampling method which 

was implemented in JAGS through R. 

 

And the methodology we used for our rankings are, 

 

1. We will implement the MSE, RMSE, MAE, and MAPE error statistics as described 

in section 2.2.1.  

2. Each of these error statistics will be performed two times for each model. One time 

using the daily squared returns, and one time using the hybrid method as our “true 

volatility” proxies. 

3. When the error statistics for each model are compared, we will use the DM test, as 

described in section 2.2.3, to check if the difference between the error statistics is 

statistically significant. If the difference is significant, then the model with the 

lower error statistics will be ranked higher. If the difference is not significant, then 

both models will be ranked the same. 

4. Models will be ranked from first place to last place for each error statistics test 

comparison performed. The first place model with the lowest error statistics will 

receive a score of 100 points, and the second place model will receive a score of 90 

points, and so on. The last place model will receive a score of 60 points.  

5. Error statistics comparison will be performed for both in-sample data and out-of- 

sample data. Therefore, a total of 16 error statistics comparison tests will be per-

formed. 

6. Both the out-of-sample and in-sample evaluations will be given the same weight.  
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7. The models will be ranked according to “in-sample rank”, “out-of-sample rank” and 

“final average rank”. The final average rankings for the models will be based on the 

total score averaged over all error statistics and all samples, including both 

in-sample and out-sample. 

 

 

4.2.1  In-Sample Evaluation [6th January 2006 to 28th May 2010] 

 

With these assumptions made, we can now begin our in-sample evaluation. The 

in-sample results obtained are displayed in table 4.1. From our results in table 4.1, the 

EGARCH(1,1) was clearly the best fit model, followed by the GARCH-S(1,1).This is be-

cause the EGARCH(1,1) model tends to have a lower mean on average as compared to 

other volatility models. The disadvantage of the EGARCH model can be seen from fig-

ure 4.1 and 4.2 where it fails to capture the “peakness” of the volatility during the sub-

prime mortgage crisis. Therefore, the EGARCH(1,1) clearly underestimates errors 

during periods of extremely high volatility. This is because the EGARCH(1,1) follows its 

mean closer than other models. 

 

Let us perform the same evaluation process, except instead of using MSE, RMSE, MAE, 

 
In-sample GARCH (1,1) GJR-GARCH (1,1) Mod-GARCH (1,1) GARCH-S (1,1) EGARCH (1,1)
MSE (squared returns) 70 100 60 100 100
RMSE (squared returns) 70 90 60 90 100
MAE (squared returns) 70 100 60 100 100
MAPE (squared returns) 80 60 90 100 70
MSE (Hybrid) 90 90 60 70 100
RMSE (Hybrid) 90 90 60 70 100
MAE (Hybrid) 90 90 60 80 100
MAPE (Hybrid) 70 90 60 80 100
Total 630 710 510 690 770
Average 78.75 88.75 63.75 86.25 96.25

Table 4.1 In-sample forecast evaluation 

In-sample GARCH (1,1) GJR-GARCH (1,1) Mod-GARCH (1,1) GARCH-S (1,1) EGARCH (1,1)
Linex (squared returns) 60 90 80 100 70
Linex (Hybrid) 80 70 90 100 60
Total 140 160 170 200 130
Average 70 80 85 100 65  

Table 4.2 Results from the linex cross function 
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MAPE as our error statistics, we will use the linex asymmetric loss function, from sec-

tion 2.2.2, as our error statistic. For this in-sample comparison, the parameter a of the 

linex asymmetric loss function will be set to 250. This means that compared to overes-

timated errors of the same magnitude, underestimation errors will be much more se-

verely penalized. A value of 250 is quite an exaggerated value but since there are such 

few points of high volatility as compared to points of low volatility, the penalty for un-

derestimating volatility should be much more severe.  

 

From the linex loss function results displayed in table 4.2, we can see that the 

GARCH-S(1,1) is the model with the least underestimation errors. While, the 

EGARCH(1,1) and GARCH(1,1) had the most underestimation errors. The 

EGARCH(1,1) and GARCH(1,1) did not perform well when modeling large volatilities. 

Using figures 4.1, 4.2, and the results from the linex loss function, we can conclude that 

for modeling large periods of volatility such as the subprime mortgage crisis, the 

EGARCH(1,1) and GARCH(1,1) might not be as suitable as other models as it underes-

timates the volatility. 

 

Therefore, in general, we still consider the GARCH-S(1,1) model to be a better model. 

This is because the GARCH-S(1,1) clearly is able to capture the “peakness” of the vola-

tility during the subprime mortgage crisis while not compensating much on the overall 

forecast accuracy. 
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Figure 4.1 In-sample plot of GARCH(1,1), GJR-GARCH(1,1), EGARCH(1,1), GARCH-S 

(1,1) volatility against the daily squared returns as a measure of “true volatility” 
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Figure 4.2 Enlarged plot of figure 4.1 focusing on the subprime mortgage crisis 
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4.2.2  Out-of-Sample Evaluation [29th May 2010 to 28th January 2011] 

 

We calculated the out-of-sample volatility forecast of the models using the parameter 

values estimated from our in-sample data. The volatility forecasts and the squared daily 

returns “true volatility” were plotted in figure 4.3. The y-axis scale limit is purposely set 

to be the same as our previous graphs in this section. This is done to contrast the vola-

tility levels between the figures 4.3 and figures 4.2, 4.1. From figure 4.3, we can see that 

this out-of-sample time period is relatively short. Furthermore, there is not much 

movement of volatility during this period of time. Therefore, under these conditions, 

even small random noises might cause a ranking of the model to go up or down. There-

fore, our evaluation results should be interpreted carefully.  

