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Summary

In our society, daytime sleepiness has become an epidemic because of lack of sleep.

Daytime sleepiness means difficulty in maintaining an alert waking state. It causes

vehicle accidents and has adverse effects on well-being, productivity.

Predicting daytime sleepiness is a direct way to solve the issue and help people

to manage their energy better. There are considerable research trying to solve

drivers’ sleepiness. This study aims to figure out using wrist temperature to

predict objective daytime sleepiness in wild-life. Experimental results of this study

present that the wrist temperature has the potential to play a valuable part in

better understanding daytime sleepiness.
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Chapter 1

Introduction

Keio University Graduate School of Media Design (KMD)1 was established

1.1. Research Question

1.1.1 Background of the Research Questions

In our society, lack of sleep has become an epidemic. Insufficient sleep is normally

associated with disturbances in cognitive and psychomotor function which would

gradually develop significant impact on mood, thinking, concentration, memory,

learning, vigilance and reaction time. [1]These disturbances also have adverse ef-

fects on wellbeing, productivity and personal safety. Insufficient sleep is a direct

contributor to injury and death from motor vehicle and workplace accidents. [2]

According to Psychiatry Research [3], in general, the sleep duration of adult popu-

lation in Japan is relatively short. Sleep problems are common and comparable to

those reported in Western countries. There are various causes for daytime sleepi-

ness , but lack of sleep at night is usually the most common reason. Moreover, so

far, the outbreak of COVID-19 has been almost 6 months around world. Lock-

down life force people to stay at home and work from home, with minimal social

interactions allowed.People have to adjust themselves mentally and physically, in

order to adapt to the disruption of regular daily routine. These disruptions, have

no doubt, also affect their sleeping hours. Research shows, during COVID-19, the

general public has developed poor sleep hygiene habits, and sleep problem is more

severe in people who are female, or young [4].

Daytime sleepiness means difficulty in maintaining an alert waking state. It

1 http://www.kmd.keio.ac.jp
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1. Introduction 1.1. Research Question

has been operationally defined as a physiological need [5]. Sleepiness and hours of

sleep are inversely associated, this can be simply explained as less sleep leads to

more sleepiness [6]. As mentioned previously, in certain activities, such as driving,

sleepiness is considered as a significant risk factor that substantially contributes to

the increasing number of motor vehicle accidents each year [7]. Critical aspects of

driving impairments is normally associated with drowsiness, slow reaction times,

reduced vigilance, and deficits in information processing that could possibly all

lead to an abnormal driving behavior [2, 8]. Besides traffic accidents, sleepiness

also leads to decline of productivity, accidents and health deterioration. Huge

economic loss caused by sleepiness was reported in the recent studies [9, 10]. For

detecting drivers drowsiness, there have been numerous attempts to resolve the

issue with sensible solutions. However, studies on sleepiness in daily life are still

very limited. If daytime sleepiness can be rigorously measured and predicted

automatically, it would bring a huge impact to our daily life.

1.1.2 Definition of Research Questions

I would like to investigate and discuss two main research questions in this thesis

for predicting people’s daytime sleepiness by wrist temperature. The first and the

most important one is to explore if there is any correlation between body temper-

atures and daytime drowsiness. To establish the baseline for the study, we need to

understand the most suitable body temperature for further experiments. Various

thermometers are used. All experiment tools will be introduced and compared in

detail in the next chapter. In addition, it is also important to compare different

methods of measuring sleepiness which includes objective way and subjective way.

After comparing these methods, Psychomotor Vigilance Task(PVT) was selected

to measure sleepiness in this research.

Predicting daytime sleepiness is the second research question. According to

the result of main question, it is important to find a method to predict daytime

sleepiness.

2
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1.2. Contribution

In this thesis, possible tools and devices that could be used to solve the core

problem will be introduced and discussed, which are those that could measure

and record body temperature, and those which are usable but not suitable in

some way. Those would be introduced in the second chapter which would talk

about those related works.

Then to present our data set along with PVT measurements and body tem-

perature, which amount to 19 days of wrist temperature data and ground truth

assessments from 8 participants collected in the wild.

1.3. Thesis Structure

This thesis consists of 6 Chapters.

• This chapter depicts the introduction of the thesis.

• Chapter 2 introduces an overview of how sleepiness are measured in previous

works and the motivation of this work.

• Chapter 3 presents the approach of this study and introduces research ma-

terials used in this study

• Chapter 4 expresses the experiment set up and the results of the collected

data

• Chapter 5 presents the analysis of the data result from chapter 4 and lists

the possible limitations of this study.

• Chapter 6 concludes this work by summarizing all the works has been done

for this research topic and discussing about possible future plan.

1.4. Key terms

PVT - psychomotor vigilance task

WT - Wrist Temperature

3



Chapter 2

Related Works

2.1. Sleepiness measurement

With the increasing complexities of life tasks and high speed of life paces in modern

life, it is not difficult to image that sleepiness has become a big issue nowadays.

Studies suggest sleepiness is a problem reported by 10% to 25% of the population.

