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Abstract

Researchers have developed more complex models for more realistic data analysis.

In general, model complexity tends to increase computational burdens in terms of both

computing time and memory/storage usage. As for Bayesian statistics in particular,

the model complexity makes statistical inference with the posterior distribution almost

intractable and impractical. To tackle this problem, numerous computational methods

have been developed since the late 20th century. Among them, the most prominent ones

are Markov chain Monte Carlo (MCMC) methods such as the Gibbs sampler (Geman

and Geman (1984); Gelfand and Smith (1990)), the Metropolis-Hastings (MH) method

(Metropolis et al. (1953); Hastings (1970)) and the data augmentation (Tanner and Wong

(1987)). Since the adoption of MCMC in late 1980s, computational Bayesian statistics

has attracted more attention for its ability to deal with highly complex problems that

were previously unsolvable.

Even after the extraordinary progress of computers in the last several decades, how-

ever, naive implementation of MCMC methods is still insufficient to handle the increasing

complexity of statistical models. For a high-dimensional complex model, random series

of model parameters drawn from the posterior distribution with MCMC often exhibits

strong positive autocorrelation. Since such high autocorrelation causes slow convergence

to the true posterior distribution, acceptable precision of the posterior statistics cannot

be achieved in practice. Although it may be possible to solve this problem by generating a

huge sample from the posterior distribution through gigantic computer processing power

(e.g., supercomputers), this is neither practical nor eco-friendly.

Numerous studies have been conducted to improve the sampling efficiency of MCMC.

Among them, the ancillarity-sufficiency interweaving strategy (ASIS) proposed by Yu

and Meng (2011) is an easy-to-implement and widely applicable sampling algorithm for
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improving the sampling efficiency of MCMC. In principle, ASIS samples random series of

parameters and latent variables alternately from the posterior distribution with central-

ized parametrization (CP) or from the one with non-centralized parametrization (NCP).

Whether CP outperforms NCP or not depends on models and data sets and we cannot

precisely say which is better in general. ASIS tries to solve this problem by combining

two types of parametrization in one sampling cycle of MCMC.

In our doctoral dissertation, we will focus on applications of ASIS to several models

used in applied econometric analysis and demonstrate the efficacy of ASIS in Bayesian

computation. The organization of our dissertation is as follows.

In Chapter 2, the formal definition of ASIS and an illustrative example of its appli-

cation will be presented. As the example, we estimated a panel data regression model

with wage data used by Vella and Verbeek (1998), which is a balanced panel data set,

to check whether ASIS can improve the sampling efficiency of random series from the

posterior distribution and the precision of Monte Carlo evaluation of the posterior means

and variances. As a result, we found that ASIS could help improve MCMC efficiency in

panel data regression analysis.

In Chapter 3, we propose a hierarchical Bayesian model of evaluating horse ability and

jockey skills in horse racing and estimate it with ASIS. In the proposed method, we aim to

estimate unobservable individual effects of horses and jockeys simultaneously along with

regression coefficients for explanatory variables such as horse age, racetrack conditions

and others in the regression model. The data used in this study are records on 1800-m

races (excluding steeplechases) held by the Japan Racing Association from 2016 to 2018,

including 22,183 runs with 4,063 horses and 143 jockeys. Since the number of entries

varies by racehorses and jockeys, unlike the example in Chapter 2, it is an unbalanced

panel data set. We apply the hierarchical Bayesian model to stably estimate such a large

amount of individual effects. Since some racehorses and jockeys have extremely small

numbers of runs, it is difficult to make stable estimation of the individual effects with

conventional sampling methods. Hence, we use the Gibbs sampling coupled with ASIS for

Bayesian estimation of the model and choose the best model with the widely applicable

information criterion (WAIC) as a model selection criterion. As a result, we found a

large difference in the ability among horses and jockeys. Additionally, we observed a
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strong relationship between the individual effects and the race records for both horses

and jockeys.

In Chapter 4, we apply ASIS to complex stochastic volatility (SV) models with high-

frequency intraday time series data of stock returns. Since intraday financial data tend

to have time-dependent characteristics such as volatility clustering and intraday season-

ality, it is crucial to properly capture them. Our modeling strategy is two-fold. First, we

model the intraday seasonality of return volatility as a Bernstein polynomial and estimate

it along with the stochastic volatility simultaneously. Second, we incorporate skewness

and excess kurtosis of stock returns into the SV model by assuming that the error term

follows a family of generalized hyperbolic distributions including variance-gamma and

Student’s t distributions. Furthermore, we developed an efficient MCMC sampling al-

gorithm for Bayesian inference of the proposed model. To improve efficiency of MCMC

implementation, we apply ASIS and generalized Gibbs sampling. As a demonstration of

our new method, we estimated intraday SV models with 1-minute return data of a stock

price index (TOPIX), and conducted model selection among various specifications with

WAIC. The result shows that the SV model with the skew variance-gamma error is the

best among the candidates.

In Chapter 5, we provide the summary of this dissertation and remarks on the future

prospects of further research.
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Chapter 1

Introduction

Researchers in the field of data science have developed more complex and sophis-

ticated models for more realistic data analysis. In general, model complexity tends to

increase computational burdens in terms of both computing time and memory/storage

usage. As for Bayesian statistics in particular, the model complexity not only raises such

burdens prohibitively high but also makes statistical inference with the posterior distribu-

tion almost intractable and impractical. To tackle this problem, numerous computational

methods have been developed since the late 20th century. Among them, the most promi-

nent ones are Markov chain Monte Carlo (MCMC) methods such as the Gibbs sampler

(Geman and Geman (1984); Gelfand and Smith (1990)) and the Metropolis-Hastings

(MH) method (Metropolis et al. (1953); Hastings (1970)). Since the adoption of MCMC

in late 1980s, with the further development of computers, computational Bayesian statis-

tics has attracted more attention of academic researchers as well as practitioners for its

ability to deal with highly complex problems that were previously unsolvable.

Even after the extraordinary progress of computers in the last several decades, how-

ever, naive implementation of MCMC methods is still insufficient to handle the increasing

complexity of statistical models. For a high-dimensional complex model, random series

of model parameters drawn from the posterior distribution with MCMC often exhibits

strong positive autocorrelation. Since such high autocorrelation causes slow convergence

to the true posterior distribution, acceptable precision of the posterior statistics cannot

be achieved in a meaningful time even by a high-powered workstation. Although it may

be possible to solve this problem by generating a huge sample from the posterior distribu-
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2 CHAPTER 1. INTRODUCTION

tion through gigantic computer processing power (e.g., supercomputers), this is neither

practical nor eco-friendly. In addition, in fields such as national security and disaster

forecasting, where computing time is a crucial factor, the convergence inefficiency would

be a major issue.

Numerous studies have been conducted to improve the sampling efficiency of MCMC.

Among them, the ancillarity-sufficiency interweaving strategy (ASIS) proposed by Yu

and Meng (2011) is an easy-to-implement and widely applicable sampling algorithm

for improving the sampling efficiency of MCMC. ASIS is a strategy that alternately

samples parameters and latent variables from the posterior distribution with central-

ized parametrization (CP) or from the one with non-centralized parametrization (NCP).

Whether CP outperforms NCP or not depends on models and data sets and we cannot

precisely say which is better in general. ASIS tries to solve this problem by combining

two types of parametrization in one sampling cycle of MCMC.

In our doctoral dissertation, we will focus on applications of ASIS to several models

used in applied econometric analysis and demonstrate the efficacy of ASIS in Bayesian

computation. The organization of our dissertation is as follows.

• Chapter 2, Ancillarity-Sufficiency Interweaving Strategy (ASIS)

The purpose of this chapter is to clarify how ASIS is defined and why ASIS works,

and to present a simple example of how ASIS works to improve the convergence efficiency

of MCMC sampling. As the illustrative example to demonstrate improvement in the

convergence rate due to ASIS, we applied ASIS to hierarchical Bayesian modeling of

a panel data regression model with wage data used by Vella and Verbeek (1998) and

compared estimation results, sample autocorrelation and other aspects of convergence

with and without ASIS.

It is barely recognized among researchers that ASIS can be applied to the panel data

regression analysis. As far as the author knows, Gelfand et al. (1995) first proposed to use

the centered parametrization (CP) form of a panel data regression model. They showed

that centering the parameters would make a significant difference in convergence rate as

well as stability of sampled series. What Gelfand et al. (1995) applied in parametrization,

however, was not ASIS but mere centralization of the hierarchical prior for regression
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coefficients in the panel data regression model. ASIS, on the other hand, combines random

number generation from both CP form and NCP form into a unified sampling scheme.

By comparing generated random series with and without ASIS in terms of sample au-

tocorrelation and convergence diagnostic, we demonstrated that ASIS not only improved

the convergence rate, but also enabled the convergence itself, which seems impossible for

the original parametrization.

• Chapter 3, Application to Unbalanced Panel Data: Horse Race Results in Japan

In Chapter 2, we showed that ASIS worked well in panel data analysis with simple

and well-prepared balanced panel data datasets. Contrarily, this chapter aims to show

that ASIS also works well for panel data analysis with more complex model specifications

using unbalanced panel data; horse race running data in Japan. The data used in this

study are records on 1800-m races (excluding steeplechases) held by the Japan Racing

Association from 2016 to 2018, including 4,063 horses and 143 jockeys.

With the horse race data, we proposed a new method of evaluating horse ability and

jockey skills in horse racing. In the proposed method, we aimed to estimate unobservable

individual effects of horses and jockeys simultaneously with regression coefficients for

explanatory variables such as horse age, racetrack conditions and others in the regression

model. We applied a hierarchical Bayesian model to stably estimate such a large amount

of the individual effects. We used the MCMC method coupled with ASIS for Bayesian

estimation of the model and chose the best model with the widely applicable information

criterion (WAIC) by Watanabe (2010) as a model selection criterion. Since some of

these racehorses and jockeys have a small number of runs (the minimum number of

runs is four), plain-vanilla MCMC was not able to estimate the individual effects stably.

However, the application of ASIS made this estimation possible, indicating that ASIS

is particularly effective for high-dimensional and small sample-size data. As a result,

we found a large difference in the ability among horses and jockeys. Additionally, we

observed a strong relationship between the individual effects and the race records for

both horses and jockeys.

• Chapter 4, Application to Time Series Data: High Frequency Stock Returns
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This chapter is based on Nakakita and Nakatsuma (2021). In Chapter 4, we intend to

show that ASIS can improve the MCMC efficiency not only in the framework of panel

data analysis, but also in the framework of time-series data analysis. As a framework

for time series analysis, we employed complex stochastic volatility (SV) models of high

frequency intraday stock returns. High frequency intraday data of stock returns exhibit

not only typical characteristics (e.g., volatility clustering and leverage effect) but also a

cyclical pattern of return volatility that is known as intraday seasonality. In this chapter,

we extend the SV model for application with high frequency intraday financial time series

data and develop an efficient MCMC sampling algorithm for Bayesian inference of the

proposed model. As a demonstration of our new method, we estimated intraday SV

models with 1-minute return data of a stock price index (TOPIX).

Our contributions in this chapter may be summarized as follows. First, we successfully

captured a feature of high frequency intraday stock returns called intraday seasonality by

using Bernstein polynomials. Second, we extended the error term of the SV model to a

family of generalized hyperbolic distributions including variance-gamma and Student’s t

distributions, as well as skew variance gamma and skew t distributions. Needless to say, as

the distributions used for the model become more complex, computational efficiency and

convergence rate of generated random series become more crucial. Therefore, we applied

ASIS to efficiently generate random series and estimated the posterior distribution. As a

result, the application of ASIS successfully reduced the sample autocorrelation of (latent)

volatility and parameters in the model.

Finally, we provide the summary of this dissertation and comments on the future

prospects of further research in Chapter 5.



Chapter 2

Ancillarity-Sufficiency Interweaving

Strategy (ASIS)

2.1 Introduction

In the recent development of statistics, data science and other related fields, model

specifications used in data analysis have been becoming more and more complex over

years. In particular, most of probabilistic models used in Bayesian inference, which seem

conceptually sound, are computationally infeasible for application. To deal with such

complex models, a simulation-based approach called Markov chain Monte Carlo (MCMC)

has been developed since the late 20th century. The MCMC approach includes the Gibbs

sampler (Geman and Geman (1984); Gelfand and Smith (1990)), the Metropolis-Hastings

(MH) method (Metropolis et al. (1953); Hastings (1970)), During the same time period,

computing technology made a great leap forward. Thanks to so-called Moore’s law,

computers are becoming faster and having more memory and storage. A smartphone of

today is far more capable than a supercomputer in 1980s.

Unfortunately, however, even the ground-breaking invention of MCMC and the rapid

evolution of computing technology are not sufficient to tackle increasing complexity of

statistical models. One problem we often encounter in MCMC implementation for a large-

scale complex model with many parameters is strong positive autocorrelation in generated

random series. By construction of MCMC, generated random series are realizations of a

Markov chain whose stationary density is equivalent to the posterior density. Therefore

5



6 CHAPTER 2. ASIS

the generated random series are no longer independent, though it is well known that

the law of large numbers still holds for those random series under certain conditions.

See Robert and Casella (2004) for more details. In theory, any random series drawn

with MCMC will eventually converge to the true posterior distribution and the sample

statistics of the series such as the sample mean and the sample variance will also converge

to the true ones in the posterior distribution due to the law of large numbers. In practice,

however, the convergence rate of the sample statistics depends on mixing of generated

random series. If autocorrelation in the random series is strongly positive even for longer

lags, the convergence of the sample statistics will become rather slow. Thus the precision

of the sample statistics with the MCMC sample as estimates of the true posterior statistics

is possibly far worse than those with the i.i.d. sample, and we need a much larger sample

of generated parameters.

As a possible solution to the problem of slow convergence, Yu and Meng (2011)

proposed the ancillarity-sufficiency interweaving strategy (ASIS). ASIS is a strategy that

alternately samples parameters with and without centralization (“interweaving”), thus

taking advantages of both convergence and mixing of random series. ASIS is a very

simple tool that can be adaptable to a wide variety of models and data, and has shown

significant efficiency improvements in many cases.

In this chapter, we first introduce the basic idea behind ASIS and explain why ASIS

works. Then, as an illustrative example, we derived a ASIS sampling scheme for hier-

archical Bayesian analysis of a panel data regression model and apply it to real-world

data (wage panel data used by Vella and Verbeek (1998)) for demonstrating how ASIS

improves the sampling efficiency of MCMC for the panel data regression model.

Application of ASIS in the context of panel data regression is little studied in the liter-

ature of MCMC. Gelfand et al. (1995) first proposed to use an alternative parametrization

of a panel data regression model for facilitating mixing of random series and improving

the convergence rate. In fact, their reparametrizing approach is related to the centered

parametrization form of the panel data regression model, which we will describe later in

this section. They showed that the reparametrization would make a significant difference

in convergence rate and improve results of the convergence diagnostic (e.g., Gelman and

Rubin (1992)) of generated random series.
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In our study, on the other hand, we propose to interweave the Gibbs sampling scheme

based on the centered parametrization by Gelfand et al. (1995) with the widely-applied

Gibbs sampling scheme based on the non-centered parametrization, and form an ASIS

sampling scheme for the panel data regression model. In our best knowledge, no previous

studies have applied ASIS to hierarchical Bayesian analysis of the panel data regression

model.

The rest of this chapter is organized as follows. Section 2.2 describes the definition

and principle of ASIS by using a two-level normal hierarchical model as an example.

Section 2.3 explains the ASIS scheme for the panel data regression model. Section 2.4

presents the results of empirical comparisons between the ASIS scheme and the non-ASIS

Gibbs sampling scheme for the panel data regression model with the wage panel data.

Finally, conclusion of this chapter is given in Section 2.5.

2.2 Definition of ASIS

To illustrate the definition and procedure of ASIS, we cite a two-level normal hi-

erarchical model from Yu and Meng (2011), which was originally used in Liu and Wu

(1999),

Yobs|θ, Ymis ∼ N (Ymis, 1) , (2.1)

Ymis|θ ∼ N (θ, V ), (2.2)

where Yobs is the observed value while Ymis is the missing value. We suppose the expected

value of Ymis, θ, is unknown but the variance of Ymis, V , is a known constant. Thus the

hierarchical model (2.1)–(2.2) have two unknown quantities (Ymis, θ).

The standard data augmentation (DA) algorithm for (Ymis, θ) draws them from Ymis|θ, Yobs
and θ|Ymis, Yobs alternately as

Ymis|θ, Yobs ∼ N
(
V Yobs + θ

1 + V
,

V

1 + V

)
, (2.3)

θ|Ymis, Yobs ∼ N (Ymis, V ). (2.4)

Because the right-hand side of (2.1) is free of θ, Yu and Meng (2011) call the DA scheme

(2.3)–(2.4) sufficient augmentation (SA), since Ymis is a sufficient statistic for θ in the
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augmented-data model. Note that, in the SA setting, the augmented-data posterior

distribution of θ in (2.4) depends on Ymis alone.

Contrarily, if we define

Ỹmis = Ymis − θ, (2.5)

and treat Ỹmis as the missing value, the model can be rewritten as

Yobs|θ, Ỹmis ∼ N (Ỹmis + θ, 1), (2.6)

Ỹmis ∼ N (0, V ), (2.7)

which gives a different DA algorithm:

Ỹmis|θ, Yobs ∼ N
(
V (Yobs − θ)

1 + V
,

V

1 + V

)
, (2.8)

θ|Ỹmis, Yobs ∼ N (Yobs − Ỹmis, 1). (2.9)

Yu and Meng (2011) call the DA scheme (2.8)–(2.9) ancillary augmentation (AA), because

the distribution of Ỹmis in (2.7) is free of θ and Ỹmis is an ancillary statistic for θ. As we

can see in (2.6) and (2.7), Ỹmis and θ are independent a priori in the AA setting.

You may wonder about the fact that the posterior distributions of (2.4) and (2.9)

are essentially equivalent in the sense that we can obtain (2.9) by centering (2.4) to zero.

Since random series generated from either SA (2.3)–(2.4) or AA (2.8)–(2.9) will eventually

converge to the same posterior distribution, it seems that the sampling efficiency is not

affected by using SA or AA at first glance. On the contrary to this naive intuition, the

convergence rates of two algorithms are usually different.

Previous studies such as Dempster, Laird and Rubin (1977) discussed that the conver-

gence rate of EM-type algorithms depended on “the fraction of missing information.” van

Dyk and Meng (2001, 2010) extended this idea to the convergence behavior of DA-type

algorithms and found that there was a difference between the convergence rates of the

centralized form and non-centralized form of DA. In the two-level normal hierarchical

model, when the variance V is smaller, Ymis is more informative about θ for SA because

the distribution in (2.2) concentrates around the mean θ. For AA, on the other hand, a

smaller V implies that we know more about Ỹmis since the distribution in (2.4) concen-

trates around zero. In the extreme case of V ≈ 0, we know Ỹmis ≈ 0 for sure. Therefore
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we expect SA to be slow in convergence but AA to be fast when V is small, and vice

versa when V is large.

To exploit the aforementioned relationship between SA and AA, Yu and Meng (2011)

proposed an ASIS algorithm that interweaves SA and AA together, which is called the

global interweaving strategy or GIS. A general form of GIS is given as follows.

Global Interweaving Strategy (GIS)� �
Step 1-a: Draw Y

(t+0.5)
mis given θ(t) from p(Ymis|θ(t)).

Step 1-b: Draw θ(t+0.5) given Y
(t+0.5)
mis from p(θ|Y (t+0.5)

mis ).

Step 2-a: Draw Ỹ
(t+1)
mis given (Y

(t+0.5)
mis , θ(t+0.5)) from p(Ỹmis|Y (t+0.5)

mis , θ(t+0.5)).

Step 2-b: Draw θ(t+1) given Ỹ
(t+1)
mis from p(θ|Ỹ (t+1)

mis ).� �
where (Ymis, Ỹmis, θ) are the missing values in SA (or AA), the missing values in AA (or

SA) and the unknown parameters in the model respectively.

If joint sampling of θ from p(θ|Ymis) or p(θ|Ỹmis) is difficult, we may apply Gibbs

sampling to each element or subgroup of θ. Yu and Meng (2011) called this type of ASIS

the component-wise interweaving strategy or CIS. Basically, CIS breaks down Step 1-b

and Step 2-b in GIS into a series of Gibbs sampling from the conditional distributions

of elements/subgroups in θ.

In many applications, the conditional distribution in Step 2-a determines Ỹmis com-

pletely given (Ymis, θ). For example, in the two-level normal hierarchical model (2.1)–

(2.2), Step 2-a is equivalent to Ỹ (t+1)
mis = Y

(t+0.5)
mis − θ(t+0.5). Thus a GIS algorithm for the

two-level normal hierarchical model is given as follows.

GIS for the Two-level Normal Hierarchical Model� �
Step 1-a: Draw Y

(t+0.5)
mis given θ(t) from p(Ymis|θ(t)) in (2.4).

Step 1-b: Draw θ(t+0.5) given Y
(t+0.5)
mis from p(θ|Y (t+0.5)

mis ) in (2.3).

Step 2-a: Let Ỹ (t+1)
mis = Y

(t+0.5)
mis − θ(t+0.5).

Step 2-b: Draw θ(t+1) given Ỹ
(t+1)
mis from p(θ|Ỹ (t+1)

mis ) in (2.9).� �
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Let us verify that the GIS sampling chain preserves the stationary density p(θ), i.e.,

p(θ′) =

∫
k(θ′|θ)p(θ)dθ,

where p(θ) is shared by the original two DA algorithms (SA and AA), k(θ′|θ) is the

transition kernel of GIS:

k(θ′|θ) =
∫ ∫

p(θ′|Ỹmis)p(Ỹmis|Ymis)p(Ymis|θ)dYmisdỸmis, (2.10)

and p(Ỹmis|Ymis) =
∫
p(Ỹmis|Ymis, θ̃)p(θ̃|Ymis)dθ̃.

Suppose p(Ymis, Ỹmis, θ) is well-defined, and p(Ymis, θ) and p(Ỹmis, θ) are the stationary

densities of DA chains (SA or AA) that share the same p(θ). By Fubini’s theorem, we

have ∫
k(θ′|θ)p(θ)dθ =

∫ ∫
p(θ′|Ỹmis)p(Ỹmis|Ymis)

[∫
p(Ymis|θ)p(θ)dθ

]
dYmisdỸmis

=

∫
p(θ′|Ỹmis)

[∫
p(Ỹmis|Ymis)p(Ymis)dYmis

]
dỸmis

=

∫
p(θ′|Ỹmis)p(Ỹmis)dỸmis

= p(θ′).

Therefore p(θ) is the stationary density of the transition kernel (2.10).

Finally, we cite two theorems given by Yu and Meng (2011) to show that ASIS is

useful for improving MCMC efficiency.