 

From the results in table 4.3, we can see that the GARCH-S(1,1) fit has the best fit for 

this small period of out-of-sample. From figure 4.3, we can see that there are no periods 

of high volatility in our out-of-sample data. In fact, all the respective volatility remains 

relatively the same throughout the time period. Therefore, there is no point in imple-

menting the linex asymmetric lose function for our out-of-sample data. 

 

From the final average results displayed in table 4.4, the first placed model was the 

GARCH-S(1,1) and the second place model was the GJR-GARCH(1,1). But these fore-

cast 
Out-of-Sample GARCH (1,1) GJR-GARCH (1,1) Mod-GARCH (1,1) GARCH-S (1,1) EGARCH (1,1)
MSE (squared returns) 80 80 90 100 60
RMSE (squared returns) 80 70 90 100 60
MAE (squared returns) 60 80 90 100 60
MAPE (squared returns) 70 80 90 100 60
MSE (Hybrid) 80 80 100 100 60
RMSE (Hybrid) 80 70 90 100 60
MAE (Hybrid) 70 80 90 100 60
MAPE (Hybrid) 70 80 90 100 60
Total 590 620 730 800 480
Average 73.75 77.5 91.25 100 60  

Table 4.3 Results from the in-sample evaluation 

GARCH (1,1) GJR-GARCH (1,1) Mod-GARCH (1,1) GARCH-S (1,1) EGARCH (1,1)
Total 1220 1330 1240 1490 1250
Average 76.25 83.125 77.5 93.125 78.125  

Table 4.4 Final average results for both in-sample and out-of-sample evaluation 
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Figure 4.3 Out-of-sample plot of GARCH(1,1), GJR-GARCH(1,1), EGARCH(1,1), 

GARCH-S (1,1) volatility against the daily squared returns as a measure of “true vola-

tility” 

 

cast results can only be made after several assumptions were made. Therefore, the re-

sults cannot be generalized. Furthermore, there is a lot of noise due to our procedure 

used in forecast evaluations. Therefore, a conclusive conclusion about the forecasting 

accuracies cannot be assumed. This is rather normal in forecasting accuracy [Loudon, 

Watt, Yadav (2000)] [Brooks(1996)]. Besides, all forecasting accuracy literature have 

several assumptions made about which markets, which time frame, and which models 

to compare.  

 

However, we can make two extremely important conclusions about the forecasting ac-

curacy of the GARCH-S as compared to other models,  

 

1. During high periods of volatility, the GARCH-S tends to capture the “peak” of the 

volatility more than other models. It greatly reduces underestimation errors. 
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Therefore, the GARCH-S model can be seen as an “upper range” time series volatil-

ity model.  

2. When there are no high periods of volatility, the GARCH-S does not differ much 

from other models. Therefore, the GARCH-S provides a competitive accuracy when 

compared to other GARCH type models.  

 

The GARCH-S reduces underestimation errors especially during a financial crisis in-

volving the secondary market. However, due to the fact that it reduces underestimation 

errors, overestimation errors increase. Since most “true volatility” occur in the low 

range, the GARCH-S has a greater error statistics than other models. Therefore, it 

would be rather unfair to compare the forecasting accuracy of the GARCH-S model 

against other models as the GARCH-S model can been seen as an “upper range” model 

of the forecasting accuracy. 
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4.3  Evaluation from a Different Perspective  

 

As stated in section 4.2, it would be unfair to compare to compare the GARCH-S model 

against other GARCH type models as the GARCH-S model can been seen as an “upper 

range” model of the “true volatility”. Therefore, when evaluating error statistics, the 

GARCH-S model have a greater difference with the mean of the “true volatility” as 

compared to other GARCH type models. 

 

However, for risk management and other general purposes, using the GARCH-S model 

might in fact provide an advantage over other GARCH type models. In this section, we 

will evaluate whether the GARCH-S model does indeed add in new information as 

compared to other GARCH type volatility models. 

 

 

4.3.1  Regression-based method 

 

Before we being, we must note that the four fundamental requirements for using linear 

regression models are linearity, independence, homoskedascity, and normality. The re-

gression-based method for evaluating time series models will violate homoskedascity, 

but not the others.  

 

In order to compare the informational content of forecasts made by the models, we need 

to use the regression-based method. The method involves regressing the actual volatil-

ity, tX , on the forecasts made by the models, ˆ
tX . The regression equation is defined by, 

ˆ .t t tX X                                (4.3) 

where is the intercept and  is the coefficient for ˆ
tX , and t are the residuals of the 

regression. The prediction is unbiased only if 0  , and 1  . However, one important 

fundamental requirements for any regression is homoskedasticity. A violation of ho-

moskedascity will lead to imperfect standard errors.  

