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Summary

Unbalanced dietary habits can lead to various health issues, including obesity, type

2 diabetes, high blood pressure, elevated cholesterol, and heart disease. The sit-

uation can become particularly critical for those with severe food allergies, where

accidental consumption of allergenic foods may cause life-threatening reactions

or even death. Existing food tracking methods largely fall into four categories:

camera-based, on-body sensor-based, microphone-based, and self-reported.

The persisting challenges include detecting commonly allergenic foods, ensuring

social acceptance, maintaining a lightweight design, ensuring ease of use, and

affordability. Our approach uses a 6-axis IMU on the arm of glasses and a machine

learning-enabled MCU on the wrist to identify the user’s eating activities and the

associated differences. We found that the initial bite or chew can be a consistent

and trustworthy signal to differentiate between types of food. Our method can

provide information about the actual amount of food consumed.

Our implementation results demonstrate that our technique can distinguish be-

tween seven kinds of food with an average accuracy of 93.26% across all four

participants. Notably, our method successfully identified and differentiated com-

monly allergenic foods like burgers (containing wheat), peanuts, and edamame.

This suggests our system’s potential for both personal and medical applications.
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Chapter 1

Introduction

Tracking one’s food consumption, either utilizing food diaries can be critical to

identify potential food allergies or intolerances a person might have. Moreover,

these diaries can help manage conditions such as diabetes, obesity, heart disease,

high cholesterol, and hypertension. Yet, manual food intake recording methods

are notoriously inaccurate, often by as much as 50%. [7]. Traditional Paper-based

journalling methods [8] demand significant time and effort, and are often forgotten

or abandoned due to these factors [4]. The accuracy of the food intake records

largely depends on the individual’s dedication to maintaining the diary. [7].

Using smartphones for food tracking has its drawbacks too, as users need to

interrupt their meals to input data. Consider instead, an audio-enabled wearable

device that could be attached to an earpiece or a pair of glasses. This device

could monitor the user’s activity and make educated guesses about what the user

is eating when it identifies an eating event. [9]. For example, it could inquire, ”Are

you eating an apple?” The user could confirm or deny by a nod of the head, and if

the answer is negative, the device could then ask the user to specify what they are

consuming and log the response. Wearable devices [10] have shown the potential

to significantly minimize the time gap between a user’s intention to perform a task

and their actual action [11], leading to a higher probability of user engagement

with the interface [12]. Additionally, many users are hesitant to use devices that

draw unnecessary attention to themselves or create misconceptions about their

abilities [13].

This dissertation introduces a discreet wearable system designed to resemble

standard optical glasses, enabling the wearer to differentiate between various foods

they consume. The system comprises two IMU (Inertial Measurement Unit) sen-

sors: one captures the vibrations generated during biting and chewing, while the

other records the accompanying hand movements during eating activities (refer

1



1. Introduction

Figure 1.1 First bite/chew are like the white rectangles indicate, they are sig-

nificantly different from the following bites/chews which are relatively the same

among different food types.

to Figure 1.1). In an initial user study, our approach successfully distinguished

seven food types with an impressive accuracy of 93.26% (n=4). The foundation

of this dissertation significantly draws from my own research work titled ”First

Bite/Chew: Distinguish Different Types of Food by First Biting/Chewing and the

Corresponding Hand Movement,” [14], which was published in the proceedings of

the 2023 CHI Conference on Human Factors in Computing Systems. Additionally,

my other publication titled ”First Bite/Chew: Distinguish Typical Allergic Food

by Two IMUs” [15] presented at the Augmented Humans Conference in 2023, has

also informed this dissertation. These seminal works serve as the cornerstone for

the research propounded in this dissertation, with certain sections of their origi-

nal content being adopted to shed more light on the fundamental principles and

discoveries.

The approval of these works by high-ranking academic conferences has bolstered

our confidence in the potential and validity of this research approach. The main

contribution of this research is the novel concept of First Bite/Chew-based food

type detection, which takes into consideration the design of wearable technol-

ogy and its social acceptability. Our first bite/chew-based approach has several

2



1. Introduction

benefits:

1. Precise food intake: In contrast to existing studies that offer calorie estima-

tions for certain foods, our method detects the exact number of bites a user

consumes, ensuring more accurate food journaling.

2. Computational simplicity: Our system consists of only two IMUs and an

affordable, machine-learning capable MCU (Micro Controller Unit) as the

primary components.

3. User-friendly: Monitoring food intake with our approach does not demand

extra practice or learning, making it easy for users to adopt.

4. Reproducible: Thanks to its cost-effectiveness and simple design, our ap-

proach can be easily replicated by others.

5. Potentially socially acceptable appearance: Our method does not require

a camera or bulky battery (i.e., large glasses’ legs), maintaining a socially

acceptable, standard optical glasses-like appearance.

To validate our claims, this dissertation proposes two main research questions.

Firstly, can a wearable system using two IMU sensors and a machine-learning

capable MCU distinguish among various types of food accurately and consistently,

while maintaining a potentially socially acceptable appearance? Secondly, how

does the proposed First Bite/Chew-based approach contribute to the accuracy,

usability, and social acceptance of an automatic food intake monitoring system

compared to existing solutions? These questions guide our research and system

evaluation.

3



Chapter 2

Background and Related Works

2.1. Human-computer interaction

Human-Computer Interaction (HCI), a vibrant multidisciplinary domain, strives

to bridge the gap between users and computing technology. It involves a meticu-

lous study of the interface that forms the point of contact between humans and

computers, with a focus on developing designs that facilitate a more intuitive inter-

action. The primary objective of HCI, as defined by Carroll [16], is to elevate the

quality of interactions between users and computers. This is accomplished by en-

suring that the computational systems are more receptive to user requirements and

are designed in a way that promotes user-friendliness. This objective forms a fun-

damental principle of our dissertation, guiding the design and development of the

proposed system. The discipline of Human-Computer Interaction (HCI) extends

beyond the boundaries of the design and application of computer technology, par-

ticularly in relation to the interfaces connecting humans and computers. It delves

deeper into understanding how computers affect individuals, organizations, and

the society at large. HCI research has been phenomenally successful, and its im-

pact on technology, business, and society has been vast [17]. Optimal HCI design

focuses on empowering users to interact with technology in a manner that best

aligns with their needs and objectives. This necessitates an understanding of how

humans engage with computers and consequently, the creation of technologies that

enable novel forms of these interactions. HCI involves the study, planning, and de-

sign of the interaction between people and computers. HCI is a multidisciplinary

domain that synergizes the knowledge from computer science, behavioral sciences,

design, among other fields of study [18]. It encapsulates the interactions occurring

at an interface, an amalgamation of both hardware and software elements. For

4



2. Background and Related Works 2.1. Human-computer interaction

example, characters are displayed on a screen by a software program in response

to typing on the keyboard. This concept has evolved significantly over the past

few decades, from early command-line interfaces to graphical interfaces to today’s

natural user interfaces. It is shifting towards interaction techniques that allow a

more human-centred process, considering both human limitations and advantages

in the design process [19]. These shifts are reflected in the interaction design

of smartphone applications, computer software, and various technology-enabled

devices where ease of use, understanding, functionality, and aesthetics are the

cornerstones of the overall user experience. HCI also addresses the socio-technical

issues and challenges in the use of computers in the digital era. For example, the

design of e-commerce systems should consider trust, security, privacy, and other

similar factors. HCI studies such phenomena and devises the best ways to ensure

the successful interaction between the user and the computer, which leads to pro-

ductive, safe, and satisfying user experiences [20]. Moreover, HCI’s role extends to

the design of user interfaces, creating systems and technologies that are accessible,

easy to use, and efficient. This aspect is especially critical in the development of

systems for people with disabilities or those who may not be technically inclined.

HCI principles help designers create interfaces that cater to a broader audience,

making technology more inclusive and available to all [21]. As we continue to

evolve and innovate, the importance of the field of HCI grows more apparent.

There is still much to explore and understand about how humans interact with

the growing array of digital technologies that are becoming an integral part of

everyday life. With this, the demand for effective HCI design is more critical than

ever. As technology continues to evolve and permeate our lives, the importance

of human-computer interaction (HCI) becomes even more evident. It is vital to

consider the human aspect in the design and use of these digital systems, lead-

ing to an increased emphasis on user experience (UX). The UX domain focuses

on understanding and enhancing people’s experiences, perceptions, and responses

when interacting with products and services [22]. The understanding of UX is

crucial in HCI as it shapes the design principles and decision-making processes,

which subsequently leads to more intuitive, efficient, and enjoyable products.