Theorem 1 (Yu and Meng (2011, p.539)). Given a posterior distribution of interest

p(θ|Yobs), θ ∈ Θ, suppose we have two augmentation schemes Ymis,1 and Ymis,2 such that

their joint distribution, conditioning on both θ and Yobs, is well defined for θ ∈ Θ (almost

surely with respect to p(θ|Yobs)). Denote the geometric rate of convergence of the DA

algorithm under Ymis,i by ri, i = 1, 2, which are allowed to take value 1 (i.e., being sub-

geometric). Then

r1&2 ≤ R1,2

√
r1r2 (2.11)

where r1&2 is the geometric rate of the GIS sampler interweaving Ymis,1 and Ymis,2, and R1,2

is the maximal correlation between Ymis,1 and Ymis,2 in their joint posterior distribution

p(Ymis,1, Ymis,2|Yobs).
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Theorem 2 (Yu and Meng (2011, p.561)). Given a posterior distribution p(θ|Yobs) of

interest, suppose we have two augmentation schemes Ymis,1 and Ymis,2 such that their joint

distribution in well defined conditional on θ and Yobs. Let N = σ(Ymis,1)∩ σ(Ymis,2), that

is, the intersection of the σ-algebras generated by Ymis,1 and Ymis,2 in the joint posterior

of (θ, Ymis,1, Ymis,2). Then r1&2, the geometric rate of convergence of GIS, satisfies

r1&2 ≤ R2(θ,N ) + (1−R2(θ,N ))RN (θ, Ymis,1)RN (Ymis,1, Ymis,2)RN (θ, Ymis,2). (2.12)

Theorem 1 and 2 show that ASIS improves the convergence rate. We leave the details of

these theorems to Yu and Meng (2011).

2.3 Hierarchical Bayesian Modeling of Panel Data

In the rest of this chapter, we examine the efficacy of ASIS in hierarchical Bayesian

modeling of panel data. For this purse, in this section, we first introduce the panel data

regression model with individual effects and then derive the ASIS scheme for its hierar-

chical Bayesian analysis as well as its counterpart in Gibbs sampling as the benchmark.

Suppose we have panel data about N individuals recorded over T periods. Let i ∈

{1, . . . , N} be the index for each individual and t ∈ {1, . . . , T} be the index for each

period. Furthermore, we suppose the panel data have the following variables:

• yit — dependent variable for individual i in period t

• xit — K × 1 vector of independent variables for individual i in period t

Consider the regression model of panel data:

yit = αi + x′
itβ + ϵit, ϵit

i.i.d.∼ N (0, σ2
ϵ ), i ∈ {1, . . . , N}, t ∈ {1, . . . , T}, (2.13)

where β is a K × 1 vector of regression coefficients. αi in (2.13) is interpreted as an

unobservable variable that only affects the dependent variable of individual i and cannot

be explained by other factors. We call αi the individual effect.

Let us define vectors and matrices as follows.

yi =


yi1
...

yiT

 , X i =


xi1

...

xiT

 , ϵi =


ϵi1
...

ϵiT

 .
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Then, the regression model in (2.13) can be summarized as

yi = αi1+X iβ + ϵi, ϵi ∼ N (0, σ2
ϵI), (2.14)

where 1 is a vector whose elements are all ones, 0 is a a vector whose elements are all

zeros, and I is the identity matrix. For simplicity, we will not add any indicator of

dimension to 1, 0 or I as long as the dimension is obvious in the context. By defining

y =


y1

...

yN

 , U =


1

. . .

1

 , X =


X1

...

XN

 ,

Z =
[
U X

]
, ϵ =


ϵ1
...

ϵN

 , α =


α1

...

αN

 , δ =

α
β

 ,
we have

y = Uα+Xβ + ϵ

= Zδ + ϵ, ϵ ∼ N
(
0, σ2

ϵI
)
.

(2.15)

To conduct Bayesian inference on the panel data regression model in (2.13), we need

to set up the posterior distribution. Note that the conditional distribution of y given Z

in (2.15) is N (Zδ, σ2
ϵI). Thus the likelihood of the unknown parameters (δ, σϵ) is

p(y|Z, δ, σϵ) ∝ (σ2
ϵ )

−N
2 exp

[
− 1

2σ2
ϵ

(y −Zδ)′(y −Zδ)

]
(2.16)

∝ (σ2
ϵ )

−N
2 exp

[
−
∑T

t=1 e
2
it

2σ2
ϵ

]
, eit = yit − αi − x′

itβ. (2.17)

We assume the following prior distributions for the parameters (δ, σϵ).

δ ∼ N (µ,Σ) , µ =

µα1

µβ

 , Σ =

σ2
αI

Σβ

 , (2.18)

σϵ ∼ C+(0, sϵ), (2.19)

where C+(0, σϵ) is the half-Cauchy distribution with the probability density:

p(σϵ|sϵ) =
2sϵ

π(σ2
ϵ + s2ϵ)

, σϵ > 0, sϵ > 0.
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Note that the prior distribution in (2.18) is equivalent to assuming

αi
i.i.d.∼ N (µα, σ

2
α), i ∈ {1, . . . , N},

β ∼ N (µβ,Σβ).
(2.20)

If we regard αi as a random effect in (2.20), it can be interpreted as a latent variable

specific to a particular individual that follows N (µα, σ
2
α). If αi is treated as a fixed effect,

on the other hand, N (µα, σ
2
α) can be interpreted as the common prior distribution for

all fixed effects that are unknown parameters. Either interpretation does not change

the fact that αi is an unobservable quantity and does not affect the resulting posterior

distribution of the individual effect as a parameter.

In the prior distributions of the parameters (δ, σϵ), (µβ,Σβ) in (2.18) and sϵ in (2.19)

are fixed to specific values as hyperparameters. For (µα, σα) in (2.18), however, we set

the following hierarchical prior distributions:

µα ∼ N (φα, τ
2
α), σα ∼ C+(0, sα), (2.21)

and attempt to estimate them simultaneously with (δ, σϵ) in the Bayesian approach. The

hyperparameters (φα, τ
2
α, sα) in (2.21) are fixed to preset values. In summary, the param-

eters to be estimated in the hierarchical Bayesian analysis of the panel data regression

model (2.13) are

θ = (δ, µα, σα, σϵ) = (α1, . . . , αN , β1, . . . , βK , µα, σα, σϵ).

By applying Bayes’ theorem to the likelihood p(y|Z, δ, σϵ) in (2.16) and the prior

distribution p(θ) in (2.18), (2.19) and (2.21), we obtain the posterior distribution of θ as

p(θ|D) ∝ p(y|Z, δ, σϵ)p(θ), D = (y,Z). (2.22)

Because we cannot analytically evaluate either posterior distribution or posterior statistics

(e.g., mean, median, variance, quantiles), we will employ the Markov chain Monte Carlo

(MCMC) method. In this case, we can derive the conditional posterior distributions for
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all parameters (their derivations are given in Appendix):

δ|D,θ−δ ∼ N
((
σ−2
ϵ Z ′Z +Σ−1

)−1(
σ−2
ϵ Z ′y +Σ−1µ

)
,
(
σ−2
ϵ Z ′Z +Σ−1

)−1
)
, (2.23)

µα|D,θ−µα ∼ N

(
σ−2
α

∑N
i=1 αi + τ−2

α φα

σ−2
α N + τ−2

α

,
1

σ−2
α N + τ−2

α

)
, (2.24)

σ2
α|D,θ−σα , ξα ∼ IG

(
N + 1

2
,

∑N
i=1(αi − µα)

2

2
+

1

ξα

)
, ξα|σα ∼ IG

(
1,

1

σ2
α

+
1

s2α

)
,

(2.25)

σ2
ϵ |D,θ−σϵ , ξϵ ∼ IG

(
T + 1

2
,

∑N
i=1

∑Ti

t=1 e
2
it

2
+

1

ξϵ

)
, ξϵ|σϵ ∼ IG

(
1,

1

σ2
ϵ

+
1

s2ϵ

)
, (2.26)

where θ−a indicates that the parameter a is excluded from θ, and IG(a, b) is the inverse

gamma distribution with the probability density:

p(x|a, b) = ba

Γ(a)
x−(a+1)e−

b
x .

The conditional posterior distributions in (2.23)–(2.26) are standard ones and efficient

random number generation algorithms are available for them. Therefore Gibbs sampling

can be used to generate the parameters θ from the posterior distribution (2.22).

If the individual effects α are regarded as latent variables or missing values in the

model, the Gibbs sampling scheme based on (2.23)–(2.26) is regarded as a SA scheme for

µα. This is because the panel data regression model (2.13) does not depend on µα given

α while the hierarchical prior of α, N (µα, σ
2
α) in (2.21), does depend on µα. In other

words, what (2.1) and (2.2) are to the two-level normal hierarchical model, (2.13) and

N (µα, σ
2
α) are to the panel data regression model. Furthermore, since µα in N (µα, σ

2
α)

is not necessarily equal to zero, the panel data regression model in (2.13) is said to be

in the non-centered parametrization (NCP) form. We use this SA-type Gibbs sampling

scheme based on the NCP form as the benchmark and compare it with the ASIS scheme

for the panel data regression model.

To derive the ASIS scheme for the panel data regression model, we introduce its

centered parametrization (CP) form:

yit = µα + x′
itβ + α̃i + ϵit, α̃i

i.i.d.∼ N (0, σ2
α), ϵit

i.i.d.∼ N (0, σ2
ϵ ), (2.27)

where α̃i can be interpreted as a random effect for individual i in the sense of the tradi-

tional panel data regression analysis. Since the mean of the hierarchical prior N (0, σ2
α) is
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equal to zero, the Gibbs sampling scheme based on the CP form (2.27) is regarded as an

AA scheme for µα. Therefore, by interweaving it with the SA-type Gibbs sampling based

on the NCP form (2.13), we can construct the ASIS scheme for the panel data regression

model.

Note that α̃i and αi have the following relationship:

α̃i = αi − µα, αi = α̃i + µα, i ∈ {1, . . . , N}. (2.28)

With (2.28) and

ỹit = yit − α̃i, i ∈ {1, . . . , N}, t ∈ {1, . . . , T}, (2.29)

(2.27) is rewritten as

ỹit = µα + x′
itβ + ϵit, ϵit

i.i.d.∼ N (0, σ2
ϵ ). (2.30)

Furthermore, by introducing the notations:

ỹ =


ỹ11
...

ỹNT

 , Z̃ =


1 x′

11

... ...

1 x′
NT

 , δ̃ =

µα

β

 ,
(2.30) becomes

ỹ = Z̃δ̃ + ϵ, ϵ ∼ N (0, σ2
ϵI). (2.31)

It is straightforward to show that the prior for δ̃ is

δ̃ ∼ N (µ̃, Σ̃), µ̃ =

φα

µβ

 , Σ̃ =

τ 2α
Σβ

 . (2.32)

Then the conditional posterior distribution of δ̃ is obtained as

δ̃|D,θ−δ

∼ N
((

σ−2
ϵ Z̃

′
Z̃ + Σ̃

−1
)−1(

σ−2
ϵ Z̃

′
ỹ + Σ̃

−1
µ̃
)
,
(
σ−2
ϵ Z̃

′
Z̃ + Σ̃

−1
)−1
)
, (2.33)

in exactly the same manner as (2.23).

Thus the Gibbs sampling scheme with ASIS can be formulated as follows.
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ASIS Scheme for the Panel Data Regression Model� �
Step 1: Given the s-th generated θ(s), apply Gibbs sampling based on the conditional

posterior distributions of (2.23)–(2.26) to generate θ(s+0.5) and compute

α̃
(s+0.5)
i = α

(s+0.5)
i − µ(s+0.5)

α .

Step 2: Given θ(s+0.5), apply Gibbs sampling based on the conditional posterior

distributions of (2.33) and (2.25)–(2.26) to generate (β(s), µ
(s)
α , σ

(s)
α , σ

(s)
ϵ ), and

compute

α
(s)
i = α̃

(s+0.5)
i + µ(s)

α .� �
In Step 1, we generate the individual effects α along with the rest of the parameters in

θ from the posterior distribution in the NCP form. Since it is impractical to draw θ from

the posterior distribution at once, we apply CIS, i.e., a typical Gibbs sampling scheme to

random number generation of θ. At the last stage of Step 1, we transform {αi}Ni=1 into

{α̃i}Ni=1 with (2.28), which is corresponding to Step 2-a in GIS. In Step 2, we generate

(β, µα, σα, σϵ) from the posterior distribution in the CP form where we treat {α̃i}Ni=1 as

fixed values. At the last state of Step 2, we transform {α̃i}Ni=1 back into {αi}Ni=1. This is

optional. If we update {αi}Ni=1 at the very first stage of Step 1, the old {αi}Ni=1 computed

at the last stage of Step 2 in the previous cycle of the ASIS scheme will be overwritten

with the newly generated ones in Step 1 before they are used in sampling of the other

parameters.

2.4 Application to Wage Panel Data

In this section, we apply the ASIS scheme for the panel data regression model, which

we derived in Section 2.3, to real-world data and demonstrate its efficacy and improvement

in the convergence rate.

For this purpose, we employ a data set on individual wages and attributes used in

the study by Vella and Verbeek (1998), which is publicly available in the data archive

of Journal of Applied Econometrics (http://qed.econ.queensu.ca/jae/) , statistical

packages such as R, and popular econometrics textbooks such as Wooldridge (2019).

http://qed.econ.queensu.ca/jae/
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Table 2.1: Variables in Wagepan data set

Variable Description

lwage log of wages

educ years of education

exper years of experience

expersq years of experience squared

black black dummy

hisp Hispanic dummy

hours hours worked per year

married marriage dummy

occ1–occ9 occupation dummies

d81–d87 year dummies

union labor union membership dummy

Since this date set is often called Wagepan (or wagepan) in those archives, we use this

tag to refer to the data set in this section.

Vella and Verbeek (1998) estimated the premium of joining a labor union among young

male workers in the face of declining rates of union membership. In their estimation, they

obtained data on years of education, race, and whether or not the worker was married

in order to control for effects other than union membership or nonunion membership.

Specifically, the variables in Table 2.1 are included in Wagepan. These variables are

cleaned up so that they have no missing values. As a result, we have a balanced panel

data that includes complete records of N = 545 persons for T = 8 years. Thus the total

number of records is 4360.

With Wagepan, we estimate a panel data regression model of the log wage (“lwage” in

Table 2.1). Independent variables in the regression model are those in Table 2.1 except for

the dependent variable “lwage” and a occupation dummy “occ1” to avoid multicollinear-

ity. Thus the number of the independent variables is K = 23. The hyperparameters
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(µβ,Σβ, φα, τ
2
α, sα, sϵ) in the prior distribution are set as follows.

µβ = 0K , Σβ = 100IK , φα = 0, τ 2α = 100, sα = sϵ = 1. (2.34)

For both Gibbs sampling scheme with and without ASIS, we initiate the sampling

chain with 10,000 random number generation as burn-in until the random series of the

parameters become stable. Then we iterate 10,000 random number generation to obtain

the Monte Carlo sample {θ(s)}Ss=1(S = 10, 000) for parameter estimation. The posterior

statistics of the regression coefficient β and other parameters are summarized in Table

2.2. To visualize the convergence of generate random series, we draw time series plots of

random series in Figure 2.1 and their sample autocorrelation plots in Figure 2.2. To save

the space, Figure 2.2 shows the plots only for selected parameters.

The p-value of Geweke (1992)’s convergence diagnostic in Table 2.2 is at least 0.07

or higher for 571 random series of the parameters (the number of the parameters is

N + k + 3 = 545 + 23 + 3 = 571). Thus the convergence diagnostic fails to reject the

null hypothesis of the constant mean at 5% significance level for all parameters in the

panel data regression model. This result indicates that the generated random series in

the ASIS scheme are well stabilized after 10,000 burn-in. We get the same impression

from the time series plots in Figure 2.1. All random series from the ASIS scheme seem

stable and well mixed around the constant level which is corresponding to the posterior

mean. This finding is also consistent with the sample autocorrelation plots in Figure 2.2.

All plots for the ASIS scheme go down to zero fairly quickly.

For the non-ASIS scheme, one the other hand, the convergence diagnostic in Table

2.2 rejects the null hypothesis for many variables including all year dummies. Time series

plots in Figure 2.1 also show wild and often persistent swings in trajectories of generated

random series. These results suggest that the non-ASIS scheme fails to generate stable

random series for some parameters.

Let us pick up a few parameters and examine them in detail. First we examine

two regression coefficients: βeduc for “education” and βunion for “union” as representative

cases. When we compare the posterior mean and the 95% credible interval in Table 2.2,

we do not see any noteworthy difference between the ASIS scheme and the non-ASIS

scheme for both βeduc and βunion, though the posterior mean of βeduc may be a little
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underestimated without ASIS. As for Geweke (1992)’s convergence diagnostic, βunion
passes the convergence diagnostic test with or without ASIS since the p-value is above

the conventional level of significance for both cases. For βeduc, on the other hand, we see a

stark difference between the ASIS scheme and the non-ASIS scheme. The random series

with ASIS seems sufficiently convergent because the p-value exceeds the conventional

level of significance. For the random series without ASIS, however, the p-value is less

than 0.0001, which implies that the null hypothesis of the constant mean is rejected.

This finding is consistent with the sample autocorrelation plots in Figure 2.2. The sample

autocorrelation plot of βunion is almost zero for both cases. For βeduc, however, the sample

autocorrelation plot for the non-ASIS scheme exhibits strongly positive and persistent

autocorrelation while the plot for the ASIS scheme goes down to zero quickly. These

results indicate that the sampling efficiency of the non-ASIS scheme may heavily rely on

the nature of the data we use and it may be a matter of luck for researchers whether

the non-ASIS scheme works or not. Given its consistent performance throughout the

parameters, the ASIS scheme seems more trustworthy than the non-ASIS scheme in the

sense that the former is more likely to produce stable and well mixed random series from

the posterior distribution than the latter.

Next, we examine parameters related to the individual effects: αi (i ∈ {1, . . . , 545}),

µα and σα. Since the panel data regression model has 545 individual effects, we focus only

on α1. In Figure 2.1, we find a noticeable difference in stability for αi and µα. Random

series of αi and µα generated with the non-ASIS scheme exhibit persistent up-and-down

movements and, as a result, they does not seem stationary at all. Furthermore their

movements are more or less synchronized with each other. This pattern of fluctuation

we observe in Figure 2.1 virtually disappears when we apply ASIS. This result strongly

suggests that ASIS improves the efficiency of random number generation of these param-

eters. The sample autocorrelation plots in Figure 2.2 also demonstrate that ASIS can

dramatically reduce autocorrelation and improve mixing of the generated random series.

For σα, however, there is no remarkable difference between the ASIS scheme and the

non-ASIS scheme in either Figure 2.1 or Figure 2.2.

These findings have important implications on how ASIS should be designed. Recall

that the distinction between the NCP form (2.13) and the CP form (2.27) is whether
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µα appear in the regression equation or not. If we try a sampling scheme based on the

NCP form and encounter poor mixing as shown in Figure 2.1 and Figure 2.2, we must

suspect that the latent variables α have little information about µα. Since the sampling

scheme based on the NCP form is a SA, non-informative latent variables lead to a poor

performance in sampling µα (see the discussion about distinction between SA and AA in

Section 2.2). If this is the case, it may be worth trying ASIS on a problematic parameter

(µα in this example) to boost the mixing. Since µα is directly linked to observed dependent

variables yit in the CP form (2.27), we can utilize more information about µα in sampling

with ASIS.
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Table 2.2: Posterior statistics

β ASIS not applied ASIS applied

exper

1.0903 ∗ 10−1 1.1210 ∗ 10−1

[ 7.8653 ∗ 10−2, 1.3927 ∗ 10−1] [ 8.1297 ∗ 10−2, 1.4296 ∗ 10−1]

0.0004 0.7896

expersq

−5.0933 ∗ 10−3 −5.0847 ∗ 10−3

[ −6.4737 ∗ 10−3, −3.7491 ∗ 10−3] [ −6.4634 ∗ 10−3, −3.7328 ∗ 10−3]

0.3643 0.6115

hours∗

−1.5128 ∗ 10−1 −1.4687 ∗ 10−1

[ −1.9534 ∗ 10−1, −1.0796 ∗ 10−1] [ −1.9139 ∗ 10−1, −1.0208 ∗ 10−1]

0.0005 0.4967

educ∗

7.9404 ∗ 10−1 8.4341 ∗ 10−1

[ 5.9500 ∗ 10−1, 9.8375 ∗ 10−1] [ 6.2176 ∗ 10−1, 1.0754]

0.0000 0.2806

union

1.0546 ∗ 10−1 1.0507 ∗ 10−1

[ 7.0247 ∗ 10−2, 1.4015 ∗ 10−1] [ 6.9144 ∗ 10−2, 1.4075 ∗ 10−1]

0.4807 0.4985

married

6.5194 ∗ 10−2 6.4275 ∗ 10−2

[ 3.2305 ∗ 10−2, 9.7504 ∗ 10−2] [ 3.1095 ∗ 10−2, 9.8140 ∗ 10−2]

0.6280 0.7096

race dummies

black

−1.3882 ∗ 10−1 −1.3856 ∗ 10−1

[ −5.0847 ∗ 10−3, 0.0000] [ −2.3338 ∗ 10−1, −4.3749 ∗ 10−2]

0.0000 0.7326

hisp

2.0601 ∗ 10−2 2.3650 ∗ 10−2

[ −6.5229 ∗ 10−2, 1.0764 ∗ 10−1] [ −6.1646 ∗ 10−2, 1.1086 ∗ 10−2]

0.0825 0.3289

occupation dummies

occ2

−2.3871 ∗ 10−2 −2.3619 ∗ 10−2

[ −8.4192 ∗ 10−2, 3.7516 ∗ 10−2] [ −8.3586 ∗ 10−2, 3.6566 ∗ 10−2]

0.0937 0.6773

occ3

−7.3565 ∗ 10−2 −7.2782 ∗ 10−2

[ −1.4389 ∗ 10−1, −4.7938 ∗ 10−3] [ −1.4305 ∗ 10−1, −2.9789 ∗ 10−3]

0.7707 0.9860

occ4

−1.0808 ∗ 10−1 −1.0672 ∗ 10−1

[ −1.6519 ∗ 10−1, −5.0719 ∗ 10−2] [ −1.6396 ∗ 10−1, −4.9217 ∗ 10−2]

0.4829 0.8015

occ5

−4.9790 ∗ 10−2 −4.8114 ∗ 10−2

[ −1.0478 ∗ 10−1, 4.7431 ∗ 10−3] [ −1.0335 ∗ 10−1, 6.9549 ∗ 10−3]

0.4785 0.4729

occ6

−5.9567 ∗ 10−2 −5.8000 ∗ 10−2

[ −1.1581 ∗ 10−1, −3.5336 ∗ 10−3] [ −1.1499 ∗ 10−1, −3.6984 ∗ 10−4]

0.5421 0.9445

occ7

−8.7038 ∗ 10−2 −8.5258 ∗ 10−2

[ −1.4979 ∗ 10−1, −2.3085 ∗ 10−2] [ −1.4812 ∗ 10−1, −2.2730 ∗ 10−2]

0.4890 0.3196

occ8

−1.4486 ∗ 10−1 −1.4413 ∗ 10−1

[ −2.6774 ∗ 10−1, 2.1343 ∗ 10−2] [ −2.6536 ∗ 10−1, −2.0586 ∗ 10−2]

0.8954 0.7886

occ9

−1.2512 ∗ 10−1 −1.2356 ∗ 10−1

[ −1.8797 ∗ 10−1, −6.1441 ∗ 10−2] [ −1.8602 ∗ 10−1, −6.0517 ∗ 10−2]

0.3724 0.8851

Note: Data marked with ∗ are logarithmic.

