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Abstract

In this paper we are concerned with logical and cognitive aspects of

reasoning with Euler circles. We give a proof-theoretical analysis of

diagrammatic reasoning with Euler circles involving unification and

deletion rules. Diagrammatic syllogistic reasoning is characterized as a

particular class of the general diagrammatic proofs. Given this proof-

theoretical analysis, we propose an experiment for a cognitive

psychological study.

I. Introduction

The purpose of this paper is to give a summary of our theory presented in

[7] and give an additional material for the further experimental studies

based on our theory, which updates and revises the section 4 of [7].1 The

result of the experimental study will be announced elsewhere in a

forthcoming paper [10].
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We study diagrammatic reasoning with Euler circles composed of

unification and deletion inferences. A primitive unification inference step

is specified as a unification of two Euler diagrams.2 We define the notion of

diagrammatic proof (d-proof, in short), which is considered as a (possibly

long) chain of unification and deletion steps. A major difficulty in the

Euler-style diagrammatic proofs consists in the fact that the complexity of

the diagrams increases during the processes of diagrammatic proof

constructions; especially, unification often multiplies disjunctive ambiguity

(i.e., the ambiguity described by duplicating a point, say x, at many

different positions in a unified diagram with linking them, or, instead, by

multiplying diagram-pages; cf. Peirce [8]). By contrast, when the Euler-

style diagrammatic reasoning is restricted to the syllogistic inferences,

essentially no disjunctive ambiguity appears during any diagrammatic

proof construction process. We shall present a diagrammatic proof system

which has essentially no disjunctive ambiguity, and which includes the

syllogistic proofs as special cases.

In Section II, we consider a diagrammatic representation system for

Euler circles in which disjunctive ambiguity is not allowed. (One may call

disjunction-free diagrams “one-page diagrams”, and disjunctive diagrams

“multiple-page diagrams.”) We give a definition of an Euler diagrammatic

syntax and a set-theoretical semantics for it.

In Section III, we provide a diagrammatic inference system consisting

of unification and deletion rules, where any conclusion of a (possibly long) 

d-proof is always representable on a one-page diagram. The syllogistic

d-proof system is characterized as a specific subsystem of our d-proof

system (where unification and deletion appear alternately without repeating

in a proof). Compared with linguistic syllogistic reasoning, the

diagrammatic reasoning with Euler diagrams in our system has some

distinctive features: linguistic syllogistic reasoning involves explicit

operations with logical negation and with the “subject-predicate”

distinction, whereas the reasoning with Euler diagrams in our system does

not.
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2 Some Euler-style diagrammatic reasoning systems (e.g. Hammer [4]) do not
have unification rule, hence cannot deal with syllogistic reasoning. But we do not
consider such a simple case in this paper.



In Section IV, we introduce the instruction for the experiments we are

planning ([10]).

II. Diagrammatic representation system EUL for Euler
circles and its (set-theoretical) semantics

In this section, we introduce a graphical representation system EUL for

Euler diagrams in which disjunctive ambiguity is not allowed. We define a

syntax of EUL (Section II.1) and its formal semantics (Section II.2).

1. Diagrammatic syntax of EUL

Let us start by defining the diagrams of EUL.

Definition 1 (EUL-diagrams)
An EUL-diagram is a 2-dimensional ( 2) plane with a finite number (at

least two) of named simple closed curves3 (denoted by A, B, C, ...) and

named points (denoted by x, y, z, ...), where

• each named simple closed curve or named point has exactly one

name;

• any two distinct named simple closed curves have different names;

• any two distinct named points have different names.

EUL diagrams are denoted by , , 1, 2, ....

In what follows, we sometimes call a named simple closed curve a

named circle. Moreover, named circles and named points are collectively

called objects. We use a rectangle to represent a plane for an EUL diagram.

The binary relations A B, A B, A B, x A, x A, and x y mean,

respectively, “the interior4 of A is inside of the interior of B,” “the interior
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3 See [2, 13] for a formal definition of simple closed curves on 2.
4 Here, the interior of a named circle A means the region strictly inside of A. Cf.
[2].



of A is outside of the interior of B,” “there is at least one crossing point

between A and B,” “x is inside of the interior of A,” “x is outside of the

interior of A,” and “x is outside of y (i.e. x is not located at the point of y)”.

Proposition 1
Given an EUL-diagram ,

1. for any distinct named simple closed curves A and B , exactly one of

A B, B A, A B, and A B holds;

2. for any named point x and any named simple closed curve A, exactly

one of x A and x A holds;

3. for any distinct named points x and y, x y holds.