It occurs more frequently in young adults and in older adults [5]. There are many

different kinds of scales designed to measure sleepiness. Most of them can be

grouped to the subjective measurement methods and the objective measurement

methods. The subjective measurements usually involve validated self-rated scales,

such as the Stanford Sleepiness Scale(SSS) [11] and the Epworth Sleepiness Scale

(ESS) [12]. While some objective measurements method use physiologic measures,

for example, the Multiple Sleep Latency Test [13] and Psychomotor Vigilance Task

(PVT). Both of these two measurements are used to assess the presence and degree

of sleepiness. We will discuss more in the following sessions.

2.1.1 Subjective sleepiness

Various subjective measurement methods are carried out to evaluate sleepiness.

For example, the the visual analog scale(VAS) [14], the Stanford sleepiness scale(SSS),

the Epworth sleepiness scale(ESS)and the Karolinska Sleepiness Scale(KSS) [15].

The most well known subjective sleepiness scale are the Stanford Sleepiness Scale(SSS)

and the Epworth Sleepiness Scale(ESS).

The Stanford sleepiness scale (SSS) is a quick and simple test. It involves the

subject’s own reports of symptoms and feelings at a particular time. However,

this test does not attempt to measure the general level of daytime sleepiness, as

distinct from feelings of sleepiness at a particular time [16]. Scores on the SSS of

4



2. Related Works 2.1. Sleepiness measurement

sleepiness are not significantly correlated with sleep latency in the MSLT, even

when measured at virtually the same time [17]. These subjective reports may be

related more to tiredness and fatigue than to sleep propensity, as manifested by

the tendency to fall asleep.

For measuring sleep propensity in a simple, standardized way, Murray W. Johns

designed the the Epworth sleepiness scale (ESS). The scale covers the whole range

of sleep propensities, from the highest to the lowest [18].

However, the best screening tool is still matter of debate. One example of

contesting the reliability of the ESS would be the study ”Is the Epworth Sleepi-

ness Scale a useful tool for screening excessive daytime sleepiness in commercial

drivers?” [19]. In this study, Simone Baiardi got results from 221 commercial

drivers, only ten (4.5%) had Epworth Sleepiness Scale scores indicative of exces-

sive daytime sleepiness. These findings and the lack of concordance in estimating

excessive daytime sleepiness among commercial drivers in previous studies using

the same psychometric measure indicate that the Epworth Sleepiness Scale is not

a reliable tool. This may be due to the low internal consistency of the scale in

non-clinical samples and the possible intentional underscoring of sleepiness due

to a perceived threat of driver ’s license suspension. Moreover, the reliability of

the Epworth Sleepiness Scale results may be strongly influenced by the adminis-

tration setting. Some other studies also showed that measures have limitations.

Individuals are not always aware of their degree of sleepiness or their suscepti-

bility to impairment, with significant inter-individual differences in performance

described following sleep deprivation [20–22]. The clinical application of inexpen-

sive less time-consuming new tools like performance tests should be considered

for the objective evaluation of excessive daytime sleepiness in commercial drivers.

2.1.2 Objective sleepiness

The Psychomotor Vigilance Task (PVT) is widely used in assessing behavioral

alertness and sustained attention related to sleepiness induced through sleep de-

privation [23, 24]. The psychomotor vigilance test (PVT) and divided attention

driving task (DADT) focus on neurocognitive function. This is especially relevant

among commercial drivers who undertake the complex task of driving [25, 26].

Researchers also found that single Divided Attention Driving Task(DADT) and

5



2. Related Works 2.2. Automatic Sleepiness Detection

PVT administrations are reliable measures of sleepiness. These results support

the use of a single administration of some objective tests of sleepiness when per-

formed under controlled conditions in routine clinical care. Another study indi-

cated that PVT performance significantly predicted specific aspects of simulated

driving performance. Thus, psychomotor vigilance impairment may be a key cog-

nitive component of driving impairment when sleep deprived [27]. Above all, while

not direct test of physiological sleepiness, the PVT has been shown to be sensitive

to sleepiness.

2.2. Automatic Sleepiness Detection

For detecting drowsiness, there are many studies are physiological based, vehicle

based, and behavioural based [28, 29]. Physiological methods such as heartbeat,

pulse rate, and Electrocardiogram(ECG)etc. are used to detect fatigue level [30,

31]. Vehicle based methods include accelerator pattern, acceleration and steering

movements. Behavioural methods [28,29]include yawn, Eye Closure, Eye Blinking,

etc. Most of the traditional methods are based on behavioural aspects while some

are intrusive and may distract drivers, while some require expensive sensors.

2.2.1 Sleepiness Application Used on Android System

It is important to develop a light-weight, real time driver’s sleepiness detection

system. One example of Detecting sleepiness by android application would be

the study” Real-Time Driver Drowsiness Detection System Using Eye Aspect

Ratio and Eye Closure Ratio” [32]. The study focused on developed a system

which is able to detect driver’s facial landmarks(Figure 2.1), computes Eye Aspect

Ratio and Eye Closure Ratio. It can detect driver’s drowsiness based on adaptive

thresholding. The result showed that it is useful in situations when the drivers are

used to strenuous workload and drive continuously for long distances. The facial

landmarks captured by the system are stored and machine learning algorithms

have been employed for classification. The system gives best case accuracy of

84% for random forest classifier.