In each cell, the upper number is the posterior mean, the middle [·,·] is the 95% credible interval and

the lower number is Geweke’s Diagnostics.
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Table 2.2: Posterior statistics (continued)

β ASIS not applied ASIS applied

year dummies

d81

4.9033 ∗ 10−2 4.5404 ∗ 10−2

[ 1.0474 ∗ 10−3, 9.6422 ∗ 10−2] [ −3.1301 ∗ 10−3, 9.4534 ∗ 10−2]

0.0007 0.3584

d82

4.1197 ∗ 10−2 3.4497 ∗ 10−2

[ −2.0760 ∗ 10−2, 1.0412 ∗ 10−1] [ −3.0911 ∗ 10−2, 9.8730 ∗ 10−2]

0.0013 0.9079

d83

3.9470 ∗ 10−2 2.9798 ∗ 10−2

[ −4.1054 ∗ 10−2, 1.2311 ∗ 10−1] [ −5.6492 ∗ 10−2, 1.1424 ∗ 10−1]

0.0000 0.9140

d84

6.5380 ∗ 10−2 5.2504 ∗ 10−2

[ −3.1462 ∗ 10−2, 1.6717 ∗ 10−1] [ −5.2801 ∗ 10−2, 1.5560 ∗ 10−1]

0.0001 0.7074

d85

8.2989 ∗ 10−2 6.6732 ∗ 10−2

[ −3.5523 ∗ 10−2, 2.0430 ∗ 10−1] [ −5.8809 ∗ 10−2, 1.9011 ∗ 10−1]

0.0000 0.7244

d86

1.1823 ∗ 10−1 9.8518 ∗ 10−2

[ −1.8787 ∗ 10−2, 2.5852 ∗ 10−1] [ −4.8764 ∗ 10−2, 2.4322 ∗ 10−1]

0.0003 ∗ 10−2 0.6906

d87

1.6806 ∗ 10−1 1.4541 ∗ 10−1

[ 1.1368 ∗ 10−2, 3.2963 ∗ 10−1] [ −0.6012 ∗ 10−2, 3.1164 ∗ 10−1]

0.0002 & 0.6128

µα

3.5965 ∗ 10−1 1.9439 ∗ 10−1

[ −1.8911 ∗ 10−1, 9.3572 ∗ 10−1] [ −5.0302 ∗ 10−1, 8.7775 ∗ 10−1]

0.0000 0.2866

σα

3.3442 ∗ 10−1 3.3458 ∗ 10−1

[ 3.1244 ∗ 10−1, 3.5859 ∗ 10−1] [3.1213 ∗ 10−1, 3.5871 ∗ 10−1]

0.2984 0.3137

σϵ

3.4922 ∗ 10−1 3.4917 ∗ 10−1

[ 3.4165 ∗ 10−1, 3.5725 ∗ 10−1] [ 3.4135 ∗ 10−1, 3.5700 ∗ 10−1]

0.0376 & 0.0861

Note: Data marked with ∗ are logarithmic.

In each cell, the upper number is the posterior mean, the middle [·,·] is the 95% credible interval and

the lower number is Geweke’s Diagnostics.
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(a) β (ASIS not applied) (b) β (ASIS applied)

(c) α1 − α545 (ASIS not applied) (d) α1 − α545 (ASIS applied)

(e) µα (ASIS not applied) (f) µα (ASIS applied)

Figure 2.1: 10,000 sampling after 10,000 burn-ins
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(g) σα (ASIS not applied) (h) σα (ASIS applied)

(i) σϵ (ASIS not applied) (j) σϵ (ASIS applied)

Figure 2.1: 10,000 sampling after 10,000 burn-ins (continued)
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(a) βunion (ASIS not applied) (b) βunion (ASIS applied)

(c) βeduc (ASIS not applied) (d) βeduc (ASIS applied)

(e) α1 (ASIS not applied) (f) α1 (ASIS applied)

Figure 2.2: Autocorrelation of 10,000 sampling of hierarchical parameters
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(g) σα (ASIS not applied) (h) σα (ASIS applied)

(i) σϵ (ASIS not applied) (j) σϵ (ASIS applied)

Figure 2.2: Autocorrelation of 10,000 sampling of hierarchical parameters (continued)

2.5 Conclusion

In this chapter, we provided the definition and principle of ASIS and examined its

efficacy in hierarchical Bayesian modeling of panel data. For this purpose, we derived a

new ASIS scheme for the panel data regression model with individual effects and applied

it to wage panel data used in the study by Vella and Verbeek (1998).

In the empirical study, we showed that ASIS could improve the efficiency of MCMC

sampling in terms of stability and mixing of generated random series. Without ASIS, due

to strongly positive and persistent autocorrelation in random series, many parameters in

the panel data regression model failed to pass Geweke (1992)’s convergence diagnostic

test even after the burn-in of 10,000 runs. With ASIS, on the other hand, generated

random series are far more stable and their sample autocorrelation tends to decline much

faster. Moreover, although the model consists of near six hundred parameters, all of them

successfully passed the convergence diagnostic test.
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In overall assessment, the ASIS scheme archived efficient sampling for all parameters

while the performance of the non-ASIS scheme was a mixed bag to say the least. Although

our study is limited in terms of the data set we used and the model specification we

examined, the superb performance of ASIS is rather noteworthy, especially given the fact

that the number of parameters (571) is about 13% of the number of observations (4360).

The flexibility is another advantage of ASIS. As we will explore in Chapter 3, the

panel data regression model may have two-way effects (e.g., individual effect and time

effects) or more. It is straightforward to extend the ASIS for such models. See Chapter 3

for more details. Moreover, as Gelfand et al. (1995) proposed, we may extend the ASIS

scheme to mixed effects models in which individual-specific regression coefficients, not

necessarily the constant term, follow a common prior distribution. This extension is also

straightforward.

In addition to the panel data regression model, we may apply ASIS in time series

analysis. For example, Kastner and Frühwirth-Schnatter (2014) proposed an ASIS scheme

to facilitate efficient sampling of the latent log volatility in a stochastic volatility (SV)

model. In Chapter 4, we will develop a new efficient ASIS-based sampling algorithm for

the SV model with heavy-tailed and possibly skewed error and leverage effect. Since this

type of SV model is a nonlinear non-Gaussian state space model, it is hard to generate

stable and well mixed random series of parameters and latent variables from the posterior

distribution. Our new algorithm can handle complexity and scalability of such a complex

model in an efficient manner. See Chapter 4 for more details.
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Chapter 3

Application to Unbalanced Panel

Data: Horse Race Results in Japan

3.1 Introduction

Recently, there has been a worldwide movement to measure the performance of ath-

letes and improve the training methods by analyzing data in sports. Similar move-

ments are being promoted by the public and private sectors in Japan. For example, the

Japan Sports Agency is promoting the formation of the Sports Open Innovation Platform

(SOIP), a testing ground for the growth and industrialization of sports, and supports the

use of data for the development of sports businesses. Additionally, organizations, such

as the Japan Sports Analysts Association and Japan Statistical Society, hold regular

competitions for students to analyze data on various sports such as baseball, soccer, and

rugby, with the aim of promoting academic research on sports statistics and increasing

its recognition in society.

Horse racing is not exempted in the trend to utilize these data. Horse racing in Japan

is attracting a great deal of attention, with ticket sales for races held by the Japan Racing

Association (JRA) exceeding 2.7 trillion yen in 20181. Horse racing’s popularity has led

to the appearance of websites that provide horse racing data and software that analyzes

the data available on these websites to help users purchase the most appropriate horse

racing tickets. DWANGO Co., Ltd holds a horse racing algorithm competition called
1http://company.jra.jp/0000/gaiyo/g_22/g_22_01.pdf.

29
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“Dennou Sho (Spring)” since 2017, and JRA-VAN, a data provision service operated by

JRA, has been provided to participants of this competition, which has begun to encourage

quantitative analysis of horse racing using data.

However, due to the characteristics of horse racing as public gambling, it is undeniable

that data analysis of horse racing tends to be biased toward the viewpoint of “which horse

to bet on to make a profit.” Therefore, to the best of our knowledge, research on horse

racing conducted from the viewpoint of sports statistics in Japan is lacking, and only a

few related studies have been conducted in other countries as well. Therefore, this study

presents a quantitative analysis of the running ability of racehorses in horse racing in

Japan with the aim of pioneering the study of sports statistics in horse racing in Japan.

To measure a racehorse’s running ability, in addition to race time as a measure of leg

speed, various quantitative indicators such as lifetime or annual winning percentage and

prize money can be considered. However, since the winning percentage and prize money

are interpreted as a cumulative index of the relative time difference from other racehorses

in each race, they are indices that depend on the opponents in the race in which the

horse runs. Furthermore, since the prize money of a race depends on the rating of the

racehorses that are eligible to participate (the higher the rating of a race, such as G1, the

higher the prize money tends to be), the prize money earned also depends on the race

type the horse has entered. Contrarily, race times can be regarded as a numerical value

focusing only on individual racehorses, and thus are considered to be appropriate as a

quantitative indicator of a racehorse’s running ability in a race. Therefore, in this study,

“speed” (in meters per second), calculated by dividing the racehorse’s time in each race

by the distance of the race, is used as a quantitative index of the racehorse’s running

ability, and a regression model with this as the explained variable is used to examine the

determinants of the racehorse’s running ability.

The factors affecting the speed of a racehorse as a quantitative index can be broadly

divided into the following three categories: racehorse’s ability; race environment; and

jockey’s ability. Regarding a racehorse’s ability, which can be further divided into the

horse’s observable (i.e., horse, such as the horse’s weight, age, and sex) and unobservable

factors (horse’s own natural constitution and temperament, and its physical condition

before the race.) Contrarily, the race environment includes the type of track surface and
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the condition of the track surface on the day of the race. The observable variables in the

first and second groups can be used as explanatory variables in a regression model with

the horse’s speed as the explained variable. These data are detailed in Section 3.2.

However, unobservable factors that determine a racehorse performance cannot be

included in the regression model as explanatory variables. Therefore, these factors are

added to the regression model as racehorse-specific parameters (hereafter referred to as

racehorse individual effects). This racehorse individual effect corresponds to a random or

fixed effect that appears in the panel data analysis. In a textbook panel data analysis, it

is customary to assume a balanced panel where the length of the sample period (number

of races in the case of horse racing) for each individual is uniform. In reality, however,

some horses continue to run in many races, whereas others retire after only a few races.

Therefore, the number of races run during the sample period varies greatly from horse

to horse; thus, the run data of racehorses result in an unbalanced panel. Of course,

it would be possible to construct a model that explicitly incorporates the mechanism of

missing data due to cessation of running2, but this would require estimating the racehorse

survival time model as well, making the model considerably more complex. Combined

with the limitations of the available data, this approach would be impractical. Therefore,

in this study, we assume that the “cessation of running” associated with the racehorse

retirement occurs randomly and independently, and we aim to avoid problems associated

with panel data incompleteness by applying the method of hierarchical Bayesian analysis

to the estimation of individual effects of racehorses.

There is no disagreement that the third factor, the jockey’s ability, is extremely im-

portant in determining the winner of a horse race. Horse racing is a competition in which

jockeys compete for position on a racehorse. In other words, horse racing is a sport sim-

ilar to motor sports, except that the jockeys ride horses, which are living animals. The

jockey controls the racehorse to run at optimal pace, taking into account the horse’s tem-

perament, horse’s physical condition on the day of the race, and condition of the course

where the race is being held. This is the jockey’s role during a race; it is the reason why

horse racing is not just a simple game between horses, but a sophisticated sport in which

2The “cessation of running” here does not mean a temporary cessation of running, but rather a

complete cessation of the racehorse’s activity.
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humans engage in intense games of strategy and skill while controlling a racehorse as a

vehicle.

However, unlike motor sports such as four-wheeled vehicle, two-wheeled vehicle, boat,

and auto racing that are also public gambling, racehorse “vehicles” are not man-made

objects but living organisms, and there is a large variation in running performance among

individuals3. Moreover, racehorses that are currently considered competitive tend to be

assigned to jockeys with excellent past records and who are considered to be excellent jock-

eys. Therefore, if we use winning percentage and prize money as a measure of a jockey’s

ability, it becomes difficult to distinguish whether a high winning percentage and high

prize money are achieved due to the individual jockey’s superior ability, or whether the

jockey is simply aided by the ability of the racehorse he/she rides. Therefore, this study

aimed to measure the jockey’s ability to control a racehorse by estimating the jockey’s

contribution to the speed recorded by the ridden racehorse in the race. Specifically, an

unobserved parameter unique to the jockey (hereafter referred to as the jockey’s individ-

ual effect) is added as the jockey’s contribution to the racehorse’s speed in the incomplete

panel data regression model with the racehorse’s speed as the explained variable, and this

individual effect is estimated simultaneously with the racehorse’s individual effect using

a hierarchical Bayesian analysis. The jockey’s individual effect is estimated simultane-

ously with the racehorse’s individual effect using a hierarchical Bayesian analysis. In

other words, the jockey’s individual effect in this study is interpreted as the increase or

decrease in the speed of a racehorse caused by a particular jockey’s ride provided that all

other factors, including racehorse ability and track condition, remain the same (ceteris

paribus)4. However, since the individual effects of racehorses are already included in the

regression model, including all jockeys’ individual effects in the same model would lead

to complete multicollinearity, making the model estimation impossible. To avoid this

problem, in this study, the jockey’s individual effect of Yutaka Take5 is omitted from the

3In motorsports, it is customary to establish detailed rules and restrictions to equalize the performance

of vehicles among riders and teams as much as possible.
4In this study, for the sake of simplicity, the interaction between the jockey’s individual effects and

racehorse’s individual effects (i.e., the compatibility between the jockey and racehorse) is ignored.
5Yutaka Take is, at the time of writing this study, the record holder for the most wins and most rides

in JRA’s history, and is onamong the best jockeys who can bring out the best in racehorses in the world
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model. Then, the jockey’s individual effect estimated based on Yutaka Take is interpreted

as the difference in ability of the jockeys in question compared to Yutaka Take.

In summary, the model underlying the empirical analysis in this study is an unbal-

anced panel data regression model with the racehorse speed in each race as the explained

variable and the following items as the determinants of the racehorse speed: racehorse’s

individual effect; jockey’s individual effect (relative ability difference between the jockey

and Yutaka Take); observed racehorse characteristics; and observed environmental char-

acteristics of the race. The estimation of this regression model applies the hierarchical

Bayesian analysis method. As explained in Section 3, the model itself is standard; thus it

is relatively easy to generate unknown parameters such as all individual effects and coef-

ficients of explanatory variables from the posterior distribution by means of Gibbs sam-

pling. Although the model itself is standard, the large number of racehorses and jockeys

in the analysis makes stable estimation difficult with conventional methods. Therefore,

this study incorporates a sampling technique called Ancillarity-Sufficiency Interweaving

Strategy (ASIS) to improve sampling efficiency, which enables efficient estimation despite

the fact that the data itself is difficult to estimate using conventional methods. Since

a large number of racehorse and race environmental characteristics are candidates for

explanatory variables to be included in the regression model, the model selection crite-

rion Widely Applicable Information Criterion (WAIC) proposed by Watanabe (2010) was

used to select a combination of these variables.

Silverman (2012) is an example of a regression model that uses hierarchical Bayesian

analysis to explain racehorse speed. The fundamental difference between Silverman

(2012) and this study, with the exception of the data used in this study, is that it focuses

its empirical analysis on measuring racehorses and jockeys the performances, whereas Sil-

verman (2012) focuses on measuring the performance of race winners. Silverman (2012)

claims that the predicted success rate of the first-place finisher in the estimated model

is 21.63%, which is better than the predicted success rate when the horses are chosen

at random (7.14%–12.5%). This result is superior to that of random selection (7.14%–

12.5%). Outside of Japan, more research is being conducted on race winners rather than

racehorse speed. For example, Sung and Johnson (2007) use conditional logit models

of horse racing in Japan.
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to analyze race winners in British horse racing. Meanwhile, Edelman (2007), Lessmann

et al. (2007), Lessman et al. (2009), Chung et al. (2017), and others have attempted

to predict racehorse winners using support vector machines (SVM). Benter (2008) pro-

posed using conditional logistic regression models for horse racing analysis, and Silverman

and Suchard (2013) developed their model by including parameters inspired by the Cox

proportional hazards model. In addition, Lessmann et al. (2010) used a random forest

algorithm to predict the winner of a race. However, to the best of our knowledge, no

academic research has been conducted using scientific statistical methods on data from

horse racing in Japan. Additionally, only Silverman (2012) had employed the hierarchi-

cal Bayesian analysis to examine the determinants of racehorse’s speed, and ours is the

first study to take into account jockey’s individual effect. Thus, the contribution of this

study is not insignificant. Furthermore, it should be emphasized that the data used in

this study were obtained by the authors by scraping from “netkeiba.com,” a website that

provides horse racing information. Considering that similar data are not available in a

form that can be used for statistical analysis, the findings of the empirical study in this

study are valuable.

Finally, this chapter is organized as follows. Section 3.2 describes the horse racing data

used in this chapter and presents descriptive statistics. Section 3.3 describes the panel

data regression model used to explain racehorse speed and the hierarchical Bayesian

analysis method used to estimate it. Section 3.4 presents the detailed results of the

analysis, followed by a summary and discussion of the findings from the empirical analysis

in Section 3.5.

3.2 Data

First, this section describes the details of the horse race data used in this study.

We analyzed 1800-m races held by JRA between 2016 and 2018, excluding steeplechase

races. The 1800-m racefs were chosen because they had the largest number of race records

among the races held by JRA during the same period. These records were obtained by

scraping from netkeiba.com (https://db.netkeiba.com/), a horse racing information

site operated by Net Dreamers, Inc. Before screening, the total number of entries was
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32,667, with 11,198 racehorses and 224 jockeys. However, if racehorses and jockeys who

ran extremely infrequently, or if race records that seemed to have had some kind of trouble

(e.g., extremely long running times) were included, they would become outliers, and it

would be difficult to conduct an accurate analysis. Therefore, we screened the data by

removing records that fulfilled at least one of the following three conditions: Condition

1, records of entries for jockeys who have ridden <10 times in 1800-m races; Condition 2,

records of racehorses that has raced <3 times in 1800-m races; and Condition 3, records

of runs by horses whose speed is in the bottom 5% of all runs. As a result, the number

of racehorses to be eligible for analysis was 4,063, excluding 7,135 racehorses that met

conditions 1–3 above from 11,198. Similarly, the remaining 140 jockeys were selected for

analysis, excluding 83 of the 224 jockeys who met conditions 1–3. Finally, 22,183 race

records were used for analysis. In the screening process, the number of rides by jockeys

was selected before the number of rides by racehorses, resulting in 10 jockeys having fewer

than 10 rides in the data selected.

For a bird’s-eye view of the data, Figure 3.3 shows scatter plots of the mean and

variance of the speeds of 4,063 racehorses and 141 jockeys. Figure 3.3(a) shows the

racehorse speed, which can be roughly categorized into two based on the average of 16.2.

The left cluster is for racehorses that mainly run on dirt courses, whereas the right cluster

is for racehorses that mainly run on turf courses. The racehorses with the largest variance

are those with an average of 16.2, but these racehorses run on both turf and dirt courses,

and we can assume that the variance is greatly influenced by the course and the condition

of the racehorses and jockeys. Next, we examine the relationship between the mean and

variance of speed in terms of the jockeys. Figure 3.3(b) shows a scatter plot of the mean

and speed of 141 jockeys, and it can be seen that none of them have an extreme small

variance compared to the racehorses. The scatterplot of the jockeys shows the left–right

divergence observed in the scatterplot of the racehorses, indicating that the jockeys ride

on both turf and dirt courses equally.
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Mean of each horserace’s speed
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(a) Mean and variance of speed of 4,063 race-

horses

Mean of each jockey’s speed
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(b) Mean and variance of speed of 141 jockeys

Figure 3.1: Mean and variance of racehorse and jockey speed

The explained variable in the regression model, the racehorse speed, is the speed per

second (the distance of the race (1800 m) divided by the time (seconds)). Since it is

inappropriate for speed to be non-negative, the speed as the explained variable is log-

transformed to impose a non-negative constraint when estimating, and the regression

coefficient of each explanatory variable is interpreted as the ratio of its effect on speed.

As explanatory variables for the regression model, we use the following features from the

netkeiba.com database that are expected to affect racehorse speed in the race. Table 3.1

summarizes the descriptive statistics (mean, standard deviation, median, maximum, and

minimum) for each feature.

1. Features of a racehorse

• Horse weight (kg)

• Gain or loss in horse weight (kg)

• Horse age (years)

• Horse age squared

• Mare dummy (mare = 1)

• Gelding dummy (castrated stallion = 1)

• Trainer’s evaluation (4 levels: A, B, C, D)
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2. Environmental features of the run

• weight to carry (weight to be borne by jockey, saddle, etc., in kg)

• outer track dummy (run on outer track = 1)

• turf course dummy (run on turf course = 1)

• Racecourse dummies (10 locations: Tokyo, Chukyo, Nakayama, Kyoto, Hako-

date, Kokura, Niigata, Sapporo, Fukushima, and Hanshin)

• track index6

• race index (average time excluding racehorse i record in race it)

In preparation for a hierarchical Bayesian analysis, let us consider the relationship

between racehorse speed and each of the explanatory variables as a preliminary analysis.

For this purpose, we created a correspondence table (Table 3.2) between the frequency

distribution of each explanatory variable and the average racehorse speed within the class.

Figure 3.2 shows the average speed for each quintile of the quantitative explanatory

variables. Table 3.2 shows the average speed within each category for the qualitative

explanatory variables. As shown in Table 3.2, we can guess in advance what effect

the characteristics related to the racehorse and race can have on racehorse speed as an

explanatory variable in the regression model.