 

Since the error term, t , is heteroskedastic and serially correlated when overlapping 

forecasts are evaluated, the standard errors of the parameter estimates are often com-
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puted on the basis of [Hansen, Hodrick (1980)]. Let Y be the row matrix of regressors 

including the constant term. From equation 4.3, ˆ[1 ]t tY X is a1 2 matrix. Then, 

 

1 2

1

1

1 1

ˆ

( , ) ,

T

t t t
t
T T

k t t k k t
k t k

T Y Y

T Q k t Y Y Y Y

 

 







  



  




                  (4.4) 

where t and k are the residuals for observation t and k from the regression. The op-

erator ( , )Q k t is an indicator function taking the value 1 if there is information overlap 

between kY and tY . The adjusted covariance matrix for the regression coefficients is 

then calculated as, 

   1 1ˆ ˆ .Y Y Y Y                              (4.5) 

The standard errors of equation 2.4 would then be much closer to the correct standard 

deviation. However, in our research, we are more concerned with the adjusted 2R value. 

 

 

4.3.2  Out-of-Sample Evaluation [14th March 2008 to 28th May 2010] 

 

Since the volatility for the time period around the American subprime mortgage crisis is 

the most interesting to us, we want to use that as our out-of-sample evaluation. Sub-

sequently, we set our in-sample data to be from 6th January 2006 to 13th March 2008 

and the out-of-sample time period to be from 14th March 2008 to 28th May 2010. We 

repeated the same tedious process described in chapter 3, and obtained the estimated 

parameters. The volatilities graphs obtained are displayed in figure 4.4. 

 

Using the regression based method, the following rankings according to the adjusted 

R-squared were obtained, 

 

1.  GJR-GARCH(1,1)       0.3323 

2.  GARCH-S(1,1)          0.3227  

3.  Modified-GARCH(1,1)   0.3063    

4.  GARCH(1,1)            0.3025 

5.  EGARCH(1,1)          0.2789 
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This indicates that the GJR-GARCH(1,1) was able to provide the most information 

content for the mean of the “true volatility”. The GARCH-S(1,1) was ranked second in 

providing information content for the “true volatility”.  

 

But what we really want to find is whether the GARCH-S(1,1) can add any more new 

information when added to the GJR-GARCH(1,1). When the GARCH-S(1,1) was added 

as a second term, the GARCH-S(1,1) did increase the adjusted R-squared value to 

0.3350. In fact, the GARCH-S(1,1) did add information as a second regression term to 

any model. Therefore, the GARCH-S(1,1) is different from other models in providing 

information content that no other models could provide.  

 

From figure 4.4, we can see that the GARCH-S(1,1) acts like an “upper range” of vola-

tility. Therefore, the GARCH-S(1,1) model can provide this “upper range” of information 

that no other model can provide. 
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Figure 4.4 Out-of-sample evaluation for period from 14th March 2008 to 28th May 2010 
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4.4  Evaluation Summary 
 

Time series forecasting is extremely difficult. Different markets, different time frames, 

different probability density functions might all provide different results. Even now, we 

still cannot be certain that any time series volatility model is comprehensively better 

than the GARCH (1,1) model [Lunde, Hansen (2005)].  

 

Although finding the best forecasting accuracy model is nearly impossible since just a 

little bit of change could cause different results, we are able to make two important 

conclusions; 

 

1. The GARCH-S model is able to capture the “peak” of high volatility, especially if 

there is a good correlation with the secondary market. This makes the GARCH-S 

model a good “upper range” volatility time series mode. 

2. The GARCH-S has a comparable performance to the EGARCH, GJR-GARCH, and 

GARCH models when it is not capturing the “peak” of high volatility. 

 

Therefore in summary, the GARCH-S model is an extremely good model since it could 

provide an “upper range” while still maintaining a decent forecast accuracy comparison 

against other GARCH type models. This makes the GARCH-S extremely good for risk 

management application purposes as it greatly reduces the number of underestimated 

errors. From figure 4.5, we can see that the GARCH-S clearly has the lowest number of 

underestimated errors (top left hand triangle, above the red line). 

 

The weakness of the GARCH-S model is that it might not capture the mean of the “true 

volatility” as well as other models. This is because the GARCH-S is trying to map out 

the “peaks” of the “true volatility” and reverts back to the mean slower than other 

models. Therefore, if a user would like the “true volatility mean”, the GARCH-S might 

not be suitable. 
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Figure 4.5 Comparison of forecasting errors. The errors above the red line indicates 

underestimation errors, while the errors below the red line indicates overestimation 

errors. 
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5  Financial Crisis 
 

Financial crisis is defined as situations where financial institutions or assets suddenly 

lose a large part of their value. One of the largest financial crisis we have ever faced was 

the American subprime mortgage crisis of 2008 and 2009. Almost all developed coun-

tries experienced large negative gross domestic product (GDP) growth rates. Hundreds 

of banks around the world went bankrupt, numerous people lost money. Therefore, a 

financial crisis is devastating for everyone around the world. 

 

This chapter will simulate a financial crisis, and demonstrate how the GARCH-S model 

could be used as a tool for risk management.  

 

The period of time frame used in this chapter will be from 29th May 2008 to 1st Feb-

ruary 2011. 

 

5.1  Introduction to Multivariate Time Series Models 
 

As countries around the world develop, their financial markets become more and more 

integrated with one another. Economic globalization and internet communication have 

accelerated the integration of the world’s financial markets. To study the relationship 

between financial markets around the world, we could use multivariate time series 

analysis. The typical input for a multivariate time series consist of a matrix of single 

component series. For this chapter, we will use the Nikkei 225 and the Shanghai  

 

A multivariate time series consists of single component series. Therefore, using ma-

trices of these components, we could map out a relationship between the returns of the 

single component series involved. 