One key challenge in HCI is to manage the complexity of the increasingly so-

phisticated digital systems. As we are presented with an overwhelming amount

5



2. Background and Related Works 2.1. Human-computer interaction

of data and options, the role of HCI is to design interaction techniques and in-

terfaces that make these systems accessible and usable. This involves leveraging

cognitive psychology to understand how humans process information and how this

can guide the design of information displays and interaction mechanisms [23].

Moreover, HCI plays a crucial role in improving accessibility and inclusivity in

technology. As digital technology has become an essential part of our lives, it is

critical to ensure that everyone, including people with disabilities and the elderly,

can use these technologies effectively. This includes designing interfaces that are

easy to see, hear, and manipulate, and developing adaptive technologies that can

cater to different user abilities and preferences [24].

HCI is also involved in addressing the “digital divide” — the gap between those

who can access and benefit from digital technology and those who cannot. This

is not just about providing physical access to technology, but also about ensuring

that people have the skills and knowledge to use these technologies effectively.

HCI researchers are investigating ways to make technology more accessible and

understandable to a broader range of users, including those with low digital liter-

acy [25].

As artificial intelligence (AI) and machine learning (ML) technologies are in-

creasingly integrated into digital systems, HCI also needs to deal with the unique

challenges and opportunities that these technologies present. This includes design-

ing interfaces that can effectively communicate the capabilities and limitations

of AI/ML systems, and understanding how these systems can support human

decision-making [26]. HCI researchers are also exploring ethical issues related to

AI/ML, such as data privacy, algorithmic bias, and the impact of automation on

jobs and society [27].

In the era of social media and online communities, HCI is also concerned with

how people interact with each other through digital platforms. This involves

understanding how people present themselves online, how they form relationships

and communities, and how these interactions can be facilitated and supported

by technology [28]. HCI researchers are also investigating the impact of social

media on society, including issues like online harassment, misinformation, and the

impact on mental health [29].

In conclusion, HCI is a multifaceted field that lies at the intersection of tech-

6



2. Background and Related Works 2.2. Food intake

nology, human behavior, and society. It plays a crucial role in shaping the way

we interact with technology and the impact that technology has on our lives. As

digital technologies continue to evolve and become more integrated into our lives,

the importance of HCI will continue to grow.

2.2. Food intake

The importance of knowing and remembering food intake is extremely significant,

especially for individuals with certain medical conditions like diabetes and gout,

for those who suffer from bad eating habits , and for the elderly.

For example, diabetes is a condition that requires careful dietary management.

According to the American Diabetes Association, a balanced diet is crucial in

maintaining blood glucose levels [30]. This is not only about the types of food

eaten, but also the quantity, as excessive intake of even “healthy” foods can cause

sugar levels to spike. For people with diabetes, it is essential to remember what

and how much they have eaten, in order to calculate insulin doses correctly. If

they forget, they risk taking too much or too little insulin, leading to dangerously

high or low blood glucose levels [31].

In a parallel context, dietary habits have a profound influence on conditions

like gout, a form of inflammatory arthritis. Gout is primarily instigated by the

accumulation of uric acid crystals in the joints, a phenomenon frequently triggered

by the intake of foods rich in purines [32]. Consequently, accurate recollection of

food consumption becomes a pivotal aspect for individuals with gout, as it aids in

managing their condition and averting the occurrence of painful flare-ups. This

illustrates yet another scenario where our proposed wearable technology, which

facilitates precise food intake tracking, could prove invaluable.

Overworking of muscles, such as the masseter and temporalis involved in chew-

ing, can have detrimental consequences. When these muscles are consistently

stressed beyond their capacity, it can lead to muscle strain. This strain can

present itself as discomfort or pain in the jaw region, sometimes extending to

the neck and shoulders. Over time, if the overuse continues, these muscles may

undergo hypertrophy, where they become enlarged and stiff, further exacerbating

discomfort [33].

7



2. Background and Related Works 2.2. Food intake

As for the elderly, especially those with cognitive decline or dementia, remem-

bering what they have eaten can be challenging. Yet, it is essential to ensure

adequate nutrient intake and prevent malnutrition. In such cases, remembering

food intake could help caregivers to plan meals and track nutritional status [34].

Furthermore, monitoring and remembering food intake is not only crucial for

disease management, but it also plays an integral role in preventing the onset of

certain medical conditions. Overeating and consuming foods high in fats, sugars,

and salts are major risk factors for conditions such as obesity, hypertension, and

cardiovascular diseases [35, 36]. These conditions are preventable and can be

mitigated with a healthy diet, reinforcing the significance of understanding and

recalling food intake.

The importance of monitoring food intake is amplified in the context of weight

management. Evidence has shown that keeping track of dietary intake can con-

tribute to successful weight loss and maintenance [37]. Individuals who can accu-

rately recall what and how much they have eaten can make necessary adjustments

to their eating habits and physical activity to achieve their weight goals.

Moreover, in the context of maintaining healthy masticatory muscles and pro-

moting good eating habits, understanding and remembering food intake extends

beyond the individual to caregivers, particularly parents of young children. Chil-

dren may not yet have the understanding or capacity to monitor their own food

intake accurately and could unintentionally consume foods that are detrimental

to the health of their masseter and temporalis muscles, or contribute to the de-

velopment of bad eating habits [38]. Parents and caregivers need to be vigilant

about what their child eats, especially in social settings where foods associated

with poor muscle health or bad eating habits, such as fast food or sugary snacks,

may be present.

This is further relevant in the case of the elderly, where food intake monitoring

can aid in identifying nutritional deficiencies and rectifying them promptly. This is

of utmost importance in conditions like osteoporosis, where sufficient calcium and

vitamin D intake is crucial [39]. Furthermore, for the elderly living independently,

monitoring food intake can also help identify changes in eating habits, which could

be early indicators of cognitive decline, depression, or other health issues [40].

In light of these insights, it’s evident that the significance of knowing and re-

8



2. Background and Related Works 2.3. Personal privacy

membering food intake extends to various aspects of human health, encompassing

individuals in every stage of life. This includes children and adults striving to

maintain healthy masticatory muscles and promote good eating habits, as well as

those managing chronic conditions or trying to ensure adequate nutrition during

aging [41,42].

As we progress in the era of technology and data, innovative solutions that assist

individuals in monitoring their food intake will prove invaluable in promoting

healthier lifestyles and managing medical conditions. Such methods can play a

crucial role in curbing the negative effects of poor eating habits on muscle health

and overall well-being.

In conclusion, monitoring food intake is not only vital for managing the health

of masticatory muscles and preventing the adverse consequences of bad eating

habits, but it can also have life-saving implications. With the growing prevalence

of conditions linked to muscle health and dietary choices, there is a pressing need

for new technologies that aid individuals in accurately tracking and remembering

their food intake, thus empowering them to make informed choices for better

health.

2.3. Personal privacy

Navigating the terrain of personal privacy protection is paramount in our digi-

tally interconnected era. With the boundaries between personal and public life

becoming increasingly indistinct, the inherent human right to privacy—endorsed

by the UN Declaration of Human Rights, the ¡International Covenant on Civil and

Political Rights¿, along with numerous international and regional treaties—faces

escalated vulnerability [43]. Protecting this right is essential as it serves as the

foundation for many democratic societies’ valued liberties, such as “freedom of

speech, freedom of thought, and freedom of association” [44].

In the digital age, personal privacy protection takes on added significance. The

extensive use of digital technologies, such as social media, online banking, and e-

commerce platforms, has led to an unprecedented volume of personal data being

collected, stored, and shared online [45]. This data, encompassing everything from

financial information to health records to location data, can be extremely sensitive.

9
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If mishandled, it can be exploited for a range of nefarious purposes, including

identity theft, online harassment, and more sophisticated forms of cybercrime [46].

But privacy is not solely about safeguarding ourselves from harm; it also con-

cerns preserving our autonomy. In his landmark study on privacy, renowned legal

scholar Alan Westin posited that privacy fundamentally pertains to an individ-

ual’s entitlement to determine the circumstances, manner, and extent to which

their personal information is shared with others [43]. This influential concept un-

derscores the critical role of personal agency and informed consent in the discourse

on privacy, particularly in the age of digital information sharing and consumption.

In essence, privacy is about autonomy – our capacity to make decisions about our

lives, free from unwelcome interference from others.

However, this autonomy is increasingly under siege in the digital age. The pro-

liferation of digital technologies has afforded corporations, governments, and other

entities unprecedented access to our personal data, often without our knowledge

or consent [27]. This invasion can result in numerous adverse consequences, rang-

ing from discrimination and stigmatization to a loss of trust in digital technologies

and broader institutions [47].

Personal privacy protection is also integral to preserving our democratic insti-

tutions. Democracy is founded on principles of transparency and accountability,

which can only be maintained if individuals can freely express their thoughts and

opinions without fear of retribution or surveillance. Yet, the extensive collection

and utilization of personal data can undermine this freedom, instigating a chilling

effect on free speech and democratic participation [48].