Table 3.1: Descriptive statistics for dependent and explanatory variables

Mean Standard Deviation Median Max Min

speed (m/s) 15.9634 0.4913 15.8730 17.2249 15.0250

horse weight 475.6023 28.9928 476 598 378

gain or loss in horse weight 0.3999 6.1309 0 40 −38

Horse age 3.6850 1.2565 3 10 2

Horse age squared 15.1577 11.0182 9 100 4

Weight to carry 54.9787 1.5463 55 60 49

Track index −1.8314 10.7431 −3 71 −30

Race index 15.9210 0.5000 15.8195 17.1227 14.6559

6Track index is a numerical measure of the track condition. The hard-to-run condition is indicated

by a positive value and the easy-to-run condition is indicated by a negative value.
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Race index
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Figure 3.2: Frequency distribution of explanatory variables and within-class means of

racehorse speed (quantitative explanatory variables)

Table 3.2: Frequency distribution of explanatory variables and within-class means of

racehorse speed (qualitative explanatory variables)

Frequency Mean

Dummy variable 1 0 1 0

Mare 7686 14497 16.0091 15.9391

Gelding 839 21344 16.0208 15.9611

Outer course 3068 19115 16.5636 15.8670

Turf course 8174 14009 16.4876 15.6575

Trainer evaluatoin A B C D

Frequency 378 12789 8281 735

Mean 16.3583 16.0288 15.8604 15.7824

Racetrack Tokyo Chukyo Nakayama Kyoto Hakodate Kokura Niigata Sapporo Fukushima Hanshin

Frequency 1450 1775 4622 4469 490 970 2734 415 833 4425

Mean 16.5103 15.6112 15.6975 15.9365 16.4354 16.5154 15.9254 16.2837 16.4202 15.9644
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Horse weight Figure 3.2 shows that lighter horses tend to run faster. Therefore, the

regression coefficient of horse weight is expected to be negative in the regression

model.

Gain or loss in horse weight There is no clear relationship between horse weight and

speed in Figure fig:q5-quantitative-predictor. However, the gain or loss in horse

weight is thought to be related to the training and diet menu of the racehorse. It

is natural to assume that racehorses that gained weight strengthened their instan-

taneous power, whereas those that lost weight strengthened their endurance, and

that this affected the unobserved abilities of the racehorses, thus we add gain or

loss in horse weight as an explanatory variable.

Horse age In Figure 3.2, we found that speed generally tends to increase as horse age

increases, but it decreases at later ages. At a closer look, we can observe that speed

tends to increase until the horse reaches 8 years of age. It is natural to assume that

racehorses grow up to a certain age, but after reaching a certain age, their ability

as racehorses diminishes due to physical strength decline caused by aging. Gramm

and Marksteiner (2010) report that the average speed of racehorses increases until

they reach the age of four, but after that, the average speed gradually slows down.

Their study used data from U.S. horse races, and it is thought that the absolute

running ability of racehorses begins to decline at that age because the load weight

is smaller after 4 years and 8 months of age due to the load weight regulations of

U.S. horse races. Therefore, the horse age squared is also added as an explanatory

variable in the analysis. This allows us to estimate the age at which a racehorse’s

ability begins to decline.

Weight to carry, mare dummy, gelding dummy The weight to carry in Figure 3.2

must be considered together with the mare and gelding dummies in Table 3.2. In

JRA races, the weight to be borne by the jockey, saddle, etc. is regulated, and

although this regulated weight varies depending on the type of race, mares and

gelding generally bear a lighter weight than stallions. Therefore, contrary to our

intuition, the higher the weight to carry in Figure 3.2, the higher the speed of the

runners. In Table 3.2, the average speed of the stallions and gelding is lower than
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that of the mares and gelding combined. This result may be due to the influence

of the individual factors on each other. Hence, it would be significant to add these

variables to the regression model to elucidate the influence of the individual factors.

track index This is an index published by netkeiba.com. The smaller this value is, the

better the race time is expected to be. Figure 3.2 shows that the smaller the value

of the track index, the faster the horse actually runs. Since we expect horses to

run more easily when track conditions are better, and consequently to run faster,

we would expect the regression coefficient to be negative when the track index is

added as an explanatory variable.

Race index The race index is an index original to this study and is the average time

of race t excluding racehorse i. The race index is an explanatory variable for the

hypothesis that the racehorse speed in a given race is influenced by the speed of

other runners. The regression coefficient of the race index is expected to be positive

because the racehorse speed is not only affected by the speed of other runners, but

also because the race with the highest average speed is likely to be run by the best

runners. Figure 3.2 shows that the average speed clearly increases as the race index

increases.

Outer course dummy This dummy variable indicates that the racehorse raced on the

outer course of the racetrack. Generally, each racetrack has two courses, with one

course encompassing the other course in a double circle-like structure. The outer

course has a gentler curve than the inner course, and the deceleration at curves is

relatively small, thus it is considered easier to run faster on the outer course. In

fact, Table 3.2 shows that the horses that ran the outer course were able to run

faster than those that ran the inner course. Therefore, the regression coefficient for

the outside track dummy is expected to be positive.

Turf course dummy This dummy variable indicates the race was held on a turf course.

There are two types of courses: turf and dirt courses. Horses tend to run faster on

turf courses than on dirt courses. In fact, Table 3.2 shows that horses that ran on

the turf course had a higher average speed than those that ran on the dirt course.
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Therefore, the regression coefficient for the turf course dummy is expected to be

positive.

Trainer evaluation This variable is the trainer’s evaluation of the condition of the

racehorses in each race on a four-point scale of A, B, C, and D. The data obtained

include some cases without trainer evaluation, but the number of such cases was

only 14, so the corresponding race data are excluded. In Table 3.2, the average

speeds for the four levels, A, B, C, and D, are tabulated. Although the trainer

evaluation is a subjective evaluation, Table 3.2 shows that the speed decreases as

the trainer’s evaluation decreases from A, B, C, to D. This trend suggests that

the trainer evaluation may be capturing an aspect of the horse’s ability that is

not observed as an external numerical value. Therefore, we add dummy variables

corresponding to the three levels of evaluation, A, B, and C, to the regression model.

In this way, it would be possible to test the validity of the trainer evaluation based

on D.

The track index is standardized to have a mean of 0 and a variance of 1 according to

Silverman (2012). The positive quantitative variables, including horse weight, weight to

carry, and race index, are logarithmized.

3.3 Hierarchical Bayesian Modeling

In this section, we introduce the panel data regression model of racehorse speed and

explain the procedure for its hierarchical Bayesian analysis. Suppose that N racehorses

ran and M jockeys rode in all the horse races held during the sample period, in the data

used in this study, N = 4, 063 and M = 140 (excluding Yutaka Take). Let i ∈ {1, . . . , N}

denote the index of the racehorse and j ∈ {1, . . . ,M} denote the index of the jockey.

Then, let i be a racehorse that ran Ti times in the sample period, and let t ∈ {1, . . . , Ti}

be the index of each race.

Additionally, we introduce the following variables.

• yit — speed of racehorse i in race t (m/s)
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• dijt — jockey dummy

dijt =

1, (jockey j rides racehorse i in race t.);

0, (otherwise).

• xit — A K × 1 vector of features for racehorse i and horse condition in race t (this

contains the explanatory variables introduced in Section 3.2)

Then, consider the regression model in which the error term ϵit follows a normal distri-

bution N (0, σ2
ϵ ) for these variables.

yit = αi +
M∑
j=1

γjdijt + x′
itβ + ϵit, ϵit

i.i.d.∼ N (0, σ2
ϵ ), t ∈ {1, . . . , Ti}. (3.1)

The αi in (3.1) is interpreted as the racehorse’s individual effect, which cannot be ex-

plained by other factors. Contrarily, γj is the part of the racehorse’s speed that is

increased when the jockey j exceeds the performance of the reference jockey (Yutaka

Take in this study) (when γj > 0) or decreased when the jockey’s performance is below

(when γj < 0). Since the right-hand side of (3.1) controls for racehorse’s individual effect

and racehorse and track conditions, γj is interpreted as the ability difference between the

jockey j and reference jockey. Finally, β is a vector of regression coefficients for K × 1,

each of which is interpreted as the marginal effect of the variables in xit on the racehorse

speed.

Here, let us define vectors and matrixes as follows.

yi =


yi1
...

yiTi

 , Di =


di11 · · · diM1

... . . . ...

di1Ti
· · · diMTi

 , X i =


xi1

...

xiTi

 ,

ϵi =


ϵi1
...

ϵiTi

 , γ =


γ1
...

γM

 .
Then, the regression model of (3.1) corresponding to the run record of racehorse i can be

summarized as

yi = αi1Ti
+Diγ +X iβ + ϵi, ϵi ∼ N (0Ti

, σ2
ϵITi

). (3.2)
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Here 1Ti
is a Ti × 1-vector whose elements are all ones, 0Ti

is a Ti × 1-vector whose

elements are all zeros, and ITi
is a Ti-dimensional unit matrix.

Lastly, we define

y =


y1

...

yN

 , U =


1T1

. . .

1TN

 , D =


D1

...

DN

 , X =


X1

...

XN

 ,

Z =
[
U D X

]
, ϵ =


ϵ1
...

ϵN

 , α =


α1

...

αN

 , δ =


α

γ

β

 ,
then the regression model for all N racehorses can be summarized as

y = Uα+Dγ +Xβ + ϵ

= Zδ + ϵ, ϵ ∼ N
(
0T , σ

2
ϵIT

)
, T =

N∑
i=1

Ti.
(3.3)

Next, we set up the posterior distribution to conduct a hierarchical Bayesian analysis

on the regression model in (3.1). Since the conditional distribution of y under a given Z

in (3.3) is N (Zδ, σ2
ϵI), the likelihood of the unknown parameter (δ, σϵ) is

p(y|Z, δ, σϵ) ∝ (σ2
ϵ )

−T
2 exp

[
− 1

2σ2
ϵ

(y −Zδ)′(y −Zδ)

]
(3.4)

∝ (σ2
ϵ )

−T
2 exp

[
−
∑Ti

i=1 e
2
it

2σ2
ϵ

]
, (3.5)

eit = yit − αi −
M∑
j=1

γjdjit − x′
itβ.

Then, the following prior distribution is assumed for the parameter (δ, σϵ).

δ ∼ N (µ,Σ) , µ =


µα1N

µγ1M−1

µβ

 , Σ =


σ2
αIN

σ2
γIM−1

Σβ

 , (3.6)

σϵ ∼ C+(0, sϵ). (3.7)

Here C+(0, σϵ) is the half-Cauchy distribution with the probability density:

p(σϵ|sϵ) =
2sϵ

π(σ2
ϵ + s2ϵ)

, σϵ > 0, sϵ > 0.
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Since this model is a hierarchical Bayesian model, we used the half-Cauchy distribution

recommended by Gelman (2006) for hierarchical models. Note that the prior distribution

in (3.6) is equivalent to assuming

αi
i.i.d.∼ N (µα, σ

2
α), i ∈ {1, . . . , N},

γj
i.i.d.∼ N (µγ, σ

2
γ), j ∈ {1, . . . ,M},

β ∼ N (µβ,Σβ).

(3.8)

If we regard racehorse i’s individual effect αi and jockey j’s individual effect γj as

random effects in (3.8), they can be interpreted as randomly generated from a normal

distribution of N (µα, σ
2
α) and N (µγ, σ

2
γ). Contrarily, if αi and γj are treated as fixed

effects, N (µα, σ
2
α) and N (µγ, σ

2
γ) can be interpreted as a common prior distribution of

the fixed effects as unknown parameters. Either interpretation does not change the fact

that neither αi nor γj are unobservable parameters in the Bayesian approach and does

not affect the resulting posterior distribution of individual effects as parameters.

In the prior distribution of the parameter (δ, σϵ), (µβ,Σβ) in (3.6) and sϵ in (3.7) are

fixed to a specific value as hyperparameters. However, for (µα, µγ, σα, σγ) in (3.6), we set

the following hierarchical prior distribution

µα ∼ N (φα, τ
2
α), µγ ∼ N (φγ, τ

2
γ ),

σα ∼ C+(0, sα), σγ ∼ C+(0, sγ),
(3.9)

and attempt to estimate it simultaneously with (δ, σϵ) using a Bayesian approach.

The name hierarchical Bayesian analysis is derived from the use of this hierarchical

prior distribution. One advantage of hierarchical Bayesian analysis is that (µα, µγ, σα, σγ)

in the prior distribution (3.8) are not fixed as hyperparameters, but can be estimated si-

multaneously with other parameters. Another advantage of this analysis is that the

shrinkage method can be used to stabilize estimation of the individual effects. (φα, φγ, τ
2
α, τ

2
γ , sα, sγ)

in (3.9) is fixed to a specific value as a hyperparameter.

From the above explanation, we can conclude that the parameters to be estimated

in the hierarchical Bayesian analysis of the regression model (3.1) for the ability of the
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racehorse and jockey are summarized as

θ = (δ, µα, µγ, σα, σγ, σϵ)

= (α1, . . . , αN , γ1, . . . , γM , β1, . . . , βK , µα, µγ, σα, σγ, σϵ).

However, since the posterior distribution

p(θ|D) ∝ p(y|Z, δ, σϵ)p(θ), D = (y,Z), (3.10)

of parameter θ, consisting of the likelihood p(y|Z, δ, σϵ) of (3.4) and the prior distribution

p(θ) of (3.6), (3.7) and (3.9), cannot be evaluated analytically, we will proceed with the

hierarchical Bayesian analysis by using the Markov chain Monte Carlo (MCMC) method.

The conditional posterior distribution of each parameter is derived as follows.

δ|D,θ−δ ∼ N
((
σ−2
ϵ Z ′Z +Σ−1

)−1(
σ−2
ϵ Z ′y +Σ−1µ

)
,
(
σ−2
ϵ Z ′Z +Σ−1

)−1
)
, (3.11)

µα|D,θ−µα ∼ N

(
σ−2
α

∑N
i=1 αi + τ−2

α φα

σ−2
α N + τ−2

α

,
1

σ−2
α N + τ−2

α

)
, (3.12)

µγ|D,θ−µγ ∼ N

(
σ−2
γ

∑M
j=1 γi + τ−2

γ φγ

σ−2
γ M + τ−2

γ

,
1

σ−2
γ M + τ−2

γ

)
, (3.13)

σ2
α|D,θ−σα , ξα ∼ IG

(
N + 1

2
,

∑N
i=1(αi − µα)

2

2
+

1

ξα

)
, ξα|σα ∼ IG

(
1,

1

σ2
α

+
1

s2α

)
,

(3.14)

σ2
γ|D,θ−σγ , ξγ ∼ IG

(
M + 1

2
,

∑M
j=1(γj − µγ)

2

2
+

1

ξγ

)
, ξγ|σγ ∼ IG

(
1,

1

σ2
γ

+
1

s2γ

)
,

(3.15)

σ2
ϵ |D,θ−σϵ , ξϵ ∼ IG

(
T + 1

2
,

∑N
i=1

∑Ti

t=1 e
2
it

2
+

1

ξϵ

)
, ξϵ|σϵ ∼ IG

(
1,

1

σ2
ϵ

+
1

s2ϵ

)
, (3.16)

where θ−a indicates that the parameter a is excluded from θ, and IG(a, b) is the inverse

gamma distribution

p(x|a, b) = ba

Γ(a)
x−(a+1)e−

b
x .

The derivations of these conditional posterior distributions are explained in Appendix.

In the conditional posterior distribution of (3.14)–(3.16), new latent variables (ξα, ξγ, ξϵ)

are introduced. This is because x ∼ C+(0, a) is expressed as

x2|z ∼ IG
(
1

2
,
1

z

)
, z ∼ IG

(
1

2
,
1

a2

)
, (3.17)
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and is used to derive (3.14). See Appendix for more details.

The conditional posterior distributions in (3.11)–(3.16) have all known efficient ran-

dom number generation algorithms, such as the normal and inverse gamma distributions.

Therefore, Gibbs sampling can be used to generate parameter θ from the posterior distri-

bution. However, when we applied simple Gibbs sampling from the conditional posterior

distribution of (3.11)–(3.16) to the running record data used in this study, the convergence

of the random series tended to take a long time. Therefore, we consider the racehorse’s

individual effect α and the jockey’s individual effect γ as parameters, and apply the ASIS

proposed by Yu and Meng (2011) to improve the efficiency of random number generation.

To demonstrate the ASIS algorithm used in this study, we first assume that (α,γ, µα, µγ)

are generated by Gibbs sampling, and consider the following transformation.

α̃i = αi − µα, i ∈ {1, . . . , N},

γ̃j = γj − µγ, j ∈ {1, . . . ,M},

ỹit = yit − α̃i −
M∑
j=1

γ̃jdjit, t ∈ {1, . . . , Ti}.

(3.18)

Then, we use these to rewrite (3.1) as

ỹit = µα + µγ d̃it + x′
itβ + ϵit, ϵit

i.i.d.∼ N (0, σ2
ϵ ), d̃it =

M∑
j=1

djit, (3.19)

where d̃it is a dummy variable interpreted as

d̃it =

0, (Yutaka Take rides racehorse i in race t);

1, (otherwise).

Furthermore, by introducing the notation

ỹ =


ỹ11
...

ỹNTN

 , Z̃ =


1 d̃11 x′

11

... ... ...

1 d̃NTN
x′
NTN

 , δ̃ =


µα

µγ

β

 ,
(3.19) becomes

ỹ = Z̃δ̃ + ϵ, ϵ ∼ N (0T , σ
2
ϵIN). (3.20)
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Then the conditional posterior distribution of δ̃ is obtained as

δ̃|D,θ−δ ∼ N
((

σ−2
ϵ Z̃

′
Z̃ + Σ̃

−1
)−1(

σ−2
ϵ Z̃

′
ỹ + Σ̃

−1
µ̃
)
,
(
σ−2
ϵ Z̃

′
Z̃ + Σ̃

−1
)−1
)
, (3.21)

µ̃ =


φα

φγ

µβ

 , Σ̃ =


τ 2α

τ 2γ

Σβ

 ,
by exactly the same procedure with (3.11): thus, the Gibbs sampling with the addition

of ASIS can be summarized as follows7.

Step 1 Given the sth generated θ(s), apply Gibbs sampling based on the conditional

posterior distribution of (3.11)–(3.16) to generate θ(s+0.5) and denote

α̃
(s+0.5)
i = α

(s+0.5)
i − µ(s+0.5)

α , γ̃
(s+0.5)
j = γ

(s+0.5)
j − µ(s+0.5)

γ .

Step 2 Given θ(s+0.5), apply Gibbs sampling based on the conditional posterior distri-

bution of (3.21) and (3.14)–(3.16) to generate (β(s), µ
(s)
α , µ

(s)
γ , σ

(s)
α , σ

(s)
γ , σ

(s)
ϵ ), and

denote

α
(s)
i = α̃

(s+0.5)
i + µ(s)

α , γ
(s)
j = γ̃

(s+0.5)
j + µ(s)

γ ,

In this study, we use this Gibbs sampling to generate a Monte Carlo sample {θ(s)}Ss=1

of θ from the posterior distribution, and analyze the hierarchical Bayesian analysis of a

racehorse’s running ability and a jockey’s ability.

However, as shown in Section 3.2, there are multiple candidate explanatory variables

that should be included in the regression model of (3.1), and it is necessary to determine

which variables should be included in the model in some way. In this study, the WAIC

proposed by Watanabe (2010) is used as a model selection criterion for variable selection.

According to Gelman et al. (2014), the WAIC for (3.1) is calculated as follows

WAIC = −2(lppd− pWAIC),

lppd =
N∑
i=1

Ti∑
t=1

log

(
1

S

S∑
s=1

p(yit|θ(s))

)
,

pWAIC =
N∑
i=1

Ti∑
t=1

1

S − 1

S∑
s=1

(
log p(yit|θ(s))− 1

S

S∑
s=1

log p(yit|θ(s))

)2

,

(3.22)

7In short, the prior distribution of δ̃ is N (µ̃, Σ̃).
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where p(yit|θ(s)) is calculated as the probability density of yit (speed of racehorse i in

race t) in (3.1) using θ generated by the sth (after burn-in) Gibbs sampling. Among the

characteristics introduced in Section 3.2 regarding the racehorse and the environment in

the race, the four variables “horse age,” “horse age squared,” “weight to carry,” “turf

course dummy” and “racetrack dummy” are always included in the regression model,

whereas “gain or loss in horse weight,” “track index,” “race index,” “outside track

dummy,” “gelding dummy,” and “trainer evaluation dummy.” In other words, Gibbs

sampling is performed for 26 = 64 regression models, and WAIC is obtained from the

resulting 64 sets of Monte Carlo samples {θ(s)}Ss=1 using (3.22), then the combination of

explanatory variables with the smallest WAIC value is adopted as the optimal regression

model.

3.4 Results and Discussion on Empirical Analysis

To present the results of the hierarchical Bayesian analysis of racehorse running ability

and jockey ability conducted with the data presented in Section 3.2, we first describe the

detailed settings of the prior distribution and the Gibbs sampling used in this study.

The hyperparameters (µβ,Σβ, φα, φγ, τ
2
α, τ

2
γ , sα, sγ, sϵ) of the prior distribution are set as

follows.

µβ = 0K , Σβ = 100IK , φα = φγ = 0, τ 2α = τ 2γ = 100,

sα = sγ = sϵ = 1.
(3.23)

The Gibbs sampling procedure begins with 2,000 random number generation as burn-

in until the random series of parameters become stable, followed by 10,000 random num-

ber generation to obtain the Monte Carlo sample {θ(s)}Ss=1 used for parameter estimation

and WAIC calculations. That is, S = 10, 000. As a result of the analysis, the inefficiency

factors are in the single digits for all of the generated random number series (mostly < 2),

and the results of Geweke’s convergence diagnostic proposed by Geweke (1992) are also

good, exceeding 0.2 for all variables.

The WAICs are calculated using this Monte Carlo sample, and as shown in Table

3.3, the results show that the regression model with all explanatory variables is the
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best. Although the regression coefficients for gelding dummies and weight to carry are

not significant because they include 0 in the 95% credible interval, the model including

these variables is selected as the best. The second and third models selected are regres-

sion models that excluded the gelding dummy and gain or loss in horse weight from the

explanatory variables, respectively. Surely, the exclusion of the gelding dummy is under-

standable, given that a gelding is a castrated stallion, and its inborn physical abilities

do not change. Moreover, since gain or loss in horse weight has nothing to do with the

racehorse’s intrinsic ability, it is reasonable to exclude this variable.

The posterior statistics of the regression coefficient β and other parameters for the top

three models are summarized in Table 3.3. In Table 3.3, there is no remarkable difference

in the posterior statistics for each parameter among the models. Therefore, Model 1,

which has the lowest WAIC, is used to analyze the racehorse’s and jockey’s performance.

Our first interest is in regression coefficient β: thus, in turn, we will look at the

posterior statistics of β summarized in Table 3.3. Note that in the following discussion,

the significance of a regression coefficient means that the 95% credible interval does not

contain zero, and a significantly positive (negative) regression coefficient means that the

95% credible interval contains only positive (negative) values.

