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Abstract of Master’s Thesis of Academic Year 2019

Introspectacles : Introspection Using Smart EOG Glasses

Category: Science / Engineering

Summary

The human eye has proven to be an enigma; a rich and complex organ that has

not quite been fully understood. Naturally, this has caused the eye to be the

subject of several medical and anatomical research efforts. More recently, the

engineering community has used the eye as the inspiration behind the design

and development of cameras, machine vision algorithms, and much more. In

order to better understand the eye and its underlying patterns, the technique of

electrooculography (EOG) was developed, in which electrical signals originating

from the extraocular muscles are measured. The development of EOG has recently

opened a new line of research within the engineering disciplines, due to its potential

use as an input mechanism for computers and software applications.

In this thesis, I use a pair of Jins Meme glasses, a lightweight and commercially

available EOG system, to investigate the potential uses of EOG within the realm

of Human empowerment research. I tried to study two aspects of human behavior

i.e, Individual and collective. For the individual aspect, weather we can detect

fatigue level throughout the day of a person. For collective aspect, we try to answer

how people interact with head/eye motions while having a conversation. In doing

so, I find optimistic results ― 1)Our proposed method allows for unobtrusive

and continuous monitoring of alertness levels throughout the day,2)Our initial

results on 18 dyads show significant effects of interpersonal synchrony of blink

and head nod behaviour during conversation, and Japanese speakers are more

likely to move (nod) together at fast frequencies (1 to 8 Hz) than non-Japanese.

The development of innovative wearable technologies has raised great interest in

new means of data collection in human empowerment research and development.
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Chapter 1

Introduction

The human eyes can do more than just seeing the world, a rich and complex

organ that has not quite been fully understood. the design of an eye has been

a motivation for many engineering inventions like cameras, machines vision algo-

rithms, and much more. Several studies has been done with the help of cameras

recording the eyes continuously and process the video further for getting valuable

signals such as blinks, saccadic movements etc. More recently, there has been

a development of smart eyewear technology with affixed cameras in the frames,

but they still need to be connected to a machine via wires for power and trans-

ferring the images. This leaves us with a bulky glasses which cannot be used

independently and thus demands a much more conventional eyewear and tech-

niques that can record eye signals thoroughly. In order to understand the eye

and it’s underlying patters, the technique of electrooculography (EOG) was de-

veloped, in which electrical signals originating from the extraocular muscles are

measured. The development of Electrooculography (EOG) has recently opened a

new line of research within the engineering disciplines, due to its potential use as

an input mechanism for computers and software applications. In this thesis, I use

Jins Meme glasses(Figure 1.1), a lightweight, compact and commercially available

EOG system.

1.1. Introspection with Jins Meme

Understanding a person’s activity is at the core of making wearable computing

more personal and transparent. We have seen development in recognition tech-

nologies from physical activities(eg. daily step counting, differentiated assembly

task analysis), over physiological signals(eg. heart rhythm analysis, breathing

1



1. Introduction 1.1. Introspection with Jins Meme

Figure 1.1 JINS MEME EOG Electrodes

rate), towards mental states and activities(reading detection, cognitive load). Jins

meme,a compact device with sensors capable of detecting eyes, head and body

motion opened doors for researchers to integrate the above technologies into the

human lives. In my research, I focus on two aspects of applied cases in human

lives:-Individual and social.

1.1.1 Individual setting : Fatigue detection

Humans have internal clocks which affect both their mental cognition and physical

behaviour. The synchronization of our biological rhythm and the time-of-day can

impact our cognitive performance [1], cause health problems [2, 3], and affect

alertness and fatigue levels. Homeostatic Process (HP), increases the impulse

to sleep with prolonged wakefulness [4]. It leads to an increased risk of making

mistakes and thus higher chances of causing accidents [5]. These workloads are

common in some professions, such as pilots and medical staff who work in shifts [6].

Furthermore, it is common to drive home after a full day of work, an increased

risk due to high fatigue and sleepiness, where reflexes are delayed [7, 8] causing

more severe accidents. Traditionally, alertness has been measured by constrained,

unpleasant, or unnatural settings, such as in an enclosed and controlled laboratory,

sleep labs, or through repeated measurement of body temperature through rectal

probes [9, 10]. Due to the recent advancement in technology, it has made it

much easier to measure and track various daily activities through smartphones,

smartwatches, and wristbands. Physiological signals, such as heart-rate and blink

rate are able to be collected without restriction on time or place. Such data has

2



1. Introduction 1.1. Introspection with Jins Meme

been shown to be able to detect and monitor different human cognitive states:

Abdullah et al. [11] and Dingler et al. [12] have proposed mobile solutions for

tracking cognitive capacities (e.g., alertness) based on data from smartphones.

