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Abstract of Master’s Thesis of Academic Year 2023

AI Supported Haptic Design Process

Category: Design

Summary

The integration of haptic feedback has the potential to enhance the overall mul-

timedia viewing experience. To achieve precise and immersive haptic experiences

in conjunction with videos, various authoring methods have been explored in

previous research. Manual authoring has been favored for this task, but its labor-

intensive nature and time-consuming process pose significant challenges. To ad-

dress these limitations, this research proposes a multi-model deep learning frame-

work capable of automatically generating haptic audio, which can be seamlessly

integrated into manual authoring software to enhance the efficiency of haptic

designers and authors. An experimental study was conducted to evaluate the ef-

fectiveness of the automatically generated haptic audio in assisting the annotation

process. The results demonstrated a significant improvement in Quality of Ex-

perience (QoE) when compared to manual authoring, highlighting the enhanced

efficiency achieved through the combination of automatic haptic audio generation.

Keywords:
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Chapter 1

Introduction

1.1. Enhancing Human-Computer Interaction through

Tactile Stimuli

Ever since the introduction of graphical interfaces in computers, tactile stimuli

have been employed to enhance user experiences in both computer interaction [1]

and multimedia content [2] . In the emerging stage of haptic in human computer

interaction, researchers are striving to develop systems that offer feedback to com-

puter users, by reflecting physical sensation based on the inputs from mouse and

keyboards [3], the system can increase the intuitive and enjoyment to computer

interface [4].

Multimedia content, such as watching a film, becomes more immersive and

engaging when users can intuitively interact with it or experience stimuli from

the content [5].Physiological studies have also demonstrated the positive impact

of cross-modal integration between vision and haptics on tasks involving object

interaction, collaborative environments, and target locating [6]. Since visual and

haptic inputs provide distinct information, designing a system that cognitively

connects these perceptions allows us to convey additional information. This en-

ables the generation of dynamic tactile feedback, including physical attributes of

surrounding objects (such as texture and weight), and even precise redirection of

the user’s visual attention in the scene.

1.1.1 The Ultimate Display

In 1965, Ivan [7] introduce a novel concept ’The Ultimate Display’, outlining three

essential components for a virtual world in physical world: immersion, interaction,

imagination. This concept envisioned a system capable of sensing and tracking

1



1. Introduction 1.2. Haptic Authoring

human body’s position within physical space, using it as input to control a com-

puter. The displayed objects in computer were not bound by the constraints of

physical reality, and users could not only observe these objects but also interact

with them as if they were physically present. Thanks to advancements in com-

puter graphics and human-computer interaction, modern VR systems have made

significant strides towards achieving the realistic visual and interactive capabilities

envisioned by the ’Ultimate Display’ concept.

In addition to VR systems, four-dimension (4D) movies offer a captivating ex-

perience that combines immersion, interaction, and imagination, exemplifying the

successful integration of tactile feedback with visual-audio content [8]. By incor-

porating elements such as vibration, thermal stimuli, bursts of air, and changes

in humidity, recent 4D movies have expanded the viewer’s experience, providing

users with a heightened sense of realism and immersion, creating a truly engaging

experience where they can not only passively observe but actively participate in

the narrative, enhancing their overall enjoyment and entertainment value.

1.2. Haptic Authoring

In order to deliver tactile visual-audio content such as 4D movies, it is crucial to

synchronize the tactile stimuli with the corresponding visual and auditory cues,

including their associated semantics [9]. This alignment between sensory modali-

ties allows for a cohesive and immersive experience, resulting in a more impactful

and synchronized multi-sensory presentation.

1.2.1 Manual Haptic Authoring

In the development of haptic content for vibrotactile displays, researchers have

dedicated significant efforts to manually annotating haptic feedback for each frame

of the video, aiming to create accurate tactile stimuli that synchronize seamlessly

with the intended scenes [10–12]. However, this manual editing process is time-

consuming and labor-intensive. Haptic designers needs to cycle trough the video-

audio content and find the particular moment to add in suitable haptic stimuli.

Drawing from my personal experience of manually annotating a video with a

monotonous scenario, it took nearly two hours to complete a ten-minute video.

2



1. Introduction 1.2. Haptic Authoring

This highlights the significant investment of time and effort involved in the manual

haptic authoring process. Supporting this notion, in Li et al. research [13], they

indicate that a team of three designers typically spends around 16 days annotating

a feature-length 4D film, further emphasizing the demanding nature of the task.

1.2.2 Automatic Haptic Authoring

To address this challenge, researchers have explored semi-automatic [8] or auto-

matic methods for annotating haptic feedback in videos. One common approach

is to generate haptic feedback automatically based on the calculation of visual

saliency in the scene [14]. However, it is important to note that this approach

may not be universally applicable in all scenarios, highlighting one of the limita-

tions of this method. As an example, when considering the generation of tactile

feedback, it is important to account for the spatial and contextual aspects of the

content. For instance, a moving character positioned closer to the camera may

produce stronger tactile sensations compared to an explosion occurring in the

background, which is not intuitive for viewers. To tackle this, recent researches in

automatic haptic generation take additional elements into consideration, such as

audio cues, to ensure more accurate and contextually appropriate tactile feedback

for viewers.

1.2.3 Limitation of automatic Haptic Authoring

Despite considerable efforts by researchers in the field of automatic haptic author-

ing, achieving the same level of accuracy and quality as manual haptic authoring

remains challenging. Furthermore, generated haptic feedback may occasionally

lack meaning or prove unsuitable in complex scene contexts. Even with the incor-

poration of audio sources, accurately discerning the intended meaning of the sound

presents difficulties. For instance, a booming sound detected by the system may

simply be an unintended loud noise from the narrator’s microphone. If this sound

is translated into haptic sensations, it can cause confusion and misunderstanding

for users.

Moreover, the existing research on automatic haptic authoring often fails to

generate haptic feedback based on the specific events occurring within a scene. For

3



1. Introduction 1.3. Involving Event Identification to Automatic Haptic Authoring

example, using the prevalent approach, when two steel balls collide, the calculated

saliency may generate haptic feedback based on the trail of the moving ball rather

than focusing on the impact that occurs during the crash. As a result, the tactile

stimuli produced may differ slightly from what the audience would expect, leading

to a potential disparity between the actual experience and the anticipated haptic

sensations. As of now, the development of a comprehensive pipeline capable of

automatically generating precise tactile feedback for any given video remains an

unsolved challenge.

1.3. Involving Event Identification to Automatic

Haptic Authoring

As mentioned earlier, the current automatic haptic authoring approach lacks a

focus on the events taking place within a scene. However, by leveraging deep

learning models to analyze the scene’s elements, we can identify the positions

of objects of interest and subsequently recognize the actions occurring between

these objects. Recent studies by [13, 15] demonstrate the utilization of machine

learning models to address visual and audio content separately. By pinpointing

the location of the event on the screen, these frameworks generate corresponding

haptic feedback on a vibrator array, providing users with a more intuitive haptic

experience.

The aforementioned frameworks have demonstrated their ability to identify

events within a scene and generate corresponding haptic stimuli. However, these

approaches primarily provide haptic feedback from an audience perspective, in-

forming them about the location and intensity of the events on the screen. To

further enhance the immersive experience for users, it is crucial to provide hap-

tic stimuli from a first-person perspective, simulating the sensation as if the user

themselves were the character experiencing the events within the scene. By adopt-

ing this approach, not only can the level of immersion for the audience be signif-

icantly enhanced, but it can also foster a greater sense of empathy towards the

character in the scene.

4



1. Introduction 1.4. Research Goal

1.4. Research Goal

In this study, our objective is to enhance the efficiency of manual haptic author-

ing by developing a framework that automates the generation of haptic stimuli for

specific scenarios based on the events depicted in the video. We aim to provide

user with a first-person perspective tactile stimuli, allowing them to experience

the events as if they were actively involved in the scene. The resulting output of

the system will be a quad channel audio file that encompasses synchronized vibro-

tactile stimuli aligned with the video content. By utilizing the output audio from

our system, haptic authors can benefit from highly accurate, albeit not flawless,

haptic annotations. This approach significantly reduces the effort required in the

haptic annotation process, as authors will only need to make partial edits to the

audio to complete the haptic annotation task effectively.

1.5. Thesis Structure

This paper contains 5 chapter:

• Chapter 1 : This chapter provides an introduction to the background and

current state of haptic video authoring, highlighting the existing approaches

and their limitations. It sets the stage for the research by identifying the

gaps and challenges in the field, and outlines the overall direction that this

study aims to pursue.

• Chapter 2 : This chapter serves as an introduction to the field of haptic

enhancement in the viewing experience. It explores the current state of

research in haptic authoring, discussing various approaches and techniques

employed by researchers. Additionally, it provides an overview of deep neu-

ral networks, which play a crucial role in this study’s methodology.

• Chapter 3 : This chapter introduces the initial prototype that solely relies

on object detection for haptic generation. It outlines the iterative process

undertaken to develop the final multi-model framework capable of automat-

ically generating haptic feedback for specific scenarios.

5



1. Introduction 1.5. Thesis Structure

• Chapter 4 : This chapter focuses on the evaluation of the automatic hap-

tic generation and its impact on the efficiency of manual haptic authoring

tasks. It presents the experiment conducted to assess the effectiveness of

the automatic haptic generation approach, also providing an analysis based

on the experiment results.

• Chapter 5 : This chapter serves as the conclusion of the research, it also

discusses the limitations encountered during the study and presents potential

avenues for future research.

6



Chapter 2

Related Works

2.1. Enhancing Experience with Haptic

Researchers have extensively investigated and demonstrated the effectiveness of

haptic feedback in enhancing the overall multimedia experience [10, 16]. When

referring to haptic stimuli, it encompasses various tactile sensations, both kines-

thetic and cutaneous in nature. These stimuli can range from simple vibrations,

commonly employed as notification alerts in mobile devices [17] to more sophisti-

cated systems [18] that provide comprehensive tactile feedback, including thermal

stimuli, humidity variations, and changes in air pressure.

2.1.1 Cutaneous Haptic Stimuli

Cutaneous haptic stimuli refer to sensory experiences that are perceived through

the skin, it includes a wide range of sensations, including pressure, vibration,

texture, temperature, and even pain.

Vibration is a commonly employed method for delivering tactile stimuli. Haptic

feedback through vibration can be modulated in terms of intensity, frequency,

pattern, and duration to convey a wide range of sensations or information. This

type of haptic feedback finds widespread application in our daily lives, including in

smartphones, game consoles, and various medical devices. Moreover, researchers

have explored the use of vibration haptics to recreate the tactile sensation of

different objects, enabling users to perceive textures through haptic feedback [10,

19–21]

Cutaneous haptic stimuli also involve thermal feedback [22, 23] , enabling the

simulation of hot or cold sensations within a scene. Furthermore, thermal haptic

feedback can also be utilized to elicit the sensation of pain, known as the Thermal

7
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Grill Illusion. This illusion occurs when a specific combination of hot and cold

stimuli is provided, and researchers have leveraged this phenomenon to enhance

user experiences [24].