6
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Figure 2.1 Facial Landmark Points the study used according to Dlib library

7



2. Related Works 2.3. Circadian Rhythm Monitoring by Temperature sensors

Figure 2.2 The wearable respiration sensor

2.2.2 Daytime Sleepiness Level Prediction

The study” Daytime Sleepiness Level Prediction Using Respiratory Information”

[33] is an example of continuous sleepiness tracking in daily living situation. The

study focused on predicting subjective sleepiness levels utilizing respiration and

acceleration data obtained for a novel wearable sensor [34](Figure 2.2). The study

contained two main parts with a five-minute rest in between. Two main parts are

typing task and video watching task. They collected the physiological data of the

subjects doing both active and passive tasks which represent activities in everyday

life, contrast the past studies which concentrated on driver’s sleepiness. Their

dataset and derived models reflected the actual association of the physiological

information and sleepiness in daily living more precisely.

2.3. Circadian Rhythm Monitoring by Tempera-

ture sensors

Recently skin temperature circadian rhythms have also been explored. The re-

search ”Relationships between the Circadian Rhythms of Finger Temperature,

Core Temperature, Sleep Latency, and Subjective Sleepiness” [35] is an invesit-

8



2. Related Works 2.3. Circadian Rhythm Monitoring by Temperature sensors

gation about the circadian finger and core temperature rhythms in conjunction

with the circadian rhythms of subjective and objective sleepiness. It(Figure 2.3)

presents the core body temperature(CBT) minimum temperature adjusted group

mean(SEM) curves of CBT, finger temperature, rectified SOL, and rectified Stan-

ford Sleepiness Scale(SSS). They found that the maximum 5 possible cross-correlation

curves between palmar finger temperature, rectal temperature, subjective sleepi-

ness and objective sleep latency suggested that finger temperature preceded core

temperature by 3h(r=-0.22), and subjective sleepiness followed core temperature

by 0.5h(r= -0.33) and objective sleepiness by 2h(r= 0.39). Although these data are

correlational, they are consistent with the notion that core temperature changes

are driven by finger temperature changes, which determine changes of subjective

and objective sleepiness. The research indicated distal skin temperature helps to

reduce CBT, which in turn promotes subjective and objective sleepiness.

9



2. Related Works 2.3. Circadian Rhythm Monitoring by Temperature sensors

Figure 2.3 Circadian rhythms of core temperature ( ° C), finger temperature ( °

C), rectified sleep onset latency (SOL) (min), and rectified Stanford Sleepiness

Scale (SSS) presented as means ± 1 SEM per 30 min

Another research of exploring the wrist temperature patterns and their under-

lying implications for both circadian rhythms and sleep patterns for people of

10



2. Related Works 2.3. Circadian Rhythm Monitoring by Temperature sensors

different ages and cognition is ”Monitoring Circadian Rhythm and Sleep Pat-

terns Using Wrist-worn Temperature and 3-axis Accelerometer Sensors: A Study

with Healthy Younger Adults, Healthy Older Adults, and People Living with De-

mentia” [36].Their participants wore a customized wristband with a temperature

sensor and a three-axis accelerometer sensor(Figure 2.4) along with a commercial

wristband(Mi Band 2)(Figure 2.5) for 14days. They analyzed wrist temperature

rhythms and compared for the three groups and found differences in daytime value

and variation. As a conclusion, they found while the wrist temperature alone al-

gorithm performed better than the Mi Band for older adults with dementia, using

both data sources showed increases in sleep detection accuracy for all partici-

pants. That shows the wrist temperature has the potential it to play a valuable

role in better identification and understanding of sleep including for people with

movement-related sleep disorders.

11
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Figure 2.4 The study used prototype wristband

Figure 2.5 The Mi Band 2

12



Chapter 3

Proposal

I propose a sleepiness monitoring system for people who are lack of sleep in this

thesis. This chapter will focus more on the reasoning behind the selected prototype

decisions, and also introduce the main system.

As the most important issue to solve is to continuously record body temperature

data for the whole day and to investigate the correlation between sleepiness level

and body temperatures.

3.1. Approach

As introduced in the chapter Related Works, there are two kinds of sleepiness mea-

surements which are objective sleepiness measurement and subjective sleepiness

scales. The experiments were designed in objective way which is PVT. Besides

sleepiness measurement, there are two part of body temperatures’ data should be

collected. The experiments included both and there are the process and conclusion

below.

3.1.1 PVT

I’d like to introduce the most important tool be used first. According to previ-

ous study, objective and quantitative assessments are necessary to evaluate the

presence of fatigue-related deficits, especially as self-reports of sleepiness and self-

assessments of performance capability have been shown to be unreliable [37, 38].