One of the major downfalls of such studies and systems is that alertness measure

are limited to when the phone is being used. There is a failure to collect data

when driving, in social gatherings, or intense work sessions, and the phone is

not being used. Additionally, interactions with the smartphone requires active

engagement with it, drawing away from the actual activity users are engaging in

and trying to analyse. To avoid such distractions which constrain the data, and

to measure more reliably, I propose the use of technology which is unobtrusive

and can continuously log data based on monitoring eye movements.

To enable people to accurately track their fatigue levels in their everyday

lives(Figure 1.2), we propose a solution utilizing Jins meme to record EOG sig-

nals for detecting the characteristic eye movements occurring during eye blinks.

Different studies have demonstrated that fatigue is directly related to changes in

eye blink features, such as frequency and duration: greater fatigue causes higher

Blink Frequency (BF) and longer blinks [13,14]. In this part of research, I use eye

movement data collected via off-the-shelf Jins meme and use it to detect changes

of fatigue.

Figure 1.2 fatigue detection with Jins meme

I along with researchers from Keio Media Design (KMD) collected in-the-

wild EOG data to detect the changing fatigue levels in everyday situations:for

3



1. Introduction 1.1. Introspection with Jins Meme

two weeks, participants periodically completed self-assessments in the form of

psychomotor-vigilance tests for providing ground truth while wearing Jins meme.I

found a statistically significant, positive correlation between BF and Reaction

Times (RTs) meaning that blink frequencies increase along with reaction times

(i.e., slower reflexes) over the day.

1.1.2 Social setting : Synchrony detection

Figure 1.3 Synchrony detection with Jins meme

In my research I am interested in capturing personal and interpersonal behavior

with unobtrusive, affordable wearable sensing. In this section of my research, I

focus on eye and head movement synchrony during dyadic, open conversation

captured by Jins meme.

People tend to synchronize certain behaviors, but in some cases, e.g. autism,

such synchrony is not always as obvious [15, 16]. According to Chartrand and

Bargh, synchrony of nonverbal behaviour is a sign of greater empathy and more

effortless interaction [17]. We require novel methods to measure these forms of

synchrony in group interactions. I propose the use of smart eyewear to explore

head and eye movement synchrony in free conversations and provide a first, public

dataset with 21 communication pairs. The pairs engaged in different conversations

while facing each other or sitting back to back. We recorded EOG and Inertial

4



1. Introduction 1.2. Contribution

Measurement Unit (IMU) from smart glasses they wore and additionally video and

audio, and analyse the interpersonal synchrony using wavelet coherence analysis.

1.2. Contribution

The main contributions of this work are as follows:

• Approach and set of tools to analyze EOG and IMU data for introspection

analysis

• A model which allows continuously recorded EOG data and the resulting

eye blink frequencies to predict fatigue level changes in everyday settings

• In synchrony analysis, we find a low-frequency (0.1 Hz) interpersonal syn-

chrony in eye blinks of people conversing face-to-face vs back-to-back. How-

ever, the strongest effect reveals that people conversing back-to-back syn-

chronise their blinks more than face-to-face at frequencies around 1 Hz.

• In synchrony analysis, we show that statistically significant synchrony of

head nods at a frequency of 1-8 Hz enables us to differentiate between En-

glish and Japanese conversation dyads.

5



Chapter 2

Background

The work presented here builds upon research from the field of EOG glasses(JINS

MEME), cognitive psychology and interpersonal synchrony. The research consist

of fatigue detection has been published in CHI’19 [18] and the work involving

social synchrony has been successfully accepted in ISWC’19.

2.1. Eye data and Electrooculography

Eye movements and Electroencephalography (EEG) provides insights into mental

states and behavior. [19,20]. EOG sensors specially, records the electrical activity

caused by the eye movements, which is utilized in this work to record eye blinks.

Being highly flexible and depending on several environmental factors, human eyes

blinks at an average of 15-20 times per minute [21]. Eye-blinking is not only

responsible for lubrication of the eyeball but is also directly related to neural

activities [22, 23]. Studies have shown that about one-third of our natural eye

blinks are sufficient to fulfill the cleaning function [24], meaning that the remaining

blinks serve a different purpose [25]. Nakano has found that when humans engage

in social situations, especially relating to states of arousal, cognitive engagement,

and emotional changes, their blink frequency change significantly [26].