Mid-air haptic feedback is another notable technique employed to provide tactile

sensations without the need for physical contact with a haptic device. This can be

achieved using methods such as air pressure [25, 26], where precise manipulation

of air pressure can result in a range of tactile effects.

Another groundbreaking approach involves the use of ultrasonic haptics [27,28],

utilizing an array of ultrasonic speakers to create focal points where multiple au-

dio waves superpose, resulting in high-energy tactile feedback at specific locations.

Ultrasonic haptic technology has been used to provide intuitive tactile sensations

on screens and transparent displays, such as holograms [29] Additionally, research

has explored combining mid-air haptics with thermal haptics [25, 30], further ex-

panding the possibilities for immersive tactile experiences.

2.1.2 Kinesthetic Haptic Stimuli

Kinesthetic haptic stimuli refer to the sensory experiences related to movement,

position, and forces applied to the body during haptic interactions. It involves the

perception and sensation of physical interactions, such as the feeling of resistance,

pressure, or force feedback when manipulating objects or performing actions.

(Source: Wolverine, A Wearable Haptic Interface for Grasping in VR [31])

Figure 2.1 Force feedback device that simulate grasping rigid objects in VR

8



2. Related Works 2.2. Haptic in Multimedia Contents

In the context of displaying volumetric data, such as simulating the feeling of a

virtual object in virtual reality (VR), force feedback is often utilized. Hand-based

haptic devices, designed in the form of gloves, are commonly used to provide users

with an intuitive way to interact with objects in the virtual scene [31, 32]. Addi-

tionally, there are research efforts exploring larger force feedback systems capable

of delivering a sense of displacement to the user [33] .These advancements con-

tribute to a more realistic and immersive haptic experience by enabling users to

feel the shape, texture, and physical properties of virtual objects through kines-

thetic haptic feedback.

2.2. Haptic in Multimedia Contents

Creating synchronized haptic stimuli is essential in crafting an immersive expe-

rience for viewers engaging with audio-visual content. Extensive research has

focused on developing efficient approaches to haptic authoring that optimize the

user experience.

2.2.1 Haptic Stimuli Delivery Mechanism with Multimedia

Content

To ensure precise delivery of haptic sensations, researchers have designed a variety

of artifacts to be deployed in conjunction with haptic multimedia content. Cuta-

neous haptic stimuli are commonly utilized, incorporating vibrotactile actuators

placed at different locations to generate diverse tactile effects. Jang et al. [34] pro-

vide an interesting idea by employing haptic feedback not only as an output but

also as an input mechanism, enabling simple instructions to be conveyed to mobile

devices without the need to visually attend to the screen. Swindells et al. [35]

demonstrated the utilization of a game controller to display haptic patterns pro-

cessed by their designed tool. Rahman et al. [12] implemented a rectangular array

of actuators within a jacket, enabling different levels of actuation based on the

visual content in the video. [13] attached nine haptic actuators to the back of a

chair and employed their proposed algorithm to activate the actuators according

to event locations within the scene. Kim et al. [10]emphasized the significance of

9



2. Related Works 2.3. Authoring Methods

( Source: Rahman et al. [12])

Figure 2.2 Implementing multiple array of vibrotactile actuators inside a jacket

hands in perceiving haptic stimuli and, accordingly, placed vibrotactile actuators

on a glove to provide synchronous vibration stimuli aligned with the film.

These studies demonstrate various strategies for integrating haptic actuators

into different physical artifacts, such as jackets, chairs, gloves, etc. By leveraging

the specific features of each artifact, researchers have successfully synchronized

haptic feedback with multimedia content, enhancing the user’s sensory experience.

2.3. Authoring Methods

The creation of multimedia content with haptic feedback requires the processing

of video data and the activation of vibrotactile actuators in synchronization with

the visual scenes. Alternatively, haptic audio can be incorporated by adding it

to a separate audio channel, which can be played through specialized speakers

or haptic actuators that retrieve data from that channel. Researchers [36]have

explored various approaches to authoring haptic audiovisual content, including

three main methods: manual authoring [37], sensor based authoring [38] and

automatically authoring [15].

2.3.1 Manual Haptic Authoring

Manual authoring is the most common and straightforward haptic authoring

method, wherein haptic designers annotate the audiovisual content frame by

frame. They add audio that represents different haptic stimuli to the audio track,

akin to video editing. This approach enables the creation of high-quality haptic

10



2. Related Works 2.3. Authoring Methods

videos, where the haptic stimuli align intuitively with the audience’s perception.

By employing manual authoring techniques, haptic designers have the ability to

finely tune and synchronize the haptic and audio elements with the visual content,

resulting in a compelling and immersive multimedia experience for audience.

(Source: Abreu et al. [39])

Figure 2.3 A novel manual authoring tool with automatic sensory effect recogni-

tion

Researches have been done in proposing various efficient haptic authoring tools

that can escalate the efficiency of manual authoring [11] Daneieau et al. [40]

introduce a manual haptic authoring tool that can easily edit motion effects with

haptic, a simplified graphic user interface which can review motion effect allows

non expert user to author haptic video with ease. Abreu et al. [39] propose a

novel method that integrates automatic sensory effect recognition into authoring

tool. By utilizing deep neural network to identify sensory effects and hence allows

the whole authoring process to be semi-automatic, greatly increase the efficiency

in authoring multimedia content with multiple sensory efects.

2.3.2 Authoring with Sensor

Sensor-based haptic authoring involves capturing haptic motion directly from

physical objects using sensors. Accelerometers and other sensors have been uti-

lized to capture motion data and contact forces in various applications [41, 42].

In one scenario, this method can be employed during the filming process by

placing sensors at appropriate locations on an actor. This allows for the direct
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capture of the actor’s motion and vibrations experienced while performing, which

can then be recorded and replayed alongside the film. By incorporating this

recorded haptic sensation, an intuitive haptic feedback can be provided to the

audience, enhancing the overall immersive experience [43].

Another application of this method involves recording the actual haptic sensa-

tions of a target object and processing that specific haptic audio during manual

authoring. This approach further heightens the realism of the haptic stimuli,

resulting in a more authentic sensory experience.

By utilizing sensor-based haptic authoring techniques, researchers and creators

can capture and reproduce realistic haptic feedback, leading to enhanced audience

engagement and immersion.

2.3.3 Automatic Authoring

Automatic haptic authoring involves the use of systems or frameworks that ex-

tract specific features from audiovisual content and generate corresponding haptic

feedback. One common approach for automatic haptic feedback generation is by

calculating a saliency heatmap based on video analysis [44]. Saliency refers to

the identification of moving pixels between frames, and a fast pixel-level adapt-

ing background detection algorithm is typically employed to identify the moving

elements within the visual image [45].

More recent advancements leverage deep learning techniques to enhance saliency

calculation from visual content. Wang et al. [46] propose a method that separately

computes static and dynamic saliency using convolutional networks, resulting in

more accurate saliency maps with reduced computational load.

In this approach, the motion of objects plays a crucial role in generating hap-

tic feedback, with fast and large movements resulting in stronger haptic sensa-

tions, while slower or smaller movements produce milder feedback. However, it

is important to note that the haptic stimuli derived solely from object motion

may not be appropriate for every scene in an audiovisual context. Consequently,

researchers have conducted further investigations to explore alternative factors

within the video that can contribute to haptic generation. By considering addi-

tional elements in the video, such as audio information [13], more comprehensive

and contextually relevant haptic feedback can be achieved.

12
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Enhancing Automatic Haptic Authoring with Audio Integration

Multimedia content typically includes both visual and audio components. By sep-

arating the visual content from the audio content, it becomes possible to leverage

algorithms that convert the audio into haptic feedback. Zhang et al. [15] take

this approach further by categorizing the audio into two types: diegetic and non-

diegetic audio. Diegetic audio refers to sounds produced by elements within the

visual scene, while non-diegetic audio originates from sources that are not visible,

such as a narrator’s voice.

To extract haptic information from the diegetic audio, Zhang et al.adopt the

approach proposed by Tian et al. [47] for sound source localization. They enhance

Tian et al.’s model by incorporating a combination of VGG-19 and VGG-like net-

works to process the visual features corresponding to each audio frame. This

modification allows them to generate a sound localization heatmap that identifies

the source of the sound within each frame of the audiovisual content. By incorpo-

rating audio information into the haptic feedback generation process, they succeed

in automatically generating haptic stimuli precisely by audiovisual content.

Automatic haptic authoring techniques enable the generation of haptic feedback

in an automated manner, leveraging computer vision and deep learning algorithms

to identify salient visual and audio features. These advancements contribute to

the development of efficient and effective systems for creating immersive haptic

experiences aligned with audiovisual content.

2.4. Deep Neural Network in Object Detection

Object detection is a fundamental task in computer vision, aimed at identify-

ing objects within an image and providing bounding box coordinates around the

target objects, along with their corresponding class labels. This task extends

the concept of object classification and has witnessed significant advancements

with the introduction of convolutional neural networks (CNNs) and deep learning

techniques.

Existing object detectors can be categorized into three main types: single-stage,

two-stage, and transformer-based detectors. Each type employs different archi-

tectural designs and strategies to achieve accurate and efficient object detection.
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State-of-the-art models exemplifying these types include YOLO (You Only Look

Once) [48], Faster R-CNN(Region-based Convolutional Neural Networks) [49],

and DeTR(Detection Transformers) [50]. These models have made significant

contributions to the field by achieving remarkable performance on benchmark

datasets such as Microsoft-COCO [51] and ILSVRC(ImageNet Large Scale Visual

Recognition Challenge) [52].

YOLO

YOLO [48], a single-stage detector, stands out for its real-time object detection

capabilities, the model is inspired from GoogleNet model which was initially used

for image classification. After dividing the input image into grid, YOLO predicts

the bounding boxes and class probabilities for each of the grid cell. With this

approach, YOLO achieves impressive speed while maintaining reasonable accu-

racy. This makes it well-suited for applications requiring fast and efficient object

detection, such as video analysis and robotics.

( Model Architecture drawn by Github user RangeKing [53])

Figure 2.4 Overview Architecture of YOLOv8 Model

Since the initial development of the YOLO (You Only Look Once) framework
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by Joseph Redmon et al., researchers have continued to refine and enhance the

YOLO architecture. One notable adaptation is YOLOv2 [54], which introduced

significant changes to the backbone architecture. Instead of using the GoogleNet

model [55], YOLOv2 employed the DarkNet-19 architecture [56]. This modifica-

tion allowed YOLOv2 to detect a much larger number of object classes, reaching

up to 9000, while simultaneously improving flexibility, speed, and accuracy.

Subsequently, YOLOv4 [57] and YOLOv5 [58] were introduced with notable

advancements. YOLOv4 introduced the concept of ”bag of freebies” to improve

performance without sacrificing inference time. It incorporated various techniques

such as self-adversarial training, class label smoothing, and CmBN (Cross mini-

Batch Normalization) to achieve significant performance improvements. YOLOv5,

while not formally published as a peer-reviewed research, has demonstrated effec-

tive results. It adopted several concepts and approaches from YOLOv4, including

the new ability to learn the anchor box during the training process.

The most recent iteration of the YOLO model is YOLOv8 [59]. which builds

upon the advancements of YOLOv5 with several modifications and improvements.