For example, consider the EUL diagram 1 below, composed of A, B, C,

and x.

The relations A B, A C, B C, x A, x B, and x C hold on 1. The

same relations also hold for 2.

An EUL diagram which has only two objects is called a minimal

diagram (or an atomic diagram).

Given an EUL diagram and two objects, say s and t, on , a diagram

obtained from by deleting all objects other than s and t is called a

component minimal diagram of . Given and objects s and t, the

component minimal diagram thus obtained is determined uniquely up to

isomorphism. Given an EUL diagram , then, the set of component

minimal diagrams is determined (up to isomorphism). The set of

component minimal (atomic) diagrams of is called the decomposition

set of . As a direct corollary of Proposition 1, for any minimal (atomic)

diagram, say , composed of two objects s and t, exactly one of s t, 

t s, s t, s t holds. For example, the set { 1, 2, 3, 4, 5, 6} of

Fig. 2 is, up to isomorphisms, the decomposition set of 1 in Fig.1 above.
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Figure 1



2. Set-theoretical semantics of EUL

Diagrams of EUL can be used as an auxiliary device to supplement

linguistic representations such as formulas of predicate logic. A named

circle plays the role of a predicate, and a named point plays the role of a

constant symbol. In order to capture such roles of diagrams in a precise

way, we give a formal semantics for EUL. Here, we adopt the standard set-

theoretical semantics.5

Definition 2 (Model)
A model of EUL is a pair (U, I), where U is a non-empty set (the

domain of ), and I is an interpretation function such that

- I (x) ∈ U for any named point x;

- I (A) ⊆ U and I (A) ≠ Ø for any named simple closed curve A.

Definition 3 (Truth-conditions)
(I) For any minimal (atomic) diagram and for any model ,

1. when x y holds on , if and only if I (x) ≠ I (y) ;

2. when x A holds on , if and only if I (x) ∈ I (A) ;

3. when x A holds on , if and only if I (x) I (A) ;

4. when A B holds on , if and only if I (A ) ⊆ I (B) ;

5. when A B holds on , if and only if I (A ) ∩ I (B) ＝ Ø ;

6. when A B holds on , .6
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Figure 2: The decomposition set of D1

5 For similar set-theoretical approaches to the semantics of Euler diagrams, see
Hammer [4], Hammer and Shin [5], and Swoboda and Allwein [15]. Compared to
them, our semantics is distinctive in that diagrams are interpreted as a set of binary
relations, and thus that not every region in a diagram has a meaning.
6 Informally speaking, A B may be understood as I (A) ∩ I (B) ＝ Ø∨ I (A) ∩
I (B) ≠ Ø, which is true as stated in 6 here.



(II) For any EUL diagram , where { 1, 2, ..., n} is the decomposition

set of , if and only if 1 and 2 ... n.

Note that well-definedness of Definition 3 (II) of the truth-conditions

follows from Proposition 1, which assures that the decomposition set is

uniquely determined for a given diagram .

Definition 4 (Validity)
Euler diagram is a semantically valid consequence of 1, ..., n (written

as 1, ..., n ) when for any model such that 1, ..., n

hold, holds.

III. A diagrammatic inference system for generalized
syllogistic reasoning

In this section, based on the graphical representation system EUL, we

introduce a diagrammatic inference system for EUL, called Generalized

Diagrammatic Syllogistic inference system GDS. In Section III.1, we give

the definition of GDS which is sound with respect to the formal semantics

of EUL given in Section II.2. In Section III.2, we show that the

diagrammatic inferences for Aristotelian categorical syllogisms are

characterized as a specific subclass of the diagrammatic proofs of GDS.

1. Generalized diagrammatic syllogistic inference system
GDS

In this subsection, we introduce Unification and Deletion of GDS. In the

following definition, in order to indicate occurrence of some objects in a

context on a diagram, we write the indicated objects explicitly and the

context by “dots ” as in 1 below.7 For example, when we need to indicate

only A and x on 1 of the left-hand side, we could write 1 in the manner
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7 Note that the dots notation is used only for abbreviation of a given diagram. For
a formal treatment of such “backgrounds” in a diagram, see Meyer [6].



shown in the right-handside.

Using this notation, we describe general patterns of each rule and present

some examples of its application.

Definition 5 (Inference rules of GDS)
Axiom, Unication and Deletion of GDS are defined as follows:

Axiom: For any circle A and B, the following form of atomic diagram is an

axiom:

Unification: Atomic diagrams are denoted by α, β,... for readability. The

unified diagram of with α is denoted as +α.