Although EOG-based measuring systems have been successfully used for activ-

ity recognition in the past [27], but it required computing sensors to be attached

to the face and connected with a computing unit through cables, which rendered

the setup rather intrusive. A less intrusive way to measure this data would be to

integrate EOG sensors into regular prescription glasses to track eye movements

throughout the day in an unobtrusive way. EOG is immune to any form of light

changes enabling eye movement measurements in well-lit (outside, daytime) as

6



2. Background 2.2. Fatigue detection with eye data

well as in dark environments (inside, nighttime). EOG utilizes the electrical po-

tential difference between the cornea (+) and the retina (-), that change when the

eyes move. When closing the eyelid during a blink, eyes perform a characteristic

downward oriented motion that can be measured by electrodes correctly placed

around the eyes and nose [28]. EOG offers an effective and low-power solution to

monitor intricate eye movements, making it ideal for measuring daily life in long-

hours. It can also be used as a input modality for HCI and ubiquitous computing

applications [29,30].

2.2. Fatigue detection with eye data

Blink rates increase with fatigue, along with eye movement speed decreasing and

blink duration increasing [31]. Recent works, such as by Haq et al. [32] present

highly accurate methods to detect eye blink rates of drivers indicating drowsi-

ness and fatigue levels. While the application case is limited to the user being in

front of the stationary camera setups, the necessary image processing, and com-

puter vision algorithms [33] require considerate computational complexity [34].

Less cumbersome setups are made possible by mobile systems, which often rely

on commercially available head-mounted infrared cameras installed in eye track-

ers [35] or on infrared reflectance sensors [36]. While the utilized bright infrared

light bears an inherent risk of irritating the eye through the emitted heat if not

properly set up, different works have also shown that these systems are likely to

produce faulty measurements because of changing light conditions [37, 38], ren-

dering their in-the-wild use as not feasible.

With the technique presented in this research to unobtrusively and frequently

measure alertness levels throughout the day, I aim to advance the development of

systems that become cognition-aware [29,39,40].

Such systems are capable of adjusting user interfaces to the user’s current cogni-

tive capacities, therefore avoiding frustration and boosting productivity levels [41].

The tracking method presented in this research provides a gateway capable

of measuring a user’s cognitive state through continuous assessment of alertness

levels in an unobtrusive manner.

7



2. Background 2.3. Social behavior with eye data

2.3. Social behavior with eye data

This section discusses the underlying psychology research related to head nod-

ding and blink synchrony in conversations, followed by the field of social sensing,

dealing with unobtrusive sensing devices to capture human behavior.

There is a lot of applied psychology research looking into head and eye move-

ment related to conversation [42–44]. Tschacher et al. find a link between inter-

personal synchrony and affect using nonverbal movement energy from videos [43].

Hale et al. provide insights into interpersonal coordination in naturalistic conver-

sations [44]. They show interpersonal synchrony of head nods in dyadic conver-

sation. Listening behaviour is associated with higher frequency nods. Dittmann

et al. observe that nods, blinks, and vocalisations are used by the listener during

breakpoints in speech [45]. Ward et al. sense interpersonal synchrony between

actors and autistic children in theatre using wrist-worn accelerometers. It is the

first use of cross-wavelet based measure for assessing interpersonal engagement us-

ing wearable sensing [16]. Nakano et al. show the lack of eye-blink entrainments

in autism spectrum disorders [15]. And Homke et al. explore the way in which

subtle changes to eye-blink in virtual agents can affect the way in which people

interact with them [46]. They suggest that eye-blinks are a useful nonverbal signal

of listening behaviour.

There are similar studies focusing on cultural differences in interpersonal be-

havior. Szartowski et al. show that English speakers expect the listener to look at

them at the beginning of a speech segment. Japanese speakers expect a well-time

head nod at the end of speech and aizuti, frequent interjections during a conver-

sation that indicate the listener is paying attention [47]. Maynard et al. explore

head movements changes during conversations between Japanese and Americans.

The head nods are 3 times as high for Japanese as Americans in listeners. In

both, listeners use head nods indicating to speaker to continue. Yet, Japanese

use head movements to indicate end of clauses, turns, and agreement; English use

head movement as emphasis [43].

These studies provide the theoretical basis that this research builds on, as the

evaluations are more obtrusive lab experiments, often using manual analysis of

video or audio data. I strive for unobtrusive, automated analysis (and ultimately

real time feedback).

8



2. Background 2.3. Social behavior with eye data

My research is connected to the field of Social Sensing, utilizing affordable sen-

sors to enable the unobtrusive capture and interpersonal behavior analysis [48].