 

 

5.1.1  Vector Autoregressive Models 

 

The vector autoregressive model (VAR) is a simple vector model useful in modeling asset 
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returns. The VAR(2) is defined as, 

0 1 2 ,t t t tr r r a                                 (5.1) 

where tr is a multivariate time series tr , 0 is a k -dimensional 

tor,  and are k k matrices, and { }ta is a sequence of serially uncorrelated random 

vectors with mean zero and covariance matrix  . In application, the covariance ma-

trix  is required to be positive definite; otherwise, the dimension of tr can be reduced. 

For our research, we will simply use the bivariate case, where the vector matrix consists 

of two assets. The VAR(2) model can be written as, 

1 10 11 1, 1 12 2, 1 11 1, 1 12 2, 1 1

1 20 21 1, 1 22 2, 1 21 1, 1 22 2, 1 2 ,
t t t t t t

t t t t t t

r r r r r a
r r r r r a

  

  
   

   

     

     
              (5.2) 

where ij is the ( , )thi j element of  , ij is the ( , )thi j element of  , and 0i is 

the thi element of 0 . Based on the first equation, 12 denotes the linear dependence 

of 1tr on 2, 1tr  in the presence of 1, 1tr  . Therefore, 12 is the conditional effect 

of 2, 1tr  on 1tr given 1, 1tr  . If 12 0  , then 1tr does not depend on 2, 1tr  , and the model shows 

that 1tr only depends on its own past. Similarly, if 21 0  , then the second equation 

shows that 2tr does not depend on 1, 1tr  when 2, 1tr  is given. Consider the two equations 

jointly. If 12 0  and 21 0  , then there is a unidirectional relationship from 1tr to 2tr . 

If 12 21 0   , the 1tr and 2tr are uncoupled. If 12 0   and 21 0  , then there is a 

feedback relationship between the two series.  

 

 

5.1.2  Nikkei 225 and the FTSE China 25 Index Fund 

 

China is rapidly developing and is already considered an economy giant. There is no 

doubt that China has an increasing influence on financial markets all over the world. 

Therefore, it will be interesting to study the relationship of the Chinese financial mar-

ket with the Nikkei 225. 

 

One major weakness of the GARCH-S model is that it requires the secondary market to 

be time lagged behind the primary market. If both markets were to have operating 

hours that is approximately around the same time, then the GARCH-S will not be ef-
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fective. This is because whatever happens in the secondary market will affect the pri-

mary market instantly. Thus, we cannot make use of the secondary market returns at 

time 1t  to model the primary market’s volatility at time t . 

 

The Chinese financial markets’ operating hours are approximately at the same time as 

the Japanese financial markets. Therefore, the GARCH-S model would be rather inef-

fective in this case. However, this is a solution to this problem. We could use a fund or 

index that is focused on the Chinese market but listed on the American stock markets. 

Such funds allow American investors to invest directly in China more safely (tighter 

regulations) through using the American stock markets. Such Chinese funds are excel-

lent at depicting the health of the Chinese financial economy. This is because if inves-

tors feel the Chinese economy is losing value, the values of these Chinese funds will go 

down, and vice versa if the Chinese economy is gaining value. 

 

The fund that we selected is the (Financial Times Stock Exchange) FTSE China 25 in-

dex fund. This fund basically follows the value of some of the biggest companies in 

China such as China life insurance.  

 

We choose the VAR(2) because it had the lowest AIC value of all the combinations of 

VAR(p) models. The VAR(2) parameters were estimated using the VAR function from 

the vars package in R. The following estimates were obtained for the returns of Nikkei 

225 (we are concerned with only the upper formulae in equation 5.2), 

 

Model: 

VAR(2) with Nikkei 225 as first input and FTSE China 25 as second input 

Parameters     Estimate     Std. Error     t value      Pr（＞|t|） 

> 11          -0.25          0.040          -6.20       1.01e-09 

> 11            0.37          0.020          18.05      <2.22e-16  

> 12          -0.030         0.033          -0.91       0.36 

> 12            0.15          0.024         6.31       5.26e-10 

> 10           -0.00056       0.00069       -0.81       0.42 
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From the model p-values, we can see that the 12 and 10 parameters are statistically 

insignificant. Therefore, we can ignore the terms and assume them to be 0. Therefore 

the VAR(2) states that, 

1 1

2 1

Nikkei return 0.25Nikkei return 0.37FTSE China
0.15FTSE China

t t t

t ta
 



  
 

          (5.3) 

 

5.2  Financial Crisis Simulation 

 

We begin by modeling our GARCH-S model for our in-sample data from 29th May 2008 

to 1st February 2011. The Nikkei 225 is the primary market and the FTSE China 25 is 

the secondary market. We repeated the tedious GARCH-S modeling process as de-

scribed in chapter 3. The  we chose is 0.04. The following estimation was obtained, 

 

Model: 

GARCH-S(1,1) Nikkei 225 (Primary market) and FTSE China 25 (Secondary market) 

Parameters     Estimate     Std. Error     t value      Pr（＞|t|） 

>              4.17e-05      0.12e-04      3.39        0.00070 

> 1             2.78e-02      0.036         0.77        0.44  

> 1             7.12e-01      0.061         11.67       <2.22e-16 

> 1             6.67e-02      0.020         3.34        0.00084 

 

From our p-values, we can see that the 1 parameter is statistically insignificant. Since 

the value of this term is so small, we are not extremely concerned about this. Therefore 

although we could ignore this term, it might be better to keep it. 