Moreover, privacy concerns in wearable devices such as Google Glass have gar-

nered significant attention. As these technologies become more deeply woven into

the fabric of our lives, they encroach upon our personal and private spaces, of-

ten without our full knowledge or consent [49]. Google Glass, while lauded for

its advanced technical capabilities and potential applications, has elicited criti-

cism due to its implications for privacy. This wearable technology’s capacity to

capture photos, record videos, and access information hands-free raises numerous

questions about consent, surveillance, and the balance between public and private

spaces [50].

Challenges revolve around consent, especially in public spaces. Traditional

10
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recording devices make it clear when someone is recording or taking a photo,

but Google Glass renders this less obvious, enabling recording individuals with-

out their knowledge or consent [51]. This capability can have serious implications

for personal privacy, as individuals may lose control over when or how they are

recorded. Additionally, the integration of a camera into a wearable device like

Google Glass transforms the wearer into a walking surveillance camera [52]. Con-

sequently, individuals might find themselves under constant surveillance, altering

their behavior due to the potential for constant observation [53].

Besides, Google Glass can blur the distinction between public and private

spaces. Its ability to record and share experiences in real-time exposes tradition-

ally private or intimate moments to a wider public, often without the consent of

those involved [54]. Furthermore, the integration of facial recognition technology

with Google Glass introduces additional privacy concerns. Third-party developers

have created apps capable of identifying individuals and accessing their personal

information [55], potentially leading to misuse of personal data [56].

Various solutions have been proposed in response to these privacy concerns.

Some advocate for regulation to protect privacy, including restrictions on record-

ing without consent and stronger data protection laws [57]. Others propose tech-

nological solutions, such as “privacy by design,” where privacy protections are

integrated into the technology itself [58]. For instance, Google Glass could be

designed to make it more evident when it is recording or to give individuals the

option to opt-out of being recorded.

In conclusion, while technologies like Google Glass hold immense potential,

they also pose significant challenges to personal privacy. As these technologies

become more prevalent, it will be critical to navigate these challenges to protect

individuals’ rights to control their personal information and preserve their private

spaces. We must prioritize privacy protections and advocate for policies and

practices that respect and uphold this fundamental right in this digital era.

2.3.1 Food related privacy

While the world is increasingly moving towards a digital future where data is

ubiquitous, the importance of privacy, particularly in personal matters such as

dietary habits, is paramount [59]. As our understanding of health and nutrition
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evolves, there is an understandable interest in collecting and analyzing dietary

data. However, this interest must be balanced against individuals’ rights to pri-

vacy and freedom of choice.

Many people enjoy junk food as part of their diet. While there are undeniable

health implications related to the excessive consumption of such foods, individ-

uals also have the right to enjoy their preferred foods without public scrutiny

or shame [60]. People’s food choices can be personal and can be influenced by

numerous factors including cultural background, personal preferences, economic

situation, and psychological factors [61].

The pressure and stigma associated with dietary choices can have significant

psychological impacts. Shaming people for their food choices can lead to a variety

of negative outcomes, including body dissatisfaction, decreased self-esteem, and

even disordered eating [62]. It is therefore crucial to approach the topic of diet

with sensitivity and respect for personal choices and privacy.

In this light, digital health technologies that monitor dietary habits should be

designed with privacy and consent as central considerations [63]. Users should

have full control over who has access to their dietary data and how it is used.

The privacy design should also consider the potential for unintentional shaming

or pressure based on the data collected.

In conclusion, while junk food consumption can have health implications, indi-

viduals have the right to enjoy their dietary preferences without being subjected

to shame or stigma. Respect for dietary privacy is an essential aspect of per-

sonal freedom and dignity. Technological advancements, while offering exciting

possibilities for health and wellness, should also respect and uphold this right to

privacy [64].

2.4. How We Eat

The process of eating is a remarkably intricate one, requiring coordinated move-

ments from various parts of the body. This intricate dance of actions involves

everything from major gross motor movements such as the use of our hands and

arms to the fine motor control exhibited by our facial muscles and tongue.

The act of eating commences with the hand movements involved in food pickup,
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guided by the eyes, and then bringing it to the mouth. This movement requires

intricate coordination involving several muscles and joints. Specifically, the move-

ments incorporate the shoulder’s ball-and-socket joint, the hinge joint at the el-

bow, and the complex structure of the wrist and hand. The action is controlled

by the cerebellum and the motor cortex in the brain [65].

Once the food is near the mouth, a complex symphony of facial and oral muscle

movements begins. Opening the mouth is facilitated by the depressor muscles

of the mandible, most notably the digastric muscle, which pulls the lower jaw

downward [66]. At the same time, muscles such as the masseter and temporalis,

some of the strongest muscles in the body for their size, prepare to close the mouth

and begin the process of chewing [67].

The temporalis muscle, situated on the skull’s side, exhibits a broad, fan-like

structure. This muscle is crucial for mandibular elevation and retraction, thereby

playing a pivotal role in the process of mastication. When we chew, the tempo-

ralis muscle undergoes contraction, drawing the mandible upwards. This action

contributes substantially to the teeth’s crushing and grinding function, integral

to the process of breaking down food for digestion [67].

Simultaneously, the tongue plays a significant role in the eating process. It

not only aids in food manipulation within the mouth, but also assists in the

formation of a bolus, the ball of food ready to be swallowed [68]. The intricacy of

this action calls for exacting control and coordination of the tongue’s numerous

muscles. These include intrinsic muscles, responsible for modifying the tongue’s

shape, and extrinsic muscles, which adjust the tongue’s position. Together, these

sets of muscles facilitate the intricate movements and functionality of the tongue

during various activities, including speech and ingestion [66].

The process of mastication, commonly known as chewing, commences as soon

as the food enters the mouth. The primary role of the teeth at this stage is to

fragment the food into more manageable pieces, thereby expanding the surface

area exposed to the digestive enzymes present in the saliva. This crucial action is

enabled by the synergistic function of masticatory muscles, namely the masseter,

temporalis, and the medial and lateral pterygoids, which collectively manage and

guide the process of breaking down food in the mouth [69].

Throughout mastication, a series of complex inter-mouth movements take place.
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The tongue, lips, and buccinator muscles in the cheeks work in team to keep the

food between the teeth, moving it around so it can be efficiently broken down.

Additionally, these intricate movements aid in integrating the food with saliva,

a crucial step in creating the bolus — a small rounded mass of food ready for

swallowing [70].

The bolus is then ready for swallowing, also known as deglutition. This act of

swallowing necessitates a sophisticated procedure involving the concerted efforts

of the pharyngeal muscles and the esophagus. The tongue pushes the bolus to-

wards the back of the oral cavity and into the pharynx, triggering the swallowing

refle [71]. Simultaneously, the soft palate ascends to restrict the bolus from ac-

cessing the nasal cavity, while the larynx rises allowing the epiglottis to shield the

tracheal entrance, thereby averting any aspiration [72]. An essential component of

the eating process is the hand-to-mouth movement. This seemingly simple action

is a complex ballet of coordinated muscle contractions and relaxations. The hand-

to-mouth movement starts with the flexion of the arm at the shoulder and elbow

joints. Simultaneously, there is a subtle rotation at the wrist to orient the hand

and fingers appropriately. Muscles like the biceps brachii, brachialis, and brachio-

radialis primarily manage the bending of the elbow, while deltoid and pectoralis

major control shoulder flexion [73]. The complex structures of the carpal bones,

the arrangement of the wrist and hand’s flexor and extensor muscles, and the

intricate web of nerves and tendons all contribute to the dexterity and flexibility

of the hand and fingers [66].

The hand, guided by the somatosensory and visual feedback, is key to identi-

fying, securing, and manipulating the food. This process involves the movements

of numerous joints in the hand, coordinated by the activity of various muscle

groups [65]. In this, the muscles of the hand — such as the flexor digitorum su-

perficialis and profundus, the flexor pollicis longus, and the intrinsic muscles of

the hand — play a crucial role. They enable the fine motor control that allows us

to manipulate food objects of various sizes, textures, and shapes [73].

During this action, the head’s movement ensures proper positioning for the

food’s acceptance. The neck muscles, such as the sternocleidomastoid and the

scalenes, play a significant role in providing stability and movement to the head [66].

In most cases, the head remains relatively stable to facilitate easier hand-to-mouth
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coordination, but slight adjustments can be made by flexing, extending, or tilting

the head, depending on the context.