I follow the pioneering work of Choudhury and Pentland, who developed the

Sociometer Badge [49]. The badges can capture audio, which other badges are

nearby and motion information with the purpose of building computational mod-

els of group interactions. Shmueli et al. present a comprehensive summary on

the topic [50]. Gordan et al. added the direction of collaborative activity recog-

nition for group activities [51]. The head nodd as an important communication

clue is also addressed in several tele-presence focused publications. For example,

Madan et al. transfer remote users head nodding behavior in real time for group

discussions [52]. A lot of social sensing work applies either static computer vision

approaches or use pocket worn devices (e.g. mobile phones) [53–55]. There are of

course limitations especially regarding synchrony measurements, as the placement

of the devices is not fixed on the body.

To uncover synchrony between participants, we use a method based on wavelet

coherence analysis. This is a method of highlighting correlations in both time

and frequency between two signals, and was originally developed to measure co-

variations in weather patterns [56]. Wavelet coherence has been used to reveal

how people synchronise with one another at specific frequencies of head move-

ment in dyadic conversation [44, 57]. Whereas previous work used video and

motion capture, my work introduces a first attempt to apply coherence analysis

to conversation data obtained from two different head-mounted sensors (EOG and

IMU).

9



Chapter 3

Implementation

In this section, I will describe how Jins Meme can be used to detect fatigue levels

of a person and synchrony level among two people in a conversation. Since there

has been no past development of fatigue detection and social synchrony with Jins

meme, I present the prototype implementation and sophisticated approach for

doing such analysis with EOG data from the glasses.

3.1. Apparatus

To create an efficient system, it is important to check the working process and

limitations of the technology. Here I explain about EOG and Jins Meme and their

limitations.

3.1.1 Electrooculography (EOG)

Electrooculography is a method for sensing eye movements. The electric potential

arising from hyperpolarizations and depolarizations between the cornea and the

retina causes this phenomena; this is commonly known as an electrooculogram

(EOG).

This potential can be considered as a steady electrical dipole with a negative

pole at the fundus and a positive pole at the cornea (Fig- 3.1A). The standing

potential in the eye can be measured by the voltage induced across a system of

electrodes placed around the eyes as the eye-gaze changes, hence obtaining the

EOG (measurement of the electric signal of the ocular dipole).

10



3. Implementation 3.1. Apparatus

(Source: Science direct [58])

Figure 3.1 (A) Ocular dipole, (B) EOG signal obtained from horizontal (right–left)

eye movement.

3.1.2 Jins Meme

Jins meme are eyeglasses sold in Japan. These glasses are equipped with EOG

sensors around the nose, in addition to an IMU (accelerator and gyroscope) around

the frame(Figure 3.2 A). It can log data to Android phones via the J!NS Bluetooth

LE (low energy). With a maximum sampling rate of 100Hz, the glasses stream 10

datapoints (3 ACC, 3 GYRO, 4 EOG) at a time. To calculate EOG values, the

J!NS follows the formula shown in Figure 3.2 B.

There are some limitations with this device, which changed the approach of

studies done with it in the past. Since EOG is an electrode based sensor, it is

required to have non interfering contact with the skin during the study. Hence

most of the studies done in the past are done in a static environment. In this

thesis I present an approach of analysis for the noisy data collected in the dynamic

environment during the fatigue study.

11



3. Implementation 3.2. Data collection

Figure 3.2 A)Sensors in Jins meme B)Calculation of EOG values from raw data

of Jins meme

3.2. Data collection

To collect data, a user needs to wear the glasses while doing the study. The

glasses connects to a mobile device via Bluetooth and streams data continuously

when started. Jins provided an application called ’datalogger’ to work with the

academic version of the glasses. It comes with a Graphical user interface (GUI),

via which a recording can be initiated and stopped. It also allows to see the real

time graph for EOG and IMU values on the mobile device. The data stream stores

as a .csv file in file system of the mobile device once it is stopped via GUI.

12



3. Implementation 3.2. Data collection

see Figure 3.3 for data collection process.

Figure 3.3 System overview

A typical csv file looks like shown in the figure 3.4. The timestamps in the file

Figure 3.4 A typical csv file recorded in 100 hz

are UNIX timestamps which match the universal epoch time, we later use these

for synchronisation of two devices.

Since in this thesis, I explain two aspects of introspection, I divide the further

explanation and analysis into two parts-

13



3. Implementation 3.2. Data collection

3.2.1 Individual

I collaborated with researchers from KMD, and we collected EOG data to inves-

tigate the correlation between EOG and blink frequencies.

Participants

Participants in this study were recruited from university and our social network.