First, we discuss the explanatory variables for the physical characteristics of race-

horses. The regression coefficient of horse weight is significantly positive. This indicates

that heavy racehorses, which are thick and muscular, are more suitable for 1800-m races

than light racehorses, which are thin and lean. This result is contrary to the prediction

presented in Section 3.2, but this may be interpreted as a result of the fact that racehorses

competing in races with speedier conditions tend to be lighter in weight. For example, as

described below, the regression coefficients for the turf and outer courses are significant

and positive, but the racehorses that participated in the race conducted in the turf and

outer courses are on average 15.85 and 11.86 kg lighter than those that did not partic-

ipate in these courses, respectively. Therefore, the opposite prediction may have been

made when only horse weight is taken into account. The gain or loss in horse weight is

significantly negative, but this may be due to the fact that horses had lost weight because

of adjusting their condition.

Next, horse age must be interpreted in conjunction with horse age squared. From the



50 CHAPTER 3. HORSE RACES

formula for the quadratic function ax2+ bx = a(x+ b/2a)2+ c, noting that the quadratic

term is negative, the descending junction point is 4.18 years old by substituting the

second-order coefficient of horse age, a = −0.2359× 10−3, and the first-order coefficient,

b = 1.9701 × 10−3, for x = −b/2a respectively. This indicates that the ability of a

racehorse gradually declines from 4 years of age. The average speeds in the speed classes

shown in Figure 3.2 become larger as the horse age increases, which probably reflects

a survival bias. The fastest and most talented racehorses survive in the racing world,

whereas the slowest racehorses are retired at a young age because they are judged to

have no chance of winning even if they run. Therefore, at first glance, it would appear

that racehorses with larger ages are faster than those with smaller ages, and many of

the older racehorses are superior individuals who have achieved success throughout their

racing careers. However, when we control for individual ability, we find that the ability

declines after 4 years of age. The regression coefficient for the mare dummy is significantly

negative, but the gelding dummy is not significant. The negative coefficients are probably

appropriate given that mares are on average less physically fit than stallions. However,

since the sign of the regression coefficient for the gelding dummy is unclear, we can say

that the stallion’s castration does not affect his performance as a racehorse.

Then, we examined the explanatory variables related to the race environment. First,

the regression coefficient for the weight to carry is negative for the posterior mean, but

the 95% credible interval includes 0. The sign of the regression coefficient is understand-

able since the jockey’s weight is a burden for the racehorse, but it is not a factor that

significantly affects speed. The regression coefficient for the track index is significantly

negative, but this is a reasonable result because a smaller track index indicates a better

track condition. For the race index, the regression coefficient is significantly positive,

indicating that the faster the other racehorses run in the same race, the faster a race-

horse runs. The regression coefficients for the outer and turf course dummies are also

significantly positive as expected. These results are reasonable considering the fact that

the outer course has more gentle curves and is less likely to slow down, and the turf

course is easier to run than the dirt course. For the trainer evaluation dummies, the

regression coefficients for the posterior means are all significantly positive. Additionally,

the values become smaller as the ratings decrease from A to C, indicating that racehorses
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with higher trainer evaluations in advance are able to perform as expected in the races.

Finally, the racetrack dummies are significantly positive for Kokura and Fukushima, and

significantly negative for Chukyo, Nakayama, Hakodate, Sapporo, and Hanshin. Since

the turf quality, track dirt, and elevation difference are naturally different between Tokyo

Racecourse, which is the criterion for the racetrack dummies, and other racetracks, it is

reasonable to assume that the speed is significantly higher or lower at these tracks than

at the other tracks.

Next, let us examine the racehorse’s individual effect for racehorses and jockeys. First,

consider the racehorse’s individual effect. Tables 3.4 and 3.5 show the results of the

analysis for the top 10 and bottom 10 racehorses, respectively, and Figure 3.4 shows the

posterior means and 95% credible intervals of the individual effects for the 4,063 horses.

The horizontal axis in Figure 3.4(a) is the rank of the racehorse’s individual effect αi (i =

1, . . . , 4, 063) sorted by the posterior mean. Contrarily, the vertical axis of Figure 3.4(a)

shows the individual effect αi of each horse as a contribution to speed. The results of the

top racehorse in Table 3.4 show that the racehorses with a high individual effect have all

achieved excellent total results. Contrarily, although the names of individual racehorses

are withheld to protect the honor of the racehorses and their related jockeys, the results

of the racehorse’s individual effects are not as good as those of the racehorses with low

individual effects in Table 3.5. Furthermore, since the difference in effects between the

highest and lowest ranked racehorses is 2.65%, the maximum effect on running distance

due to differences in racehorse ability at the finish line has the potential to be 47.7 m. All

the above mentioned data suggest that the estimated racehorse’s individual effect well

captures the racehorse’s running ability, which is not observed, although no significant

difference can be confirmed.

As for the jockey’s individual effect, Tables 3.6 and 3.7 show the results of the analysis

for the top 10 and bottom 10 jockeys, respectively, and Figure 3.4 shows the posterior

mean and 95% confidence interval of the individual effect for 140 jockeys with Yutaka

Take as the benchmark jockey. The horizontal axis in Figure 3.4(b) shows the rank of each

jockey’s individual effect γj (j = 1, . . . , 140) sorted by the posterior mean. The vertical

axis of Figure 3.4(b) shows the jockey’s individual effect γj as a contribution to speed.

The results for the high-ranking jockeys in Table 3.6 show that the posterior means of
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the top 9 jockeys are higher than 0. Considering that we adopted Yutaka Take, who is

well known as a great jockey, as the benchmark, it is indicative that these 9 jockeys are

very capable. However, the 95% credible intervals of the jockey’s individual effects for

eight of these nine jockeys all contain 0, indicating that there is no significant difference

between them and Yutaka Take. These results indicate that Yutaka Take is as good a

jockey as his reputation, and he is almost as good as most of the jockeys we compared

in this study. Although the names of the jockeys in the lower ranks of Table 3.7 are

withheld for the sake of honor, a comparison of Tables 3.6 and 3.7 shows that the jockeys

in the higher ranks have raced more frequently and have more experience than those in

the lower ranks8. The effect of the difference in ability between the best and the worst

jockeys is 0.698%, and the effect of the difference in jockey ability at the finish line on

the distance can cause a difference of up to 12.6 m. In horse racing, the horses’ ability

and condition of the horses tend to be the focus of attention. However, the fact that

a jockey can make a difference of approximately 12.6 m that can significantly overturn

a ranking indicates that horse racing is not simply a mere game between horses, but a

highly developed sport between human beings.

To check the robustness of the estimation results, the prior distributions of (σϵ, σα, σγ)

in (3.7) and (3.9) are replaced half-Cauchy distributions with inverse gamma distributions

σ2
ϵ ∼ IG(0.0001, 0.0001), σ2

α ∼ IG(0.0001, 0.0001), σ2
γ ∼ IG(0.0001, 0.0001),

and Bayesian estimation is performed by Gibbs sampling with ASIS applied as well.

Although the details are omitted due to the limited number of papers, the best model by

WAIC is the same as that of the half-Cauchy distribution from the first to the fourth ranks

even when the prior distributions are replaced with the inverse gamma distributions, and

there is almost no difference in the posterior statistics. The same analysis is conducted

for the data excluding racehorses that had raced < 4 times in 1800-m races instead of

three. Applying this exclusion criterion, the total number of runs is 19,014, consisting of

2,922 racehorses and 140 jockeys. In this case, the results of model selection by WAIC are

the same for all of the top five models as when the criterion of the three runs is applied.
8Since we could not confirm the exact data for the number of races run outside Japan, we compared

the number of races run in Japan.
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Next, we show the improvement in sampling efficiency by applying ASIS to the simula-

tion. Figures 3.6 and 2.2 show respectively the MCMC sampling process and correlogram

of (µα, µγ, σα, σγ) in (3.9). Figure 3.6 clearly reveals that the sampling efficiency of the

three parameters except for σγ has improved, especially for µα, which clearly does not

converge when ASIS is not applied (a), although it converges when ASIS is applied (b).

Additionally, for µγ, the sampling bias can be seen in (e) where ASIS is not applied and

the autocorrelation is large, whereas in (f) where ASIS is applied, the bias is solved and

convergence is attained. In fact, using Geweke’s convergence diagnostic, the results are

good for all four parameters.

The correlograms in Figure 2.2 display that, for autocorrelations (a) and (c) for which

ASIS is not applied for µα, µγ for which sampling is inefficient and does not converge in

Figure 3.6, the values are at inappropriate levels to use the MCMC method for all lags

from the first to the 20th order. Especially for µα, considering that the value of Figure

2.2(a) sticks to approximately 1 even at lag 20, the number of samplings required to

determine that the model is statistically converged without the application of ASIS is

enormous, In the conventional approach, the model would have to be modified because

the analysis would have been impossible. However, the autocorrelation (b), (d) of µα, µγ

with ASIS applied shows that the autocorrelation becomes smaller and closer to zero as

the lag order increases, indicating that a dramatic improvement in sampling efficiency has

been realized. This improvement in efficiency makes the model of this study analyzable.

Finally, to evaluate the validity of the selected model, we demonstrated the accuracy

with which the model can predict speed. We split 90% (19,965 runs) of the data randomly

selected from the data into training data and the remaining 10% (2,218 runs) of the data

into validation data, and compared the speed of the actual run with that of the model

trained from the training data only. Figure 3.3 shows the actual speed of the actual

run on the horizontal axis and the predicted speed of the run on the vertical axis. The

solid red line drawn diagonally represents the area where the actual and predicted values

coincide, and the observations are generally distributed around the solid line, indicating

that the accuracy of the model’s predictions is high and that it is a reasonable model.
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Figure 3.3: Actual and predicted speeds from the best model
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(b) 140 jockey’s individual effect with Yutaka Take

as the benchmark

Figure 3.4: Racehorse’s and jockey’s individual effect
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Table 3.3: Posterior statistics for the top three models by WAIC

β Model 1 (best model) Model 2 Model 3

Horse weight∗
4.3321× 10−3 4.3007× 10−3 4.3009× 10−3

[1.2864× 10−3, 7.3972× 10−3] [1.2126× 10−3, 7.3114× 10−3] [1.2171× 10−3, 7.3051× 10−3]

Horse age
1.9701× 10−3 1.9834× 10−3 1.9760× 10−3

[1.3412× 10−3 , 2.6020× 10−3 ] [1.3590× 10−3, 2.6365× 10−3] [1.3279× 10−3, 2.6140× 10−3]

Horse age squared
−0.2359× 10−3 −0.2369× 10−3 −0.2359× 10−3

[−0.3041× 10−3 , −0.1671× 10−3 ] [−0.3080× 10−3, −0.1693× 10−3] [−0.3053× 10−3, −0.1664× 10−3]

Gain or loss in horse weight
−0.0248× 10−3 −0.0248× 10−3

[−0.0423× 10−3 , −0.0072× 10−3 ] [−0.0427× 10−3, −0.0070× 10−3]

Mare dummy
−0.7326× 10−3 −0.7435× 10−3 −0.7576× 10−3

[−1.1832× 10−3 , −0.2778× 10−3 ] [−1.1921× 10−3, −0.2831× 10−3] [−1.2104× 10−3, −0.2908× 10−3]

Gelding dummy
0.1793× 10−3 0.2052× 10−3

[−0.6128× 10−3 , 0.9834× 10−3 ] [−0.5946× 10−3, 0.9993× 10−3]

Weight to carry∗
−2.0011× 10−3 −1.9986× 10−3 −2.0028× 10−3

[−8.7095× 10−3 , 4.7337× 10−3 ] [−8.7194× 10−3, 4.8627× 10−3] [ −8.8484× 10−3, 4.8023× 10−3]

Trainer evaluation dummies

A
5.3830× 10−3 5.3678× 10−3 5.3692× 10−3

[4.3416× 10−3 , 6.4635× 10−3 ] [4.2889× 10−3, 6.4601× 10−3] [4.2883× 10−3, 6.4570× 10−3]

B
3.4841× 10−3 3.4718× 10−3 3.4721× 10−3

[2.8561× 10−3 , 4.1062× 10−3 ] [2.8554× 10−3, 4.1209× 10−3] [2.8535× 10−3, 4.1204× 10−3]

C
1.3586× 10−3 1.3446× 10−3 1.3394× 10−3

[0.7414× 10−3 , 1.9850× 10−3 ] [0.7205× 10−3, 1.9774× 10−3] [0.7146× 10−3, 1.9715× 10−3]

Note: “horse age”, “horse age squared”, “weight to carry”, “turf course dummy”, and “racetrack dummy” are included in all models.

Data marked with ∗ are logarithmic.

The ∗∗ mark indicates that the data are standardized.

In each cell, the upper number is the posterior mean and the lower [·,·] is the 95% credible interval.
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Table 3.3: Posterior statistics for the top three models by WAIC (continued)

β Model 1 (best model) Model 2 Model 3

Racetrack dummies

Chukyo
−2.0140× 10−3 −1.9986× 10−3 −1.9628× 10−3

[−2.8948× 10−3 , −1.1491× 10−3 ] [−2.8928× 10−3, −1.1156× 10−3] [−2.8549× 10−3, −1.0793× 10−3]

Nakayama
−2.4091× 10−3 −2.4021× 10−3 −2.3977× 10−3

[−3.1030× 10−3 , −1.7310× 10−3 ] [−3.0892× 10−3, −1.7093× 10−3] [−3.0840× 10−3, −1.7049× 10−3]

Kyoto
−0.7926× 10−3 −0.7792× 10−3 −0.7684× 10−3

[−1.6417× 10−3 , 0.0461× 10−3 ] [−1.6339× 10−3, 0.0752× 10−3] [−1.6218× 10−3, 0.0836× 10−3]

Hakodate
−1.1168× 10−3 −1.1058× 10−3 −1.1380× 10−3

[−2.0202× 10−3 , −0.2124× 10−3 ] [−1.9844× 10−3, −0.1865× 10−3] [−2.0179× 10−3, −0.2211× 10−3]

Kokura
0.9387× 10−3 0.9487× 10−3 0.9644× 10−3

[0.1677× 10−3 , 1.6937× 10−3 ] [0.1957× 10−3, 1.6939× 10−3] [0.2098× 10−3, 1.7983× 10−3]

Niigata
0.0719× 10−3 0.0800× 10−3 0.0973× 10−3

[−0.7418× 10−3 , 0.8871× 10−3 ] [−0.7591× 10−3, 0.8837× 10−3] [−0.7429× 10−3, 0.9030× 10−3]

Sapporo
−3.9396× 10−3 −3.9450× 10−3 −3.9314× 10−3

[−4.8776× 10−3 , −2.9831× 10−3 ] [−4.9286× 10−3, −2.9553× 10−3] [−2.9197× 10−3, −2.9411× 10−3]

Fukushima
0.9086× 10−3 0.9216× 10−3 0.9523× 10−3

[0.1603× 10−3 , 1.6228× 10−3 ] [0.1941× 10−3, 1.6355× 10−3] [0.2273× 10−3, 1.6662× 10−3]

Hanshin
−0.9096× 10−3 −0.8962× 10−3 −0.8598× 10−3

[−1.7695× 10−3 , −0.0689× 10−3 ] [−1.7489× 10−3, −0.0556× 10−3] [−1.7128× 10−3, −0.0191× 10−3]

µα

2.7439 2.7441 2.7475

[2.7113 , 2.7770 ] [2.7112, 2.7769] [2.7154, 2.7811]

µγ

−2.1057× 10−3 −2.1145× 10−3 −2.1107× 10−3

[−3.1258× 10−3 , 1.0776× 10−3 ] [−3.1256× 10−3, −1.1307× 10−3] [ −3.1282× 10−3, −1.1285× 10−3]

σα
4.2679× 10−3 4.2642× 10−3 4.2587× 10−3

[4.0790× 10−3 , 4.4498× 10−3 ] [4.0806× 10−3, 4.4502× 10−3] [4.0756× 10−3, 4.4449× 10−3]

σγ
1.5005× 10−3 1.5092× 10−3 1.5079× 10−3

[1.2501× 10−3 , 1.7948× 10−3 ] [1.2537× 10−3, 1.7971× 10−3] [1.2552× 10−3, 1.7975× 10−3]

σϵ
7.6718× 10−3 7.6735× 10−3 7.6761× 10−3

[7.5904× 10−3 , 7.7517× 10−3 ] [7.5940× 10−3, 7.7540× 10−3] [7.5964× 10−3, 7.7573× 10−3]

WAIC −150420.6 −150418.2 −150406.4

Note: “horse age”, “horse age squared”, “weight to carry”, “turf course dummy”, and “racetrack dummy” are included in all models.

Data marked with ∗ are logarithmic.

The ∗∗ mark indicates that the data are standardized.

In each cell, the upper number is the posterior mean and the lower [·,·] is the 95% credible interval.
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Table 3.4: Top 10 racehorse information

Racehorse’s individual effect

Racehorse name Date of birth Win-loss records∗ Posterior mean 95% credible interval

T M Jinsoku 04/21/2012 9 wins in 28 races [9-6-4-9] 0.6299 [0.5854, 0.6737]

Cloudscape 02/13/2016 0 wins in 6 races [0-3-1-2] 0.6295 [0.5854, 0.6735]

Jordan King 05/26/2013 2 wins in 8 races [2-5-0-1] 0.6286 [0.5838, 0.6729]

Inti 04/08/2014 5 wins in 6 races [5-0-0-1] 0.6284 [0.5838, 0.6719]

Highland Peak 05/16/2014 6 wins in 14 races [6-4-1-3] 0.6283 [0.5837, 0.6723]

Omega Perfume 04/06/2015 4 wins in 7 races [4-1-1-1] 0.6280 [0.5835, 0.6724]

Suzuka Burg 02/24/2014 2 wins in 8 races [2-4-0-2] 0.6273 [0.5825, 0.6714]

Pegasus Shine 04/24/2014 3 wins in 6 races [3-2-1-0] 0.6272 [0.5826, 0.6714]

Le Vent Se Leve 01/26/2015 3 wins in 4 races[3-1-0-0] 0.6271 [0.5828, 0.6715]

Meiner Brocken 03/27/2014 3 wins in 27 races [3-7-6-11] 0.6272 [0.5830, 0.6706]

∗ The table shows the total number of races in Central Japan horse races up to 2018.

Table 3.5: Bottom 10 racehorse information

Racehorse’s individual effect

Racehorse name Date of birth Win-loss records∗ Posterior mean 95% credible interval

Racehorse A 03/–/2014 0 wins in 4 races [0-0-0-4] 0.6034 [0.5593, 0.6471]

Racehorse B 04/–/2013 1 wins in 10 races [1-0-0-9] 0.6043 [0.5601, 0.6478]

Racehorse C 03/–/2013 0 wins in 5 races [0-0-0-5] 0.6053 [0.5608, 0.6490]

Racehorse D 04/–/2016 0 wins in 3 races [0-0-0-3] 0.6056 [0.5614, 0.6493]

Racehorse E 02/–/2014 0 wins in 5 races [0-0-0-5] 0.6062 [0.5617, 0.6498]

Racehorse F 05/–/2011 3 wins in 34 races [3-6-1-24] 0.6069 [0.5626, 0.6508]

Racehorse G 03/–/2014 0 wins in 4 races [0-0-0-4] 0.6070 [0.5626, 0.6510]

Racehorse H 04/–/2012 1 wins in 18 races [1-1-2-14] 0.6071 [0.5629, 0.6510]

Racehorse I 04/–/2014 0 wins in 7 races [0-0-0-7] 0.6072 [0.5628, 0.6510]

Racehorse J 02/–/2014 0 wins in 4 races [0-0-0-4] 0.6081 [0.5639, 0.6520]

∗ The table shows the total number of races in Central Japan horse races up to 2018.
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Table 3.6: Top 10 jockey information

jockey’s individual effect

Jockey name Year of first riding∗ # of races run∗∗ Posterior mean 95% credible interval

Ryuji Wada 1996 16706 1.9184× 10−3 [0.6794× 10−3, 3.1833× 10−3]

Shane Foley 2007 256 0.6390× 10−3 [−0.5694× 10−3, 1.8776× 10−3]

Hironobu Tanabe 2002 9992 0.5748× 10−3 [−0.6819× 10−3, 1.8081× 10−3]

Suguru Hamanaka 2007 8723 0.5574× 10−3 [−1.8409× 10−3, 2.9858× 10−3]

Yuichi Fukunaga 1996 16684 0.5554× 10−3 [−0.7420× 10−3, 1.8188× 10−3]

Yuga Kawada 2004 9405 0.5287× 10−3 [−0.7333× 10−3, 1.8212× 10−3]

Joao Moreira 2014 347 0.3547× 10−3 [−0.9309× 10−3, 1.6491× 10−3]

Mirco Demuro 2004 5063 0.1942× 10−3 [−1.1732× 10−3, 1.5333× 10−3]

Keita Tosaki 2005 6538 0.0497× 10−3 [−1.9985× 10−3, 2.0965× 10−3]

Christophe Lemaire 1999 4904 −0.0910× 10−3 [−1.2939× 10−3, 1.1212× 10−3]

∗ This mark indicates the year of the first ride whether in a domestic or international race.

∗∗ This mark indicates the number of domestic races only.

Table 3.7: Bottom 10 jockey information

jockey’s individual effect

Jockey name Year of first riding∗ # of races run† Posterior mean 95% credible interval

Jockey A 2013 1837 −5.0592× 10−3 [−7.0296× 10−3, −3.0272× 10−3]

Jockey B 2015 869 −4.7377× 10−3 [−6.4222× 10−3, −2.9959× 10−3]

Jockey C 1993 7192 −4.3762× 10−3 [−6.5525× 10−3, −2.2102× 10−3]

Jockey D 2010 1727 −4.3306× 10−3 [−6.3710× 10−3, −2.3061× 10−3]

Jockey E 2016 1281 −4.2910× 10−3 [−5.9396× 10−3, −2.6827× 10−3]

Jockey F 1995 6411 −4.2002× 10−3 [−6.0308× 10−3, −2.3493× 10−3]

Jockey G 2001 3954 −4.1596× 10−3 [−6.7135× 10−3, −1.6041× 10−3]

Jockey H 2006 3703 −4.1369× 10−3 [−6.7727× 10−3, −1.5874× 10−3]

Jockey I 2008 3403 −4.0557× 10−3 [−6.1679× 10−3, −1.9684× 10−3]

Jockey J 2015 1554 −3.8123× 10−3 [−5.5383× 10−3, −2.1056× 10−3]

∗ This mark indicates the year of the first ride whether in a domestic or international race.

† The jockeys in the bottom 10 are all Japanese and they ride only in domestic races.
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Figure 3.5: 10,000 sampling after 2,000 burn-ins
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Figure 3.6: 10,000 sampling after 2,000 burn-ins
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Figure 3.7: Autocorrelation of 10,000 sampling of hierarchical parameters
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3.5 Conclusion

In this chapter, we conducted a hierarchical Bayesian analysis of racehorse running

ability and jockey skills by using the running records of all 1800-m races held by JRA

from 2016 to 2018 excluding obstacle courses. Average speed, calculated by dividing the

distance of the course by the time of the race, is used as a quantitative measure of the

racehorse’s running ability. Three factors are considered to affect the racehorse speed

during a race, which are as follows: the individual racehorse’s ability, the environment in

which the race is run, and the jockey’s ability to control the horse.