YOLOv8 introduces significant changes to enhance the flexibility and accuracy of

the model.

One notable modification in YOLOv8 is the removal of the anchor box ap-

proach. The use of predefined anchor boxes in YOLOv5 was believed to limit

the model’s flexibility, as not every object can be perfectly enclosed by a poly-

gon anchor box. By removing this constraint, YOLOv8 allows for more precise

object detection across a wider range of shapes and sizes. Additionally, YOLOv8

incorporates mosaic data augmentation into the model. This approach involves

randomly combining multiple input images to form a larger composite image. By

training on these mosaic images, the model learns to detect objects that may ap-

pear in different positions within an image, enhancing its ability to generalize and

handle object variations.

These modifications in YOLOv8 demonstrate a continuous effort to improve the

flexibility, adaptability, and detection performance of the YOLO model, pushing

the boundaries of real-time object detection capabilities.
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2.5. Anomalous Sound Event Detection

The auditory system is a vital sensory function that humans utilize to perceive and

extract information from their surroundings. In line with this, researchers have

sought to equip machines with similar capabilities by leveraging algorithms and

deep learning techniques. Sound Event Detection (SED) emerges as a prominent

research area focusing on enabling machines to detect and identify specific sound

events. The primary objective of a Sound Event Detection (SED) system is to

precisely identify the onset and offset of specific sound events within an audio

signal. This approach offers several advantages when compared to solely relying

on visual-based object detection methods [60].

Certain events, such as a car horn honking or a doorbell ringing, are not easily

identifiable through visual cues alone. By incorporating audio analysis through

SED, machines can effectively recognize and classify these sound events, com-

plementing the information obtained from visual data. Additionally, leveraging

audio processing for event detection can be computationally efficient. Analyzing

audio data requires fewer computational resources compared to processing visual

content, making it a favorable choice for scenarios where computational limita-

tions exist. By exploiting the benefits of audio-based detection, SED systems

can provide valuable insights and enhance the overall performance of multimodal

perception tasks.

2.5.1 Monophonic and Polyphonic SED System

Monophonic SED

Monophonic SED refers to the task of detecting and classifying individual sound

events in a monophonic audio signal. In audio, monophonic signals refer to those

containing only a single audio source or sound event at a given time. This means

that the input audio for a monophonic SED system should not contain overlapping

or concurrent sounds.

The overall detecting task involves analyzing the temporal and spectral charac-

teristics of the audio signal to detect and classify specific sound events of interest.

Monophonic SED is commonly applied in various audio processing applications,

such as music transcription, speech recognition, and acoustic scene analysis.
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( Source: Chan et al. [60])

Figure 2.5 Illustration of Monophonic SED system, only one event can be identify

within a single audio input

Polyphonic SED

Polyphonic Sound Event Detection (SED) systems are specifically designed to

identify and classify multiple sound events within an audio signal that contains

overlapping sources of sound. Unlike monophonic signals, which have only one

sound source at a given time, polyphonic signals are characterized by the presence

of multiple simultaneous sound sources [61,62].

Designing an effective polyphonic SED system is challenging due to various

factors. Firstly, multiple sound events can overlap in time, making it difficult

to isolate and distinguish individual sounds. Secondly, sound events with the

same label can exhibit significant variations in their acoustic characteristics. For

example, different bird species may produce distinct chirping sounds, even though

they share the same label of ”bird”. Additionally, background noise present in

the audio further complicates the task of identifying and classifying sound events.

The noise can mask or interfere with the target events, reducing the signal-to-noise

ratio and affecting the system’s performance.

To address the challenges of polyphonic Sound Event Detection (SED), re-

searchers have explored various approaches to develop robust systems. One no-

table approach is the use of Hidden Markov Models (HMMs) [63], which have been

widely used in Automatic Speech Recognition (ASR) tasks. HMMs, implemented

with the Expectation-Maximization (EM) algorithm and Gaussian Mixture Mod-

els (GMMs) [64], enable the modeling of probability distributions for each sound
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( Source: Chan et al. [60])

Figure 2.6 Illustration of Polyphonic SED system, different color tags refers to

the onset and offset of a particular event

event. This non-neural network based approach has demonstrated effectiveness in

polyphonic SED systems.

With the advancements in deep neural networks, researchers have also lever-

aged their capabilities in designing SED architectures. One popular framework

is the Convolutional Recurrent Neural Network (CRNN), which directly connects

convolutional layers to recurrent neural networks. CRNNs excel at learning audio

spectrograms that capture both temporal and spectral information. For instance,

Cakir et al. [62] proposed a polyphonic SED framework that incorporated Gated

Recurrent Units (GRUs) into the CRNN architecture, achieving promising results

on the TUT-SED 2016 dataset.

More recent research in polyphonic SED has explored the use of teacher-student

frameworks and the integration of weakly labeled data. In one study by Lin et

al. [65], a teacher model and a student model were trained by learning from

unlabeled data with tags generated by each other. This iterative process allowed

the student model to progressively refine the teacher model’s performance under

the guidance of the teacher model. The proposed approach, described in the study,

yielded impressive results on the DCASE 2018 evaluation dataset.

By combining traditional models such as HMMs, advanced deep neural network
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architectures like CRNNs, and innovative frameworks like the teacher-student

model, polyphonic SED models are achieving better result in various applica-

tions, including audio surveillance, acoustic scene analysis, and audio content

classification.

2.6. Summary

Through the topics discuss above, we notice that manual authoring of audiovisual

content has the potential to create the most captivating and immersive haptic ex-

perience in conjunction with the content itself. However, this manual approach is

often time-consuming and labor-intensive, posing challenges in terms of efficiency

and scalability. As a result, researchers are actively exploring avenues to automat-

ically generate synchronized haptic feedback that enhances the overall audience

experience. By leveraging automated techniques, the aim is to achieve a seamless

integration of haptic sensations with video content, ultimately providing a more

engaging and immersive multimedia experience for viewers.

The current focus of automatic haptic generating frameworks is primarily on

generating haptic stimuli corresponding to the location of objects in the scene.

However, I argue that this approach, which generates haptic feedback from a third-

person perspective, may not provide the most intuitive haptic experience for the

audience. For instance, consider the example of two colliding balls. Rather than

providing the haptic stimuli based on the balls position and trails, it would be a

more immersive experience to provide haptic feedback that simulates the impact

when the balls collide, generating haptic stimuli from a first-person perspective

as if the audience themselves were in the scene.

While discussing the design of automatic haptic generating frameworks, pre-

ceding researches focuses on the visual aspects. Researchers often identify the

saliency heatmap in the scene, which indicates the positions of moving objects

and provides haptic stimuli based on this information. With the emergence of

multimodal approaches, the audio data in multimedia content is also being con-

sidered. Researchers adjust the intensity of haptic stimuli based on the audio

volume or set thresholds to activate specific haptic feedback. In a few cases, re-

searchers utilize Sound Event Detection (SED) techniques to identify the onset
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and offset of events occurring in the scene and generate haptic feedback based on

this information.

While there is still considerable progress to be made in the development of

a fully automated framework for generating haptic stimuli in audiovisual con-

tent, the integration of visual and auditory cues holds great promise for future

advancements. By incorporating both sensory modalities, future automatic hap-

tic generating frameworks have the potential to significantly enhance the overall

immersive experience for users.
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Chapter 3

Concept Design

3.1. Research Objective

Building upon the research discussed in the previous section, this study focuses

on the development of an automatic multi-model system for annotating haptic

stimuli in audiovisual content. Unlike existing approaches that primarily rely on

location of moving object in the scene, the proposed system places emphasis on

the timing of events occurring in the scene and provides corresponding tactile

feedback to enhance the immersive experience for the audience.

Acknowledging the current limitations in achieving perfect automatic annota-

tion, the aim of this research is to attain an accuracy of at least 60 percent in

annotating the onset of events within a 200ms difference compared to manual

authoring. The output of the system will be an .mp4 file with haptic audio an-

notations on a separate channel. This output can be directly utilized by haptic

authors or designers, enabling them to efficiently edit the video file and produce a

more accurate haptic-enhanced video without the need for starting the annotation

process from scratch.

In summary, the primary objective of this study is to automate the generation of

haptic audio for videos based on events occurring within the scene. The resulting

haptic audio output can seamlessly integrate into manual authoring tools, enhanc-

ing efficiency and reducing the labor-intensive nature of the manual annotation

process.
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3.2. Initial system design

The ultimate objective of this research is to develop a multi-model framework

that leverages both visual and audio data to generate haptic feedback based on

events within the content. While there have been limited studies exploring this

approach, the initial strategy for tackling this task involves employing object

detection methods to identify objects in the scene and utilizing a classifier model

to determine if objects are in contact with one another.

Choice of Object Detection Model

During the time of this research, the most recent addition to the YOLO family was

YOLOv7 [66]. Noteworthy advancements were made in YOLOv7 compared to its

predecessor, YOLOv4 [57]. Firstly, YOLOv7 employed the COCO dataset [51] for

training its backbone model instead of ImageNet [52]. In terms of computational

blocks, Wang et al. introduced the Extended Efficient Layer Aggregation Network

(E-ELAN) architecture, which allowed for continuous learning through operations

like shuffling, expansion, and merging while preserving the original gradient path.

Additionally, YOLOv7 incorporated a Bag of Freebies (BoF) method known

as re-parameterization. The concept of Bag of Freebies refers to techniques that

enhance a model’s performance or efficiency without incurring significant addi-

tional costs in terms of training iterations or computational resources. In the

re-parameterization method, multiple models are trained using different input

training data but with the same settings. The final model is then obtained as an

average of these models.

3.2.1 Training Object Detection Model

To begin the research, an object detection model is trained using the chosen

framework, YOLOv7. This framework is selected due to its recent advancements

and suitability for the task. In order to evaluate the performance of the model,

a specific scenario of sword fighting in a movie scene is selected. A total of 846

images, including scenes featuring sword fighting and close-up shots of swords, are

manually labeled and utilized as the training data for the object detection model.
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To expedite the training process and enhance the model’s performance, transfer

learning is employed by initializing the model with the official yolov7.pt weights.

This approach allows the model to leverage pre-existing knowledge and accelerate

the learning process. The training process is executed for a total of 200 epochs,

with a batch size of 8.

Result of Object Detection

Figure 3.1 Prediction from the trained object detection model on testing image

Figure 3.2 F1 score indicating model accuracy in predicting both positive and

negative prediction on sword.

After analyzing the testing data, the best F1 score obtained for detecting swords

in the scene is 0.63, with a confidence rate of 0.439. Surprisingly, the F1 score
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remains consistently above 0.5 even at a confidence level of 0.6, which exceeds

initial expectations considering the diverse nature of sword variations.

Moving forward, the next objective is to identify instances where two swords

come into contact with each other. Ideally, the system should be capable of

directly outputting frames capturing these contact moments. To achieve this, the

first step involves locating the positions of the bounding boxes around the swords

and cropping them accordingly.

To accomplish this, a white mask is created with the same dimensions as the

video. The swords are then extracted based on their respective bounding boxes

and pasted onto the white mask. This process generates frames containing only

the detected swords, eliminating potential interference from the background en-

vironment, which may introduce noise in detecting the contact events.