In this study, we used 1-min PVT(Figure 3.1) to asses participant’s sleepiness by

their reaction time. The PVT application can work on both android and IOS

13



3. Proposal 3.1. Approach

system1.

Figure 3.1 PVT test we used

A large number of performance tests have been developed to objectively as-

sess the degree of cognitive performance deterioration related to sleep loss. The

PVT is widely used among those [39], [24]. It is based on simple reaction time

to stimuli that occur at random intervals and therefore measures vigilant atten-

tion [40]. Most commonly used version is the standard 10-min PVT with 2-10s

inter-stimulus intervals, although both longer [41, 42]and shorter [43] duration

versions have been evaluated. Test duration is an important aspect of the PVT

because even severely sleep deprived subjects may be able to perform normally for

a short time by increasing compensatory effort. However, in a systematic analy-

sis of PVT duration, the study ”Validity and sensitivity of a brief psychomotor

vigilance test (PVT-B) to total and partial sleep deprivation” [44] showed that

the ability of the PVT to differentiate alert and sleepy subjects was, depending

on the outcome variable, only marginally lower (and at times higher) for shorter

than 10-min test durations [39].Therefore, optimal PVT duration may be shorter

than 10-min for some outcome variables, demonstrating feasibility of shorter ver-

1 Vigilance Buddy 1.53

https://researchbuddies.com
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3. Proposal 3.1. Approach

sions of the PVT. Accordingly, a 5-min handheld version of the PVT already

exists [43], [45], [46], [47], [48]. However, both 2-min [43] and 90s [46] versions

of the PVT were supposed to be too insensitive to be used as valid tools for the

detection of neuro behavioral effects of fatigue. In 2011, the study ”Validity and

sensitivity of a brief psychomotor vigilance test (PVT-B) to total and partial sleep

deprivation” [44] showed that PVT(3min) tracked standard 10-min PVT perfor-

mance and yielded medium to large effect sizes. 3-min version PVT may be a

useful too for assessing behavioral alertness in settings where the duration of the

10-min PVT is considered impractical.

Because all of participants in this study had to do PVT test every hour during

their awake time, it is challenging to do the standard PVT which lasts 10 minutes

at least. The shortest PVT which has been assessed as a useful tool is 3-min

version. We did a pre-test to explore if 1-min PVT can be handling in this study.

There were 4 participants( 3 female, 1 male) of all participants joined this pre-test.

After they completed 5-min PVT, we compared their performance between first

minute and the whole 5 minutes.

a1 a5 b1 b5 c1 c5 d1 d5

100

200

300

400

500

PV
T

Figure 3.2 PVT result between the 1st minute and the whole 5 minutes

From figure above (Figure 3.2), we can find the mean value in the first minute
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3. Proposal 3.1. Approach

is faster than the 5 minutes result a bit even included more outlier value in the

whole 5 minutes.

Table 3.1 describe pvt in 1min and 5mins

a1 a5 b1 b5

count 18.000000 92.000000 17.000000 85.000000

mean 238.500000 255.543478 296.235294 313.164706

std 42.380975 31.056635 29.752163 42.180690

min 82.000000 82.000000 264.000000 182.000000

25% 231.750000 239.750000 277.000000 290.000000

50% 249.500000 254.000000 290.000000 308.000000

75% 252.750000 270.000000 308.000000 325.000000

max 291.000000 384.000000 372.000000 554.000000

Table 3.2 describe for pvt in 1min and 5mins

c1 c5 d1 d5

count 19.000000 89.000000 20.000000 92.000000

mean 337.947368 343.617978 290.050000 298.054348

std. 53.391087 50.040099 19.494871 21.129306

min 274.000000 264.000000 254.000000 253.000000

25% 301.500000 306.000000 273.750000 282.500000

50% 320.000000 335.000000 286.000000 296.500000

75% 365.500000 371.000000 301.750000 312.000000

max. 500.000000 547.000000 326.000000 358.000000
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3. Proposal 3.1. Approach

Table 3.3 T-test for pvt in 1min and 5mins

participant statistic pvalue

A 8.6097850191096070 0.003343617659587512

B 10.810245442292791 0.0010093991946557028

C 0.37998343088756237 0.5376121039897125

D 0.5859870861498245 0.44397509653377565

We can see more clearly in Figure3.1(Table 3.1)and Figure3.2(Table 3.2). The

t-test result is as(Table 3.3). The result shows that 2 participants’ p-value(C

and D) >0.05, which means under these experimental conditions, a significant

difference could not be detected. The left two p-value<0.05 mention that they

are near-marginal significance. Two participants performed better in the first

minute than the whole five minutes. By reason of that we don’t want to distract

participants redundantly, it is acceptable to use the 1-min PVT. The other setting

is as below(Figure 3.3).

Figure 3.3 The settings of PVT
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3. Proposal 3.1. Approach

3.1.2 Temperature sensor

The other data we have to collected is body’s temperature. According to the

research” Relationships between the Circadian Rhythms of Finger Temperature,

Core Temperature, Sleep Latency, and Subjective Sleepiness” [35], distal skin

temperature helps to reduce CBT, following promotes sleepiness. We decided to

collected skin temperature with core temperature.