 

Let us assume that a financial crisis in China happened. Although highly unlikely, the 

“asset bubble” of China “burst”. The Chinese economy is in ruins, and the FTSE China 

25 index fund, of course loses a huge amount of value. In order to simulate a decrease in 

the value of the FTSE China 25 index fund, we used the Box-Muller method as our 

random generator. The Box-Muller method is defined as,  

1 1 22 ln cos(2 )z x x                            (5.4)  
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where 1x and 2x are uniformly and independently distributed between 0 and 1, 

then 1z will have a normal distribution with mean 0  and variance 2 1  . 

 

We proceed to simulating our “financial crisis” and used a stochastic equation with a 

drift of around -0.15, and a multiplier of 1.2 for the stochastic random variable. This is 

definitely not the best way to simulate a “financial crisis”. However, our goal is to model 

the variance. Therefore, any simulation that duplicates a “financial crisis” is acceptable. 

Figure 5.1 displays the FTSE index values in our simulated “financial crisis”. 

 

We now use our VAR(2) model to model the corresponding Nikkei 225 returns during 

this simulated “financial crisis”. However, this is an extremely primitive simulation, 

and should not be used in proper simulations. In fact, the simulation is “wrong” because 

we have ignored the random variable term of ta in equation 5.3. As stated before, our 

goal is not about simulation accuracy but about using the GARCH-S model to model the 

corresponding volatility. Using our estimated parameters from our in-sample data, we 

now model the out-of-sample financial crisis.  
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Figure 5.1 Index values for the FTSE China 25 fund in the case of a “financial crisis” 
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Figure 5.2 The GARCH-S(1,1) and GARCH(1,1) volatility model for the Nikkei 225 in 

the case of a Chinese “financial crisis” 

 

Due to our extremely simplified simulated of the Nikkei 225 returns, figure 5.2 of the 

GARCH-S(1,1) volatility of the Nikkei 225 in a “financial crisis” simulation does not 

seem to be realistic at all. However, the important part of figure 5.2, is that we can see 

the GARCH-S(1,1) being used as an “upper range” volatility time series model.  

 

 

5.3  Risk Management using Value at Risk 

 

This section involves a simple demonstration of a practical application of the GARCH-S 

(1,1) model. Let us assume that the Nikkei 225 is an actual stock that can be bought or 

sold over the stock market. Let us also assume that we have a portfolio of 100000 USD 

worth of Nikkei 225 stock throughout the financial crisis. By using the GARCH-S(1,1) 

volatility, we can plot out our 5% VaR (value-at-risk) which is defined as, 

100000USD (1.65 GARCH-S (1,1) Volatility)t               (5.5) 
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This is a rather simplified VaR model, but our goal here is to demonstrate the practical 

application of the GARCH-S(1,1) model. Figure 5.3 displays the corresponding plot of 

the VaR given by the GARCH-S(1,1) of a 100000USD portfolio. We can expect only a 

0.05 probability that our portfolio will fall below the VaR red line. By using the VaR 

values, banks can adjust their assets; investors can adjust their portfolios appropriately 

to the level of risk there are comfortable with taking. This is of course an extremely 

simplified example. There are more complex VaR models, and the real world stock 

market’s movements are impossible to simulate. However, the GARCH-S(1,1) model 

could still be applied as an upper range time series volatility model. 

 

In conclusion, we have successfully demonstrated a practical application of the 

GARCH-S(1,1).  

 

0 50 100 150

90
00

0
94

00
0

98
00

0

Time(Day)

U
SD

Portfolio
Value-at-Risk 5% GARCH-S
Value-at-Risk 5% GARCH

 

Figure 5.3 The 5% GARCH-S(1,1) VaR (red) and 5% GARCH VaR (green) for a 

100000USD portfolio (blue) during a simulated “financial crisis” 
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6  Conclusion 
 

In chapter 3, we derived our GARCH-S(1,1) model and applied it in chapter 4 and 5. 

Even though forecasting evaluation is a haphazard and difficult task due to the nu-

merous number of assumptions and randomness (section 4.1) involved, we concluded 

that the GARCH-S(1,1) is generally a good volatility model to use in risk management. 

In chapter 5, we successfully demonstrated the GARCH-S(1,1) as an “upper range” time 

series volatility that could be used to calculate the VaR of a portfolio. 

 

The advantages of the GARCH-S are, 

 

1. The GARCH-S model acts as an “upper range” estimate of the “true volatility” as 

compared to other GARCH type models. It greatly reduces underestimate errors as 

compared to other GARCH type models (figure 4.4). It was ranked first when we 

ranked the models using the linex loss function with the a parameter as 250. 

2. The GARCH-S model does comparably well against other GARCH type models even 

though it drifts away from the mean “true volatility” to model periods of high vola-

tility. It was the second best ranked model in both our error statistics and regres-

sion-based evaluations. However, the forecasting accuracy conclusions can only be 

applied after several assumptions have been made (section 4.1). 

3. Due to the GARCH-S acting as an “upper range” time series volatility model, it is 

extremely effective as a risk management tool (chapter 5). 