Figure 3.3 F1 score indicating classification model accuracy in predicting the

contact event.

Using the cropped sword images with the white background, a classification

model is trained based on the YOLOv7 framework, specifically leveraging the pre-

trained resnet101.pt weights. The training task is same as the object detection

model with 200 epochs and batch size of 8. This model’s primary task is to

determine whether the swords in an image are in contact with each other. If

contact is detected, it signifies that the swords in the scene might have collided,

indicating the timing for providing haptic feedback.
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Result of Classification Model

The classification model for detecting sword contact achieved a best F1 score

of 0.71 with a confidence rate of 0.274, and the F1 score remained above 0.6

until a confidence threshold of 0.4. Although the results did not meet the initial

expectations, the classification model was still integrated with the object detection

model to automate the identification of frames with sword contact events.

To evaluate the overall framework, three commercial videos, each approximately

20 seconds long, were used as input. Figure 3.4 provides an illustration of the

process and displays a single-frame result from one of the videos. Based on visual

estimation, the accuracy of detecting frames with sword contact events across the

three videos is approximately 60 percent in the best-case scenario.

Figure 3.4 Process of the system in finding the contact events in a single video

frame.

However, it should be noted that the accuracy is highly dependent on the cam-

era angle. The framework encounters challenges when the camera is positioned

behind the main character, obstructing most of the swords and making it diffi-

cult for the object detection model to detect them accurately. Additionally, there

are instances where white pillars or random white cylinder-shaped objects are
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mistaken by the object detection model as swords. This can lead to false posi-

tives, where the pillars are detected as contact events, impacting the classification

model’s accuracy.

These challenges emphasize the significance of considering different camera an-

gles and enhancing the object detection model’s capability to differentiate between

swords and other objects within the scene. However, upon further reflection, it

becomes apparent that finding sword fighting scenes that consistently maintain a

perspective enabling clear visual detection of the swords may prove challenging.

Consequently, it would be more beneficial to identify scenarios where the cam-

era angles are predominantly fixed, ensuring the system’s evaluation is conducted

under more controlled conditions. By selecting such scenarios, the accuracy and

reliability of the framework can be better assessed and any necessary improve-

ments can be made accordingly.

Different Scenario with Similar Approach

After careful consideration, I have selected the scenario of a badminton match

for the second phase of the trial. In most badminton matches, the camera angle

remains fixed during rallies, providing an ideal opportunity to capture events

where the racket makes contact with the shuttlecock. This scenario allows for the

creation of haptic feedback that mimics the experience of being the player hitting

the shuttlecock.

To train the object detection model, a dataset of 1120 images containing rackets

and shuttlecocks is collected. The model follows a transfer learning approach,

utilizing the yolov7.pt weights. However, this time the model is trained to detect

two labels: the racket and the badminton shuttlecock. The output from the object

detection model is serve as the input for the classification model, which determines

whether the racket and shuttlecock have made contact with each other during the

match.

The training results for the new object detection model are shown in Figure

3.5, indicating better performance in detecting rackets compared to badminton

shuttlecocks. The average F1 score for these two classes is 0.71 with a confidence

of 0.361, and an average F1 score above 0.6 is maintained for confidence levels

above 0.8. Encouraged by these results, I connected the object detection model to
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Figure 3.5 F1 score for object detection for racket and shuttle ball.

the classification model and tested it on a 24-second badminton rally video that

was not included in the training data.

To my surprise, the output from the classification model was unsatisfactory,

indicating that it was not functioning properly. This prompted me to investigate

the issue further. After several rounds of trial and error, I discovered that during

the frames when the racket and shuttlecock make contact, the shuttlecock is often

not visible in the field of view. This is likely due to the high speed at which

the shuttlecock moves when struck by the racket. Consequently, the approach

of determining contact between the two objects would not work effectively since

the model would frequently fail to identify the shuttlecock during these contact

events.

After facing disappointing results in both scenarios, I came to the realization

that directly inputting raw videos into the machine learning model may not be

as effective as I initially thought. Despite the challenges encountered, I still be-

lieve that the badminton scenario holds promise for my research. It offers the

advantage of easily obtaining relevant training materials, and sports-related ac-

tivities resonate with people’s daily lives. Additionally, many individuals have

personal experience playing sports like badminton, making it more relatable and

intuitive for them to feel the haptic sensations when watching a badminton rally.

Therefore, I have decided to maintain the badminton scenario while exploring
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alternative approaches to designing an automatic haptic generating system.

3.3. Second Prototype

After encountering limitations in the initial system design, I conducted an exten-

sive literature review to explore alternative approaches that could be more suitable

for my research. Given that the scenario focuses on badminton rally scenes, one of

the key challenges is detecting the disappearing badminton shuttle when a racket

contact occurs. Through extensive experimentation with over 30 badminton rally

videos, I have observed that the badminton shuttle consistently disappears upon

contact with the racket. Based on this observation, my hypothesis is that by

developing an object detection model that can accurately track the badminton

shuttle, when the model lost track of the shuttle ball, I can then identify the

frames in which the impact occurs.

3.3.1 Elevating Object Detection Performance

Consequently, my first task is to enhance the object detection model’s ability to

identify the badminton shuttle. During the development of the second prototype,

YOLOv8 [59] was released, offering improvements over YOLOv7 and a more user-

friendly interface. Therefore, I decided to train the backbone of my model using

YOLOv8. Building upon my previous experience, I realized that directly inputting

raw videos into the model would not yield optimal results. To address this, I opted

to preprocess the badminton rally videos using image processing techniques.

Video Preprocessing

Firstly, the videos are converted to grayscale, after which an algorithm is applied

to calculate the motion saliency of the video frames. The saliency calculation

algorithm is adapted from the framework proposed in [45], as frame differencing

is applied to identify areas where significant changes or motion occur between

frames, the output from motion saliency will focus on the changed pixel across

frames and motion energy or magnitute of motion change will result in higher

saliency value. This approach benefits in reducing background noises while most
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Figure 3.6 Illustrate a single frame output from motion saliency algorithm, also

used as training data for object detection model.

importantly, fast moving badminton shuttle that is barely seen by visual will have

a strong magnitute in saliency and result in the visability in saliency image.

By leveraging the output frames generated by the motion saliency algorithm, I

can establish an automatic haptic generation system similar to the one described in

Kim et al.’s research [44] where haptic stimuli are created based on the positions of

salient regions in the frame. However, since the ultimate objective of this research

is to recreate the sensation of impact when a player strikes the badminton shuttle,

the output of the motion saliency algorithm is subsequently fed into an object

detection model to track the position of the badminton shuttle in each frame.

Object Detection Training and Result

For training the object detection model, I employ transfer learning using the

official YOLOv8 weight file, yolov8n.pt. A total of 2464 saliency images, cropped

from six different badminton matches and resembling the example shown in Figure

3.6, are manually labeled and used as training data for the model. The training

iterates for 100 epcochs with batch size of 16, and the results of F1 score to

confidence is shown in Figure 3.7. This approach of detecting badminton shuttle

ball through motion saliency got really good result which maintains a F1 score

higher than 0.85 and peaks with 0.89 at confidence 0.351.
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Figure 3.7 F1 score for object detection for racket and shuttle ball.

I then deploy this model to detect a testing video of badminton rally while

setting the confidence threshold to be above 0.5. The testing video is also labelled

manually by me each frame to draw a bounding box on the badminton to make

an evaluation on how accurate the model can get on detecting the badminton

shuttle.

Figure 3.8 Confusion Matrix for model accuracy on testing video

The results of the prediction on the testing video are shown in Figure 3.8 using

a confusion matrix. Upon initial observation, the confusion matrix may appear

peculiar with a false positive rate of 100 percent. However, this is attributed
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to the model only making predictions for a single class, namely the badminton

shuttle. Consequently, the model does not predict the background class, resulting

in no false negatives but only false positives. Regarding the prediction outcomes,

the confusion matrix indicates that the model achieved a 92 percent accuracy in

predicting the ground truth labels that were manually annotated. The accuracy of

the model got a significant improvement compared to the previous approach that

utilized raw video with an object detection model trained with YOLOv7. This

increased accuracy demonstrates the effectiveness of the current model. Given

these positive results, it is reasonable to proceed to the next step, which involves

detecting the contact event.

3.3.2 Identifying Contact Event

In order to identify the frames where the badminton shuttle makes contact, an

algorithm was devised that calculated the middle point of the bounding box gen-

erated by the object detection model. The algorithm aimed to find the first frame

where three consecutive frames did not detect the presence of the badminton

shuttle. However, the developed algorithm did not yield the anticipated results

despite formulating the hypothesis stated in the beginning of this section. Upon

evaluation, I discovered that the quantity of output frames exceeded the actual

number of strikes in the badminton rally. To investigate further, I cropped all the

output frames produced by the algorithm and identified several factors that I had

overlooked.

Factors Leading to Disappointing Results

After observation to the output frames, several issue is being found. Firstly,

the camera angle used during the recording was not directly positioned above

the players, as depicted in Figure 3.6 Consequently, the badminton shuttle was

heavily influenced by the depth of the scene. During movements like a net drop,

there was a high probability of the player obstructing the vision of the badminton

shuttle, causing the model to lose track of it.

Another significant factor was the player’s execution of a high clear, with an

example shown in Figure 3.9, where the shuttle is lifted high into the air with an
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Figure 3.9 Two frames prior to the smash being performed, the badminton shuttle

is currently positioned out of camera’s boundary.

upward stroke. In such instances, the shuttle ball would also disappear from the

scene due to its altitude exceeding the boundaries of the camera’s field of view.

These factors contributed to the increased number of output frames, which did

not align with the expected number of strikes in the badminton rally.

3.3.3 Improving Algorithm for Event Detection

Based on the previous testing, it became evident that solely relying on identifying

frames where the badminton shuttle disappears did not exclusively capture the

instances of racket-shuttle ball contact. Instead, it includes various scenarios

where the ball was missing from the scene. Therefore, further enhancements were

necessary to refine the algorithm and isolate the frames with racket-shuttle ball

interactions.

To achieve this, additional functionality was introduced to calculate the moving

direction of the badminton shuttle. Alongside tracking the position of the shuttle,

the algorithm now determines the number of pixels the ball moves in both the

horizontal and vertical directions over a span of two frames. If the ball consis-

tently moves in a single direction for more than five frames, the moving direction

of shuttle is recorded in a dataframe for further analysis. A change in the shut-

tle ball’s moving direction from consistently upwards to consistently downwards
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Figure 3.10 Dataframe including information about the movement direction and

changes in direction of shuttle ball.

indicates either the ball moving out of the camera’s boundary and re-entering or

the player striking the ball and altering its trajectory. Similarly, in the horizontal

direction, a shift from consistent left to consistent right and vice versa suggests

a high likelihood of a player hitting the ball but not out of camera’s boundary.

By combining this directional information with the number of pixels the shuttle

moves across each frame, it becomes easier to determine the factors contributing

to changes in the shuttle ball’s trajectory.