We got 16 participants(7 female), with an average age of 28 years.The participants

had no eyesight issues and were not taking any fatigue related medicines. In the

end of the study, they were paid 3,000 yen each as compensation.

Procedure

We had one-on-one interview with the participants in our lab, where they were

given a brief introduction about the study. This was a 14 day study and people had

to wear the glasses throughout the day from morning till sleep.The glasses could

be taken off when a user is doing water related activity like shower or swimming.

Every morning they had to connect the glasses to the Jins mobile application and

disconnect at night. Since Jins states that a fully charged device can run upto

14 hrs flawlessly, the users had to charge the device overnight to avoid cases of

battery run out in between study.

Together with the Jins Meme devices, we handed out android smartphones to our

participants, which recorded the EOG data as well as contained and triggered

self-assessments every two hours (±20minutes). We adapted this mobile toolkit

by Dingler etal. [12] to collect our ground-truth data. The toolkit based on An-

droid features a task battery enabling the assessment of alertness and different

higher cognitive functions. Since the Psychomotor Vigilance Task (PVT) has been

shown to provide the greatest amount of data points and most accurate alertness

measures, we limited assessments to this one and left out the other two task types

provided. After every self-assessment, the PVT begin with 10-15 rounds with ran-

dom delays of 2-8 seconds between visual stimulus onsets resulting in test lengths

of 20-120 seconds plus the individual RT for each round. The User Interface (UI)

of the assessment app is shown in Figure 3.5

Later on we used the EOG data collected in the study to find the blink frequencies
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3. Implementation 3.2. Data collection

Figure 3.5 Android Application functions from left to right:daily sleep assess-

ment, alertness self-assessment on the Karolinska Sleepiness Scale (KSS), and

Psychomotor Vigilance Task (PVT) assessing reaction times

and used the PVT values as a ground truth of fatigue.

3.2.2 Dyadic

To study the eye and nod synchrony while having a social conversation, I collab-

orated with researchers from Goldsmith University and KMD. We collected EOG

and IMU data from Jins meme, followed by separate video and audio recordings.

Participants

This study was done in a relatively static environment compared to the fatigue

study. Participants were recruited from the university. In total we got 42 par-

ticipants (21 dyads: 10 in Japanese, 10 in English, 1 in Chinese) engaged in

conversations (face-to-face and back-to-back, in total 17 hours).

Procedure

In this study, pairs of participants were asked to have two conversations on two

assigned topics. Participants had one conversation facing each other (FF) and one

conversation sitting back to back (BB) so that they were not able to see the other
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3. Implementation 3.2. Data collection

Figure 3.6 Experimental setup. Participants had one conversation back to back

(A) and one conversation face to face (B). Audio and video recording directionally

captured both conversations.

person (3.6). Each conversation lasted for five minutes. When facing each other,

participants sat 102 cm apart, a comfortable distance for Japanese seated dyads,

the largest demographic in our experiment [59]. When facing away from each

other, dyads were seated close together so that they could easily hear one another

without touching. The first conversation topic was to ”come up with a four-course

meal that you could cook with your partner, using only ingredients that neither

of you like”. The task was adapted from Chovil [60] and Tschacher [43]. The

second conversation topic, devised to imitate the first, was to ”plan one day of a

holiday you could take with your partner, only doing things that neither of you

enjoy doing.” Conversation topics were described to participants directly before

the beginning of each conversation. The direction faced for the first conversation

was alternated throughout the study, and the two conversation topics were used

equally facing both directions.

The EOG and IMU data was later used to find the synchrony among the dyads.
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3. Implementation 3.3. Data analysis

3.3. Data analysis

After collecting extensive amount of data, an appropriate approach has been fol-

lowed for a given problem. In the following subsections, I described a follow up

approach for filtering and further analysis.

3.3.1 Signal filtration

EOG signals collected via Jins meme are prone to a variety of noises and need to

be filtered. Majority of them are:-

• Baseline Wander

• Power-line interference

• Motion artifacts

Baseline wander and power-line interference are both low frequency noise in na-

ture.They are mainly generated by electrode-skin impedance and the electromag-

netic field of the hardware respectively. They can be removed easily from the

signal via an inbuilt low band-pass filter in Python’s Scipy library. On the other

hand, motion artifacts are hard contamination in the signal [61] which are gener-

ated mainly because of the electrode motions away from the contact zone on the

skin. In the wild data collected from Jins meme have a higher possibility of having

motion artifacts, and hence creates many false positives and negatives during our

analysis.