One particular movement that is noteworthy is the anticipatory opening of the

mouth as the hand approaches with the food. The opening of the mouth in antic-

ipation of the food is a complex coordination of muscles in the face, specifically

those associated with the mandible. The digastric muscle, in coordination with

the mylohyoid, geniohyoid, and lateral pterygoid muscles, is primarily responsible

for opening the mouth [73].

In essence, the action of eating is not just a simple reflex but a sophisticated

symphony of numerous coordinated actions. The understanding of these move-

ments has significant implications for rehabilitation in conditions where these

movements might be compromised, such as in stroke, Parkinson’s disease, or after

some types of surgery. The process of eating is an extraordinary feat of coordina-

tion and control, involving a myriad of different muscles and numerous intricate

movements. From the first reach of the hand towards the food to the final act of

swallowing, the act of eating demonstrates the incredible complexity and sophis-

tication of the human body.

2.5. Food Intake Monitoring Approaches Overview

Current food intake monitoring methods can be roughly categorized as Motion

sensor-based,sound-based, Image-based, Glass-based, and Self-report Based.

2.5.1 Motion Sensor Based Methods

The use of Inertial Measurement Unit (IMU) technology has proved to be suc-

cessful in detecting food intake, specifically through monitoring the wearer’s hand

movements [1, 74, 75]. This methodology involves attaching the IMU to a wrist-

band, allowing the sensor to trace and analyze hand gestures. Upon identifying

distinct hand-to-mouth movements, the device signals the occurrence of food in-

take.

Despite their success in food intake detection, these techniques exhibit certain

limitations. One key challenge is their inability to accurately identify the types of

food consumed, let alone the calorie content. Kim et al. attempted to address this
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issue with a smartwatch-based method that recognizes different eating patterns

associated with specific food types. However, their tests were only limited to rice

and noodles [2]. Another challenge that arises from reliance on hand movements

is the considerable variations in eating habits, both within individuals and across

different groups. For instance, the techniques for consuming food can greatly vary,

such as eating with one’s hand(s), using chopsticks, forks, knives, or other types

of tableware [74].

Considering these limitations, other researchers have explored the combination

of IMU and Piezoelectric sensors on eyeglasses to track the user’s chewing action.

They achieve this by detecting Jaw Elevation and temporalis muscle contrac-

tion [3]. Nevertheless, while these approaches offer valuable insights, our method

proves to be more superior in detecting a wider range of food types. Our tech-

nique goes beyond merely tracking food intake or recognizing limited food types.

Instead, it provides a more comprehensive understanding of eating habits by iden-

tifying a broad spectrum of food types, thus offering a more complete picture of

dietary patterns.

2.5.2 Sound Based Methods

Sound-based detection of food intake primarily employs two methodologies. One

extensively studied method involves using microphones incorporated into head-

sets, hearing aids, or earphones to capture the chewing noise generated by the

user. This noise serves as a sign of intaking food [4]. The other technique utilizes

a laryngophone Tied to the neck of the user to identify swallowing sounds [76].

This method also incorporates IMUs to capture throat vibrations for further clar-

ification of the swallowing action.

Despite their effectiveness, sound-based detection techniques face challenges in

accurately identifying food types and their respective caloric content. Moreover,

they are highly dependent on environmental factors, thereby limiting their real-

world applicability.

Various studies have attempted to compare the efficiency of audio-based and

IMU-based chewing detection techniques. For instance, Lotfi et al. reported that

their in-ear IMU method surpasses the audio-based method in detecting chewing

activity [5]. Meanwhile, Drake’s work investigated the acoustics of chewing and
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Figure 2.1 Motion Sensor Based Methods. Work A is from [1].Work is from

[2].Work C is from [3]
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crisp food [77], and Amft further expanded sound-based detection to include both

eating and drinking behavior in healthy individuals [78]. Shuzo et al. also offered

their insights into sound-based detection methods [6].

However, the usage of devices such as hearing aid packages, which might give

the impression of a disability, or conspicuously wired devices may raise concerns

among users [4]. In comparison, our method provides a more comprehensive

approach. We are not only able to detect a wider variety of food types, but

our system also respects user privacy by avoiding constant audio recording. This

way, our users can feel comfortable knowing that their dietary habits are being

monitored without compromising their privacy.

2.5.3 Image Based Methods

Image-based approaches for monitoring food intake involve various steps, includ-

ing image segmentation, food recognition, and portion size estimation, which col-

lectively enable effective evaluation of food consumption [8]. Nevertheless, these

processes typically demand substantial computational resources and may necessi-

tate users to follow precise guidelines when preparing image source files [79,80].

Computer vision-based studies, while being capable of offering estimated nutri-

tion or caloric content for specific types of food, fall short in providing information

on the actual quantity of food consumed by the user [8, 81]. The complexity in-

creases when dealing with images that feature a full meal [8].

An alternate approach involves the attachment of a camera to eyeglasses to

record the user’s mouth area. Upon detecting food intake, the device begins to

record the food and the user’s eating actions. The user can then review these

videos to recall their daily food intake [82].

While the use of cameras or smartphone cameras for food intake detection is

relatively well-studied, their application varies significantly. Some methodologies

employ these cameras attached to wearable devices to identify food by the use of

computer vision [83,84].

To handle the complexities associated with image-based methodologies, Hassan-

nejad et al. suggest the provision of practical guidelines or interactive procedures

as potential solutions [79].

In comparison to these techniques, our method offers a significant advantage
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Figure 2.2 Different Sound Based Methods: Work A is from [4].Work is from

[5].Work C is from [6]
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in preserving user privacy. By avoiding the continuous recording or capturing of

images, our method eliminates the privacy concerns associated with image-based

methods, thus ensuring a user-friendly, secure, and efficient food intake monitoring

system.

2.5.4 Glasses Based Chewing Detection

Mertes et al. [85,86] developed a glasses-based approach to detect chewing motion

in elderly individuals. Similarly, Chung et al. [87] devised smart glasses capable

of classifying food intake movements from physical activities. Additionally, Bedri

et al. [82] introduced multi-modal sensor-based glasses with a camera to detect

food intake events, even in noisy environments. However, to the best of our

knowledge, none of these existing studies utilizing smart glasses have been able

to differentiate between various types of food, particularly those associated with

compromised muscle health and unhealthy eating habits.

Expanding on this, the ability to differentiate between various types of food,

especially those that can lead to poor muscle health and reinforce bad eating

habits, is a critical and unique feature of our method. While existing solutions

may detect the act of eating or measure the volume of food intake, they lack

the capability to identify the specific type of food consumed. This limitation is

significant, especially for users seeking to improve their muscle health and dietary

habits.

Our method aims to address this limitation by not only monitoring food intake

but also classifying the types of food consumed. This additional layer of infor-

mation provides a more comprehensive understanding of a user’s eating habits

and patterns, enabling more accurate dietary tracking and potential assistance

in managing and preventing poor muscle health. In essence, our approach adds

a new dimension to the application of smart glasses in the context of dietary

monitoring and promoting better eating habits.

2.5.5 Self-report Based Methods

Self-reported methods [8] can be in the form of a physical notebook or diary, or

they can be digital using smartphone apps or online platforms. Users typically
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write down the details of each meal or snack, including the time of consumption

and any relevant information like the location or company.

While food journals can be effective in providing detailed information about di-

etary habits, they do have some limitations. Firstly, they rely on the individual’s

memory and accuracy in recording the information, which can lead to errors and

omissions. Additionally, manually tracking food intake can be time-consuming

and cumbersome, which may result in users forgetting or giving up on the prac-

tice [4].
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Chapter 3

Designed solutions

3.1. Hardware Design

The design of a device’s hardware constitutes a pivotal aspect in the success-

ful implementation of any system, be it in the realm of HCI, or other sectors

of technology. In the case of our system, which involves an amalgamation of

wearable technology and advanced sensor arrays, the hardware configuration is

of vital importance. Our hardware configuration includes a dual setup of Inertial

Measurement Unit (IMU) sensors. This setup yields a robust 12-axis sensorial

feedback system that effectively captures movement data [88].

Our sensor configuration comprises two IMUs. The first IMU is the LSM6DS3,

integrated directly into the Microcontroller Unit (MCU) of the device. The

LSM6DS3 is a system-in-package featuring a 3D digital linear acceleration sensor

and a 3D digital angular rate sensor. This sensor’s advanced features and compact

size make it an ideal choice for incorporation into our wearable device [89].

The second IMU, the GY521, is an external sensor that we have attached to the

right leg of our glasses. The GY521 is a cost-effective, yet highly efficient IMU

featuring a 3-axis gyroscope and a 3-axis accelerometer. This sensor uses the

MPU-6050 chip, which has gained widespread acceptance in the field of motion-

enabled devices [90].