As observed in previous sections, the badminton shuttle is not visible at the

moment of contact. Therefore, the final determination of racket-shuttle ball con-

tact is made based on the frame before a significant change in both horizontal

and vertical direction. In this context, a significant change is defined as move-

ment exceeding 50 pixels per frame. This value was determined through multiple

tests, and it was found to be the most suitable threshold across various badminton

matches. Figure 3.10 provides an example, illustrating the dataframe containing

information about the shuttle ball’s motion state for each frame. It can be ob-

served that in frame 133, there is a change in both the vertical and horizontal
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directions, indicating that the badminton shuttle was struck by a player’s racket

at that moment.

To assess the accuracy of the algorithm’s output frames corresponding to racket-

shuttle interactions in the badminton rally video, a manual evaluation was con-

ducted. The results revealed an accuracy of 12 out of 23 contacts and 9 out of 16

contacts in two separate testing videos, respectively. This indicates an accuracy

rate close to 50 percent. Although there is room for improvement, the overall

outcome meets my expectations.

3.4. System Improvement with Audio Detection

To further enhance the system’s performance, I aimed to transform it into a multi-

model system by incorporating audio data as an additional input. In addition

to object detection for tracking the badminton shuttle in the visual domain, I

explored the utilization of audio data to identify the moments when the sound

of the player striking the shuttle occurs. To process the audio data effectively, I

decided to employ the Sound Event Detection (SED) method.

3.4.1 First SED model

During my extensive literature review, I discovered the DESED dataset [67],

which is specifically designed for recognizing sound event classes in domestic

environments. Among the various approaches evaluated on this dataset, Nam

et al. [68] frequency dynamic convolution technique yielded the most impressive

performance. This approach adopts a teacher-student framework during model

training and leverages both weakly labeled and unlabeled audio data as inputs.

Additionally, it introduces a novel method known as frequency dynamic convo-

lution, which employs frequency-adaptive kernels to enable 2D convolution along

the frequency axis. This approach differs from the conventional technique of em-

ploying shift-invariance on mel spectrograms.

Based on the impressive performance demonstrated in the DESED benchmark,

achieving an F1 score of 54, I made the decision to utilize Nam et al.’s framework

for training my own sound event detection model, specifically focusing on detecting

the onset and offset of badminton sounds.
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Figure 3.11 Audio data manually annotated with Label Studio 1

To facilitate the training process, I prepared six training audio files, each with

a duration of 10 minutes. These audio files were obtained from six distinct bad-

minton matches and were manually annotated by myself. During the annotation

process, events indicating a hit were identified and labeled with a fixed duration

of 250 milliseconds, as illustrated in Figure 3.11. This set of labeled data, referred

to as strong labels, serves as the ground truth for the onset and offset times of

the events and is used for training the deep learning model. The annotations will

be output into a .csv file as Figure 3.12 shows, including the onset and offset of

an event as well as the filename for the audio.

Figure 3.12 Strong labelled audio data in the form of .csv file

In addition to the strong labels, 150 weakly labeled audio files were incorporated

into the training dataset. These files were sourced from the same matches and each

had a duration of 10 seconds. In the weak labeling approach, only the occurrence

of the badminton sound event, such as the sound of the shuttle being hit, was

annotated, without providing precise onset and offset times for each event. The

1 Label Studio : https://github.com/heartexlabs/label-studio/
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output csv file is shown in Figure 3.13, providing the path to audio file and the

occurence of events. Additionally, another set of 150 unlabeled 10-second audio

files was included in the training dataset, meaning that no specific annotations

were provided for these files.

Figure 3.13 Weakly labelled audio data in the form of .csv file

The training commenced with a warm-up phase consisting of 50 epochs and

proceeded with an additional 100 epochs. The objective of the model was to ac-

curately determine the onset and offset times for each instance of the badminton

hit sound in the scene. However, after conducting multiple tests, the performance

of this model proved to be discouraging, as the predicted onset and offset times

did not align well with the ground truth of the badminton audio. I made attempts

to enhance the accuracy of my manual annotations and even modified the frame-

work to exclusively accept strongly labeled data for training. Regrettably, despite

putting significant effort into these endeavors, none of them yielded noticeable

improvements in the model’s performance.

One possible explanation is that the duration of the badminton hit sound is

comparatively short in comparison to the application of this model on other sound

events, such as bell ringing, dog barking, or vacuum sounds, which typically range

from 500 milliseconds to 10 seconds in the training data. As the duration of

badminton sound events usually does not exceed 250 milliseconds, this may have
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contributed to the model’s difficulty in accurately capturing and predicting the

onset and offset times for this particular task.

3.4.2 Second SED Model

Although the best-performing model in the DESED dataset did not meet our

requirements for this task, I remain optimistic about the potential of using sound

event detection methods to identify the onset and offset times of the badminton hit

sound. In a study conducted by Mesaros et al. [69], they provide a comprehensive

tutorial on current sound event detection tasks and different approaches employed

by researchers in the field.

The paper discusses various aspects of sound event detection, including the

representation of audio features and the appropriate window size to achieve a

balance between capturing sufficient detail and avoiding high-dimensional repre-

sentations. In that particular section, they highlight the work of Adavanne et

al. [70], which employs multiple spectral representations calculated at different

time and frequency resolutions. This approach is particularly beneficial for sce-

narios involving short sounds, such as a door slam, as analyzing these short sounds

with higher time resolution can lead to better results.

In Adavanne’s work, they also introduce the concept of using multichannel

features from the audio as an input for the convolutional recurrent network and

process the features using bi-directional LSTMs(Long Short-TermMemory). Also,

in their network, they focus on using low level features such as spectral and time-

domain features to learn high-level informations rather than directly utilize high-

level features such as deep learning features. With the multiple appraoch they

propose, they got a absolute improvement for both dataset TUT-SED 2009 and

TUD-SED 2016.

Considering Adavanne et al.’s work aligns better with the task of detecting

the sound of the badminton shuttle being hit, the first step is to restructure the

training data to suit the model’s requirements. Initially, the input audio data,

along with the corresponding annotations, are transformed into spectrograms,

as depicted in Figure 3.14. A spectrogram provides a visual representation of

the signal’s frequency content over time, while in the spectrogram, the manually

annotated sound events are indicated by green grids.

37



3. Concept Design 3.4. System Improvement with Audio Detection

Figure 3.14 Spectrogram of audio data with event annotations shown in green

grid.

Next, the spectrograms with annotations are cropped into suitable sizes for the

network to learn from, taking into account the short duration of the badminton

sound. To accomplish this, a time resolution of 0.1 and a window duration of 0.8

are set, adequately capturing the 250-millisecond badminton events. The resulting

cropped spectrograms are illustrated in Figure 3.15, with each window spanning

a total time length of 800 milliseconds and containing the 250-millisecond sound

events. These cropped spectrograms are then fed into the CRNN network, as

described in [70], and trained for 600 epochs using a batch size of 12.

Figure 3.15 Cropped spectrogram with event label to be used as training data.

After training is done, the CRNN based SED model’s predictions on a 13-

minute testing badminton video are presented in Figure 3.16, the green grid in

the spectrogram refers the to ground truth of events happening in the scene. A
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zoomed-in version on one specific rally is shown in Figure 3.18 to have a better

view for the predictions in a smaller scale.

Figure 3.16 Cropped spectrogram with event label to be used as training data.

Figure 3.17 Cropped spectrogram with event label to be used as training data.

From the graphs, it is evident that while the model may not precisely predict

each sound event in line with the ground truth, it provides information indicating

a high likelihood of an event occurring in the surrounding frames. This additional

information can be used in conjunction with visual elements to determine if an

event has taken place in a given frame.

3.5. Final Prototype

The final prototype integrates both visual and audio processing components to

create an audiovisual system, as shown in Fig 3.18

For the visual aspect, the visual scene undergoes image processing techniques,

and an object detection model trained with YOLOv8 is employed to track the
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badminton shuttle in the scene. The shuttle’s coordinates are then utilized to

calculate its position and motion state. These parameters are passed into an

algorithm that assesses the likelihood of the shuttle being struck by a racket

in each frame. Frames with a high probability are identified and recorded in a

dataframe for further analysis.

Regarding the audio component, the audio data is first converted into a spectro-

gram to visualize the audio content. The spectrogram is then divided into smaller

segments and fed into a CRNN-based Sound Event Detection (SED) model. This

model predicts the likelihood of each frame containing the sound of the badminton

shuttle being hit by a racket. Although the predictions may not be precise enough

to determine the exact frames with events, frames with a possibility exceeding 50

percent are marked and recorded in the dataframe.

By comparing the markings from both the visual and audio components, frames

that have overlapping marks are identified. Furthermore, the three frames preced-

ing and following each identified frame are also considered. Frames that receive

markings from the visual, as well as their neighboring frames that receive markings

from audio components, are determined to contain the event and are designated

for haptic feedback generation. With a comparison to the previous output of only

utilizing visual input data, the accuracy of the system on the same testing video

as stated in section 3.3.3 increased from 12/23 to 17/23 for the first video and

9/16 to 11/16 in the second video, achieving an accuracy close to 70 percent.

Figure 3.18 Illustration of the overall system framework
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3.5.1 Generates Haptic Audio Automatically

Once the algorithm determines the frames that should generate haptic feedback,

the next step involves synchronizing the vibration audio of the racket with the

corresponding frames. Specifically, pre-recorded audio that represents the haptic

sensation of the impact between the racket and shuttle ball is added to the frames

identified by the algorithm. For the remaining frames, a silent audio segment is

inserted. An audio file with the same sample rate as the badminton video’s audio

is then created.

In order to get the most realistic haptic audio, Tectile toolkit [71] is integrated

into a badminton racket, enabling the transfer of haptic feedback directly from

the racket to the computer, where it is recorded. This approach ensures that the

haptic audio accurately reflects the impact of the racket striking the shuttlecock,

enhancing the overall realism of the haptic experience.

To combine all the components seamlessly, I employ FFMPEG2, a powerful

multimedia framework. FFMPEG automatically merges the original video and

audio with the haptic audio generated by my system into a quad-channel mp4 file.

The first two channels contain the original audio, while the latter two channels

accommodate the haptic audio. This ensures that the haptic feedback is accurately

synchronized with the corresponding frames in the video.

2 FFMPEG : https://ffmpeg.org
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Prove of Concept

4.1. Pilot Test

In this pilot test, our objective is to gather user feedback on the accuracy of the

automatically generated haptic videos. We utilized two badminton rally videos,

one with a length of 16 seconds and the other with 22 seconds, and passed them

through our multi-model system to generate haptic feedback for the videos. The

haptic videos were then directly provided to the participants for their experience.

To enable participants to feel the haptic feedback from the videos, we provided

them with a 3D printed device, as shown in Fig 4.1, which incorporates two haptic

modules called “hapStak”. These modules enhance the haptic experience for the

participants. A total of 4 participants (3 male, 1 female) experienced the haptic

videos and provided valuable insights and suggestions for potential improvements

based on their experience.

Figure 4.1 Haptic Device
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4.1.1 Feedback for Pilot Test

The overall feedback from the participants was positive, with one participant ex-

pressing, “The accuracy of the automatic generated haptic feedback exceeded my

expectations. While there were a few errors where the haptic device provided feed-

back when it shouldn’t have, I still found these errors to be acceptable. Overall,

the haptic feedback did enhanced my immersion with the video.”