In addition to the characteristics of the model that includes a large number of pa-

rameters as racehorse’s and jockey’s individual effects, the racehorse race data used in

this study are unbalanced panel data in which the number of times each racehorse has

run is not uniform; thus, we apply a hierarchical Bayesian analysis method following

Silverman (2012). Conveniently, the conditional posterior distributions of all parameters

in the model are typical (normal and inverse gamma distributions); thus, it is possible

to generate random numbers from the posterior distributions using only Gibbs sampling.

Furthermore, ASIS is applied to improve the efficiency of convergence of the random

series. Moreover, WAIC is used to select combinations of explanatory variables in the

regression model.

As a result of the analysis, the effects of horse weight, mare dummy, weight to carry,

track index, race index, outside track dummy and turf track dummy are consistent with

the expectation. The results for horse age and horse age squared indicate that the

marginal effect of horse age on racehorse speed is positive until the racehorse reaches

4.18 years of age.

The application of ASIS also leads to a lower autocorrelation of the MCMC sample,

which results in a more efficient sampling. The improvement in efficiency is so great that

although the analysis of this study’s model is impractical without ASIS, it is now possible

to perform the analysis at a level that can be considered efficient in general.

Next, we consider the racehorse’s individual effect, and find that the racehorses with

the highest ability have the best total results, whereas the racehorses with the lowest

ability do not have good total results. The difference in the effect between the best and
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the worst racehorses is 2.65%, and considering that this data is obtained from an 1800-m

race, the effect of the difference in the ability of the racehorses at the finish line causes a

maximum difference of approximately 47.7 m in the running distance.

Finally, as for the jockey’s individual effect, the posterior means of the top nine

jockeys exceeded 0. Considering that the jockey used as the benchmark is Yutaka Take,

well known as a distinguished jockey, all of these nine jockeys have extremely high ability.

However, since the 95% credible interval of the jockey’s individual effect for eight of the

nine jockeys includes 0, there is no decisive difference in the ability between them and

Yutaka Take. Therefore, we can conclude that Yutaka Take is as good as almost all the

jockeys we compared in this study. Moreover, a comparison of the top and bottom jockeys

revealed that the top jockeys were more experienced and had run more often than the

bottom jockeys. The difference in ability between the highest and lowest ranked jockeys

is 0.698%, and the difference in jockey ability at the finish line has a maximum effect

of approximately 12.6 m on the distance run. In horse racing, the ability and condition

of the horses tend to be the focus of attention, but the fact that the jockey’s ability

can overturn a large difference of approximately 12.6 m suggests that horse racing is a

sophisticated sport in which human jockeys control a racehorse based on strategy and

skill as a vehicle.
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Chapter 4

Application to Time Series Data:

High Frequency Stock Returns

4.1 Introduction

It is well documented that (a) probability distributions of stock returns are heavy-

tailed (both tails of the probability density function go down to zero much slower than

in the case of the normal distribution and as a result the kurtosis of the distribution

exceeds three), (b) they are often asymmetric around the mean (the skewness of the

distribution is either positive or negative), (c) they exhibit volatility clustering (positive

autocorrelation among the day-to-day variance of returns) and (d) the leverage effect (the

current volatility and the previous return are negatively correlated so that downturns in

the stock market tend to predate sharper spikes in the volatility). In practice of financial

risk management, it is imperative to develop a statistical model that can capture these

characteristics of stock returns because they are thought to be related to steep drops and

rebounds in stock prices during the periods of financial turmoil. Without factoring them

in risk management, financial institutions might unintentionally take a higher risk and as

a result would be faced with grave consequences, which we already observed during the

Global Financial Crisis.

As a time series model with the aforementioned characteristics, a family of time se-

ries model called the stochastic volatility (SV) model has been developed in the field of

financial econometrics. The standard SV model is a simple state-space model in which

65
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the measurement equation is a mere distribution of stock returns with the time-varying

variance (volatility) and the system equation is an AR(1) process of the latent log volatil-

ity. In the standard setting, both measurement and system errors are supposed to be

Gaussian and negatively correlated in order to incorporate the leverage effect into the

model. The standard SV model can explain three stylized facts: heavy-tailed distribu-

tion, volatility clustering and leverage effect, but it cannot make the distribution of stock

returns asymmetric. Furthermore, although in theory the standard SV model incorpo-

rates the heavy-tail behavior of stock returns, many empirical studies demonstrated that

it was insufficient to explain extreme fluctuations of stock prices that were caused by

large shocks in financial markets.

Based on this plain-vanilla SV model, researchers has developed numerous variants

that are designed to capture all aspects of stock returns sufficiently well. A direct way to

introduce a more heavy-tailed distribution to the SV model is to assume that the error

term of the measurement equation follows a distribution with much heavier tails than the

normal distribution. The Student’s t distribution is a popular choice (Berg et al. (2004),

Omori et al. (2007), Nakajima and Omori (2009), Nakajima (2012) among others). In

the literature, the asymmetry in stock returns can be handled by assuming that the error

term follows an asymmetric distribution (Nakajima and Omori (2012), Tsiotas (2012),

Abanto-Valle et al. (2015) among others). In particular, the generalized hyperbolic

(GH) distribution proposed by Barndorff-Nielsen (1977) has recently drawn increasing

attention among researchers (e.g., Nakajima and Omori (2012)) since it is regarded as

a broad family of heavy-tailed distributions such as variance-gamma and Student’s t as

well as their skewed variants such as skew variance-gamma and skew Student’s t.

Traditionally, empirical studies with the SV model used time series data of daily stock

returns. However, the availability of high frequency tick data and the advent of high-

frequency trading (HFT), which is a general term for algorithmic trading in full use of

high performance computing and high speed communication technology, has shifted the

focus of research on volatility from closing-to-closing daily volatility to intraday volatility

in a very short interval (e.g., 5 minutes or shorter). This shift paved the way for a

new type of SV model. In addition to the traditional stylized facts on daily volatility,

intraday volatility is known to exhibit a cyclical pattern during the trading hours. On a
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typical trading day, the volatility tends to be high immediately after the market opens,

but it gradually declines in the middle of the trading hours. In the late trading hours,

the volatility again becomes higher as it nears the closing time. This U-shaped trend in

volatility is called intraday seasonality in the literature (see Chan et al. (1991) among

others). Although it is crucial to take the intraday seasonality into consideration in

estimation of any intraday volatility models, only a few studies (e.g., Stroud and Johannes

(2014), Fičula and Witzany (2015a, 2015b)) explicitly incorporate it into their volatility

models.

In this chapter, we propose to directly embed intraday seasonality into the SV model

by approximating the U-shaped seasonality pattern with a linear combination of Bernstein

polynomials. In order to capture skewness and excess kurtosis in high frequency stock

returns, we employ two distributions (variance-gamma and Student’s t) and their skewed

variants (skew variance-gamma and skew Student’s t) in the family of GH distributions

as the distribution of stock returns in the SV model. Since the proposed SV model is

intractably complicated, we develop an efficient Markov chain Monte Carlo (MCMC)

sampling algorithm for full Bayesian estimation of all parameters and state variables

(latent log volatilities in our case) in the model.

The rest of this chapter is organized as follows. In Section 4.2, we introduce a repa-

rameterized Gaussian SV model with leverage and intraday seasonality and derive an

efficient MCMC sampling algorithm for its Bayesian estimation. In Section 4.3, we show

the conditional posterior distributions and prepare for application of ancillarity-sufficiency

interweaving strategy (ASIS) proposed by Yu and Meng (2011). In Section 4.4, we extend

the Gaussian SV model to the case of variance gamma and Student’s t error as well as

their skewed variants. In Section 4.5, we report the estimation results of our proposed

SV models with 1-minute return data of TOPIX. Finally, conclusion is given in Section

4.6.
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4.2 Stochastic Volatility Model with Intraday Sea-

sonality

Consider the log difference of a stock price in a short interval (say, 1 or 5 minutes).

We divide trading hours evenly into T periods and normalize them so that the length of

the trading hours is equal to 1, that is, the length of each period is 1
T

and the time stamp

of the t-th period is t
T
(t = 1, . . . , T ). Note that the market opens at time 0 and closes at

time 1 in our setup. Let yt (t = 1, . . . , T ) denote the stock return in the t-th period (at

time t
T

in the trading hours) and consider the following stochastic volatility (SV) model

of yt with intraday seasonality:yt = exp(x′tβ + ht)ϵt,

ht+1 = ϕht + ηt,

ϵt
ηt

 ∼ N

0
0

 ,
 1 ρτ

ρτ τ 2

 , |ρ| < 1, τ > 0, (4.1)

and

h1 ∼ N
(
0,

τ 2

1− ϕ2

)
, |ϕ| < 1.

It is well known that the estimate of the correlation coefficient ρ is negative in most stock

markets. This negative correlation is often referred to as the leverage effect. Note that

the stock volatility in the t-th period (the natural logarithm of the conditional standard

deviation of yt) is

log
√

Var[yt|Ft−1] = x′tβ + ht,

where Ft−1 is the filtration that represents all available information at time t−1
T

.

Hence the stock volatility in the SV model (4.1) is decomposed into two parts: a linear

combination of covariates x′tβ and the unobserved AR(1) process ht. In this study, we

regard x′tβ as the intraday seasonal component of the stock volatility, though it can be

interpreted as any function of covariates xt in a different situation. On the other hand,

ht is supposed to capture volatility clustering. We call ht the latent log volatility since it

is unobservable.

Although the intraday seasonal component x′tβ is likely to be a U-shaped function of

time stamps (the stock volatility is higher right after the opening or near the closing, but

it is lower in the middle of the trading hours), we have no information about the exact
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functional form of the intraday seasonality. To make it in a flexible functional form for

the intraday seasonality, we assume that x′tβ is a Bernstein polynomial:

x′tβ =
n∑

k=0

βkxk,t =
n∑

k=0

βkbk,n

(
t

T

)
, (4.2)

where bk,n(·) is called a Bernstein basis polynomial of degree n:

bk,n(v) = nCkv
k(1− v)n−k, k = 0, . . . , n, v ∈ [0, 1].

According to the Weierstrass approximation theorem, the Bernstein polynomial (4.2) can

approximate any continuous function on [0, 1] as n goes to infinity. In practice, however,

the number of observations T is finite. Thus we need to choose a finite n via a model

selection procedure. We will discuss this issue in Section 4.4.

Although the parametrization of the SV model in (4.1) is widely applied in the liter-

ature, we propose an alternative parametrization that facilitates MCMC implementation

in non-Gaussian SV models. By replacing the covariance matrix in (4.1) with Var[ϵt] Cov[ηt, ϵt]

Cov[ϵt, ηt] Var[ηt]

 =

1 + γ2τ 2 γτ 2

γτ 2 τ 2

 , γ ∈ R, (4.3)

we obtain an alternative formulation of the SV model:yt = exp(x′tβ + ht)ϵt,

ht+1 = ϕht + ηt,

ϵt
ηt

 ∼ N

0
0

 ,
1 + γ2τ 2 γτ 2

γτ 2 τ 2

 . (4.4)

Since in (4.4) the variance of ϵt is no longer equal to one, the interpretation of β and ht in

(4.4) is slightly different from the original one in (4.1). Nonetheless the SV model (4.4)

has essentially the same characteristics as (4.1). Since the correlation coefficient in (4.3)

is

Corr[ϵt, ηt] =
γτ√

1 + γ2τ 2
,

the sign of γ always coincides with the correlation coefficient and the leverage effect exists

if γ < 0. To distinguish γ in (4.4) from the correlation parameter ρ in (4.1), we call γ

the leverage parameter in this study.

Note that the inverse of (4.3) is Var[ϵt] Cov[ηt, ϵt]

Cov[ϵt, ηt] Var[ηt]

−1

=

 1 −γ

−γ γ2 + τ−2

 =

 1 0

−γ τ−1

1 −γ

0 τ−1

 ,
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and the determinant of (4.3) is τ 2. Using

[
ϵt ηt

] 1 −γ

−γ γ2 + τ−2

ϵt
ηt

 =
[
ϵt ηt

] 1 0

−γ τ−1

1 −γ

0 τ−1

ϵt
ηt


= (ϵt − γηt)

2 +
η2t
τ 2
,

we can easily show that the SV model (4.4) is equivalent to

yt = exp(x′tβ + ht)(zt + γηt),

ht+1 = ϕht + ηt,

(4.5)

where

zt ∼ N (0, 1), ηt ∼ N (0, τ 2), zt ⊥ ηt.

In the alternative formulation of the SV model (4.5), we can interpret ηt as a common

shock that affects both the stock return yt and the log volatility ht+1 while zt as an

idiosyncratic shock that affects yt only.

The likelihood for the SV model (4.5) given the observations y1:T = [y1; . . . ; yT ] and

the latent log volatility h1:T+1 = [h1; . . . ;hT+1] is

p(y1:T , h1:T+1|θ) =
T∏
t=1

p(yt|ht, ht+1, θ)︸ ︷︷ ︸
p(y1:T |h1:T+1,θ)

· p(h1|θ)
T∏
t=1

p(ht+1|ht, θ)︸ ︷︷ ︸
p(h1:T+1|θ)

, (4.6)

where

p(yt|ht, ht+1, θ) =
1√
2π

exp

[
−x′tβ − ht −

{yt exp (−x′tβ − ht)− γ(ht+1 − ϕht)}2

2

]
,

(4.7)

p(ht+1|ht, θ) =
1√
2πτ 2

exp

[
−(ht+1 − ϕht)

2

2τ 2

]
, t = 1, . . . , T,

p(h1|θ) =
√

1− ϕ2

2πτ 2
exp

[
−(1− ϕ2)h21

2τ 2

]
,

and θ = (β, γ, τ 2, ϕ). Since ht follows a stationary AR(1) process, the joint probability
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distribution of h1:T+1 is N (0, τ 2V −1) where

V =



1 −ϕ

−ϕ 1 + ϕ2 −ϕ

−ϕ 1 + ϕ2 −ϕ
. . . . . . . . .

−ϕ 1 + ϕ2 −ϕ

−ϕ 1 + ϕ2 −ϕ

−ϕ 1


, (4.8)

is a tridiagonal matrix, and it is positive definite as long as |ϕ| < 1. Thus the joint p.d.f.

of h1:T+1 is

p(h1:T+1|θ) = (2πτ 2)−
T+1
2 |V |

1
2 exp

[
− 1

2τ 2
h′1:T+1V h1:T+1

]
, |V | = 1− ϕ2. (4.9)

The prior distributions for (β, γ, τ 2, ϕ) in our study are

β ∼ N (µ̄β, Ω̄
−1
β ), γ ∼ N (µ̄γ, ω̄

−1
γ ),

τ 2 ∼ IG(aτ , bτ ),
ϕ+ 1

2
∼ B(aϕ, bϕ),

(4.10)

where B(a, b) is the beta distribution with the probability density:

p(x|a, b) = xa−1(1− x)b−1

B(a, b)
, B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx.

Then the joint posterior density of (h1:T+1, θ) for the SV model (4.5) is

p(h1:T+1, θ|y1:T ) ∝
T∏
t=1

p(yt|ht, ht+1, θ) · p(h1:T+1|θ) · p(θ), (4.11)

where p(θ) is the prior density of the parameters in (4.10).

Since analytical evaluation of the joint posterior distribution (4.11) is impractical, we

apply an MCMC method to generating a random sample {(h(r)1:T+1, β
(r), γ(r), τ 2(r), ϕ(r))}Rr=1

from the joint posterior distribution (4.11), and numerically evaluate the posterior statis-

tics necessary for Bayesian inference with Monte Carlo integration. The outline of the

standard MCMC sampling scheme for the posterior distribution (4.11) is given as follows:
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Outline of the MCMC sampling for the SV model� �
Step 0: Initialize (h

(0)
1:T+1, β

(0), γ(0), τ 2(0), ϕ(0)) and set the counter r = 0.

Step 1: Generate (h
(r+1)
1:T+1, β

(r+1), γ(r+1), τ 2(r+1), ϕ(r+1)) with the following scheme:

Step 1-1: Generate h(r+1)
1:T+1 from p(h1:T+1|β(r), γ(r), τ 2(r), ϕ(r), y1:T ).

Step 1-2: Generate β(r+1) from p(β|h(r+1)
1:T+1, γ

(r), τ 2(r), ϕ(r), y1:T ).

Step 1-3: Generate γ(r+1) from p(γ|h(r+1)
1:T+1, β

(r+1), τ 2(r), ϕ(r), y1:T )

Step 1-4: Generate τ 2(r+1) from p(τ |h(r+1)
1:T+1, β

(r+1), γ(r+1), ϕ(r), y1:T )

Step 1-5: Generate ϕ(r+1) from p(ϕ|h(r+1)
1:T+1, β

(r+1), γ(r+1), τ 2(r+1), y1:T ).

Step 2: Let r = r + 1 and go to Step 1 until the burn-in iterations are completed.

Step 3: Reset the counter r = 0 and repeat Step 1–2 R times in order to obtain

the Monte Carlo sample {(h(r)1:T+1, β
(r), γ(r), τ 2(r), ϕ(r))}Rr=1.� �

Although the above MCMC sampling scheme is ubiquitous in the literature of the SV

model, the generated Monte Carlo sample {(h(r)1:T+1, β
(r), γ(r), τ 2(r), ϕ(r))}Rr=1 tends to ex-

hibit strongly positive autocorrelation. To improve efficiency of MCMC implementation,

Yu and Meng (2011) proposed an ancillarity-sufficiency interweaving strategy (ASIS). In

the literature of the SV model, Kastner and Frühwirth-Schnatter (2014) applied ASIS

to the SV model of daily US-dollar/Euro exchange rate data with the Gaussian error.

Their SV model did not include either intraday seasonality or leverage effect since they

applied it to daily exchange rate data that exhibited no leverage effect in most cases. We

extend the algorithm developed by Kastner and Frühwirth-Schnatter (2014) to facilitate

the converge of the sample path in the SV model (4.5). The basic principle of ASIS is to

construct MCMC sampling schemes for two different but equivalent parametrizations of

a model with missing/latent variables (h1:T+1 in our case) and generate the parameters

alternately with each of them.

According to Kastner and Frühwirth-Schnatter (2014), the SV model (4.5) is in a

non-centered parametrization (NCP). On the other hand, we may transform ht as

h̃t = x′tβ + ht, (4.12)
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and rearrange the SV model (4.5) asyt = exp(h̃t)(zt + γηt),

h̃t+1 − x′t+1β = ϕ(h̃t − x′tβ) + ηt.

(4.13)

The above SV model (4.13) is in a centered parametrization (CP).

The posterior distribution in the CP form (4.13) is equivalent to the one in the NCP

form (4.5) in the sense that they give us the same posterior distribution of θ. Let us

verify this claim. The likelihood for the SV model (4.13) given the observations y1:T and

the latent log volatility h̃1:T+1 = [h̃1; . . . ; h̃T+1] is

p(y1:T , h̃1:T+1|θ) =
T∏
t=1

p(yt|h̃t, h̃t+1, θ)︸ ︷︷ ︸
p(y1:T |h̃1:T+1,θ)

· p(h̃1|θ)
T∏
t=1

p(h̃t+1|h̃t, θ)︸ ︷︷ ︸
p(h̃1:T+1|θ)

, (4.14)

where

p(yt|h̃t, h̃t+1, θ) =
1√
2π

exp

−h̃t −
{
yte

−h̃t − γ((h̃t+1 − x′t+1β)− ϕ(h̃t − x′tβ))
}2

2

 ,
(4.15)

p(h̃t+1|h̃t, θ) =
1√
2πτ 2

exp

[
−
{(h̃t+1 − x′t+1β)− ϕ(h̃t − x′tβ)}2

2τ 2

]
, t = 1, . . . , T,

p(h̃1|θ) =
√

1− ϕ2

2πτ 2
exp

[
−(1− ϕ2)(h̃1 − x′1β)

2

2τ 2

]
.

Note that the joint p.d.f. of h̃1:T+1 is

p(h̃1:T+1|θ) = (2πτ 2)−
T+1
2 |V |

1
2 exp

[
− 1

2τ 2
(h̃1:T+1 −Xβ)′V (h̃1:T+1 −Xβ)

]
, (4.16)

where X = [x′1; . . . ;x
′
T+1]. With the prior of θ in (4.10), the joint posterior density of

(h̃1:T+1, θ) for the SV model (4.13) is obtained as

p(h̃1:T+1, θ|y1:T ) ∝
T∏
t=1

p(yt|h̃t, h̃t+1, θ) · p(h̃1:T+1|θ) · p(θ). (4.17)

Note that θ is unchanged between the NCP form (4.11) and the CP form (4.17). Although

the latent variables are transformed with (4.12), the “marginal” posterior p.d.f. of θ is

unchanged because∫
p(h̃1:T+1, θ|y1:T+1)dh̃1:T+1 =

∫
p(h1:T+1, θ|y1:T+1)|J |dh1:T+1,
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where the Jacobian |J | = 1.

With this fact in mind, we can incorporate ASIS into the MCMC sampling scheme

by replacing Step 1 with

NCP-based ASIS step� �
Step 1: Generate (h

(r+0.5)
1:T+1 , β

(r+0.5), γ(r+0.5), τ 2(r+0.5), ϕ(r+0.5)) with the sampling

scheme based on the NCP form (4.5) and compute

h̃
(r+0.5)
t = h

(r+0.5)
t + x′tβ

(r+0.5), t = 1, . . . , T + 1.

Step 1.5: Generate (β(r+1), γ(r+1), τ 2(r+1), ϕ(r+1)) with the sampling scheme based on

the CP form (4.13) and compute

h
(r+1)
t = h̃

(r+0.5)
t − x′tβ

(r+1), t = 1, . . . , T + 1.� �
Note that we generate a new latent log volatility h1:T+1 from its conditional posterior

distribution in the NCP form (4.11) only once at the beginning of Step 1. This is the

reason why we call it the NCP-based ASIS step. After this update, we merely shift the

location of h1:T+1 by x′tβ
(r+0.5) (Step 1) or by −x′tβ(r+1) (Step 1.5). In ASIS, these

shifts are applied with probability 1 even if all elements in h1:T+1 are not updated at

the beginning of Step 1, which is highly probable in practice because we need to use

the MH algorithm to generate h1:T+1. Although we also utilize the MH algorithm to

generate β as explained later, the acceptance rate of β in the MH step is much higher

than that of h1:T+1 in our experience. Thus we expect that both x′tβ(r+0.5) and −x′tβ(r+1)

will be updated more often than h1:T+1 itself. As a result, the above ASIS step may

improve mixing of the sample sequence of h1:T+1. Conversely, we may apply the following

CP-based ASIS step:
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CP-based ASIS step� �
Step 1: Generate (h̃

(r+0.5)
1:T+1 , β

(r+0.5), γ(r+0.5), τ 2(r+0.5), ϕ(r+0.5)) with the sampling

scheme based on the CP form (4.13) and compute

h
(r+0.5)
t = h̃

(r+0.5)
t − x′tβ

(r+0.5), t = 1, . . . , T + 1.