3.3.2 Blink detection

After the removal of noise, a typical EOG plot looks like Figure-3.7. It can be

seen from the figure that spikes in the signal are very similar to each other in

nature and can be recognized easily with modern analysis techniques. In the

EOG Vertical data, these spikes represent the eye blinks of a person.

To estimate the eye-blink, a moving window of step size 0.25 sec is iterated

over the signal and a thresholding technique is used to detect the pattern of

blink(Figure- 3.8).
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3. Implementation 3.3. Data analysis

Following conditions are followed in the algorithm while detecting the blink

pattern inside the moving window.

Amplitude o f maxima > th r e sho ld 1

Distance between maxima and minima < th r e sho ld 2

X Pos i t i on o f maxima < X po s i t i o n o f minima

Figure 3.7 Raw EOG data for 8 sec, where a person blinked 7 times

Figure 3.8 Moving window and parameters used in Blink detection algorithm

Since eye blinks are characterized by a maxima followed by a minima, the algo-

rithm uses two thresholds threshold 1 and threshold 2 to detect blinks. thresh-

old 1 describes the height of the positive peak, i.e. the amplitude of the maxima,
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3. Implementation 3.3. Data analysis

and threshold 2 describes the vertical distance between both peaks, i.e. the verti-

cal distance between the maxima and minima. These threshold varies from person

to person, as their electrical response of ocular muscles may vary. Due to the dy-

namic nature of thresholds, It is required to check a person’s data manually and

find the thresholds by peak detection.

threshold 1 threshold 2

0.8 2

Table 3.1 Best thresholds matching with the validating blinks

After checking the data of 16 people and also referring to the blink validation

data we collected ourselves, the best results were coming for thresholds given in

table- 3.1.

3.3.3 Wavelet coherence analysis

For comparing EOG and IMU data of two people, a more powerful and universal

processing tool than thresholding is needed. Wavelets enable us to decompose a

signal into its frequency components while preserving temporal information, and

without the need for windowing and thresholding [62]. Obtaining the wavelet

transform from two signals and then combining the outputs provides a way of ob-

taining the common time-spectral response. Two related methods of combining

these include the cross-wavelet transform, which highlights the frequencies with

high common power, and the wavelet coherence transform, which highlights com-

mon frequencies regardless of power [56]. Here I use wavelet coherence because of

its superior performance on subtle, lower-power data.

The wavelet coherence spectrogram is obtained by combining wavelet spectro-

grams of the two signals being analysed (one from each of the conversing partici-

pants, here referred to as left, L and right, R). This process is shown using EOG-V

for a 6 s sequence of two people conversing in Figure 3.9. The wavelet coherence

spectrogram (for both EOG-V and ACC-Y) is obtained in 3 steps:

• Low-pass filter the raw signals for L and R (5th-order Butterworth, cut-off

20Hz)
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3. Implementation 3.3. Data analysis

• Apply a continuous wavelet transform to the signals, WL and WR,

• Calculate the cross-wavelet transform by multiplying WL by the complex

conjugate of the other W ∗
R, i.e. WL,R = WL ∗W ∗

R, and then normalising for

signal power to obtain the wavelet coherence (see [56] for full details).

The wavelets used in this work are calculated using the continuous wavelet trans-

form function from the PyCWT module in Python (with Morlet base).1

Wavelet coherence spectrograms were computed for all the EOG and IMU data

signals between conversing partners, and the results averaged for each condition

over time to give a typical frequency response. Here we present only the data

from vertical eye movement, EOG-V (blink), and y-direction acceleration, ACC-

Y (head nods), as these are the most relevant signals to the current study. The

frequency response is represented by the approximate wavelet scale periods, or

1/frequency. Paired t-tests (with p=0.05, N=18) are applied across all of the con-

ditions explored below (except the cultural comparison with N=16). To account

for multiple comparisons, Benjamini-Hochberg FDR correction is also applied (at

0.05).

1 https://github.com/regeirk/pycwt
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3. Implementation 3.3. Data analysis

Figure 3.9 6 sec example conversation (dyad 12, BB, Japanese). Raw EOG-V

signals shown, with corresponding continuous wavelet transforms (cwt) for each,

and the resulting wavelet coherence WCOH spectrogram from combining these.

Darker regions on the spectrograms show higher power/coherence values. Dotted

line shows a moment of sychronous blinking and resulting wcoh (at scale of approx.

0.2 s).
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Chapter 4

Results and discussion

4.1. Fatigue detection

The goal of this study was to establish a relationship between eye blink frequency

and fatigue changes throughout the day. Therefore, we needed to co-relate the

ground truth, i.e. changes in RT to the blink frequency.