Three out of four participants provided feedback regarding the improvement

of haptic intensity. The participants felt that the volume of the haptic feedback

was set too low for the experience, and they suggested increasing the intensity.

One participant also suggested that the intensity of the haptic device should vary

according to the actions of the players in the scene. For example, a strike should

generate a stronger haptic sensation compared to a net drop shot. This feedback

provides valuable insights for enhancing the overall haptic experience and offers

promising directions for future research in this area.

4.2. Semi-Auto Authoring Experiment

4.2.1 Overview

To assess the effectiveness of the automatic generated haptic feedback in assisting

the haptic video annotation task, I propose an experimental study involving par-

ticipants who will perform two annotation tasks. One task will involve traditional

manual authoring, while the other task will incorporate the automatic haptic au-

dio generated by my multi-model system as an assistant. By comparing the two

approaches, we aim to evaluate the impact of the new authoring method on the

annotation process.

The primary metric for evaluation in this experiment is the time taken by par-

ticipants to complete each task. Additionally, a questionnaire will be administered

to gather feedback on the usability of the system, and a brief interview will be

conducted to delve deeper into participants’ experiences.

A total of 8 participants, consisting of 4 males and 4 females, took part in the ex-

periment. Among them, three participants (two males and one female) possessed

adequate experience in video editing, which adds diversity to the participant pool.
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4.2.2 Experiment Design

The video used for annotation in both tasks and across participants is a 21-

second badminton rally video. The video contains 22 badminton strikes that

are not included in the training data of the object detection and sound event

detection models. At the beginning of the experiment, participants will have the

opportunity to experience an actual haptic video manually annotated by myself.

To facilitate this experience, a 3D printed haptic device, as shown in Fig 4.1, is

provided.

For the annotation tasks, participants will use Ableton Live 11 software 3, which

will be introduced to them through a tutorial session prior to the actual task.

Participants will be given an additional 3 minutes to familiarize themselves with

the software before the experiment commences. Two tasks will be conducted: 1)

Manual Authoring task and 2) Semi-Auto Authoring task. The order of these

tasks will be randomly assigned to participants.

Figure 4.2 The interface of Ableton Live during the manual annotation task.

3 https://www.ableton.com

44



4. Prove of Concept 4.2. Semi-Auto Authoring Experiment

Manual Authoring Task

In the manual authoring task, participants will be required to create a haptic

video from scratch, as depicted in Fig 4.2. To facilitate the annotation process,

the visual content will be played synchronously in the bottom right corner of the

interface. The first track will contain the audio from the badminton match, while

the second track will consist of a mono channel audio file representing the haptic

feedback recorded from a badminton racket striking a shuttle ball.

The primary objective of participants in this task is to either duplicate or drag

the haptic audio to the desired positions in the video where they feel it intuitively

enhances the haptic feedback experience. The time spent by each participant

will be recorded, including the final checking phase where participants review

the haptic video they created from the beginning and ensure all annotations are

correct before submission.

The haptic audio created by each participant will be saved as a stereo mp3 file.

Subsequently, the audio will be combined with the visual content and the audio

from the badminton rally into an mp4 file, resulting in a final output with four

channels of audio.

Semi-Auto Authoring Task

In the semi-auto authoring task, participants will be presented with a track of

audio that is automatically generated by the multi-model system. The automatic

audio generation achieved an accuracy of 16 correct annotations out of 22 hits. A

comparison between the automatically generated audio and the manual annota-

tion by participant 3 is illustrated in Fig 4.3.

Figure 4.3 The track on above is the manual annotation by participant 3 ; The

track on below is the automatic generated haptic audio

The interface for participants during the semi-auto annotation task is depicted
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in Fig 4.4. Similar to the manual annotation task, the visual content will be

provided to aid the participants.

Figure 4.4 The interface of Ableton Live during the semi-auto annotation task.

The main objective for participants in this task is to create a haptic audio that

intuitively enhances the experience. However, in this task, participants can utilize

the automatically generated audio track, which is the second track in Fig 4.4, as

an assistive tool. They will need to adjust the audio track to the correct positions

by either removing redundant audio segments or simply dragging the incorrect

audio segments to their correct positions. The time taken by each participant to

complete the task, including the reviewing phase, will be recorded.

Evaluation

Upon completing each task, participants will be asked to fill out a question-

naire that combines a modified version of the System Usability Scale (SUS) [72]

and post-task usability questionnaires [73]. These questionnaires are designed to

gather feedback on the usability and user experience of the system.

Once both tasks are finished, the haptic audio created by each participant will

be compiled into a haptic video. Participants will then have the opportunity

to experience both the haptic video they created in the manual authoring task

and the semi-auto authoring task. Subsequently, interviews will be conducted to
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gather further feedback on both the authoring tasks and the experience of the

haptic videos.

4.2.3 Results

Table 4.1 Questionnaire used in user study.

The questionnaire utilized in the experiment is presented in Table 4.1. This

questionnaire was administered in both tasks, with slight modifications for the

semi-automatic authoring task. In the semi-automatic authoring task, two addi-

tional questions were included. The first question was: “I felt that the automat-

ically generated haptic audio significantly improved the efficiency in completing

the task,” and the second question was:“I am satisfied with the accuracy of the

automatically generated haptic audio.” Participants were asked to rate their re-

sponses on a scale of 1 to 5 for both of these questions.

Analysis

To investigate the impact of the automatically generated haptic audio on the

annotation task, a paired t-test was conducted to compare the annotation expe-

riences between the two tasks. Subsequently, a Šidák-Holm multiple comparisons

test was employed to identify any significant differences between specific pairs.

Overall Results and Trends

As shown in Fig. 4.5, the utilization of automatic generated haptic audio resulted

in a significant improvement in the Quality of Experience (QoE) when compared

to manual haptic authoring (Q1-Q4, Q7). Overall, the majority of participants

experienced a notable increase in their satisfaction with the time required to
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Figure 4.5 The collective results comparing the annotation experience in both

tasks from the questionnaire (Q1-Q8, See Table 4.1) * p<0.05, ** p<0.01, ***

p<0.001. The figure includes scatter plots that visualize the responses of each

participant with symbol ( · ) for Manual Authoring, ( × ) for Semi-Automatic

Authoring

complete the task in the semi-automatic authoring task (p <0.05). Only one

participant provided a score of 5 in both tasks. This participant initially performed

the manual authoring task and then the semi-automatic task. During the post-

interview session, I inquired about the reason for giving 5 points in both tasks.

The participant mentioned being highly experienced in video and audio editing,

which contributed to their ability to complete the tasks quickly, and hence a

high satisfaction in the time spent. However, they expressed a preference for and

greater satisfaction with the time spent in the semi-automatic authoring task,

suggesting that starting with the semi-automatic authoring task first would have

resulted in giving higher score than the manual authoring task.

In terms of task complexity (Q3, Q7), it is observed that the semi-automatic

authoring task was significantly preferred by participants, with a lower score in-

dicating lower complexity compared to the manual authoring task (p <0.001).

Interestingly, the score was not significantly affected by the order of the tasks, as

seen in the scatter plot where the scores for both these questions in the semi-
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automatic authoring task are highly concentrated. Furthermore, participants

found the semi-automatic annotation method easier to use (Q4, p <0.01) and

expressed a preference for using this annotation method frequently (Q2, p <0.01)

compared to manual annotation.

Regarding the ease of learning the annotation method (Q5, Q6, Q8), it was

observed that participants found the semi-automatic authoring task to be slightly

easier than the manual authoring task, although this difference was not statisti-

cally significant. This may be attributed to the fact that participants with prior

video editing experience perceived both tasks as relatively easy to learn and nav-

igate.

Figure 4.6 The time taken to complete each task was analyzed based on partic-

ipants’ level of experience in video editing. Statistical significance is denoted as

* p<0.05, ** p<0.01, *** p<0.001. The figure presents scatter plots that depict

the time used by each participant, with different colors representing the order of

tasks undertaken in the experiment.

The time taken by each participant to complete each task is presented in Figure

4.6. The results indicate that participants with prior experience in video editing

tended to complete both tasks more quickly than participants without much ex-

perience in video editing. This can be attributed to the similarity between the
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annotation software and other commercial video editing tools, enabling partici-

pants with video editing experience to become familiar with the editing tool more

efficiently.

When comparing the two groups (participants with and without video editing

experience), a significant increase in efficiency was observed between the two tasks.

The increase in efficiency was statistically significant at p <0.05 for participants

with video editing experience and p <0.01 for participants without video editing

experience. Surprisingly, the order of the tasks did not have a significant impact

on the time spent for annotation. This suggests that the practice time provided

prior to the experiment effectively familiarized participants with the annotation

software, regardless of the order in which the tasks were performed.

Table 4.2 Additional question in semi-automatic authoring task’s questionnaire.

Figure 4.7 Participants’ responses on question 9 and question 10, with mean of

each question plot on the end of bar.

After the semi-automatic authoring task, two additional questions were pre-

sented to the participants, as shown in Table 4.2. These questions aimed to assess
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the effectiveness of the automatic generated haptic audio in assisting the annota-

tion process.

Based on the participants’ responses, it was evident that they felt the automatic

generated haptic audio significantly improved their efficiency in completing the

annotation task (Q9), as indicated by a mean value of 4.750. Furthermore, the

participants expressed satisfaction with the accuracy of the automatic generated

haptic audio (Q10), with a mean score of 4.375.

Feedback

An interview was conducted after compiling the haptic audios annotated by the

participants in both tasks and allowing them to experience the feedback. Overall,

all participants commented that they found the automatic generated haptic audio

to be helpful in completing the annotation task. One participant specifically

mentioned, “The semi-automatic authoring is clearly much more efficient than

manual authoring. Editing is much easier than creating the audio from scratch,

especially when there are frequent repeating events.”

Another participant, who had extensive experience in editing video and audio,

provided a concise piece of advice, stating, “The automatically generated anno-

tations would greatly increase the efficiency of such work, but only if they have a

high level of accuracy. If the accuracy declines too much, despite it being a con-

venient tool for basic annotation, it becomes frustrating to have to edit and redo

them to the point where it becomes more efficient to input them manually. How-

ever, I was generally satisfied with the accuracy of the system I used this time.”

This participant highlighted the importance of accuracy in determining the effi-

ciency of the automatic generated annotations, and in this case, the automatic

generated haptic audio surpasses the baseline in terms of accuracy.

The participants’ feedback has also provided valuable insights on enhancing

the haptic feedback experience. One suggestion is to incorporate player-specific

feedback, where the haptic device provides feedback on the corresponding side

based on the player’s position. For example, if the player on the left side of

the scene strikes the shuttlecock, the haptic feedback would be generated on the

left side of the haptic device, and vice versa. This approach could significantly

enhance the immersive feeling for users, making them feel more engaged in the
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scene.

Furthermore, participants expressed a desire for a greater variety of scenes,

including other sports such as tennis, soccer, and more. Implementing similar

scenarios would offer users a broader range of experiences and increase the versa-

tility of the haptic feedback system.