 

The GARCH-S model also has several disadvantages, 

 

1. When applying the GARCH-S model, we need two different markets that are oper-

ating in very different time zones (the American and the Japanese financial mar-

kets). The Japanese and Asian-Pacific markets are operating in approximately the 

same time zone, thereby decreasing the effectiveness of the GARCH-S model. To 

overcome this problem, we could use an index or fund that covers one of our input 

markets but is located in a different time zone. For example, the FTSE China 25 is a 

fund consisting of investment in 25 top Chinese companies, but is listed on the New 
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York Stock Exchange. 

2. For the GARCH-S model to be truly effective, we need the secondary market (S&P 

500,…) to be an influential market that influences the returns of the primary mar-

ket (Nikkei 225). However, as the world economy advances, financial markets start 

to gain more and more influence on each other.  

3. The GARCH-S is likely to be more effective if there is a strong correlation, prefera-

bly above 0.50, between the time t return of the target input market and 

time 1t  return of the secondary input market. However, during periods of high 

volatility, the correlation tends to be strong between markets (0.50).  

4. The forecasting accuracy of the GARCH-S model is likely to be lower than other 

GARCH type models due to it acting as an “upper range” time series volatility model. 

This causes the GARCH-S model to overestimate volatility at the lower range. Since 

most volatility occurs at a lower range, the error for GARCH-S is comparatively 

larger than other GARCH type models. 

 

In conclusion, the GARCH-S model is a new and innovative method for modeling the 

Nikkei 225 volatility. It is especially useful in risk management applications since it 

tends to map out the “upper range” of the true volatility. The underestimation errors for 

the GARCH-S are greatly reduced, but the overestimation errors increases. In general, 

it does perform comparable well against other models in forecasting accuracy. However 

there are still many limitations to the GARCH-S model such as not being able to gene-

ralize the GARCH-S model to all financial markets around the world.  

 

Further research could be made on extending the univariate GARCH-S model to a 

multivariate time series. Another important further research could be to use the 

intraday returns of an asset to model realized volatility. This will increase the accuracy 

and greatly reduce biasness in forecasting evaluation. 
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Appendix 
 
A.1  Introduction to GARCH Programming 
 
In section 3.6.1, we proposed a modified GARCH model. In order to model this proposed 

modified GARCH model, we need to write our own function program. Our program is 

written in the R programming language. The R is an open source programming lan-

guage that is becoming the de facto standard among statisticians, and graduate stu-

dents for the development of statistical software. R is also free and widely available. 

Therefore, it has become one of the most widely used programming languages in Sta-

tistics.  

 

The program we have written requires the use of the nlminb function from the R sta-

tistical software. The nlminb function uses optimization routines that were developed at 

AT&T Bell Laboratories [Gay (1990)]. The type of optimization used is a Newton type 

optimization, which itself is an augmented version of the Gauss-Newton algorithm. To a 

certain extent, it is important to choose initial values that are closer to the “true” pa-

rameters. This is because the closer the initial values are to the “true” parameters, the 

faster the optimization, and the better the accuracy of the estimated parameters. 

 

 

A.1.1  Maximum Likelihood Estimation (MLE) Method 

 

For our modified GARCH program, we assumed that the returns followed the Normal 

distribution as it is the easiest and one of the most commonly used distributions when 

estimating and forecasting GARCH models. Due to the problems mentioned in 1.4.3, we 

could certainly implement other distributions for better depiction of the returns’ dis-

tribution. The probability density function (pdf) for the Normal distribution 
2( , )  is, 

   22
2

1| , exp .
22
r

f r


 


 
  

 
 

                   (A.1) 

Following section 3.3.1, where we define our returns and innovations as t tr    , 
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and t t t t tz h z   . Following this definition, we define the log-likelihood function for 

the normal distribution as, 
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             (A.2) 

[Proof of this equation is in the Proofs section.] With this set up, we could now program 

the maximum log-likelihood function and use it to optimize the parameters of our mod-

ified GARCH model. [Please refer to the Programming section for the code.] 

 

 

A.2  Advanced Parameter Estimation 
 

In statistics, there are two main schools of thought. One is the traditional frequentist 

view of probability, and thus of statistical inference, is based on the idea of an experi-

ment that can be repeated numerous times. The other is the Bayesian view of probabil-

ity and of inference is based on the assessment of probability and on observations from a 

single performance of an experiment. The MLE method used to estimate our errors is 

part of the traditional frequentist statistics. In this section, we will discuss an alterna-

tive approach to the tradiaional frequentist statistics, Bayesian statistics. 

 

A.2.1  WinBUGS and JAGS Statistical Packages 

 

WinBUGS (Baysian estimation Using Gibbs Sampling) was developed at Cambridge 

University. It is an extremely simple to use program that can be called using the R sta-

tistical package, and best of all, it is free. The JAGS (Just Another Gibbs Sampling) 

program can be called through R using the R2jags function. The R2jags function allows 

WinBUGS users to direct write their code without having to adjust to the R2jags format. 

The WinBUGS and JAGS statistical packages are two of the most commonly used sta-

tistical software for Bayesian statistics. 
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A.2.2  Gibbs Sampling 

 

When creating programs to estimate models, writing a MLE program can be tedious 

and time consuming. For Bayesian Statistics, all we need to do is to define our model, 

parameters, distribution functions, have a fast computer and we are able to estimate 

the parameters easily. The advantages of Bayesian estimations include, 

 

1. Providing more intuitive and meaningful inferences. A Bayesian analysis can give a 

more meaning inference by stating the probability that the hypothesis is true. For 

the frequentist MLE method, we could only reject the null hypothesis.  