After getting data of 16 participants over a course of 14 days, the total of 2860

hours of raw EOG data was logged. On the course of this period, the participants

responded to an average of 4.09 (SD = 2.01) assessment tests per day, which

accounted for an average of 65.44 (SD = 28.1) assessment test per person, with

a minimum of 24 assessments and a maximum of 115 assessments, resulting in a

total of 1,047 PVT assessments.

Assuming an average of 16 wake hours per person and day, this would result in

approximately 8.5 hours of EOG recordings per person and day. In order to be

able to identify correlations between the blink frequency and the reaction time, a

10-minute period of EOG data that directly preceded the respective assessment

test was analyzed. This time window prior to the assessment test was chosen to

avoid potential effects resulting from performing the PVT.

4.1.1 Correlation Analysis

After running the blink detection algorithm, I fit a linear mixed model to the

raw data with the RT obtained from the PVT readings as the dependent variable

and BF. The participating users were treated as a random factor. We use the

time codes of the PVT recordings to identify the times of assessments and extract

the 10-minute EOG data segments that precede each assessment test. Pilot tests

with different window sizes showed that the 10 min window yielded the best
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4. Results and discussion 4.1. Fatigue detection

Figure 4.1 Visualization of correlation between blink frequency and reaction time

(blue line). Linear trend is expressed in red line.

results as it is sufficiently large to collect a reasonable amount of data and small

enough to still resemble a current, cognitive state. We removed 324 segments that

did not contain any data, deriving from hardware issues, leaving 623 segments

of valid EOG data. The 623 analyzed EOG segments yielded an average blink

frequency of 11.4 blinks/min (SD = 12.7). Our analysis shows that BF changes

with RT (χ2(1) = 4.32, p = 0.001), expressed in an increasing RT by about 1.64

milliseconds ±0.38 (standard error), and BF of +1 blink/min.

We corrected for multiple comparisons by using the Holm-Bonferroni method.

The model was validated by a robust linear model which accounted for the effects

of outliers. The results were similar, and the significant factor was retained.

The results show that BF is an indicator for fatigue expressed in changes of RT

(Figure 4.1, which coincides with the related literature [21,22].
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4. Results and discussion 4.2. Social interaction

4.2. Social interaction

We performed evaluations to test 2 hypotheses: 1) people synchronise nods and

blinks during conversation, 2) people synchronise differently when they can see one

another vs when they cannot. We also explored the cultural differences between

Japanese speaking vs. non-Japanese speaking participants (English speaking,

although not native).

4.2.1 Do people synchronise in conversation?

Coherence data from real conversations are compared against coherence data from

pseudo-conversations. Pseudo conversations approximate a random interaction

using signals from two people who are not actually in conversation with one an-

other. To calculate this, we calculate the coherence of, say, person L during the

FF condition, with their partner, R, taken from the BB condition, and vise versa.

By comparing real-vs-pseudo we can uncover synchronicity that occurs in actual

conversation as distinct from just the combination two individuals speaking.

Figure 4.2 shows our main result, which confirms the hypothesis that people

synchronise with one another both in eye blink, and in head nod. The effect is

particularly strong at periods greater than 2 s – suggesting a relationship to the

dynamics of speech prosody.

4.2.2 Do people synchronise more face-to-face than back-

to-back?

The right plots on Figure 4.3 suggest that there is generally no significant differ-

ence between conversants’ ACC-V when face-to-face (FF) vs. back-to-back (BB).

However, when analysing EOG-V (the left plot), a significant difference is found

in favour of BB at interaction periods of around 1 s (1 Hz). This surprising result

suggests that people coordinate blinks more when they cannot see one another.

Why this is so is not clear. Is it, for example, related to entrainment of breathing

patterns when people who are sat next to one another and talking, but cannot

see one another?
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4. Results and discussion 4.2. Social interaction

Figure 4.2 Real conversation vs. pseudo for blinks (EOG-V) and nods (ACC-Y).

Average coherence for each condition is shown (with standard mean error, SME

in the shaded regions). Effect size (Cohen-d) is also shown with significance levels

highlighted. This shows 1) we synchronise our blinks at periods of greater than

2s during conversation, and 2) we synchronise head nods over these same (low)

frequencies.

Figure 4.3 FF vs. BB conversation for EOG-V and ACC-Y. This shows 1) much

of the synchrony in both nodding and eye blinks occurs irrespective of whether

people are face-to-face or not, 2) and people synchronise their blinks at periods

of 1 s more when back-to-back.

25
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4.2.3 Do different language groups synchronise differently?