When the relation which holds on α also holds on , +α is itself.

The other unification rules with premises and α to obtain +α are

listed as U1-U10 below. In each rule, the first sentence attached to the two

premise diagrams expresses the constraint which should be satisfied before

performing the unification, and the sentence attached to the conclusion

diagram +α expresses the actual operation to be performed at the

unification step. We distinguish the following two cases: (I) and α
share one object; (II) and α share two circles.

Moreover, there is another unification rule called point insertion rule (III).

(I) and α share one object:
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For example, U1, U4, U5, and U7 rules are applied as follows:

(II) and α share two circles:

For example, U9 and U10 rules are applied as follows:

(III) Point insertion: When 1 and 2 have the same information about

circles and in addition 2 contains one point x, we may add x to 1 in such

a way that the relationship between x and the circles in 2 is preserved in

1 + 2.
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For example, the point insertion rule is applied as follows:

Deletion: There are two deletion rules: the circle-deletion rule and the

point-deletion rule. Let t be an object, i.e., a named circle or a named point.

For any EUL diagram and for any object t in , applying deletion rule

results in - t under the constraint that -t has at least two objects.

We give an inductive definition of diagrammatic proofs (d-proofs) of

GDS.

Definition 6 (Diagrammatic proofs of GDS)
A diagrammatic proof (d-proof, for short) π of GDS is defined

inductively as follows:

1. A diagram is a d-proof from the premise to the conclusion .

2. Let π1 be a d-proof from 1, ..., n to and π2 be a d-proof from

1, ..., m to , respectively. If is obtained by an application of

Unification of and , then the following (i) is a d-proof π from

1, ..., n, 1, ..., m to in GDS.

3. Let π1 be a d-proof from 1, ..., n to . If is obtained by an

application of Deletion to , then the following (ii) is a d-proof π
from 1, ..., n to in GDS.

π
Here means a d-proof π with as the conclusion. The length of a d-

proof is defined as the number of the applications of inference rules.

The following Fig. 3 is an example of d-proof from 1, 2, 4, 6, 7 to
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11.

The inference rules of GDS are well-defined.

Proposition 2 (Well-definedness of inference rules)
For any EUL-diagrams 1, ..., n , if there is a d-proof from 1, ..., n to

, then is an EUL-diagram.

The soundness theorem of GDS holds with respect to the formal

semantics given in Section II.2. It is shown by induction on the length of a

given d-proof.

Theorem 1 (Soundness of GDS)
For any EUL-diagrams 1, .., n, , if there is a d-proof from 1, ..., Dn

to in GDS, then is a semantically valid consequence of 1, ..., n.

Our completeness theorem of GDS will be appeared in a forthcoming

paper.

2. Aristotelian categorical syllogisms

In this subsection, we show that the diagrammatic inferences for

Aristotelian categorical syllogisms are characterized as specific
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Figure 3: A diagrammatic proof (d-proof) in
GDS.

Figure 4: An underlying tree structure of a
d-proof in GDS.



diagrammatic proofs of GDS.

We first introduce, in Fig. 5, a correspondence between the statements

of Aristotelian categorical syllogisms and a class of EUL diagrams.

We call the diagrams of the forms given in Fig. 5 syllogistic diagrams. For

any statement S of Aristotelian categorical syllogism, we denote as SD the

corresponding syllogistic diagram given in Fig. 5.

Next, we define a particular class of d-proofs of GDS called syllogistic

normal d-proofs as follows:

Definition 7 (Syllogistic normal d-proofs)
For any syllogistic diagrams 1, ..., n , , a d-proof π from 1, ..., n

to of GDS is in syllogistic normal form if a unification rule and a

deletion rule appear alternately in π.

Thus each syllogistic normal d-proof is of the form shown in Fig. 6:
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Figure 5: Syllogistic diagrams.

Figure 6: A syllogistic normal d-proof. Figure 7: An underlying tree structure of a
syllogistic normal d-proof.



Fig. 6 illustrates a syllogistic normal d-proof, where each pair of a

unification rule and a deletion rule application corresponds to a valid

pattern of syllogisms. For example, the sub-proof from 1 and 2 to 4 is

a diagrammatic representation of a syllogism of the form: Some C are B.

No A are B. Therefore Some C are not A. (This valid pattern is sometimes

symbolized as EI2O. See [1,9] for the notation.) Indeed, each syllogistic

normal d-proof can be considered as a chain of valid patterns of

Aristotelian categorical syllogisms. Note that, compared with the

underlying proof tree of GDS in Fig. 4 in Section III.1, the tree of the

syllogistic normal d-proof has a canonical form, where a unification node,

denoted by ■, and a deletion node, denoted by ○, appear one after the

other.