For monitoring temperature continuously, we tried to use FeverScout(Figure 3.4)2

at first. The sensor could be pasted to everywhere of body. Temperature data

could be sent to its own application via bluetooth.

Figure 3.4 FeverScout

However, the body temperature data was measuring only while we were tapping

2 FeverScout

http://www.vivalnk.com/feverscout
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3. Proposal 3.1. Approach

the application on our smartphone (Figure 3.5).Therefore, we can see there are 3

temperature data from 7am to 2pm. The first time temperature was measuring

after 7am, then the second time was around 8:30am. The third time was 11:30am.

There was no data collected between the second time and third time. That means

the Feverscout can not monitor body temperature automatically. Besides that,

the temperature data can not show out if the temperature below 37◦C. So the

conclusion of this experiment is that the FeverScout is unusable in this study.

Figure 3.5 Body Temperature Data on the app of FeverScout

Here is another solution, iButton temperature sensor DS1922L3, which was

also used in the research ”Monitoring Circadian Rhythm and Sleep Patterns Us-

ing Wrist-worn Temperature and 3-axis Accelerometer Sensors- A Study with

Healthy Younger Adults, Healthy Older Adults, and People Living with Demen-

tia” [36]. As seen in figure3.6(Figure 3.6), it was fixed at the inside of wrist

by a tennis band. Temperature accuracy of ± 0.5 ° C is from -10 ° C to +65 °

C. The DS1922L is configured and communicates with a host computing device

through the serial 1-Wire protocol4. In 2009, the research”The validity of wireless

3 iButton Temperature Loggers with 8KB Data-Log Memory

https://www.maximintegrated.com/en/products/ibutton-one-wire/data-loggers/

DS1922L.html

4 DS9490B USB to 1-Wire/iButton Adapters
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3. Proposal 3.1. Approach

iButtons R⃝ and thermistors for human skin temperature measurement” [49] also

announced wireless iButton provide a valid alternative for human skin temper-

ature measurement during laboratory and field investigations particularly when

skin temperature measurement using other currently available methods may prove

problematic. So we decided to use iButton to monitor wrist temperature. The

setting in this study is monitoring wrist temperature every minute.

Figure 3.6 iButton Temperature sensor

Another thermometer5 we used in this study is a commercial stuff. It is an

infrared medical thermometer which measures temperature in the ear(Figure 3.7)

and forehead(Figure 3.8). The body temperature display range is 32.0 ° C to 42.9

° C, and the minimum unit is 0.1 ° C. All of participants measured their ear and

forehead temperature every hour after they completed PVT.

https://datasheets.maximintegrated.com/en/ds/DS9490-DS9490R.pdf

5 Infrared Medical Thermometer

https://www.dretec.co.jp/product/thermometer-to-300/lang-en
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Figure 3.7 Measuring ear temperature

Figure 3.8 Measuring forehead temperature
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3.2. Target User and system scenario

The target users for this work can be generally classified as people who could

greatly benefit from having insufficient sleep. The main target users that the study

would be tailored to are college students and office workers. With productivity

being the main focus of students’ school life and office worker’s workday, it is

important to know when their sleepiness level rise to they can not concentrate

their attention on work. Then the users can change their activity to get a short

nap or get a cup of coffee. The age range for this study would be around 20-50

years old males and females.

As discussed in the second chapter, a lot of daytime sleepiness level detection

systems have already existed, and most of them are based on subjective sleepiness

scale or behavioural activity. The system that in this thesis proposes aim to be

automatic, low cost and could be check real-time sleepiness. The system also

aims to build a database for the users, to help them to have the ability to get

the data of low sleepiness level time and high sleepiness level time every day, and

if possible, also help them analyze and predict data to help the users to manage

their energy better.
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Chapter 4

Experiment

4.1. Methods

4.1.1 Participants

Eight participants( five females and three males) of this study were recruited

from colleges. Because of limitation of sensor’s storage, we have effective data

from seven participants (five females and two males) finally. All participants with

effective data were healthy young adults(23 - 32 years old). The mean of their

age was 28.43 years old.

4.1.2 Experimental process

All participants had an one-on-one orientation session. After providing informed

consent, all participants were asked to download PVT application. To avoid

the effect by adjusting process, before the formal test, every participant tried it

in 20s. Then all participants were introduced to the study sensors: (1) iButton

Ds1922L temperature sensor( Maxim, Dallas, US), (2) infrared medical thermome-

ter( Dretec, JP) and (3) Mi Band 4. Mi Band 4 is used for recording participants’

sleep length before the test day. Participants were asked to wear iButton tem-

perature sensor on their left wrist since they woke up to go to sleep which means

wearing the sensor for a whole day. All participants kept on staying at home with-

out any vigorous exercise or activities on test day. Wrist temperature measuring

frequency is every minute.