These two IMUs provide a 6-axis motion tracking system each, combining to

a total of 12 axes, which helps us to gather a comprehensive range of data on

user movement. This multi-axial setup enables us to accurately capture a broad

spectrum of movements, including but not limited to, head movements, leg move-

ments, and subtle shifts in posture, thereby providing a rich dataset that can be

used for various HCI applications [91].
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We have further discussed the intricacies of our hardware configuration, in-

cluding the sensor placement and signal processing methodology in the previous

section on hardware design. These aspects are of utmost importance in our device

as they determine the accuracy and reliability of the data that our system can

capture, and hence, the efficacy of the overall system.

3.2. Design Ideation

Design ideation is a central component of any hardware project, particularly when

the goal is to generate novel, usable, and efficient technology. Our design process

was iterative and exploratory, with several stages of concept development, proto-

typing, testing, and revision.

The development of our wearable technology hinged on the successful inte-

gration and accurate data collection from two Inertial Measurement Unit (IMU)

sensors: the built-in LSM6DS3 on the Microcontroller Unit (MCU) and the exter-

nal GY521 sensor. These sensors, providing 12 axes of data in total, were critical

to our goal of capturing a comprehensive range of motion data.

One of the significant challenges in our design process was identifying the op-

timal location for sensor placement on the glasses. Initially, we explored several

possible locations for the GY521 IMU sensor. This exploration was necessary be-

cause the placement of the sensor would significantly impact the type and quality

of data that we could collect.

In our investigations, we discovered that positioning the sensor on the tem-

poralis muscle, located on the side of the head, provided superior data quality.

This muscle is one of the primary muscles involved in the complex movements of

chewing and swallowing. By positioning the sensor here, we could capture more

nuanced data about these movements. This discovery was a key turning point in

our design ideation process.

Once we had confirmed the placement of the sensors, we then proceeded to the

integration and testing phase. We adjusted and calibrated the sensors to ensure

reliable and accurate data capture. We designed the hardware to be compact,

lightweight, and comfortable to wear, as these were crucial factors in a successful

wearable device.
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The nitty-gritty details of the hardware configuration, including our consider-

ations for sensor placement, data acquisition, and signal processing, were thor-

oughly described in the hardware design section. Throughout the design ideation

process, our focus remained on creating a device that was user-friendly, efficient,

and able to provide valuable insights into human movements and behaviors.

In the complex task of interpreting human movements and behaviors, data

accuracy and precision are paramount. When developing our glasses-based tech-

nology, we initially relied on the IMU sensors located on the glasses. However,

during our testing phases, we discovered certain limitations in our system. One

of the most notable was the difficulty in distinguishing between specific activities

such as eating and talking, due to the overlapping movements in both actions.

Our initial sensor placement on the temporalis muscle of the head could accu-

rately record the muscle’s movements involved in chewing and swallowing. Still,

it had the limitation of picking up facial movements associated with speech. This

is because many of the muscles used for chewing are also engaged during talking.

Hence, our system sometimes misinterpreted conversation as eating. For instance,

in one scenario, after a discussion while wearing the glasses, the system deduced

that I had consumed three burgers and two apples.

Recognizing this limitation, we sought to enhance our system’s accuracy and

discernment. The idea to add an additional IMU sensor to the wrist emerged as

a potential solution. The rationale was that while eating activities often involve

distinct hand-to-mouth movements, conversational gestures are usually different.

The sensor at the wrist would allow us to capture these hand-to-mouth move-

ments, adding an additional layer of data for analysis. This would help differ-

entiate between eating activities and other actions involving facial muscles, like

talking.

We carefully integrated the IMU sensor into a wristband, ensuring that it was

comfortable, lightweight, and non-intrusive. We designed it to communicate seam-

lessly with the other sensors, creating a synchronized multi-sensor system. This

wrist sensor provided critical context to the data obtained from the glasses. It

offered a more complete picture of the user’s activities by combining data on head

movements, facial muscle activity, and now, hand movements.

Upon incorporating this wrist-based IMU sensor, we noticed a significant im-
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provement in the system’s ability to distinguish between eating and talking. This

improvement reiterated the fact that the human body works in a complex, in-

terconnected manner. Our multi-sensor approach, combining data from different

points of activity, indeed added a new dimension of accuracy to our system. It

highlighted the importance of multi-point data capture in creating a more com-

prehensive, nuanced, and accurate understanding of human behavior.

3.3. Our Approach: First Bite/Chew Based Foods

Intake Monitoring

Our method capitalizes on the varying textures of food, or more specifically, the

distinct reactions different foods have to biting and chewing, as well as the unique

hand movements associated with eating each food type, to differentiate between

various kinds of food.

To capture detailed data pertaining to biting, chewing, and the corresponding

hand movements during eating, we developed a device that comprises a pair of

standard glasses and a wristband. As illustrated in figure 3.1, an Inertial Mea-

surement Unit (IMU)1 was affixed to the inner side of the right leg of the glasses

(closest to the head), strategically positioned near the superior auricular and

temporalis muscles when the glasses are worn. Additionally, an IMU-embedded

Microcontroller Unit (MCU)2 was incorporated into the wristband and linked to

the glasses’ IMU via a four-wire connection using the IIC-Bus.

Broadening this concept, the unique design and strategic placement of the IMUs

allow for precise capture of both facial muscle movements related to chewing

and biting and the hand motions associated with food consumption. This multi-

faceted approach provides a more holistic understanding of the eating process,

offering nuanced data that contribute to the accurate identification of different

food types.

Moreover, the use of wearable tech, like ordinary glasses and wristbands, offers

1 We used a module based on the MPU6050 IMU.

2 We used the Seeeduino Xiao BLE sense MCU. https://www.seeedstudio.com/Seeed-

XIAO-BLE-Sense-nRF52840-p-5253.html
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a non-intrusive and socially acceptable way to monitor food intake, significantly

increasing user compliance and usage in day-to-day life. This feature enhances

the real-world applicability and usability of our system, making it a promising

tool for dietary monitoring and management.

Figure 3.1 A. The placement of the two IMU sensors is as follows: one is affixed

to the right leg of the glasses, and the other is securely attached to the wrist

of the dominant hand. B. We utilize the temporalis muscle as one of our data

sources in the monitoring process. C. The hardware design is depicted in Figure

C, illustrating the arrangement and configuration of the sensors and glasses.
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Figure 3.2 When a participant consumes an apple, we collect 12 axes of IMU

data related to their eating movements, as shown in the Waveform plot on the

right side. The length of the red rectangle represents the portion we define as the

first bite/chew, while the thin yellow rectangle indicates the preparation of hand

and head movements before eating.
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Chapter 4

Experiment

4.1. Method

4.1.1 Participants

For the purposes of our study, we gathered data from four participants, two males

and two females, ranging in age from 23 to 32 years. Each participant was in-

dividually recorded while they ate meals on campus. The duration of each meal

recording varied between 40 and 70 minutes. We recorded five meals for each

participant over three consecutive days, including two lunches and three dinners.

Each participant was asked to read, understand, and sign two forms. The

first form was a consent form that explained the nature of our study, and the

second was an allergy checklist. This list included common allergens such as

peanuts, milk, pork, beef, and various types of seafood. In addition to this, we

asked the participants about any specific food or drink allergies, intolerances, and

restrictions (due religious beliefs, personal dislikes or others) they had to ensure

that no one would unintentionally consume any food that could be unwanted,

harmful, or even fatal to them. This measure ensured the safety and well-being

of our participants throughout the study.

Further expanding on this, the collection of allergy and dietary restriction infor-

mation before the commencement of the study underscores the seriousness with

which we treated participants’ safety. Not only did we record and analyze the

participants’ eating habits, but we also ensured that the food provided adhered

to their dietary restrictions. This careful attention to detail is crucial in research

studies and signifies our commitment to ethical research practices.
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Foods Selection

To facilitate our method’s ability to detect different types of food, we intentionally

selected seven types of food to be tested under two main categories - typical daily

foods, and foods commonly associated with poor muscle health. The typical daily

foods category includes hamburger, instant noodles, apples, and nuggets, while

the group associated with poor muscle health comprises peanuts, egg fried rice,

and edamame.

These foods were selected in line with reports highlighting the potential effects

of certain foods on oral and muscle health. For instance, the consumption of fast

and processed foods, such as hamburgers, instant noodles, and nuggets, has been

associated with inadequate chewing, leading to underdevelopment or weakening

of the masseter and temporalis muscles [92]. Peanuts, while nutrient-rich, can

pose a risk when consumed frequently in large amounts due to their high fat and

calorie content, potentially leading to obesity and associated health problems [93].

Eggs and soy, such as in egg fried rice and edamame, are high in protein but can

contribute to an imbalance diet when over-consumed, affecting overall health and

potentially leading to muscle strain or discomfort [94,95].