In order to characterize the syllogistic normal d-proofs, we introduce a

sub-system DS of GDS.

Definition 8 (DS)
A diagrammatic syllogistic inference system DS is a sub-system of GDS
where:

1. Unification is restricted to U1-U7, and their premises are restricted

to syllogistic diagrams sharing no common named point;

2. Deletion is applicable only when its conclusion is a syllogistic

diagram.

Essentially, DS is a subsystem of GDS where only syllogistic diagrams

are considered. It is shown that DS corresponds to the Aristotelian

categorical syllogisms. Let S be a statement of syllogisms and SD be the

corresponding syllogistic diagram in Fig. 5. We have the following

correspondence:

Proposition 3 (Syllogisms and DS)
Let S1, ..., Sn, S be statements of Aristotelian categorical syllogisms. Then S

is a valid conclusion of Aristotelian categorical syllogisms from the

premises S1, ...,Sn if and only if there is a d-proof of SD in DS from the

premises S1
D, ..., Sn

D.
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IV. Experiment design for syllogistic reasoning with
Euler diagrams

The aim of our experimental study is to investigate the question of whether

the use of Euler diagrams has any psychological advantage in syllogistic

reasoning. In our experiments, we use EUL diagrams for experimental

materials. We provide subjects with an instruction on the meaning of EUL
diagrams, and conduct a pretest to check whether they understand the

instruction correctly. The result of this experimental study will be

announced in our forthcoming paper (Sato et al. [10]). Here we show the

instruction used in our experiment. The sentences and instruction are given

in Japanese. We used the following translation: “Subete no A wa B de aru”

for All A are B, “Dono A mo B de nai” for No A are B, “Aru A wa B de

aru” for Some A are B, “Aru A wa B de nai” for Some A are not B. Here we

use the quantifiers “subete” and “dono” for all and “aru” for some. One

remarkable difference between English and Japanese is in the translation of

No A are B. Since in Japanese there is no negative quantifier corresponding

to no, we use the translation “Dono A mo B de nai”, which literally means

All A is not B. Except this point, we see no essential differences between

English and Japanese. So we will refer to English translation in this paper.

1. Instruction on the meaning of categorical statements

In this experiment, you are asked to solve reasoning tasks. The meaning of

a sentence used in this experiment is defined as follows.

1. “All A are B” means that if there are objects which are A, all of them

are B.

2. “No A are B” means that if there are objects which are A, none of

them are B.

3. “Some A are B” means that there are some objects which are A and

B.

4. “Some A are not B” means that there are some objects which are A

but not B.
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2. Instruction on the meaning of EUL-diagrams

You may use diagrams in solving reasoning tasks. The meaning of a

diagram used in this experiment is defined as follows.

A circle is used to denote a set of objects.

(1) The following diagram in which the region of A is inside of the region

of B means that if there are objects which are A, all of them are B.

(2) The following diagram in which the region of A is outside of the region

of B means that there are no objects which are A and B.

(3) The following diagram in which the regions of A and B partly overlap

each other means that the relationship between the set of objects which are

A and the set of objects which are B is unknown.

(It should be noted that this diagram says nothing about whether there are

some objects which are both A and B.)
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“All A are B” does not imply that there are some objects which are A.

Thus, “All A are B” does not imply “Some A are B”.

“No A are B” does not imply that there are some objects which are A.

Thus, “No A are B” does not imply “Some A are not B”.

The diagrams in (1)–(3) do not mean that there are some objects which

are A and/or B. These diagrams say nothing about the existence of

objects.



Point x is used to indicate the existence of an object.

(4) The following diagram in which point x is inside of the region of A

means that there is an object which is A.

(5) The following diagram in which point x is outside of the region of A

means that there is an object which is not A.

By the combination of the diagrams in (1)-(5), we can compose more

complex diagrams. We give some examples.

The following diagram in which x is inside of the intersection of A and

B means that there is an object which is A and B.

The following diagram in which x is inside of A but outside of B means

that there is an object which is A but not B.

(It should be noted that this diagram says nothing about whether there is an

object which is both A and B.)
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It is unknown whether there is an object in a region where point x is

absent.

For example, the diagram in (4) says nothing about whether there is an

object which is not A. Similarly, the diagram in (5) says nothing about

whether there is an object which is A.
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