These feedback suggestions provide valuable directions for further improving

the haptic feedback experience and expanding the applicability of the system to

different sports and scenarios.

4.3. Discussion

In summary, the results showed that the utilization of automatic generated hap-

tic audio significantly improved the Quality of Experience (QoE) compared to

manual authoring. Participants expressed a higher level of satisfaction with the

time required to complete the semi-automatic task. Notably, participants with

prior video editing experience showed faster completion times overall, and their

efficiency was further enhanced when using the semi-automatic authoring method.

This suggests that the combination of automatic generated haptic audio and par-

ticipant experience in video editing resulted in even greater efficiency.

In the study, participants’ questionnaire responses highlighted the task to be

easier and efficient with the help of automatic generated haptic audio. Moreover,

participants expressed satisfaction with the accuracy of the automatic generated

haptic audio. Valuable feedback from participants included suggestions for en-

hancing the haptic feedback experience, such as customizing feedback based on

player positions and incorporating a broader range of scenarios. The findings

underscored the potential of automatic generated haptic audio to enhance the an-

notation process, emphasizing the importance of maintaining high accuracy levels

for optimal effectiveness.
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Conclusion

With the increasing demand for immersive multimedia experiences, haptic feed-

back has emerged as a crucial element to enhance the engagement and realism of

content. The future is expected to witness a significant rise in the demand for

haptic videos, creating a need for skilled haptic designers and editors capable of

synchronizing haptic, audio, and visual content while delivering intuitive tactile

feedback to the audience.

Manual authoring has traditionally been the preferred method for achieving

precise and immersive haptic experiences in videos. However, this approach is

time-consuming due to repetitive labor-intensive tasks. To address this challenge,

a semi-automatic haptic annotation method is proposed in this research. This

method leverages a multi-model deep learning framework to automatically gener-

ate haptic audio, thereby increasing the efficiency of the annotation task.

In contrast to previous research, the focus of this study is on generating hap-

tic feedback for specific events occurring within a scene, such as the impact of

a badminton racket or shuttle. Previous approaches primarily concentrated on

generating trails or overall haptic effects, neglecting the importance of feedback

when objects come into contact with the main character. By adopting a first-

person perspective, the aim of this research is to provide a more immersive haptic

experience where the audience can truly feel a part of the scene.

The results of the annotation experiment indicate that the utilization of au-

tomatic generated haptic audio, in combination with manual authoring (referred

to as semi-automatic haptic authoring in this research), significantly enhances

the efficiency of participants in completing the annotation task, regardless of the

order of tasks. This conclusion is supported by both statistical analysis of the

questionnaire responses and the observed time taken to complete each task.

Participants provided valuable feedback on the limitations of the current system
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5. Conclusion

prototype. Firstly, the system is currently capable of generating haptic feedback

only for the badminton scenario, whereas a wider range of scenarios would be

more engaging for the audience. Future studies can address this limitation by

increasing the diversity of training data for the object detection model and sound

event detection model.

The accuracy of the automatic generated haptic audio was found to significantly

impact users’ efficiency and preference for the semi-automatic haptic authoring

method over manual authoring. While the accuracy achieved in this research

met the baseline requirements for participant preference, there is still room for

improvement. Enhancements can be made by refining the sound event detection

model or exploring alternative approaches to address this task. However, there is

currently no accurate baseline to define the accuracy of a haptic annotation. In

this research, the measure used to determine the similarity and accuracy in two

of the experimental tasks is based on the time difference between each striking

event annotated by the participants to the event frame, which should ideally fall

within a range of 100 milliseconds.

Improvements can also be made in the haptic feedback experience for users.

For example, providing different haptic intensities based on player movements or

actions, or delivering haptic feedback according to the location of players within

the scene. Such enhancements would further enhance the immersive and enjoyable

experience for the audience.

Overall, while the current study presents promising results, further develop-

ments and refinements are necessary to expand the range of scenarios, improve

accuracy, and enhance the haptic feedback experience in order to maximize the

immersion and enjoyment of the audience.
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Appendices

A. Code for Automatic Generating Haptic Video

Calculate Saliency of Input Video

Input_video = r"C:\Users\issac\Documents\ML\badminton.mp4"

cap = cv2.VideoCapture(Input_video)

fps = cap.get(cv2.CAP_PROP_FPS)

cap.set(cv2.CAP_PROP_FPS,30)

threshold = 3

print("FPS:", fps)

saliency = None

count = 0

name = r"C:\Users\issac\Documents\ML\output"

# create a motion saliency object

fourcc = cv2.VideoWriter_fourcc(*’mp4v’)

ret, frame = cap.read()

height, width, _ = frame.shape

out = cv2.VideoWriter(name+’.mp4’,fourcc,fps,(width, height),0)

out.write(frame)

while True:

# read a frame from the input video

print("loading",end=’\r’)

ret, frame = cap.read()

if not ret:

break

if saliency is None:
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print(frame.shape[1],’,’,frame.shape[0])

saliency = cv2.saliency.MotionSaliencyBinWangApr2014_create()

saliency.setImagesize(frame.shape[1], frame.shape[0])

print(frame.shape[1],’,’,frame.shape[0])

saliency.init()

saliency_update = False

print("Calculating Saliency",end=’\r’)

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

(success, saliencyMap) = saliency.computeSaliency(gray)

saliencyMap = (saliencyMap * 255).astype("uint8")

meannn = np.mean(saliencyMap)

out.write(saliencyMap)

print("Calculating Saliency...",end=’\r’)

out.release()

cap.release()

Import Trained YOLOv8 model and Calculate Shuttle’s Motion State

and Record in Dataframe.

model = YOLO("Yolov8/OnlyBadminton.pt")

count =0

frame_num=0

df = pd.DataFrame(columns=[’Frame’, ’Blank’,’Center_X’,’Center_Y’,’Sec’])

results = model.predict(source=r"C:\Users\issac\Documents\ML\output.mp4", save =False, save_crop = False) # Display preds. Accepts all YOLO predict arguments

fourcc = cv2.VideoWriter_fourcc(*’mp4v’)

out = cv2.VideoWriter(r’C:\Users\issac\Documents\ML\crop_mask’+’.mp4’,fourcc,fps,(width, height))

for result in results:
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isBlank = "Blank"

isBadminton = "Badminton"

ret, frame = cap.read()

mask = np.ones(result.orig_img.shape,dtype= result.orig_img.dtype)

mask[:,:] = [255,255,255]

for bbox in result.boxes.xyxy:

x1, y1, x2, y2 = bbox[0].item(), bbox[1].item(), bbox[2].item(), bbox[3].item()

crop_image=result.orig_img[int(y1):int(y2),int(x1):int(x2)]

mask[int(y1):int(y2),int(x1):int(x2)] = crop_image

meancrop = np.mean(crop_image)

center_x = (x1 + x2) / 2

center_y = (y1 + y2) / 2

maskmean = np.mean(mask)

if maskmean ==255.0 :

df.loc[frame_num] = [frame_num, isBlank,0,0,frame_num/fps]

else:

df.loc[frame_num] = [frame_num,isBadminton, center_x,center_y,frame_num/fps]

frame_num+=1

out.write(mask)

window_size_ascend = 3

###########################Calculate X#################################

mask_X = (df[’Center_X’] == df[’Center_X’].shift()) | (df[’Center_X’] == 0)

df.loc[mask_X, ’Center_X’] = None

df[’Center_X’].fillna(method=’ffill’, inplace=True)

diff_X = df[’Center_X’].diff(periods=window_size_ascend)

threshold = 5

df[’Direction_X’] = None
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df[’ShiftedDirection_x’] = ’’

df[’Change_Point_X’] = ’’

df.loc[diff_X > 0, ’Direction_X’] = ’Right’

df.loc[diff_X < 0, ’Direction_X’] = ’Left’

last_nonzero_direction_X = None

for i, row in df.iterrows():

if pd.isna(row[’Direction_X’]):

df.at[i, ’Direction_X’] = last_nonzero_direction_X

else:

last_nonzero_direction_X = row[’Direction_X’]

df[’ShiftedDirection_X’] = df[’Direction_X’].shift(1)

change_point_X = df[((df[’Direction_X’] == ’Left’) & (df[’ShiftedDirection_X’] == ’Right’)) |

((df[’Direction_X’] == ’Right’)& (df[’ShiftedDirection_X’] == ’Left’))

|(((df[’Center_X’] - df[’Center_X’].shift(1)).abs()) > 50)

].index.tolist()

df.loc[change_point_X,’Change_Point_X’] = ’Changed_X’

###########################Calculate Y#################################

mask_Y = (df[’Center_Y’] == df[’Center_Y’].shift()) | (df[’Center_Y’] == 0)

df.loc[mask_Y, ’Center_Y’] = None

df[’Center_Y’].fillna(method=’ffill’, inplace=True)

diff_X = df[’Center_Y’].diff(periods=window_size_ascend)

threshold = 3

df[’Direction_Y’] = None

df[’ShiftedDirection_Y’] = ’’

df[’Change_Point_Y’] = ’’

df.loc[diff_X > 0, ’Direction_Y’] = ’Up’

df.loc[diff_X < 0, ’Direction_Y’] = ’Down’

last_nonzero_direction_Y = None

for i, row in df.iterrows():

if pd.isna(row[’Direction_Y’]):

df.at[i, ’Direction_Y’] = last_nonzero_direction_Y

else:

last_nonzero_direction_X = row[’Direction_Y’]

df[’ShiftedDirection_Y’] = df[’Direction_Y’].shift(1)
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change_point_Y = df[((df[’Direction_Y’] == ’Down’) & (df[’ShiftedDirection_Y’] == ’Up’)) | ((df[’Direction_Y’] == ’Up’)& (df[’ShiftedDirection_Y’] == ’Down’)) | (((df[’Center_Y’] - df[’Center_Y’].shift(1)).abs()) > 50)].index.tolist()

df.loc[change_point_Y,’Change_Point_Y’] = ’Changed_Y’

print(df)

out.release()

Import Trained Sound Event Detection Model and Predict Sound Events

file_count = 1

sr = 16000

n_mels=32

datalist =[]

startlist =[]

endlist = []

durationlist = []

time_resolution = 0.10

batch_size=4

samplerate = 16000

window_duration = 0.801

window_length = int(window_duration / time_resolution)

def next_power_of_2(x):

return 2**(math.ceil(math.log(x, 2)))

hop_length = int(time_resolution*samplerate)

n_fft = next_power_of_2(hop_length)

audiofile,spec = sed.LoadFromVid(Input_video,sr,n_mels,n_fft,hop_length)

fig, ax = plt.subplots(1, figsize=(20, 5))

plot_spectrogram(hop_length,samplerate,ax,spec)

append_windows = pd.DataFrame()

windows = pd.DataFrame({

’spectrogram’: sed.crop_windows(spec, frames=window_length, step=2),

’file’: audiofile,

})

append_windows = pd.concat([append_windows,windows],axis=0)
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splitData = sed.split_data2(append_windows)

with custom_object_scope( {’weighted_binary_crossentropy’:weighted_binary_crossentropy}):

model = load_model(r’C:\Users\issac\Documents\ML\Badminton_sound\model\onlyfinal(600).h5’)

model.summary()