Step 1.5: Generate (β(r+1), γ(r+1), τ 2(r+1), ϕ(r+1)) with the sampling scheme based on

the NCP form (4.5) and compute

h̃
(r+1)
t = h

(r+0.5)
t + x′tβ

(r+1), t = 1, . . . , T + 1.� �
In the CP-based ASIS step, we generate h̃1:T+1 from its conditional posterior distribution

in the CP form (4.17) once. The rest is the same as in the NCP-based ASIS step except

that the order of sampling is reversed.

4.3 Conditional Posterior Distributions

In this section, we derive the conditional posterior distribution of the latent log volatil-

ity and that of each parameter in the SV model for both NCP and CP.

4.3.1 NCP Form

Latent Log Volatility h1:T+1

The conditional posterior density of the latent log volatility h1:T+1 is

p(h1:T+1|θ, y1:T ) ∝
T∏
t=1

p(yt|ht, ht+1, θ) · p(h1:T+1|θ). (4.18)

We apply the Metropolis- Hastings (MH) algorithm to generate h1:T+1 from (4.18). To

derive a suitable proposal distribution for the MH algorithm, we first consider consider the

second-order Taylor approximation of ℓ(h1:T+1) = log p(y1:T |h1:T+1, θ) in the neighborhood

of h∗1:T+1:

ℓ(h1:T+1) ≈ ℓ(h∗1:T+1) + g(h∗1:T+1)
′(h1:T+1 − h∗1:T+1)

− 1

2
(h1:T+1 − h∗1:T+1)

′Q(h∗1:T+1)(h1:T+1 − h∗1:T+1), (4.19)
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where g(h1:T+1) is the gradient vector of ℓ(h1:T+1):

g(h1:T+1) =



g1(h1:T+1)
...

gt(h1:T+1)
...

gT (h1:T+1)

gT+1(h1:T+1)


=



∇1 log p(y1:T |h1:T+1, θ)
...

∇t log p(y1:T |h1:T+1, θ)
...

∇T log p(y1:T |h1:T+1, θ)

∇T+1 log p(y1:T |h1:T+1, θ)


,

and Q(h1:T+1) is the Hessian matrix of log p(y1:T |h1:T+1, θ) times −1:

Q(h1:T+1) =



q11(h1:T+1) q12(h1:T+1) · · · 0

q21(h1:T+1) q22(h1:T+1) q23(h1:T+1) · · · 0
... . . . . . . . . . ...

0 · · · qT,T−1(h1:T+1) qT,T (h1:T+1) qT,T+1(h1:T+1)

0 · · · qT+1,T (h1:T+1) qT+1,T+1(h1:T+1)


.

which is a (T + 1)× (T + 1) band matrix.

Let us derive the explicit form of each element in g(h1:T+1) and Q(h1:T+1). By defining

ϵt = yt exp(−x′tβ − ht), ηt = ht+1 − ϕht, (4.20)

the log density of yt (4.7) is rewritten as

log p(yt|ht, ht+1, θ) = −x′tβ − ht −
1

2
(ϵt − γηt)

2 + constant.

Note that

∇tϵt = −ϵt, ∇tηt = −ϕ, ∇tηt−1 = 1.

where ∇t =
∂

∂ht
. Each element of g(h1:T+1) is derived as

gt(h1:T+1) = ∇t log p(y1:T |h1:T+1, θ) = ∇t log p(yt|ht, ht+1, θ) +∇t log p(yt−1|ht−1, ht, θ)

= −1− (ϵt − γηt)(−ϵt − γ(−ϕ))− (ϵt−1 − γηt−1)(−γ)

= −1 + (ϵt − γηt)(ϵt − γϕ) + γ(ϵt−1 − γηt−1),

for t = 2, . . . , T ,

g1(h1:T+1) = ∇1 log p(y1:T |h1:T+1, θ) = ∇1 log p(y1|h1, h2, θ)

= −1− (ϵ1 − γη1)(−ϵ1 − γ(−ϕ))

= −1 + (ϵ1 − γη1)(ϵ1 − γϕ),
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for t = 1, and

gT+1(h1:T+1) = ∇T+1 log p(y1:T |h1:T+1, θ) = ∇T+1 log p(yT |hT , hT+1, θ)

= −(ϵT − γηT )(−γ) = γ(ϵT − γηT ),

for t = T + 1. The diagonal element in Q(h1:T+1) is given as

qt,t(h1:T+1) = (−1)×∇2
t log p(y1:T |h1:T+1, θ)

= −(−ϵt − γ(−ϕ))(ϵt − γϕ)− (ϵt − γηt)(−ϵt)− γ(−γ)

= (ϵt − γϕ)2 + ϵt(ϵt − γηt) + γ2,

for t = 2, . . . , T ,

q11(h1:T+1) = (−1)×∇2
1 log p(y1:T |h1:T+1, θ)

= −(−ϵ1 − γ(−ϕ))(ϵ1 − γϕ)− (ϵ1 − γη1)(−ϵ1)

= (ϵ1 − γϕ)2 + ϵ1(ϵ1 − γη1),

for t = 1, and

qT+1,T+1(h1:T+1) = (−1)×∇2
T+1 log p(y1:T |h1:T+1, θ)

= −γ(−γ) = γ2,

for t = T + 1. Furhtermore the first off-diagonal element of Q(h1:T+1) is derived as

qt,t+1(h1:T+1) = (−1)×∇t,t+1 log p(y1:T |h1:T+1, θ)

= −(−γ)(ϵt − γϕ)

= γ(ϵt − γϕ),

for t = 1, . . . , T . In summary,

gt(h1:T+1) = {−1 + (ϵt − γηt)(ϵt − γϕ)}1(t ≦ T ) + γ(ϵt−1 − γηt−1)1(t ≧ 2), (4.21)

qt(h1:T+1) = {(ϵt − γϕ)2 + ϵt(ϵt − γηt)}1(t ≦ T ) + γ21(t ≧ 2), (4.22)

qt,t+1(h1:T+1) = γ(ϵt − γϕ). (4.23)

Since the log prior density of h1:T+1 is

p̄(h1:T+1) = −T + 1

2
log(2πτ 2) +

1

2
log |V | − 1

2τ 2
h′1:T+1V h1:T+1, (4.24)
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the conditional posterior density of h1:T+1 (4.18) can be approximated by

p(h1:T+1|θ, y1:T )

= C exp [ℓ(h1:T+1) + p̄(h1:T+1)]

≈ C exp

[
ℓ(h∗1:T+1) + g(h∗1:T+1)

′(h1:T+1 − h∗1:T+1)

− 1

2
(h1:T+1 − h∗1:T+1)

′Q(h∗1:T+1)(h1:T+1 − h∗1:T+1) + p̄(h1:T+1)

]
= C exp

[
ℓ(h∗1:T+1)−

T + 1

2
log(2πτ 2) +

1

2
log |V |+ f(h1:T+1)

]
, (4.25)

where C is the normalizing constant of the conditional posterior density and

f(h1:T+1) = g(h∗1:T+1)
′(h1:T+1 − h∗1:T+1)

− 1

2
(h1:T+1 − h∗1:T+1)

′Q(h∗1:T+1)(h1:T+1 − h∗1:T+1)

− 1

2τ 2
h′1:T+1V h1:T+1, (4.26)

By completing the square in (4.26), we have

f(h1:T+1) = −1

2

(
h1:T+1 − µh(h

∗
1:T+1)

)′
Σh(h

∗
1:T+1)

−1
(
h1:T+1 − µh(h

∗
1:T+1)

)
(4.27)

+ constant,

where

Σh(h
∗
1:T+1) =

(
Q(h∗1:T+1) +

1

τ 2
V

)−1

,

µh(h
∗
1:T+1) = Σh(h

∗
1:T+1)

(
g(h∗1:T+1) +Q(h∗1:T+1)h

∗
1:T+1

)
.

Therefore the right-hand side of (4.25) is approximately proportional to the pdf of the

following normal distribution:

h1:T+1 ∼ N
(
µh(h

∗
1:T+1),Σh(h

∗
1:T+1)

)
. (4.28)

Recall that both Q(h∗1:T+1) and V are tridiagonal matrices. Thus Σh(h
∗
1:T+1)

−1 =

Q(h∗1:T+1) +
1
τ2
V is also tridiagonal. Since the Cholesky decomposition of a tridiagonal

matrix and the inverse of a triangular matrix can be efficiently computed if they exist,

h1:T+1 is readily generated from (4.28) with

h1:T+1 = (L′)
−1 (

L−1
(
g(h∗1:T+1) +Q(h∗1:T+1)h

∗
1:T+1

)
+ z̃
)
, z̃ ∼ N (0, I),
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where L is a lower triangular matrix obtained by the Cholesky decomposition as

L′L = Q(h∗1:T+1) +
1

τ 2
V.

The above algorithm, which is called the all without a loop (AWOL) in Kastner and

Frühwirth-Schnatter (2014), has been applied to Gaussian Markov random fields (e.g.,

Rue (2001)) and state-space models (e.g., Chan and Jeliazkov (2009), McCausland et al.

(2011)).

Hoping that the approximation (4.25) is sufficiently accurate, we use (4.28) as the

proposal distribution in the MH algorithm. In practice, however, we need to address two

issues:

1. the choice of h∗1:T+1 is crucial to make the approximation (4.25) workable.

2. the acceptance rate of the MH algorithm tends to be too low when h1:T+1 is a

high-dimensional vector.

We address the former issue by using the mode of the conditional posterior density

as h∗1:T+1. The search of the mode is performed by the following recursion:

Step 1: Initialize h∗(0)1:T+1 and set the counter r = 1.

Step 2: Update h∗(r)1:T+1 by h∗(r)1:T+1 = µh(h
∗(r−1)
1:T+1 ).

Step 3: Let r = r + 1 and go to Step 2 unless maxt=1,...,T+1 |h∗(r)t − h
∗(r−1)
t | is less than

the preset tolerance level.

In our experience, it mostly attains convergence in a few iterations.

We address the latter issue by apply a so-called block sampler. In the block sampler,

we randomly partition h1:T+1 into several sub-vectors (blocks), generate each block from

its conditional distribution given the rest of the blocks and apply the MH algorithm to

each generated block. Without loss of generality, suppose the proposal distribution (4.28)

is partitioned as h1
h2


︸ ︷︷ ︸
h1:T

∼ N

(µh1

µh2


︸ ︷︷ ︸

µh

,

Σh11 Σh12

Σh21 Σh11


︸ ︷︷ ︸

Σh

)
, (4.29)
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where µh = µh

(
h∗1:T+1

)
and Σh = Σh

(
h∗1:T+1

)
(we ignore the dependence on h∗1:T+1 for

brevity) and h1 is the block to be updated in the current MH step while h2 contains either

elements that were already updated in the previous MH steps or those to be updated in

the following MH steps. It is well known that the conditional distribution of h1 given h2
is given by

h1|h2 ∼ N
(
µh1 + Σh11Σ

−1
12 (h2 − µh2) ,Σh11 − Σh12Σ

−1
h22Σh21

)
. (4.30)

Note that the inverse of the covariance matrix Σh in (4.29) is

Σ−1
h =

Σh11 Σh12

Σh21 Σh22

−1

=

 Ωh11 −Ωh11Σh12Σ
−1
h22

−Σ−1
h22Σh21Ωh11 Σ−1

h22 + Σ−1
h22Σh21Ωh11Σh12Σ

−1
h22

 ,
Ωh11 =

(
Σh11 − Σh12Σ

−1
h22Σh21

)−1
.

Furthermore, if we let Ωh12 denote the upper-right block of Σ−1
h , we have

Ωh12 = −Ωh11Σh12Σ
−1
h22.

Therefore the conditional distribution of h1 given h2 in (4.30) is rearranged as

h1|h2 ∼ N
(
µh1 − Ω−1

h11Ωh12 (h2 − µh2) ,Ω
−1
h11

)
. (4.31)

Recall that Σ−1
h is tridiagonal and so is Ωh11 by construction. Thus we can apply the

AWOL algorithm:

h1 = µh1 − (L′
1)

−1 (
L−1
1 Ωh12(h2 − µh2)− z̃1

)
, z̃1 ∼ N (0, I), L1L

′
1 = Ωh11,

to generate h1 from (4.31). In essence, our approach is an AWOL variant of the block

sampler proposed by Omori and Watanabe (2008).

Regression Coefficients β

The sampling scheme for the regression coefficients β is almost identical to the one

for the log volatility h1:T+1. Let ℓ(β) denote log p(y1:T |h1:T+1, θ) given y1:T and the pa-

rameters other than β. In the same manner as (4.19), consider the second-order Taylor

approximation of ℓ(β) in the neighborhood of β∗:

ℓ(β) ≈ ℓ(β∗) + g(β∗)′(β − β∗)− 1

2
(β − β∗)′Q(β∗)(β − β∗), (4.32)



4.3. CONDITIONAL POSTERIOR DISTRIBUTIONS 81

where g(β) is the gradient vector of ℓ(β) and Q(β) is the Hessian matrix of ℓ(β) times

−1. Since ∇βϵt = −ϵtxt, we have

∇β log p(yt|ht, ht+1, θ) = −xt + (ϵ2t − γηtϵt)xt,

∇′
β∇β log p(yt|ht, ht+1, θ) = (−2ϵ2t + γηtϵt)xtx

′
t.

Therefore g(β) and Q(β) are obtained as

g(β) =
T∑
t=1

(ϵt(ϵt − γηt)− 1)xt,

Q(β) =
T∑
t=1

ϵt(2ϵt − γηt)xtx
′
t.

With the prior β ∼ N (µ̄β, Ω̄
−1
β ), the conditional posterior density of β can be approxi-

mated by

p(β|h1:T+1, θ−β, y1:T )

= C exp [ℓ(β) + log p(β)]

≈ C exp

[
ℓ(β∗)− 1

2
log(2π) +

1

2
log |Ω̄β|

]
× exp

[
g(β∗)′(β − β∗)− 1

2
(β − β∗)′Q(β∗)(β − β∗)− 1

2
(β − µ̄β)

′Ω̄β(β − µ̄β)

]
. (4.33)

By completing the square as in (4.33), the proposal distribution for the MH algorithm is

derived as

β ∼ N (µβ(β
∗),Σβ(β

∗)) , (4.34)

where

Σβ(β
∗) =

(
Q(β∗) + Ω̄β

)−1
, µβ(β

∗) = Σβ(β
∗)
(
g(β∗) +Q(β∗)β∗ + Ω̄βµ̄β

)
.

The search algorithm for β∗ is the same as h∗1:T+1.

Since the dimension of β is considerably smaller than h1:T+1, it is not necessary to

apply the block sampler in our experience.
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Leverage Parameter γ

Since we use the standard conditionally conjugate prior distributions for γ, the con-

ditional posterior distribution is given by

γ|h1:T+1, θ−γ, y1:T ∼ N

(∑T
t=1 ηtϵt + ω̄γµ̄γ∑T

t=1 η
2
t + ω̄γ

,
1∑T

t=1 η
2
t + ω̄γ

)
. (4.35)

Variance τ 2

Since we use the standard conditionally conjugate prior distribution for τ 2, the con-

ditional posterior distribution is given by

τ 2|h1:T+1, θ−τ2 , y1:T ∼ IG
(
T + 1

2
+ aτ ,

1

2
h′1:T+1V h1:T+1 + bτ

)
. (4.36)

AR(1) Coefficient ϕ

Once the state variables h1:T+1 are generated, the conditional posterior density of ϕ

is given by

p(ϕ|h1:T+1, θ−ϕ, y1:T ) ∝
√

1− ϕ2 exp

[
−(1− ϕ2)h21 +

∑T
t=1(ht+1 − ϕht)

2

2τ 2

]
× (1 + ϕ)aϕ−1(1− ϕ)bϕ−11(−1,1)(ϕ). (4.37)

By completing the square, we have

(1− ϕ2)h21 +
T∑
t=1

(ht+1 − ϕht)
2

= (1− ϕ2)h21 +
T∑
t=1

h2t+1 − 2ϕ
T∑
t=1

ht+1ht + ϕ2

T∑
t=1

h2t

=
T+1∑
t=1

h2t − 2ϕ
T∑
t=1

ht+1ht + ϕ2

T∑
t=2

h2t

=
T∑
t=2

h2t

(
ϕ−

∑T
t=1 ht+1ht∑T

t=2 h
2
t

)2

+
T+1∑
t=1

h2t −

(∑T
t=1 ht+1ht

)2
∑T

t=2 h
2
t

.

With the above expression in mind, we use the following truncated normal distribution:

ϕ ∼ N

(∑T
t=1 ht+1ht∑T

t=2 h
2
t

,
τ 2∑T
t=2 h

2
t

∣∣∣∣∣− 1 < ϕ < 1

)
, (4.38)

as the proposal distribution for ϕ in the MH algorithm.
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4.3.2 CP Form

Latent Log Volatility h̃1:T+1

The sampling scheme from the conditional posterior distribution of h̃1:T+1:

p(h̃1:T+1|θ, y1:T ) ∝
T∏
t=1

p(yt|h̃t, h̃t+1, θ) · p(h̃1:T+1|θ), (4.39)

is based on the MH algorithm, which is similar to the case of the NCP form. To construct

the proposal distribution of h̃1:T+1, we consider the second-order Taylor approximation

of ℓ(h̃1:T+1) = log p(h̃1:T+1|θ, y1:T ) in the neighborhood of h̃∗1:T+1 as in (4.19). We first

derive the explicit form of each element in g(h̃1:T+1) and Q(h̃1:T+1). By defining

ϵ̃t = yt exp(−h̃t), η̃t = h̃t+1 − ϕh̃t − (xt+1 − ϕxt)
′β, (4.40)

the log density of yt in (4.15) is rewritten as

log p(yt|h̃t, h̃t+1, θ) = −h̃t −
1

2
(ϵ̃t − γη̃t)

2 + constant.

Since

∇tϵ̃t = −ϵ̃t, ∇tη̃t = −ϕ, ∇tη̃t−1 = 1,

gt(h̃1:T+1), qt(h̃1:T+1) and qt,t+1(h̃1:T+1) are identical to (4.21), (4.22) and (4.23) except

that ϵt and ηt are replaced with ϵ̃t and η̃t respectively.

Since the log prior density of h̃1:T+1 is

p̄(h̃1:T+1) = −T + 1

2
log(2πτ 2) +

1

2
log |V | − 1

2τ 2
(h̃1:T+1 −Xβ)′V (h̃1:T+1 −Xβ), (4.41)

the conditional posterior density of h̃1:T+1 (4.39) can be approximated by

p(h̃1:T+1|θ, y1:T )

= C exp [ℓ(h1:T+1) + p̄(h1:T+1)]

≈ C exp

[
ℓ(h̃∗1:T+1)−

T + 1

2
log(2πτ 2) +

1

2
log |V |+ f(h̃1:T+1)

]
, (4.42)

where C is the normalizing constant of the conditional posterior density and

f(h̃1:T+1) = g(h̃∗1:T+1)
′(h̃1:T+1 − h̃∗1:T+1)

− 1

2
(h̃1:T+1 − h̃∗1:T+1)

′Q(h̃∗1:T+1)(h̃1:T+1 − h̃∗1:T+1)

− 1

2τ 2
(h̃1:T+1 −Xβ)′V (h̃1:T+1 −Xβ), (4.43)
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By completing the square in (4.43), we have

f(h̃1:T+1) = −1

2

(
h̃1:T+1 − µh̃(h̃

∗
1:T+1)

)′
Σh̃(h̃

∗
1:T+1)

−1
(
h̃1:T+1 − µh̃(h̃

∗
1:T+1)

)
(4.44)

+ constant,

where

Σh̃(h̃
∗
1:T+1) =

(
Q(h̃∗1:T+1) +

1

τ 2
V

)−1

,

µh̃(h̃
∗
1:T+1) = Σh̃(h̃

∗
1:T+1)

(
g(h̃∗1:T+1) +Q(h̃∗1:T+1)h̃

∗
1:T+1 +

1

τ 2
V Xβ

)
.

Therefore the right-hand side of (4.42) is approximately proportional to the pdf of the

following normal distribution:

h̃1:T+1 ∼ N
(
µh̃(h̃

∗
1:T+1),Σh̃(h̃

∗
1:T+1)

)
, (4.45)

which we use as the proposal distribution in the MH algorithm. We obtain h̃∗1:T+1 in

(4.45) with the same search algorithm as in the case of the NCP form and apply the

block sampler to improve the acceptance rate in the MH algorithm.

Regression Coefficients β

By ignoring the terms that do not depend on β, we can rearrange the density of Yt in

(4.15) as

p(yt|h̃t, h̃t+1, β, θ−β) ∝ exp

[
−1

2
(ỹt − x̃′tβ)

2

]
,

where

ỹt = yt exp(−h̃t)− γ(h̃t+1 − ϕh̃t), x̃t = −γ(xt+1 − ϕxt).

By defining ỹ = [ỹ1; . . . ; ỹT ] and X̃ = [x̃′1; . . . ; x̃T ], we have

p(y1:T |h̃1:T+1, β, θ−β) =
T∏
t=1

p(yt|h̃t, h̃t+1, β, θ−β)

∝ exp

[
−1

2
(ỹ − X̃β)′(ỹ − X̃β)

]
. (4.46)
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Then the conditional posterior distribution of β is given by

p(β|h̃1:T+1, θ−β, y1:T )

∝ p(y1:T |h̃1:T+1, β, θ−β)p(h̃1:T+1|β, θ−β)p(β)

∝ exp

[
−1

2
(ỹ − X̃β)′(ỹ − X̃β)− 1

2τ 2
(h̃1:T+1 −Xβ)′V (h̃1:T+1 −Xβ)

− 1

2
(β − µ̄β)

′Ω̄β(β − µ̄β)

]
. (4.47)

By completing the square, we have the conditional posterior distribution of β as

β ∼ N
(
µ̃β, Σ̃β

)
, (4.48)

where

Σ̃β =

(
X̃ ′X̃ +

1

τ 2
X ′V X + Ω̄β

)−1

,

µ̃β = Σ̃β

(
X̃ ′ỹ +

1

τ 2
X ′V h̃1:T+1 + Ω̄βµ̄β

)
.

Since X̃ ′X̃ = γ2X ′V X,

Σ̃β =

((
γ2 +

1

τ 2

)
X ′V X + Ω̄β

)−1

,

µ̃β = Σ̃β

(
X̃ ′ϵ̃+

(
γ2 +

1

τ 2

)
X ′V h̃1:T+1 + Ω̄βµ̄β

)
,

where ϵ̃ = [ϵ̃1; . . . ; ϵ̃T ].