2. Bayesian methods make use of all available information. This is because Bayesian 

estimation includes the prior information.  

 

The Gibbs Sampling method is a Bayesian estimation method using Markov Chain 

Monte Carlo simulations. Simple homogenous Markov chains with a finite number K of 

states. Usually, we denote the state space as {1, 2,..., }S K . The Markov property is 

defined as, 

1 2 2 1 1

1

{ | , ,..., }

{ | },
ij n n n n

n n

p P X j X i X i X i
P X j X i

  



    

  
              (A.3) 

for 2 1, ,...,ni i i and j S ,and for 1, 2,...n  . i and j are the states for the process. In 

simple terms the probability of making a transition from state i transition state j does 

not depend on previous states lagging behind state i . 

 

The mathematics required for the Gibbs Sampling method is beyond the scope of this 

thesis, but in general, the Gibbs Sampling method is a computational method that uses 

Markov chains to approximate posterior distributions. The idea is to use available in-

formation about a prior distribution and data to construct an erogodic Markov chain 

whose limiting distribution is the desired posterior distribution. Simulation is done un-

til enough steps of the chain are required to obtain a good approximation to the limiting 

distribution.  
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B  Definitions 
 

Kurtosis: Kurtosis is defined as the measure of the peak of a probability distribution. 

For a normal distribution, the kurtosis value is 3. If the peak is higher, then the kurto-

sis value would also be larger. Higher kurtosis also means that the variance of the 

probability distribution is a result of infrequent extreme deviations and not frequent 

normal deviations.  

 

Innovation: The innovation, sometimes known as the error, is the remaining values af-

ter the mean equation values have been deducted from the return values of an asset. In 

equation form, it is defined as t tr   , where t is the innovation,  is the mean 

and tr are the return values of an asset.  

 

Out-of-sample: Out-of-sample is defined as using estimated parameters derived from a 

sample subset of the population to model a different sample subset of the same popula-

tion.  

 

Primary Market: The financial market which we would like to model.  

 

Portmanteau Test: A type of statistical test which tests whether any groups of autocor-

relations in a time series are different from zero. Instead of using randomness at each 

lag, it tests the entire randonmness according to each lag. 

 

Secondary Market: The financial market which we would use in augmenting the vola-

tility forecast of the primary market in the GARCH-S model. 

 

Skewness: Skewness is defined as the measure of asymmetry in a probability distribu-

tion. A normal distribution has a skewness of 0. If the graph is skewed left, then the 

skewness would be a negative value, and vice versa.  

 

Time Additive: Time additive is a property where the asset returns are spread linearly 

over time. For example, let us have an asset return of x for time period one and an asset 
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return of y for time period two. The natural logarithm two time period return, which 

has the time additive property, will be equivalent to x y . 
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C  Proofs 
 
Equation 3.6 

 

To prove: 
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Equation A.2 

 

To prove: 
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Equation 3.8 

 

To prove: 
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D  Programming 
 

Program for modified GARCH model using the log-normal MLE and the Newton type 

optimization, 

 

##################Begin program for modified GARCH model################# 

 

#Required package: Matrix 

#Required package: stats  

 

#Model is defined in section 3.6.1 

ed.gjr.garch = function(x, y, delta)               

{ 

# Step 1: Initialization of the time series data: 

#x is the returns data that we would like to model with ed.gjr.garch model: 

x <<- x; 

#y is the returns data that we would like to use to augment the volatility 

#model of x: 

y <<- y; 

#delta is the value defined in section 3.6.1 that you set for the ed.gjr.garch 

#model: 

delta<<- delta; 

 

# Step 2: Initialization of the model parameters and boundaries: 

#We declare T globally, where T is a variable that is used to identify number 

#of loops the function will perform. 

T <- length(x); 

#Create an empty matrix for the errors in the ed.gjr,garch model: 

e <- matrix(nrow=numeric(T) ,ncol=1); 

#Creating an empty matrix for the conditional variance in the ed.gjr.garch 

#model: 

Var <- matrix(nrow=numeric(T),ncol=1); 
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#Finding mean of x: 

Mean = mean(x); 

# Initializing the first conditional variance term in the ed.gjr.garch 

#model: 

Var[1] = var(x); 

#Creating an S for use in the boundary conditions: 

S = 1e-6; 

#Initializing the first error term in the garch.gjr.ed model 

e[1]<-x[1]-Mean; 

 

#Initializing the parameters. User can choose his/her own set of parameters. 