Besides wearing iButton sensor on the left wrist by a tennis band, all partic-

ipants were asked to do 1-min PVT once per hour from they woke up to get to

sleep. After completed PVT, they were requested to measure and record their
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4. Experiment 4.2. Results

forehead temperature and ear temperature every hour by themselves. Partici-

pants were required to record their lunch, dinner time and other special status

such as having a nap or drinking a cup of coffee.

The test started February 2020 to June 2020 in Tokyo. Because of the partic-

ipants’ schedule, most of the participants completed the test not in continuous

days. In this experiment, we collected 19 days data in total. For calculating the

individual’s correlation, we used all the data we collected. In another analyzing

process, when the data collected by participants is more than 2 days, we chose

2 days every participant to keep data volume same from different participants.

The choosing standard is that the day with more data (sometimes participants

forgot to measure temperature of ear or forehead after they completed PVT ) has

higher priority. If more than 2 days are having same data volume, we chose the

date nearer to the other participants’ to avoid the effect by season. While they

are still similar, we chose the date randomly. Finally, we have 14 days data from

seven participants to predict.

4.2. Results

A goal of this research was to investigate if there is a correlation between wrist

temperature and objective sleepiness. This section shows the result collated with

the research questions listed up in Chapter 1. The content is focused on the

data measured from experiment. A visual qualitative analysis of the correlation is

presented. In additionally, this section shows the predicting accuracy of sleepiness

by wrist temperature data and all of body temperature data.

PVT has four features included which are pvt, pvt mean, pvt max and false(

it means tap the screen before the signal appeals). Though most commonly used

value is pvt mean. We did a Pearson correlation test between pvt mean with pvt

max and pvt min. The results is as(Figure 4.1)(Figure 4.2). For pvt mean and

pvt max, r = 0.480, p = 0.000. For pvt mean and pvt min, r = 0.754, p = 0.000.

It indicated pvt mean has a strong significant correlation with pvt max and pvt

min, even included outlier value. It is acceptable to use pvt mean as the pvt main

feature in the followed process.

A Pearson correlation test was used to assess the correlations between wrist
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Figure 4.1 The correlation between PVT mean and PVT max
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Figure 4.2 The correlation between PVT mean and PVT min
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temperature and PVT, and a t-test was used to compare wrist temperature and

PVT between different sleepiness level group. p<0.05 was considered to be sig-

nificant.

4.2.1 Correlation between body temperature and PVT

As the figure (Figure 4.3), correlation between wrist temperature and PVT mean

value: pvalue = 0.497, r = -0.046, which means there is no linear relationship

between wrist temperature and PVT.

29 30 31 32 33 34 35 36

250

300

350

400

450

500

Figure 4.3 The correlation between PVT and WT

As the (Table 4.1), 3 of 7 participants’ data indicate a moderate linear relation-

ship between the variables. The visualization result is present as(Figure 4.2.1),(Fig-

ure 4.2.1),(Figure 4.2.1),(Figure 4.13). Their data is showed as below(Figure 4.4),(Fig-

ure 4.5),(Figure 4.6).Compare with in-ear and forehead temperature, the wrist

temperature fluctuated more frequently and to a larger extent. Green dotted line
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is wrist value at the same time with in-ear and forehead which is measured every

hour. Another line is wrist temperature data recorded every minute. We can find

the trend of wrist value every minute is similar to every hour.

Figure 4.4 Body temperatures and pvt value for f2 on Feb.13th

28



4. Experiment 4.2. Results

Figure 4.5 Body temperatures and pvt value for f2 on Apr.5th

Figure 4.6 Body temperatures and pvt value for m1 on Apr.26th
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4. Experiment 4.2. Results

participants r pvalue

f1 0.067 0.636

f2 0.402 0.009

f3 0.430 0.046

f4 0.094 0.662

f5 -0.290 0.135

m1 -0.316 0.057

m2 -0.009 0.971

Table 4.1 Correlation between wrist temperature and PVT mean of 7 participants
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Figure 4.7 Pearson correlation of f1
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Figure 4.8 Pearson correlation of f2
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Figure 4.9 Pearson correlation of f3
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Figure 4.10 Pearson correlation of f4
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Figure 4.11 Pearson correlation of f5
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Figure 4.12 Pearson correlation of m1
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Figure 4.13 Pearson correlation of m2

Individual differences in PVT value and wrist temperatures is shown as Fig-

ure 4.2.1),(Figure 4.2.1),(Figure 4.2.1),(Figure 4.13). Then we did an One-Way

ANOVA in every participant. First of all, we generate descriptive statistics

for each participant. Next, we divided sleepiness level into 3 groups. If PVT

mean<25%, the label is low. If PVT mean >75%, the label is high. The label for

else is medium. For reducing individual differences of wrist temperature, we also

get a relative value by mean value of temperature by participant in the same day.