It’s worth noting that maintaining a balanced and varied diet is crucial not just

for the health of the masseter and temporalis muscles, but for overall well-being.

Therefore, our method aims to promote healthier eating habits by providing in-

sights and feedback on food choices that may impact muscle and oral health.

One asked the subjects whether they have any allergic reaction to the food that

were provided, and if they prefer not to eat some food due to religious and culture

reasons. The other one is consent form, in this form we explained our experiment,

informed their participants rights, confidentiality and anonymity, and use of their

data. We found out from the first form that subject#3 don’t eat pork, but the

egg fried rice we provided have pork as ingredient, so we removed egg fried rice

from his meal list.

Before the experiment, we queried the subjects about potential allergic reactions

to the food provided and whether they had any dietary restrictions due to cultural

or religious reasons. Additionally, a consent form was provided, which outlined

the details of our experiment, informed participants about their rights, assured

them of confidentiality and anonymity, and explained the usage of their data. The
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responses to the first form revealed that subject #3 did not consume pork. Since

the egg fried rice included in the meal list contained pork as an ingredient, we

made sure to exclude this item from his meals.

Expanding on this, our method’s ability to detect and classify different types

of food could have wider applications beyond individual users. For instance, it

could be employed in clinical and research settings to study eating habits and

their relation to various health outcomes. This would further our understanding

of nutrition and its links to diseases such as obesity, diabetes, and heart disease.

Our method could also aid in public health efforts by providing data on population-

level eating patterns. This could guide policies aimed at promoting healthier

eating habits and addressing common nutritional deficiencies.

Moreover, as concerns regarding poor muscle health and bad eating habits are

prevalent among many individuals, our method could be a significant step forward

in managing these conditions. It could provide reassurance to users and their

caregivers by helping them avoid foods that could lead to strain or imbalance

in the masseter and temporalis muscles. This proactive approach to monitoring

food intake can contribute to promoting healthier muscle function and overall

well-being, reducing the risk of discomfort and chronic conditions associated with

poor eating habits.

Finally, the ability to customize the food list based on individual dietary re-

strictions, as in the case of subject #3, ensures our method is adaptable and

considerate of diverse dietary preferences and needs.

4.1.2 Procedure

Prior to commencing data recording, experimenters assisted each participant in

wearing the device and verified that it was generating data correctly. Specifically,

the wristband was placed on the participant’s dominant hand.To avoid undesired

displacement of the sensors, we used two additional elastic bands to fasten the

sensor and the cables to the participant’s arm. After everything was set up, we

made sure the device was not causing any discomfort to subjects. All subjects

were asked to bring to typical meal we designed which consisted of one main

course and two starters. They were given three instructions before the recording

started: 1)eat one type of food at a time, only start a new type after the last one
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was finished 2)eat one bite of food after receiving cue from researcher, and only

start the next bite after receiving the next cue 3)regarding the last bite of the

food, if the food left is too small that the participant will generally put it in their

mouth without biting, the data will not be recorded.

After the recording started, the researcher would wait for 2 to 3 seconds before

giving the cue with gesture and voice to avoid missing out on desired data. After

the cue, Participants were given the freedom to consume their meal in the manner

that felt most natural and customary to them. We recorded the time of eating

preparation movement and first bite/chew as ground truth annotations. All the

accelerometer and gyroscope data of their hand and mouths were recorded for

15 seconds each time with a sampling rate of 80 HZ. We found out from a pilot

study that 15 seconds of sample length is suitable for most people eating most

types of food, which covers a whole eating cycle of one bite without involving too

much-unwanted data. The sampling rate of 80 Hz is limited by hardware, which

we found out has a sampling rate floating around 80 Hz.

The data is 12 axes in total generated by two IMU sensors, one is the built-in

LSM6DS3 on the MCU, and another is the GY521 IMU sensor that we attached

to the right leg of our glasses. Hardware details we described in the previous

hardware design section.

4.2. Result

Participant #1 Participant #2 Participant #3 Participant #4

Food list Times
Bites

Count(AVG)
Times

Bites

Count(AVG)
Times

Bites

Count(AVG)
Times

Bites

Count(AVG)

Instant Noodle 3 12.3(SD=0.47) 3 17.7(SD=1.70) 2 26(SD=1) 2 18.5(SD=1.5)

Double Cheese 4 8(SD=0) 1 16(SD=0) 1 32(SD=0) 3 7(SD=0)

Nuggets(plece) 15 2(SD=0) 15 2.07(SD=0.25) 8 4.13(SD=0.33) 15 2(SD=0)

Apple 1 32 1 35 1 30 2 17(SD=3)

Edamame N/A N/A N/A N/A N/A N/A N/A N/A

Peanuts N/A N/A N/A N/A N/A N/A N/A N/A

Egg Fried Rice N/A N/A N/A N/A N/A N/A N/A N/A

Table 4.1 Bites needed for eating up 7 types of food. Food such as edamame

peanuts and egg fried rice are heart to Control the amount and how may does the

participants want to eat. Therefor documented as N/A.
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We successfully recorded in total 916 valid samples as our dataset. For apple, total

of 125 samples were recorded, from participant #1 to #4, each participant was

recorded 28, 35, 28, 34 samples respectively. For double cheese burger, total of 76

samples were recorded, from participant #1 to #4, each participant was recorded

21, 14, 22, 19 samples respectively. For edamame, total of 179 samples were

recorded, from participant #1 to #4, each participant was recorded 53, 45, 44,

37 samples respectively. For instant noodle, total of 139 samples were recorded,

from participant #1 to #4, each participant was recorded 37, 36, 38, 28 samples

respectively. For nugget, total of 123 samples were recorded, from participant

#1 to #4, each participant was recorded 30, 28, 32, 33 samples respectively. For

peanut, total of 169 samples were recorded, from participant #1 to #4, each

participant was recorded 41, 48, 39, 41 samples respectively. For egg fried rice,

total of 105 samples were recorded, from participant #1 to #3, each participant

was recorded 33, 42, 30 samples respectively.

Figure 4.1 Participant’s raw data
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Figure 4.2 For Participant’s privacy name is blocked

Based on our observations, we identified both similarities and unique charac-

teristics in the eating motions and gestures of the four participants. Similarities

include the following: 1) All participants open their mouths when the food is

halfway moved toward their mouth. 2) For foods like burgers and apples, par-

ticipants tend to hold the food close to their mouths in preparation for the next

bite, making the hand-to-mouth motion less obvious. 3) The eating preparation

period for instant noodles is longer than for other foods, with participants often

blowing on the noodles for a few seconds before taking bites.

Regarding individual characteristics, participant #1 tends to inspect and spin

the apple before eating. Participant #2 has a habit of holding her phone with

her left hand and browsing while eating. Participant #3 looks down at her phone

on the table while eating. Participant #4 sometimes requires clarification from

researchers before taking bites. Additionally, participant #4 reported religious

restrictions on consuming pork, leading him to exclude pork-containing egg-fried

rice from his food choices during data collection. As a result, participant #4
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Figure 4.3 The average confusion matrix and F1 score were computed by taking

the mean value of each entry across the four participants.

consumed only the remaining six types of food for the data collection process.

4.3. ML Model Structure

For food category recognition, we utilized a multiclass Support Vector Machine

(SVM). The classifier was trained and tested using each subject’s own data, with

80% of the data used for training and the remaining 20% for testing. As depicted

in Figure 4.3, the classifier achieved an impressive average accuracy of 93.3% and

an average F1 score of 0.92 across all food types and participants. Specifically,

the average accuracy for Apple was 91.8%, Burger was 95.5%, Edamame was

95.2%, Egg fried rice was 96.1%, Instant noodle was 91.2%, Nuggets was 89.3%,

and Peanuts was 94.7%. Though our initial study showed a promising result

that it is feasible to detect different types of food using a combination of the

first bite/chew and the corresponding hand movement from two IMUs, there are

challenges remain.
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Chapter 5

Discussion and Future Works

5.1. Segmentation and Annotation

A previous study focused on two main aspects of an eating cycle: the movements

of the hand and mouth approaching each other and the biting/chewing motion.

Ye et al. further categorized hand-to-mouth motions into three phases: hand

ascending period, biting period, and hand descending period [96]. Upon closer

examination, we discovered that for specific types of food, the eating preparation

motion involves the mouth reaching for the hand-held food, rather than moving

the food to the mouth by hand. Integrating insights from previous research and

our own observations, we identified three key steps in an eating cycle:

1. The phase when the hand and mouth come closer to each other in prepara-

tion for eating.

2. The initial biting or chewing motion.

3. The regular chewing period.

During our data recordings of the seven types of food, we observed a close tem-

poral relationship between the subjects’ first bite and the convergence of their

hand and mouth movements. To label the ground truth for the eating prepa-

ration period, we utilized recorded timestamps during the observation process.