#Important: The closer the parameters are to the “true” value, the faster 

#and more accurate are the results! 

params <- c(mu = Mean, omega = 0.01*Var, alpha = 0.01, beta = 0.1, gamma 

=0.01); 

#Set lower boundary: 

ed.lowerbound <- c(mu = -10*abs(Mean), omega = S^2, alpha = S, beta = S, 

gamma = S); 

#Set upper boundary: 

ed.upperbound <- c(mu = 10*abs(Mean), omega = 100*Var, alpha = 1-S, beta 

= 1-S, gamma = 1-S); 

 

# Step 3: Set the conditional distribution (Normal distribution) and write 

#the function: 

ed.garch.kaiyu = function(parm, iterate=TRUE) 

{ 

#Setting the parameters: 

mu = parm[1]; 

omega = parm[2]; 

alpha = parm[3]; 

beta = parm[4]; 

gamma = parm[5]; 
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#Setting the likelihood function: 

likelihood = 0;  

 

#Main part of the code: 

for(t in 2:T) 

{ 

e[t] = x[t]-mu; 

Var[t] =omega + alpha*e[t-1]^2 + beta*Var[t-1] + ifelse(y[t-1]>=delta, 

gamma*(e[t-1]^2), 0); 

#This is the log-likelihood function for a Normal distribution, the user 

#could change it to #a different distribution on his/her preferences. 

likelihood = likelihood - 0.5*log(2*pi*Var[t]) - 0.5*e[t]^2/Var[t]; 

} 

#Returning the values of the code: 

if(iterate) return(-likelihood) 

else return(list(loglik=likelihood, sig2=Var, res=e/sqrt(Var))); 

} 

 

# Step 4: Optimizing the parameters and computing the numerical Hessian: 

#Using nlminb function with trace of 3: 

fit = nlminb(start = params, objective = ed.garch.kaiyu, 

lower = ed.lowerbound, upper = ed.upperbound, control = list(trace=3), 

hessian=TRUE) 

 

#This is the Hessian code. 

epsilon = 0.0001 * fit$par 

Hessian <- matrix(0, ncol = 5, nrow = 5) 

for (i in 1:5) { 

for (j in 1:5) { 

x1 = x2 = x3 = x4 = fit$par 

x1[i] = x1[i] + epsilon[i]; x1[j] = x1[j] + epsilon[j] 

x2[i] = x2[i] + epsilon[i]; x2[j] = x2[j] - epsilon[j] 
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x3[i] = x3[i] - epsilon[i]; x3[j] = x3[j] + epsilon[j] 

x4[i] = x4[i] - epsilon[i]; x4[j] = x4[j] - epsilon[j] 

Hessian[i,j]= 

(ed.garch.kaiyu(x1)-ed.garch.kaiyu(x2)-ed.garch.kaiyu(x3)+ed.garch.kai

yu(x4)) / 

(4*epsilon[i]*epsilon[j]) 

} 

} 

 

# Step 5: Printing our optimized parameters, t-values, p-values, etc… 

#Solving the Hessian to find the standard errors. 

se.coefficient = sqrt(diag(solve(Hessian))) 

 

#Finding the t-values: 

t.val = fit$par/se.coefficient 

 

#Matrix to sort everything. 

matcoefficient=cbind(fit$par,se.coefficient,t.val,2* 

(1-pnorm(abs(t.val)))) 

dimnames(matcoefficient) = list(names(t.val), c(" Estimate", " Std. Error", 

" t-value", "Pr(>|t|)")) 

cat("¥nCoefficient(s):¥n") 

printCoefmat(matcoefficient, digits = 8, signif.stars = TRUE) 

} 

 

###################End program for modified GARCH model################## 

 

**/Program might not work well under some conditions such as the Hessian 

being negative. Some initial values input might not work well with the nlminb 

function./** 
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#############Sample code for parameters estimation using JASGS############ 

/** Just the sample code for the GARCH-S mode will be written. **/ 

 
//Sample size 

T=178; 

//Input primary market 

y=c(nikkeisp500.data$nikkeireturn[2:1790]); 

//Input secondary market’s absolute returns 

x=c(abs(nikkeisp500.data$sp500return[2:1790])); 

//Input secondary market innovations 

c=c(nikkeisp500.data$sp500inn[2:1790]); 

 

//Defining inputs 

data=list("T","y","x","c") 

//Defining parameters 

parameters<-c("b1","b2","b3","b4") 

 

//Initial values  

inits1<-list(b1=0.000003,b2=0.08,b3=0.7,b4=0.1) 

inits2<-list(b1=0.000005,b2=0.06,b3=0.8,b4=0.2) 

inits<-list(inits1,inits2) 

 

//Function to call up JAGS in R 

garched.sim<-jags(data,inits,parameters,"final3.bug",n.chains=2,n.iter

=3000) 

 

//final3.bug program 

model{ 

//Defining initial prior distributions for parameters 

b1~dnorm(0,0.01) 

is.censored[1]~dinterval(b2,0) 

b2~dnorm(0,0.05) 

is.censored[2]~dinterval(b3,0) 

b3~dnorm(0,0.2) 

b4~dnorm(0,0.05) 
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//Initializing the first [1] volatility used in the GARCH-S 

h[1]<-0.000452 

 

//GARCH-S Model 

for(t in 2:T) 

{ 

//Returns are assumed to be Guassian distributed. 

//Note: WinBUGS and JAGS assume variance to be (1/variance value entered 

//in dnorm) 

y[t]~dnorm(0,P[t]) 

//GARCH-S definition y is the Nikkei 225 return, h is the Nikkei 225 

//conditional volatility, and x is the S&P 500 return, c is the S&P 500 

//innovations, and delta is given a value of 0.015. 

h[t]<-b1+b2*pow(y[t-1],2)+b3*h[t-1]+step(x[t-1]-0.015)*b4*(pow(y[t-1],

2)+pow(c[t-1],2)) 

P[t]<-1/h[t] 

} 

} 

 

#################End parameters estimation using JASGS################# 
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