In the Japanese vs non-Japanese comparison (Figure 4.4), 2 additional pairs of

Japanese are excluded to ensure a balance between groups. Here we find no

significant difference for EOG. However, there is evidence for fast synchronised

nodding behaviour being more likely among the Japanese participants than the

non-Japanese. Interestingly, at long periods (10 s, possibly turns in conversation),

non-Japanese will synchronise their nods slightly more.

Figure 4.4 Japanese vs non-Japanese conversation. No significant difference be-

tween Japanese and non-Japanese for EOG-V. But ACC-Y suggests that Japanese

speakers are more likely to move (nod) together at fast frequencies (1 to 8 Hz)

than non-Japanese.

4.3. Discussion

One limitation of using the EOG glasses for the introspection study is their ex-

posure to noise. Since the EOG sensors are electrode based sensors and it is

very easy for them to loose contact with the skin, this results in the hard muscle

artifact noise. when participants touched their faces or were turning their head

rapidly and even when they used their facial muscles intensely, the EOG signal

became too noisy, likewise observed by Rostamina et al. [34]. Removing the noise

from the dataset and finding the right thresholds for every user to detect blinks

properly was challenging. Additionally, even though we tested every glasses-phone
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connection several times before the study, random disconnects lead to the removal

of ground truth data from our dataset.

As blink duration is also directly related to fatigue [13, 14]. An analysis for

changes in blink duration has not yet been included in the research. Whereas

Bulling et al. [27] managed to accurately detect blink durations with a 128 Hz

sampling rate, the available rate of our off-the-shelf device leaves the collection of

data and subsequent analysis of blink duration changes for future work.

Blink synchrony has been related to turns of speech, which our data sup-

ports [15, 44]. However, we show -for the first time- this synchrony can be de-

tected using unobtrusive, affordable wearable sensing. Equally, visual and motion-

capture sensing of nod synchrony at these lower frequencies has been reported, but

which we now confirm can be captured using inexpensive smart glasses [44]. Our

analysis also reveals some cultural differences in these signals between Japanese

and Non-Japanese conversations. Additionally, there are interesting novel insights

that are not explained by social psychology works (e.g. users synchronise at 1Hz

when conversing back-to-back). We are also looking forward to findings from other

researcher community using and building our dataset. The technique used in syn-

chrony analysis can not only be used with EOG or IMU data, but can be used

with signals of any repeating sequence, Hence expanding the area of synchrony

study.
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Chapter 5

Conclusion and future works

In this section, I present the conclusion and the future works.

5.1. Conclusion

I presented Introspection with the help of EOG glasses in both individual and

social setting. For individual setting, I showed the feasibility of eye blink frequen-

cies to detect the fatigue level throughout the day. For social setting, I showed

how EOG data can be used in studying synchrony by finding head nodd syn-

chrony in different cultural groups. For fatigue analysis, I used blink detection

algorithm based on amplitude thresholds. While for synchrony analysis, I used

wavelet coherence to find how synchronised two signals are. The performance of

both the setting were evaluated and we found significant statistical proofs of our

hypothesis.

5.2. Future works

Since we recorded video and audio data in the social setting research, I analysed

the video data further and was able to detect facial landmarks(see Figure- 5.2 for

reference) with the help of openCV.

As seen in the figure 5.2, the facial landmarks are represented as points. looking

at the eyes we have an eye landmark made of 6 points and mouth landmark made

of 20 points. Since these landmarks are accurate and not susceptible to noise, we

can rely on these data to detect the accurate blink time and speaker detection.

For the future work, the eye blinks detected via facial landmarks will be used
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Figure 5.1 Facial landmarks including eyes, mouth, nose and jaw

as a training dataset to train a machine learning model with the sole purpose of

detecting blinks from the noisy EOG data. and the landmarks from mouth can be

used for detecting speaker in the study. If successful in that, then more interesting

analysis can be done with the cultural dataset.

For application scenarios, we make further steps towards unobtrusive cognition-

aware systems that enable us to detect complex contexts in everyday situations.

we can use the insights of this research to build a personal log of face-to-face

communications throughout the day and even include cultural peculiarities about

that conversation (maybe language or category). Furthermore, these findings can

help to make more realistic AR/VR avatars and mobile robotic assistants capable

of coordinating head/blink synchrony with the user. They can engage better by

adapting to unique cultural features like the different head nodding behavior in

Japanese conversations.
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Anu-Katriina Pesonen, et al. Increased melatonin signaling is a risk fac-

tor for type 2 diabetes. Cell metabolism, 23(6):1067–1077, 2016. doi:doi:

10.1016/j.cmet.2016.04.009.
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