After that, we did an One-way ANOVA for body temperatures and pvt mean in

different sleepiness level groups. Result is as below:

- f1

’wrist’: (statistic=1.8392586874878942, pvalue=0.1606166359042055),

’wrist relative’: (statistic=8.396771139848175, pvalue=0.0002793030888100379),

’forehead’: (statistic=8.97976784603084, pvalue=0.00016068030627613102),

’ear’: (statistic=21.843235480147175, pvalue=1.2863605525930523e-09)

- f2

’wrist’: (statistic=2.44241863761655, pvalue=0.08878132802586543),

’wrist relative’: (statistic=0.703359372662608, pvalue=0.4957829560536833),

’forehead’: (statistic=19.550516028406886, pvalue=1.114028140793258e-08),

’ear’: (statistic=36.9659972084366, pvalue=5.456766788733604e-15)
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- f3

’wrist’: (statistic=51.67328512981918, pvalue=2.2380222274618613e-19),

’wrist relative’: (statistic=89.41942397166763, pvalue=1.0185813560804417e-

29),

’forehead’: (statistic=2.5656876047571058, pvalue=0.07898220549896427),

’ear’: (statistic=7.716189195711445, pvalue=0.000565783180794665)

- f4

’wrist’: (statistic=9.23705532482748, pvalue=0.00013366720849767395),

’wrist relative’:(statistic=10.589010740036061, pvalue=3.8099981104373743e-

05),

’forehead’:(statistic=33.349610655915896, pvalue=1.3280172711260402e-13),

’ear’:(statistic=33.05348992451568, pvalue=1.6803574449791867e-13)

- f5

’wrist’: (statistic=8.199801960326008, pvalue=0.0003429887030865057),

’wrist relative’: (statistic=9.94647436334277, pvalue=6.623462556936461e-

05),

’forehead’:(statistic=0.3501771485383686, pvalue=0.7048587340434522),

’ear’: (statistic=29.598340857672707, pvalue=1.9748647315388137e-12)

- m1

’wrist’:(statistic=4.980377596600736, pvalue=0.007494883331162837),

’wrist relative’:(statistic=3.4199716446795105, pvalue=0.03409097568490512),

’forehead’:(statistic=1.7291661827104097, pvalue=0.1793283087560481),

’ear’:(statistic=2.192560092153081, pvalue=0.11355045557948831)

- m2

’wrist’:(statistic=5.168896481005451, pvalue=0.006513584868279087),

’wrist relative’:(statistic=5.172879335356285, pvalue=0.006489021168011806),

’forehead’:(statistic=2.753515110738544, pvalue=0.06623366080564128),

’ear’:(statistic=0.4522369412975546, pvalue=0.6368828600006322)

If pvalue<0.05, there were statistically significant differences between 3 sleepi-

ness level group means as determined by on-way ANOVA. In contrast, when

pvalue>0.05, that means there were no statistically significant differences. For
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wrist temperature, there are 5 participants’ pvalue<0.05. For wrist temperature

relative, there are 6 participants’ pvalue<0.05. And the result of forehead is 2

participants, ear side is 3 participants. In summary, wrist temperature relative

value and wrist temperature have a better performance than ear and forehead.

After individually analyzing, we combined all the participants data together by

3 sleepiness level groups which are low, medium, high. The dataframe describe

included main features is as below(Figures 4.14),(Figures 4.15), (Figures 4.16).

Figure 4.14 Df low.describe()
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Figure 4.15 Df medium.describe()

Figure 4.16 Df high.describe()

We also used the Pearson correlation test to calculated the correlation between

in-ear temperature and forehead temperature(Figures 4.17).( r = 0.592, p = 0.000

), which means there is a strong and significant correlation between in-ear tem-

perature and forehead temperature. It also showed that forehead temperature can

not be considered as the distal skin temperature.
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Then we did the same test between in-ear temperature and wrist tempera-

ture(Figure 4.18)(r = 0.006, p = 0.803), which shows there is no correlation be-

tween in-ear temperature and wrist temperature.
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Figure 4.17 Pearson correlation of forehead vs ear
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Figure 4.18 Pearson correlation of ear vs wrist
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4.2.2 Algorithm

To predict sleepiness level, we used wrist temperature and wrist temperature rel-

ative value as two features. We set the row with low sleepiness level as 0, the row

with high sleepiness level as 2, otherwise is 1. Then we shuffle split dataframe

to training data and test data. Training data included training data and vali-

date data. Our flowchart is a typical corss validation workflow in model train-

ing(Figures 4.19) [50]. The other parameters we used are (n splits = 1, training

size = 0.8, test size = 0, random state = 0). Then we plot the scatter matrix

for the wrist and wrist relative value of the dataframe and the pvt level of the

dataframe which is presented as(Figures 4.20). In the next step, we used grid-

search to get the best accuracy: 75.74%, the best parameters:(C: 10000.0, gamma:

100, kernel: rbf). Then after filling into the best parameters, evaluated classifica-

tion accuracy by confusion matrix. Classification report is as below(Tables 4.2).