Subsequently, we identified the start of the first bite segment immediately after

the eating preparation period. However, for certain types of food, the first dis-

tinct bite motion was not present in the data, as some participants directly put

a bite of food into their mouths. In such instances, we substituted this action

with the first chewing motion. The chewing segment was randomly selected from
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the subsequent regular chewing period. Each segment was precisely 2 seconds in

duration, allowing sufficient time to capture all relevant data.

5.1.1 Pre-Processing

For feature extraction and training, we employed a sliding window of 1600 ms with

12.5% overlap. Within each window, a total of 132 features were extracted from

both the time domain and frequency domain. Specifically, for each axis of the

accelerometer and gyroscope, the following features were computed: 1) root mean

square, 2) skewness, 3) kurtosis, and 4) the first 8 coefficients from the discrete

Fourier transform.

5.1.2 Future Work

Exact Food Types

While our initial findings indicate that utilizing a combination of the first bite/chew

and its corresponding hand movement could serve as a straightforward and de-

pendable method to differentiate food types, we acknowledge some limitations in

our current prototype. As the current design prioritizes a socially acceptable ap-

pearance and does not incorporate a camera, there is a possibility that certain food

types with similar textures may exhibit similar corresponding hand movements.

This limitation highlights the need for further improvements and considerations

in future iterations of our approach.

Extending to New Users

The current model is individually trained for each user, which poses challenges in

adapting to new users due to variations in eating patterns even for the same type

of food. For instance, when observing participants eating noodles, participant #1

tends to bow the head to reach the bowl, while others prefer to lift the noodles

to their mouth. These distinct differences result in varying patterns in terms of

amplitude and frequencies. In future endeavors, we plan to address this issue

by expanding our dataset to include a larger user group as our base model. By

incorporating more diverse scenarios, the model can better accommodate individ-
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ual variations. Techniques like transfer learning can then be utilized to facilitate

adjustments for new users, potentially reducing the effort required for adaptation.

Extending to New Food

At the moment, our method is capable of distinguishing only seven types of food.

Despite the possibility of incorporating more categories in future work, it remains

infeasible to include all possible food types a user might encounter in their daily

life during the training phase. A promising solution to this challenge lies in the

application of few-shot learning techniques, which are a focus of current research.

This approach involves training a model to assess the similarity between two input

signals, rather than directly mapping signals to categories.

Consequently, the user only needs to gather a few samples of a new food category

for reference. Whenever a new real-time signal is received by the system, it’s

compared against all the reference points. The food type associated with the

closest match, based on similarity, is then identified as the category of the new

signal. This approach eliminates the need for additional training and significantly

reduces the burden on the user, as only a few reference samples are required.

Building on this, the application of few-shot learning can pave the way for

a more flexible and user-friendly system. It makes our method adaptable to a

wider range of food types and eating scenarios, thereby enhancing its real-world

applicability.

Furthermore, by continuously updating and refining the reference samples based

on the user’s diet, our method can potentially evolve into a personalized food

intake detection system. This individualized approach could enhance the accuracy

and relevance of the system, contributing to more effective diet management.

In the long run, the use of few-shot learning could also enable our method

to incorporate other relevant factors such as the user’s eating speed, chewing

patterns, and other unique eating habits. This would add a layer of depth to the

system’s capability, allowing it to provide even more comprehensive and nuanced

insights into the user’s eating behavior.

In an effort to discover the full range of possibilities offered by our method,

we present three potential scenarios where users could benefit from our proposed

approach.
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Figure 5.1 The accuracy confusion matrix of 4 participants (participant #4 can’t

eat egg fried rice due to religion background)

Figure 5.2 Comparison between our approach and existing works
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Our goal is to broaden the scope beyond merely detecting food intake. We aim

to enhance the functionality of our approach by incorporating food classification

features, which could be a vital aid for individuals dealing with the challenges of

maintaining proper muscle health and managing bad eating habits. Moreover, we

aspire that our research will encourage future studies in food intake detection to

pay special attention to these groups, namely, those suffering from poor muscle

health and dietary-related issues.

To expand on this, consider the first scenario where an individual is prone to bad

eating habits that could compromise the health of their masseter and temporalis

muscles. With our innovative method, users could receive alerts when they are

about to consume foods that may negatively impact these critical muscles, such

as overly hard, sticky, or fast food that requires less chewing. This approach

could help users avoid foods that might lead to muscle strain or underutilization,

thus promoting healthier muscle function. By acting as a dietary guide, our

method aids in correcting poor eating habits, thereby reducing the risk of muscle

imbalance, strain, and associated disorders. This not only ensures better muscle

and oral health but also contributes to the overall well-being of the user.

In the second scenario, our method could assist individuals suffering from mem-

ory loss, particularly those who have difficulty remembering what they ate. By

providing accurate records of past meals, our device could help these individuals

maintain a balanced diet and ensure they are meeting their nutritional needs.

Lastly, in a more general context, our method could serve as a comprehen-

sive dietary tracking tool. By accurately identifying and recording the type and

amount of food consumed, it could help users monitor their eating habits and

make healthier food choices, contributing to their overall well-being.

In conclusion, we believe our method has the potential to significantly enhance

individual health management. By addressing various user scenarios, from con-

cerns related to poor muscle health and bad eating habits to memory loss, we

aim to inspire a new direction in the field of food intake detection and manage-

ment. Our approach not only promotes better muscle health and dietary habits

but also contributes to the overall well-being of users, offering valuable insights

and guidance for maintaining a healthier lifestyle.
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Chapter 6

Applications

6.1. Eating Habits Correction

Bad eating habits can have detrimental consequences for various aspects of health,

including the muscles involved in mastication. The masseter and temporalis mus-

cles, key muscles used in chewing, can be significantly affected by poor dietary

choices.

Chewing hard, sticky, or crunchy foods regularly can put undue stress on the

masseter and temporalis muscles. Foods like hard candies, sticky caramels, or

tough meats can require excessive force to break down, leading to muscle strain.

Over time, excessive use of these muscles can lead to hypertrophy (an increase

in muscle size) or tightness, potentially causing pain and discomfort [94]. This

is particularly evident in individuals who habitually chew gum or clench their

teeth, as they are engaging these muscles frequently, often without realizing the

cumulative strain [97].

Moreover, the way one eats can also affect these muscles. Consuming large

chunks of food without cutting them into smaller pieces can force the masseter and

temporalis muscles to work harder than necessary. Additionally, eating rapidly

without adequately chewing food can place sudden and repetitive strain on these

muscles. Bad eating habits like the consumption of sugar-rich foods and drinks can

lead to tooth decay [98]. When teeth become compromised due to cavities, this

can affect the way people chew, which in turn places an additional strain on the

masseter and temporalis muscles. People may try to compensate for discomfort

or pain by chewing on one side, leading to an imbalance in muscle usage. This

imbalance can cause one muscle to become overworked, potentially leading to

muscle strain, discomfort, or Temporomandibular joint disorders (TMJ) [95].
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Moreover, the consumption of heavily processed and fast foods, which are often

softer and require less chewing, can result in underuse of these muscles. Similar

to any other muscle in the body, lack of use can lead to muscle weakening over

time. Inadequate chewing due to the consumption of softer foods can result in

the underdevelopment or weakening of the masseter and temporalis muscles [92].

Furthermore, the nutritional quality of the food we consume has a direct impact

on muscle health. Lack of essential nutrients and vitamins can affect muscle

function and overall health. For instance, deficiency in Vitamin D is associated

with muscle weakness and pain, which could potentially impact the health of

masseter and temporalis muscles [99].

The lack of masseter and temporalis muscle health can have profound effects on

an individual’s overall well-being. If these muscles are weakened or strained due

to poor eating habits, they can cause a range of uncomfortable symptoms. This

can include difficulty chewing, jaw pain, headaches, and even changes in facial

appearance due to muscle hypertrophy or atrophy [94]

Moreover, imbalance or dysfunction in these muscles can lead to Temporo-

mandibular joint disorders (TMJ), a group of conditions that cause pain and

dysfunction in the jaw joint and muscles controlling jaw movement. Symptoms of

TMJ include difficulty opening the mouth wide, jaw locking when talking, eating

or yawning, and difficulties in biting or chewing [95].

In severe cases, the constant pain and discomfort can even affect mental health,

leading to conditions such as anxiety or depression. There’s also evidence that

chronic pain, such as persistent jaw pain, can interfere with sleep, cognitive func-

tion, and work productivity, significantly reducing the quality of life [100].

Our method presents a unique approach to monitoring and improving eating

habits, particularly with respect to the health of the masseter and temporalis

muscles.