Xm = np.expand_dims(np.mean(np.concatenate([s.T for s in splitData.spectrogram]), axis=0), -1)

predictions = predict_spectrogram(model,spec,window_length,Xm)

fig, ax = plt.subplots(1, figsize=(30, 5))

sed.plot_spectrogram(hop_length,samplerate,ax, spec, predictions = predictions)

annotate = events_from_predictions(predictions)

for index, row in annotate.iterrows():

datalist.append(list(row))

startlist = [row[0] for row in datalist]

endlist = [min(row[1],frame_num-1) for row in datalist]

for i in range(len(startlist)):

templist = [x for x in range(startlist[i],endlist[i]+1)]

durationlist.append(templist)

df[’Sound_Detect’] = ’No’

df[’Haptic’] = ’No’

for i in range(len(durationlist)):

df.loc[durationlist[i],’Sound_Detect’] = ’Hit’

for index, row in df.iterrows():

if row[’Sound_Detect’] == ’Hit’ and row[’Blank’] == ’Blank’:

df.loc[index,’Haptic’] = ’Yes’

sounddf = df[[’Frame’,’Change_Point_X’,’Change_Point_Y’]].copy()

sounddf = caluculate_db(Input_video,sounddf)

Create_Audio_Sounddf(sounddf)

EncodeAudioChannel(Input_video)

Combine_Vid_Audio()

plt.show()
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Utilized Functions for Automatic Generating Haptic Video

def LoadCsv(path):

df = pd.read_csv(path, header=None, skiprows=1, names=[’event’, ’start’, ’end’, ’file’])

df[’duration’] = df[’end’].astype(np.float16) - df[’start’].astype(np.float16)

return df

def LoadAudio(path,Sr,mels,fft,hop_length): #0,1,2,3

audio_files = lb.util.find_files(path)

print(audio_files)

Sdb_List= []

for audio_file in audio_files:

y, sr = lb.load(audio_file)

Spec = lb.feature.melspectrogram(y=y, sr=Sr, n_mels=mels,n_fft=fft,hop_length=hop_length)

Sdb = lb.power_to_db(Spec, ref=np.max)

print("SDB shape = ",Sdb.shape)

Sdb_List.append(Sdb)

return audio_files, Sdb_List

def LoadFromVid(path,Sr,mels,fft,hop_length): #0,1,2,3

audio_files = lb.util.find_files(path)

video = VideoReader(path)

video = mp.VideoFileClip(path)

audio = video.audio

audio = video.audio

temp = "Combine_test/temp.wav"

audio.write_audiofile(temp)

y, sr = lb.load(temp, sr=16000)

Spec = lb.feature.melspectrogram(y=y, sr=Sr, n_mels=mels,n_fft=fft,hop_length=hop_length)

Sdb = lb.power_to_db(Spec, ref=np.max)

print("SDB shape = ",Sdb.shape)

return temp,Sdb

def plot_spectrogram(hop_length,samplerate,ax, spec, events=None, label_activations=None, predictions=None):

72



Appendices A. Code for Automatic Generating Haptic Video

events_lw = 1.5

# Plot spectrogram

lb.display.specshow(ax=ax, data=spec, hop_length=hop_length, x_axis=’time’, y_axis=’mel’, sr=samplerate)

# Plot events

if events is not None:

for start, end in zip(events.start, events.end):

ax.axvspan(start, end, alpha=0.2, color=’yellow’)

ax.axvline(start, alpha=0.7, color=’yellow’, ls=’--’, lw=events_lw)

ax.axvline(end, alpha=0.8, color=’green’, ls=’--’, lw=events_lw)

label_ax = ax.twinx()

# Plot event activations

if label_activations is not None:

a = label_activations.reset_index()

a[’time’] = a[’time’].dt.total_seconds()

label_ax.step(a[’time’], a[’event’], color=’green’, alpha=0.9, lw=2.0)

# Plot model predictions

if predictions is not None:

p = predictions.reset_index()

p[’time’] = p[’time’].dt.total_seconds()

label_ax.step(p[’time’], p[’probability’], color=’blue’, alpha=0.9, lw=3.0)

label_ax.axhline(0.5, ls=’--’, color=’black’, alpha=0.5, lw=2.0)

def crop_windows(arr, frames, pad_value=0.0, overlap=0.5, step=None):

if step is None:

step = int(frames * (1-overlap))

windows = []

index = []

width, length = arr.shape
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for start_idx in range(0, length, step):

end_idx = min(start_idx + frames, length)

# create emmpty

win = np.full((width, frames), pad_value, dtype=float)

# fill with data

win[:, 0:end_idx-start_idx] = arr[:,start_idx:end_idx] # crop a fix frame from start index till start index +n

windows.append(win)

index.append(start_idx)

s = pd.Series(windows, index=index)

s.index.name = ’start_index’

return s

def plot_windows( wins,hop_length, samplerate, col_wrap=None, height=4, aspect=1):

specs = wins.spectrogram

nrow = 1

ncol = len(specs)

if col_wrap is not None:

nrow = int(np.ceil(ncol / col_wrap))

ncol = col_wrap

fig_height = height * nrow

fig_width = height * aspect * ncol

fig, axs = plt.subplots(ncol, nrow, sharex=True, sharey=True, figsize=(fig_width, fig_height))

axs = np.array(axs).flatten()

fig.suptitle(specs.name)

for ax, s, l in zip(axs, specs, wins.labels):

l = np.squeeze(l)
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ll = pd.DataFrame({

’event’: l,

’time’: pd.to_timedelta(np.arange(l.shape[0])*hop_length/samplerate, unit=’s’),

})

plot_spectrogram(hop_length,samplerate,ax, s, label_activations=ll)

def events_from_predictions(pred, threshold, label=’Hit’, event_duration_max=1.0,fps =30):

import copy

event_duration_max = pd.Timedelta(event_duration_max, unit=’s’)

events = []

inside_event = False

event = {

’start’: None,

’end’: None,

}

for t, r in pred.iterrows():

p = r[’probability’]

if not inside_event and p > threshold:

event[’start’] = int(t.total_seconds() *fps) #Modify here to calculate which frame it is in

inside_event = True

elif inside_event and ((p < threshold) or ((t - pd.Timedelta(seconds=event[’start’]/fps)) > event_duration_max)):

event[’end’] = int(t.total_seconds() *fps)

events.append(copy.copy(event))

inside_event = False

event[’start’] = None

event[’end’] = None

else:

pass
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if len(events):

df = pd.DataFrame.from_records(events)

else:

df = pd.DataFrame([], columns=[’start’, ’end’], dtype=’timedelta64[ns]’)

df[’label’] = label

return df

def predict_spectrogram(model, spec,window_length ,Xm):

window_hop = 1

wins = crop_windows(spec, frames=window_length, step=window_hop)

X = np.expand_dims(np.stack( [ (w-Xm).T for w in wins ]), -1)

y = np.squeeze(model.predict(X, verbose=False))

out = merge_overlapped_predictions(y, window_hop=window_hop)

return out

B. Code for Combining Haptic, Video and Audio

Components

import librosa as lb

import subprocess

import numpy as np

video_path = "/Users/issacfei/Documents /Experiment/Materials/badminton.mp4"

audio_path = cs.EncodeAudioChannel(video_path)

cs.Combine_Vid_Audio(audio_path)

def calculate_dB_frame(frame, ref_level=1e-10):

spectrogram = lb.stft(frame)

rms = lb.feature.rms(S=spectrogram)
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dB = lb.amplitude_to_db(rms,ref=ref_level)

avg_dB = np.mean(dB)

return avg_dB

def caluculate_db(path,df):

video_file = path

sample_rate = 44100

duration = 1/30

db_values = []

audio, sr = lb.load(video_file, sr=44100)

for i, row in df.iterrows():

frame_start = i * int(sample_rate * duration)

frame_end = (i + 1) * int(sample_rate * duration)

db_value = calculate_dB_frame(audio[frame_start:frame_end])

db_values.append(db_value)

df[’dB’] = db_values

return df

def separate_video_and_audio(path):

video_file = path

output_video = "/Users/issacfei/Documents/Experiment/src/badminton_nsound.mp4"

output_audio1 = "/Users/issacfei/Documents/Experiment/src/output_audio1.aac"

output_audio2 = "/Users/issacfei/Documents/Experiment/src/output_audio2.aac"

# Separate video from the input file

video_command = [

"ffmpeg",

"-i", video_file,

"-c:v", "copy",

"-an", # Disable audio

’-y’,

output_video

]

# Separate audio channels from the input file

audio_command1 = [

"ffmpeg",

"-i", video_file,
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"-map", "0:a:0", # Select audio channel 1

"-c:a", "copy",

’-y’,

output_audio1

]

audio_command2 = [

"ffmpeg",

"-i", video_file,

"-map", "0:a:1", # Select audio channel 2

"-c:a", "copy",

’-y’,

output_audio2

]

subprocess.run(video_command)

subprocess.run(audio_command1)

def EncodeAudioChannel(path ):

original_video = path

audio1 = "/Users/issacfei/Documents/Experiment/src/output_audio1.aac"

audio_originalL = "/Users/issacfei/Documents/Experiment/src/left.wav"

audio_originalR = "/Users/issacfei/Documents/Experiment/src/right.wav"

haptic_audio = "/Users/issacfei/Documents/Experiment1/Annotated_manual.mp3" ####### Experiment Annotated audio file here ########

audio_output ="/Users/issacfei/Documents/Experiment/src/audio_output.wav"

#Seperate audio and video first then merge

separate_video_and_audio(original_video)

#Split the stereo into two mono

Split_Stereo(audio1)

ffmpeg_cmd = [

’ffmpeg’,
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’-i’, audio_originalL,

’-i’, audio_originalR,

’-i’, haptic_audio,

’-i’, haptic_audio,

’-filter_complex’, ’[0:a][1:a][2:a][3:a]join=inputs=4:channel_layout=quad[a]’,

’-map’, ’[a]’,

’-y’,

audio_output

]

subprocess.run(ffmpeg_cmd)

return audio_output

def Split_Stereo(path):

ffmpeg_cmd = [

’ffmpeg’,

’-i’, path,

’-filter_complex’, ’[0:a]channelsplit=channel_layout=stereo[left][right]’,

’-map’, ’[left]’,’-y’, "/Users/issacfei/Documents/Experiment/src/left.wav",

’-map’, ’[right]’,’-y’, "/Users/issacfei/Documents/Experiment/src/right.wav"

]

subprocess.run(ffmpeg_cmd)

return

def Combine_Vid_Audio(audio_path):

output = "/Users/issacfei/Documents/Experiment/Experiment1/Final_Output/Vid_Haptic_manual.mp4"

split_vid = "/Users/issacfei/Documents/Experiment/src/badminton_nsound.mp4"

audio = audio_path

ffmpeg_cmd = [’ffmpeg’,

’-i’, split_vid,

’-i’, audio,

’-c:v’,’copy’,

’-map’,’ 0:v:0’,

’-map’, ’1:a:0’,

’-shortest’,
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’-y’,

output]

subprocess.run(ffmpeg_cmd)

return
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