Confusion matrix is visually present as the following figure(Figures 4.21)

Figure 4.19 Workflow
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Figure 4.20 Scatter matrix for x train, y train
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precision recall f1-score support

0 0.76 0.91 0.83 88

2 0.88 0.70 0.78 83

accuracy 0.81 171

macro avg 0.82 0.80 0.80 171

weighted avg 0.82 0.81 0.80 171

Table 4.2 Classification report
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Figure 4.21 Confusion matrix
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Chapter 5

Discussions

5.1. Discussion

The collected data of this study suggest that there is a medium strong correlation

between wrist temperature and PVT among 3 out of 7 participants; however, we

failed to find a linear relationship between wrist temperature and PVT when the

combined all the data of the participants together. In this study, the body tem-

perature data of the participants were measured through the wrist temperatures

while the basic reaction time was measured through PVT. Simply combining all

the data is illogical.

To avoid the individual differences, we calculated the mean wrist temperature

for each participant every day, then received the relative body temperature. The

Pearson result which is calculated by relative temperature is more positive than

raw data. Wrist temperature has the best performance in wrist, ear and forehead.

Ear and forehead temperature could potentially affected by different measuring

methods. For example, when participants were measured from ear or forehead by

a infrared thermometer, measuring angle is different every time, which leads to

varied results.

Furthermore, our results also suggest that although there is no linear relation-

ship between wrist temperature and PVT, there is a significant differences with

wrist temperature value in 3 different sleepiness levels groups. Therefore, it shows

that the wrist temperature has the potential to play a valuable role in better

identification and understanding of daytime sleepiness.
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5.2. Limitations

After discussion and experiment about the relation between body temperature

and daytime sleepiness, we discovered the limitations in our study. There are two

possible reasons. One is the number of participants taken this study is insufficient.

Therefore we have limited features to divided data to different groups.

The other limitation could be the method we adopted to collect the core temper-

ature more stable continuously and with high accuracy. Measuring temperature

by participants themselves turned out to reduce data accuracy. Moreover, we

need more objective tools to measure daytime sleepiness. Or in a follow up study

we will prepare a training protocol on how to measure in-ear and forehead tem-

perature for the participants. The continuous detection can help us collect more

data to improve accuracy of prediction. The third one is it is necessary to find a

wireless communication method to get real-time wrist temperature data.
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Chapter 6

Conclusions

6.1. Conclusion

The target of this thesis is focused on two main research questions, firstly if there

is a relationship between body temperature and objective sleepiness, and secondly

which body temperature is the best to use for predicting daytime sleepiness. The

experiments were carried out to verify these hypothesis. There is a medium strong

linear correlation between wrist temperature and PVT existed in part of people.

Preliminary results show that the wrist temperature has the potential to play a

valuable part in better understanding daytime sleepiness. And there is a strong

correlation between forehead temperature and in-ear temperature, which means

forehead temperature can not be considered as distal skin temperature which can

helps to reduce core body temperature.

6.2. Future plans

Since the sample size for this study is small and focused in certain group, it

can only prove the linear correlation in these groups of people, and it is not

representative to all adults in Japan. More data from participants of different

age groups, ethnic backgrounds and professions will be needed to extract more

features to further justify the hypothesis and improve the accuracy of prediction

in the future.

From hardware perspective, in order to gather more accurate and less distorted

data, we would like to improve the detection methods, including body temperature

measuring tools and daytime sleepiness detection approach which does not affected

participants’ normal life. Wireless communication devices that can send data

remotely would be preferred. Also we will use 3D printer to make a wrist band
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to fix DS1922L sensor instead of the tennis wrist band.

Another problem requires further study is integration of time series processing

in predicting daytime sleepiness. According to the research”Daytime Sleepiness

Level Prediction Using Respiratory Information” [33], it is possible to combine

classification methods and hidden Markove model [51] to mitigate predict issues

such as [52] who combined a neural network and hidden Markove model.

To consider the future prospects of this system. I am expecting it to fulfill

the goal mentioned in the beginning of the thesis, that could help people manage

their time and energy more effectively, have a healthy life work balance with higher

productivity.
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Appendices

A. Example of Fault Detection Configuration File

Configuration File for Detecting Failures

<config>

<system>

<class>DefaultCompareClass</class>

</system>

<evaluate>

<compare_single_observation_point>

<function method="compareMax" recital="Temperature maximum threshold value"

type="Temperature"> <argument class="double">40.8</argument>

</function>

<function method="compareMin" recital="Temperature minimum threshold value"

type="Temperature"> <argument class="double">-41.0</argument>

</function>

<function method="compareChange" recital="Temperature change amount error"

type="Temperature"> <argument class="double">17.0</argument>

<argument class="int">1</argument>

</function>

<function method="compareConstant" recital="Temperature constant error"

type="Temperature"> <argument class="int">1</argument>

</function>

</compare_single_observation_point>

<compare_neighbor>

<function method="compareNeighbor" recital="Temperature neibor error"
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type="Temperature"> <argument class="double">2.0</argument>

</function>

</compare_neighbor>

<compare_wide_area>

<function method="compareWide" recital="RainFall wide area error"

type="RainFall"> <argument class="double">10.0</argument>

</function>

</compare_wide_area>

</evaluate>

</config>
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