By capitalizing on the varying textures of food and the different reactions they

elicit during biting and chewing, this method provides a nuanced understanding of

the masticatory process. The device comprising standard glasses and a wristband

embedded with Inertial Measurement Units (IMUs) strategically captures data

related to facial muscle movements (specifically near the superior auricular and

temporalis muscles) and hand movements during eating. This information can
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provide insights into the eating habits of the individual and help identify areas of

improvement.

For instance, if the data reveals frequent consumption of hard or tough foods

that require excessive force and consequently strain the masticatory muscles, indi-

viduals can be guided to diversify their food choices to include softer foods. This

modification would reduce muscle strain and promote a balanced use of these

muscles. Similarly, the analysis of hand movements can guide individuals to cut

their food into smaller, more manageable sizes, reducing the workload on the

masticatory muscles.

Moreover, the wearable technology design, using standard glasses and wrist-

bands, provides a non-intrusive and socially acceptable means of monitoring food

intake. This feature enhances user compliance, making the device a practical tool

for real-world dietary monitoring and management. By tracking eating habits

in this manner, individuals can be more aware of their patterns, understand the

impact of their choices on muscle health, and make necessary adjustments to

promote healthier habits.

In conclusion, the adverse effects of poor eating habits on the masseter and tem-

poralis muscles extend beyond mere strain, leading to muscle imbalance, underde-

velopment, nutrient deficiencies, and overall decreased muscle health. Maintaining

the health of these muscles through proper eating habits is not just crucial for the

mechanical process of eating but also for overall health and well-being. A lack of

muscle health can lead to discomfort, chronic conditions, and potentially signifi-

cant decreases in quality of life. Our innovative method presents a promising tool

for monitoring and improving these eating habits, thus promoting the health of

these muscles. Maintaining balanced and healthy eating habits is imperative not

only for optimal muscle function but also for overall oral health. Through effec-

tive monitoring and conscious modifications, individuals can mitigate the negative

consequences of poor eating habits, ensuring the well-being of their masticatory

muscles, and contributing to better oral health.
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6.2. Precise Calories Intake Estimation

Instead of relying on camera recording or requiring the user to manually input

the quantity of a certain food, we discovered that the number of bites taken can

provide a practical estimation of food consumption. As Table 4.2 illustrates,

the number of bites required to finish a particular type of food tends to remain

constant. For instance, participant #1 consistently took eight bites to finish a

double cheeseburger, a pattern that persisted over four such burgers consumed

across three days. Similarly, a cup of instant noodles always required 12 bites (SD

= 0.47). This pattern appears to be consistent among different individuals, albeit

with slight variations.

By extension, this bite count method offers a number of advantages for the

estimation of caloric intake. Firstly, it provides a user-friendly and efficient way

to track food consumption without the need for intrusive measures such as video

recording or time-consuming manual entry.

Secondly, it brings in a higher level of precision in dietary tracking by linking

the bite count to the type of food consumed, thereby giving us a more accurate

understanding of the calorie intake.

Thirdly, this method could potentially be expanded to other eating behaviors

and serve as an interesting avenue for further research into dietary habits and

their relationship with health outcomes.

Finally, the adaptability of this approach across different individuals suggests

its potential for wider application in dietary tracking, allowing more people to

monitor their eating habits effectively and, by extension, manage their health

better.

Such that if we can get the user’s needed bites for each kind of food in advance

and count the actual bites the user takes, we believe our approach can be extended

to a precise calorie intake monitoring system by multiplying calories per food unit

by the food amount.
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6.3. Remote Elderly Food Intake Monitoring

Alterations in appetite and dietary habits are often observed in the elderly, par-

ticularly those suffering from age-related diseases. Research has shown that there

is a noticeable escalation in hunger and a decline in satiety among individuals

with Alzheimer’s disease. For example, one case study reported an 84-year-old

man diagnosed with Alzheimer’s disease who was consuming larger meals more

frequently, despite not experiencing feelings of fullness [101].

Our system offers an innovative approach to remotely monitor the dietary habits

of older adults by being capable of identifying the kind and amount of food con-

sumed by the user. This method potentially enhances current remote monitoring

strategies in a number of ways. Firstly, it is designed to be a wearable device,

which makes it convenient for continual usage and less intrusive than conventional

methods. Secondly, it does not rely on camera-based technology for its operation,

making it a more discreet and privacy-friendly solution.

Additionally, our system could serve as a valuable tool for healthcare profes-

sionals who are managing the dietary needs of their elderly patients. The ability

to monitor the eating habits of individuals, especially those with Alzheimer’s dis-

ease, can lead to more personalized dietary plans and interventions. This could

potentially alleviate some of the complications related to improper nutrition in

older adults.

Furthermore, the system could also provide important insights into the rela-

tionship between eating habits and the progression of age-related diseases. This

could help researchers understand these conditions better, potentially leading to

more effective treatments in the future.
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Chapter 7

Conclusion

In this research, we have put forward a solution for automated food intake mon-

itoring that is both effective and socially acceptable, taking advantage of the

concept of the First Bite/Chew. To start with, we carried out a preliminary

study to determine the appropriate hardware design and to assess the feasibility

of our approach. This was followed by a rigorous testing phase where we eval-

uated the performance of our system using real-time eating data collected from

four participants, with subsequent comprehensive analyses.

Interestingly, our findings indicate that despite the use of just two IMUs to

track the movements of the hand and mouth, our approach still yields substantial

results in terms of both accuracy and F1 score, two key metrics in performance

assessment. This suggests that our system offers a robust solution for monitoring

food intake, and does so in a way that users would be comfortable with in a social

setting.

In the conclusion of our study, we presented a range of potential user scenarios

that could significantly benefit from our system. These examples aim to inspire

further investigations and innovations in the field of food intake monitoring. For

instance, individuals concerned about their muscle health and wanting to avoid

bad eating habits could utilize our technology to ensure they make informed food

choices that promote healthier masticatory muscles and overall well-being. Ad-

ditionally, dieticians and health professionals could leverage the system to gain

valuable insights into a patient’s eating habits, assisting them in providing per-

sonalized advice for improving muscle health and dietary patterns.

Furthermore, given its ease of use and non-invasive nature, our system has

immense potential for widespread adoption. It could be particularly beneficial for

those aiming for weight loss or managing chronic conditions like diabetes or high

cholesterol, where consistent monitoring of food intake is crucial.
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7. Conclusion

Moving forward, we hope our work serves as a foundation for future research,

leading to further improvements and broader applications in the field of automatic

food intake monitoring. We believe this direction of research has the potential to

significantly contribute to improving individual and public health.
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Appendices

A. PARTICIPANT CONSENT FORM

PARTICIPANT CONSENT FORM

PARTICIPANT CONSENT FORM  

You are being asked to take part in a research study on remote learning scenarios. The 
research is conducted under supervision by Kai Kunze from Keio University. 
INFORMATION SHEET 
In this study, you will be asked to record your physiological data which are your body 
movement via the eye-glasses your wear and the wristband passed to you. The participants 
in this study are not exposed to any risk beyond the risks of everyday life. You may 
terminate your participation in the study at any time without giving any reason and without 
any disadvantages. In the event of termination, all data collected up to that point will be 
deleted.  

PARTICIPANTS’ RIGHTS  

You may terminate your participation in the study at any time without giving any reason and 
without any disadvantages. In the event of termination, all data collected up to that point 
will be deleted. If you have any questions as a result of reading this information sheet, you 
should ask the researcher before the study begins.  

CONFIDENTIALITY/ANONYMITY  

The data we collect do not contain any personal information about you except the 
information that you filled in the following. No one will link the data you provided to the 
identifying information you supplied (e.g., name, address, email). Up until the point at which 
your data have been anonymized, you can decide not to consent to having your data 
included in further analyses. Once anonymized, these data may be made available to 
researchers via accessible data repositories and possibly used for novel purposes.  

DATA STORAGE  

The data collected with this study will be stored at the GEIST research group at KMD and 
deleted after three years at the latest. The data is stored in a form that does not allow any 
conclusion to be drawn about your person. This consent form shall be kept separate from 
the other test materials and documents.  

By signing below, you are agreeing that: (1) you have read and understood the Participant 
Information Sheet, (2) questions about your participation in this study have been answered 
satisfactorily, (3) you are aware of the potential risks (if any), (4) you are taking part in this 
research study voluntarily (without coercion), and (5) anonymized data only may be shared 
in public research repositories.  

Participant Number*.                                                    Date* 

_________________________________                  _________________________________  

Participant’s Name (Printed)*                                     Participant’s signature* 

_________________________________                  _________________________________  

If you have any questions, please do not hesitate to contact: Xiongqi Wang 
Email: wangxiongqi@kmd.keio.ac.jp 
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