Leverage Parameter γ

Replacing ϵt and ηt in (4.35) with ϵ̃t and η̃t respectively, we have

γ|h̃1:T+1, θ−γ, y1:T ∼ N

(∑T
t=1 η̃tϵ̃t + ω̄γµ̄γ∑T

t=1 η̃
2
t + ω̄γ

,
1∑T

t=1 η̃
2
t + ω̄γ

)
. (4.49)

Variance τ 2

It is straightforward to show that the conditional posterior distribution of τ 2 is

τ 2|h̃1:T+1, θ−τ2 , y1:T ∼ IG
(
T + 1

2
aτ ,

1

2
(h̃1:T+1 −Xβ)′V (h̃1:T+1 −Xβ) + bτ

)
. (4.50)
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AR(1) Coefficient ϕ

Replacing ht in derivation of (4.38) with h̃t − x′tβ, we have

ϕ ∼ N

(∑T
t=1(h̃t+1 − x′t+1β)(h̃t − x′tβ)∑T

t=2(h̃t − x′tβ)
2

,
τ 2∑T

t=2(h̃t − x′tβ)
2

∣∣∣∣∣− 1 < ϕ < 1

)
. (4.51)

We use (4.51) as the proposal distribution for ϕ in the MH algorithm.

4.4 Extension: Skew Heavy-Tailed Distributions

4.4.1 Mean-Variance Mixture of the Normal Distribution

It is a well-known stylized fact that probability distributions of stock returns are

almost definitely heavy-tailed (the probability density goes down to zero much slower

than the normal distribution) and often have non-zero skewness (they are not symmetric

around the mean). Although introduction of stochastic volatility and leverage makes the

distribution of yt skew and heavy-tailed, it may not be sufficient to capture those char-

acteristics of real data. For this reason, instead of the normal distribution, we introduce

a skew heavy-tailed distribution to the SV model.

In our study, we suppose that zt in (4.5) is expressed as a mean-variance mixture of

the standard normal distribution:

zt = αδt +
√
δtut, ut ∼ N (0, 1), δt ∼ GIG(λ, ψ, ξ), (4.52)

where GIG(λ, ψ, ξ) stands for the generalized inverse Gaussian distribution with the

probability density:

p(δt) =
(ψ/ξ)λ/2

2Kλ(
√
ψξ)

δλ−1
t exp

[
−1

2

(
ψδt +

ξ

δt

)]
, (4.53)

where

λ ∈ R, (ψ, ξ) ∈


{(ψ, ξ) : ψ > 0, ξ ≥ 0} if λ > 0,

{(ψ, ξ) : ψ > 0, ξ > 0} if λ = 0,

{(ψ, ξ) : ψ ≥ 0, ξ > 0} if λ < 0,

and Kλ(·) is the modified Bessel function of the second kind. The family of generalized

inverse Gaussian distributions includes
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• exponential distribution (λ = 1, ξ = 0),

• gamma distribution (λ > 0, ξ = 0),

• inverse gamma distribution (λ < 0, ψ = 0),

• inverse Gaussian distribution (λ = −1
2
)

Under the assumption (4.52), the distribution of zt belongs to the family of generalized

hyperbolic distributions proposed by Barndorff-Nielsen (1977) which includes many well-

known skew heavy-tailed distributions such as

• skew variance gamma (VG) distribution1 (λ = ν
2
, ψ = ν, ξ = 0),

• skew t distribution (λ = −ν
2
, ψ = 0, ξ = ν),

where ν > 0. Thus we have two additional parameters (α, ν) in the SV model. Since

α determines whether the distribution of yt is symmetric or not while ν determines how

heavy-tailed the distribution is, we call α the asymmetry parameter and ν the tail param-

eter respectively. In our study, we use the above three skew heavy-tailed distributions as

alternatives to the normal distribution. To distinguish each model specification, we use

the following abbreviations:

SV-N: stochastic volatility model with the normal error,

SV-G: stochastic volatility model with the VG error,

SV-SG: stochastic volatility model with the skew VG error,

SV-T: stochastic volatility model with the Student-t error,

SV-ST: stochastic volatility model with the skew t error.

In this setup, the SV model with heavy-tailed error is formulated asyt = exp(x′tβ + ht)ϵt,

ht+1 = ϕht + ηt,

ϵt
ηt

∣∣∣∣∣∣ δt ∼ N

αδt
0

 ,
δt + γ2τ 2 γτ 2

γτ 2 τ 2

 . (4.54)

1In general, the skew VG distribution is a mean-variance mixture of the standard normal distribution

with GIG(λ, ψ, 0). To make the estimation easier, we set λ = ν
2 and ψ = ν so that the skew VG

distribution has only two free parameters (α, ν).
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It is straightforward to show that the conditional probability density of yt given (ht, ht+1)

is given by

p(yt|ht, ht+1, θ) =

∫ ∞

0

p(yt|ht, ht+1, δt, θ)p(δt|ν)δt, (4.55)

where θ = (β, γ, τ 2, ϕ, α, ν),

p(yt|ht, ht+1, δt, θ)

=
1√
2πδt

exp

[
−x′tβ − ht −

{yt exp (−x′tβ − ht)− αδt − γ(ht+1 − ϕht)}2

2δt

]
, (4.56)

and

p(δt|ν) =


(ν/2)ν/2

Γ(ν/2)
δ

ν
2
−1

t exp
(
−ν
2
δt

)
(SV-SG),

(ν/2)ν/2

Γ(ν/2)
δ
− ν

2
−1

t exp

(
− ν

2δt

)
(SV-ST).

(4.57)

Since it is impractical to evaluate the multiple integral in (4.55), we generate δ1:T =

(δ1, . . . , δT ) along with h1:T+1 and θ form their joint posterior distribution. In this setup,

the likelihood used in the posterior simulation is

p(y1:T , h1:T+1, δ1:T |θ) = p(y1:T |h1:T+1, δ1:T , θ)p(h1:T+1|θ)

=
T∏
t=1

p(yt|ht, ht+1, θ) · p(h1:T+1|θ). (4.58)

We suppose that the prior distributions for α and ν are

α ∼ N (µ̄α, ω̄
−1
α ), ν ∼ G(aν , bν). (4.59)

where G(a, b) is the gamma distribution with the probability density:

p(x|a, b) = ba

Γ(a)
xa−1e−bx.

As for the other parameters, we keep the same ones in (4.10).

4.4.2 Conditional Posterior Distributions

Latent Log Volatility h1:T+1

Our sampling scheme for h1:T+1 is basically the same as before. We first approximate

the log likelihood with the second-order Taylor expansion around the mode and construct
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a proposal distribution of h1:T+1 with the approximated log likelihood. Then we apply a

multi-move MH sampler for generating h1:T+1 from the conditional posterior distribution.

The sole differences are the functional form of g(h1:T+1) and Q(h1:T+1).

gt(h1:T+1) =

{
−1 +

1

δt
(ϵt − αδt − γηt) (ϵt − γϕ)

}
1(t ≦ T )

+
γ

δt−1

(ϵt−1 − αδt−1 − γηt−1)1(t ≧ 2), (t = 1, . . . , T + 1), (4.60)

where 1(·) is the indicator function. Each diagonal element of Q(h1:T+1) is

qt,t(h1:T+1) =
1

δt

{
ϵt(ϵt − αδt − γηt) + (ϵt − γϕ)2

}
1(t ≦ T )

+
γ2

δt−1

1(t ≧ 2), (t = 1, . . . , T + 1), (4.61)

and the off-diagonal element is

qt,t+1(h1:T+1) =
γ

δt
(ϵt − γϕ), (t = 1, . . . , T ). (4.62)

For the NCP form, we use ϵt and ηt in (4.20). For the CP form, we replace them with ϵ̃t
and η̃t in (4.40).

Regression Coefficients β

The sampling scheme for β is the same as before. For the NCP form, g(β) and Q(β)

are given by

g(β) =
T∑
t=1

(
ϵt
δt
(ϵt − αδt − γηt)− 1

)
xt, (4.63)

Q(β) =
T∑
t=1

ϵt
δt
(2ϵt − αδt − γηt) xtx

′
t, (4.64)

respectively. For the CP form, the conditional posterior distribution of β are given by

β ∼ N
(
µ̃β, Σ̃β

)
, (4.65)

where

Σ̃β =

(
X̃ ′D−1X̃ +

1

τ 2
X ′V X + Ω̄β

)−1

,

µ̃β = Σ̃β

(
X̃ ′D−1ỹ +

1

τ 2
X ′V h̃1:T+1 + Ω̄βµ̄β

)
,

ỹt = ϵ̃t − αδt − γ(h̃t+1 − ϕh̃t), ỹ = [ỹ1; . . . ; ỹT ], D = diag{δ1, . . . , δT}.
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Leverage Parameter γ

Their conditional posterior distribution of γ is given by

γ|h1:T+1, δ1:T , θ−γ, y1:T ∼ N

(∑T
t=1 ηt(ϵt/δt − α) + ω̄γµ̄γ∑T

t=1 η
2
t /δt + ω̄γ

,
1∑T

t=1 η
2
t /δt + ω̄γ

)
. (4.66)

For the NCP form, we use ϵt and ηt in (4.20). For the CP form, we replace them with ϵ̃t
and η̃t in (4.40).

Random Scale δ1:T

Using the Bayes theorem, we obtain the conditional posterior distribution of δt as

δt|h1:T+1, θ, y1:T ∼ GIG(λt, ψt, ξt), t = 1, . . . , T, (4.67)

where

(λt, ψt, ξt) =


(
ν − 1

2
, α2 + ν, (ϵt − γηt)

2

)
, (SV-SG),(

−ν + 1

2
, α2, (ϵt − γηt)

2 + ν

)
, (SV-ST).

For the NCP form, we use ϵt and ηt in (4.20). For the CP form, we replace them with ϵ̃t
and η̃t in (4.40).

To improve the performance of the MCMC algorithm, we apply a generalized Gibbs

sampler by Liu and Sabatti (2000) to {δt}Tt=1 after we generate them from the conditional

posterior distribution (4.67). This is rather simple. All we need to do is to multiply each

of {δt}Tt=1 by a random number c that is generated from

c ∼


GIG

(
(ν − 1)T

2
, (α2 + ν)

T∑
t=1

δt,
T∑
t=1

(ϵt − γηt)
2

δt

)
, (SV-SG),

GIG

(
−(ν + 1)T

2
, α2

T∑
t=1

δt,
T∑
t=1

(ϵt − γηt)
2 + ν

δt

)
, (SV-ST).

(4.68)

Asymmetry Parameter α

Using the Bayes theorem, we obtain the conditional posterior distribution of α as

α|h1:T+1, δ1:T , θ−α, y1:T

∼ N

(∑T
t=1(ϵt − γηt) + ω̄αµ̄α∑T

t=1 δt + ω̄α

,
1∑T

t=1 δt + ω̄α

)
.

(4.69)
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For the NCP form, we use ϵt and ηt in (4.20). For the CP form, we replace them with ϵ̃t
and η̃t in (4.40).

Tail Parameter ν

The explicit form of the conditional posterior density of ν is not available. Therefore

we apply the MH algorithm for generating ν. Note that the gamma density for SV-SG

in (4.57) is identical to the inverse gamma density for SV-ST in (4.57) as a function of ν

if we exchange δt with δ−1
t . Since we use the same gamma prior for ν in either case, the

resultant conditional posterior density should be the same in both SV-SG and SV-ST.

Therefore it suffices to derive the MH algorithm for SV-ST.

The sampling strategy for ν is basically the same as β, which was originally proposed

by Watanabe (2001). We first consider the second-order Taylor expansion of the log

conditional posterior density of ν:

f(ν) =
T∑
t=1

log p(δt|ν) + log p(ν) + constant (4.70)

=
νT

2
log

ν

2
− T log Γ

(ν
2

)
− ν

{
1

2

T∑
t=1

(
log δt +

1

δt

)
+ bν

}
+ (aν − 1) log ν (4.71)

+ constant,

with respect to ν in the neighborhood of ν∗ > 0, i.e.,

f(ν) ≈ f(ν∗) + g(ν∗)(ν − ν∗)− 1

2
q(ν∗)(ν − ν∗)2, (4.72)

where

g(ν∗) ≡ ∇νf(ν
∗)

=
T

2
+
T

2
log

ν∗

2
− T

2
ψ(0)

(
ν∗

2

)
− 1

2

T∑
t=1

(
log δt +

1

δt

)
− bν +

aν − 1

ν∗
,

q(ν∗) ≡ −∇2
νf(ν

∗)

= − T

2ν∗
+
T

4
ψ(1)

(
ν∗

2

)
+
aν − 1

ν∗2
,

and ψ(s) is the polygamma function of order s. Note that q(ν∗) > 0 if T + 2aν > 2. See

Theorem 1 in Watanabe (2001) for the proof. By applying the completing-the-square
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technique to (4.72), we obtain the proposal distribution for the MH algorithm:

ν ∼ N
(
µν(ν

∗), σ2
ν(ν

∗)
)
, (4.73)

where

σ2
ν(ν

∗) =
1

q(ν∗)
, µν(ν

∗) = ν∗ +
g(ν∗)

q(ν∗)
.

If we use the mode of f(ν) as ν∗, g(ν∗) = 0 always holds due to the global concavity of

f(ν). Thus µν(ν
∗) is effectively identical to ν∗.

4.5 Empirical Study

As an application of our proposed models to real data, we analyze high frequency

data of the Tokyo Stock Price Index (TOPIX), a market-cap-weighted stock index based

on all domestic common stocks listed in the Tokyo Stock Exchange (TSE) First Section,

which is provided by Nikkei Media Marketing. We use the data in June 2016, when

the referendum for the UK’s withdrawal from the EU (Brexit) was held on the 23rd of

the month. The Brexit referendum is arguably one of the biggest financial events in the

resent years. So we can analyze the effect of the Brexit referendum on the volatility of

the Japanese stock market. Another reason for this choice is that Japan has no holiday

in June so that all weekdays are trading days. There are five weeks in June 2016. Since

the first week of June 2016 includes May 30th and 31st and the last week includes July

1st, we also include them in the sample period.

The morning session of TSE starts at 9:00 am and ends at 11:30 am while the afternoon

session of TSE starts at 12:30 am and ends at 15:00 pm. So both sessions last for 150

minutes. We treat the morning session and the afternoon session as if they are separated

trading hours, and normalize the time stamps so that they takes value within [0, 1]. As a

result, t = 0 is corresponding to 9:00 am for the morning session while it is corresponding

to 12:30 am for the afternoon session. In the same manner, t = 1 is corresponding to

11:30 am for the morning session while it is corresponding to 15:00 pm for the afternoon

session. In this empirical study, we estimate the Bernstein polynomial of the intraday

seasonality in each session by allowing β in (4.2) to differ from session to session.
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Table 4.1: Descriptive statistics of standardized TOPIX 1-minute returns in June 2016

Date Skewness Kurtosis Min. Max

Week1 −0.1081 7.2296 −7.2569 5.4520

Week2 0.2494 7.7468 −5.9886 5.7911

Week3 0.3534 7.4500 −6.4415 5.8413

Week4 −0.0125 7.1031 −6.4212 5.6074

Week5 0.0346 4.9146 −4.6433 5.4437

We pick prices at every 1 minute and compute 1-minute log difference of prices as

1-minute stock returns. Thus the number of observations per session is 150. Furthermore

we put together all series of 1-minute returns in each week. As a result, the total number

of observations per week is 150×2×5 = 1, 500. In addition, to simplify the interpretation

of the estimation results, we standardize each week-long series of 1-minute returns so that

the sample mean is 0 and the sample variance is 1. Table 1 shows the descriptive statistics

of the standard 1-minute returns of TOPIX in each week while Figure 1–5 show the time

series plots of the standardized 1-minute returns for each week.

We consider 5 candidates (SV-N, SV-G, SV-SG, SV-T, SV-ST) in the SV model (4.54)

and set the prior distributions as follows:

β ∼ N (0, 100I), γ ∼ N (0, 100), τ 2 ∼ IG(1, 0.04),
ϕ+ 1

2
∼ B(1, 1), α ∼ N (0, 100), ν ∼ G(0, 0.1).

We vary the order of the Bernstein polynomial from 5 to 10. In sum, we try 30 different

model specifications for the SV model (4.54). In the MCMC implementation, we generate

10,000 draws after the first 5,000 draws are discarded as the burn-in periods. To select the

best model among the candidates, we employ the widely applicable information criterion

(WAIC, Watanabe (2010)). We compute the WAIC of each model specification with the

formula by Gelman et al. (2014). The results are reported in Table 2–6. According

to these tables, SV-G or SV-SG is the best model in all months. It may be a notable

finding since the SV model with the variance-gamma error has hardly been applied in

the previous studies.
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Figure 4.1: Standardized returns of the TOPIX data in the first week of June 2016

Figure 4.2: Standardized returns of the TOPIX data in the second week of June 2016

Figure 4.3: Standardized returns of the TOPIX data in the third week of June 2016

Figure 4.4: Standardized returns of the TOPIX data in the fourth week of June 2016
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Figure 4.5: Standardized returns of the TOPIX data in the fifth week of June 2016

Table 4.2: WAIC values of TOPIX returns (week 1)

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 3965.1 3966.0 3962.0 3975.1 3969.6 3971.3

SV-G 3701.0 3698.5 3702.2 3697.4 3700.0 3701.1

SV-SG 3701.9 3701.0 3698.9 3699.0 3702.8 3700.8

SV-T 3813.2 3813.3 3813.8 3816.6 3813.9 3813.0

SV-ST 3819.3 3813.8 3816.5 3816.2 3815.7 3817.5

Note: Bold highlight means the best model according to WAIC.

Table 4.3: WAIC values of TOPIX returns (week 2)

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 3811.0 3813.7 3814.5 3815.7 3818.0 3819.6

SV-G 3621.0 3622.7 3621.0 3619.7 3621.2 3621.8

SV-SG 3618.6 3621.3 3622.0 3623.7 3623.4 3619.7

SV-T 3685.4 3684.1 3681.5 3859.0 3860.4 3684.6

SV-ST 3686.9 3684.9 3683.3 3684.1 3684.3 3686.4

Note: Bold highlight means the best model according to WAIC.
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Table 4.4: WAIC values of TOPIX returns (week 3)

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 3976.9 3991.1 3996.8 3975.1 3969.6 3971.3

SV-G 3750.2 3752.4 3752.0 3755.2 3752.9 3754.3

SV-SG 3753.6 3753.3 3755.8 3754.1 3759.9 3752.8

SV-T 3862.0 3859.4 3861.6 3859.0 3860.4 3861.6

SV-ST 3862.1 3861.2 3861.3 3860.6 3861.5 3862.1

Note: Bold highlight means the best model according to WAIC.

Table 4.5: WAIC values of TOPIX returns (week 4)

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 3927.5 3924.5 3924.8 3925.8 3924.7 3927.1

SV-G 3670.3 3680.1 3679.0 3662.8 3675.7 3670.4

SV-SG 3663.5 3668.2 3670.3 3664.6 3672.6 3669.1

SV-T 3750.9 3751.9 3752.3 3750.8 3753.1 3753.9

SV-ST 3753.5 3754.3 3753.4 3755.3 3752.8 3751.7

Note: Bold highlight means the best model according to WAIC.

Table 4.6: WAIC values of TOPIX returns (week 5)

Order 5 Order 6 Order 7 Order 8 Order 9 Order 10

SV-N 4114.6 4114.3 4111.3 4115.2 4113.7 4114.5

SV-G 3961.2 3959.6 3958.3 3960.0 3961.2 3960.0

SV-SG 3953.7 3955.6 3960.0 3963.3 3957.7 3953.1

SV-T 4033.7 4033.8 4032.7 4031.2 4032.8 4033.1

SV-ST 4032.5 4033.0 4033.4 4030.4 4032.0 4031.5

Note: Bold highlight means the best model according to WAIC.

For the selected models, we compute the posterior statistics (posterior means, stan-

dard deviations, 95% credible intervals and inefficiency factors) of the parameters and

report them in Table 7–11. In these tables, the 95% credible intervals of the leverage
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parameter γ and the asymmetric parameter α contain 0 for all specifications. Thus we

may conclude that the error distribution of 1-minute returns of TOPIX is not asymmet-

ric. In addition, most of the marginal posterior distribution of ϕ are concentrated near

1, even though the uniform prior is assumed for ϕ. This suggests that the latent log

volatility is strongly persistent, which is consistent with findings by the previous studies

on the stock markets. Regarding the tail parameter ν, its marginal posterior distribution

is centered around 2–6 in most models, which indicates that the excess kurtosis of the

error distribution is high.

As for the intraday seasonality, the estimates of β themselves are not of our inter-

est. Instead we show the posterior mean and the 95% credible interval of the Bernstein

polynomial x′tβ in Figure 6. These figures show that some of the trading days exhibit the

well-known U-shaped curve of intraday volatility, but others slant upward or downward.

At the beginning on the day of Brexit (June 23rd), the market began with a highly volatile

situation, but the volatility gradually became lower. During the afternoon session, the

volatility was kept in a stable condition.

Table 4.7: Estimation results for TOPIX returns (week 1)

γ ϕ τ α ν

SV-N (7)a −0.5742b 0.8909 0.1903

[−1.4270, −0.1241]c [ 0.8214, 0.9431] [ 0.1306, 0.2494]

3.42d 4.01 4.54

SV-G (8) −1.3565 0.9608 0.0798 2.5248

[−3.1743, 0.8347] [ 0.9320, 0.9815] [ 0.0604, 0.1034] [ 2.0444, 3.2647]

4.13 3.17 4.45 3.40

SV-SG (7) −1.4520 0.9598 0.0812 0.0014 2.5489

[−3.2233, 0.4995] [ 0.9316, 0.9802] [ 0.0630, 0.1077] [−0.0504, 0.0544] [ 2.0425, 3.3462]

3.99 3.01 4.45 1.23 3.48

SV-T (10) −1.4209 0.9864 0.0766 4.2950

[−4.3298, 1.5726] [ 0.9745, 0.9955] [ 0.0594, 0.1010] [ 3.3294, 5.5097]

3.85 2.90 4.42 3.44

SV-ST (6) −1.6137 0.9870 0.0753 0.0006 4.2338

[−5.0449, 1.6958] [ 0.9751, 0.9957] [ 0.0586, 0.0962] [−0.0400, 0.0407] [ 3.3247, 5.5254]

3.94 2.78 4.38 1.62 3.54

Note: a: the selected Bernstein polynomial order, b: posterior mean, c: 95% credible interval and d: inefficiency factor
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Table 4.8: Estimation results for TOPIX returns (week 2)

γ ϕ τ α ν

SV-N (5)a −0.2127b 0.7149 0.3435

[−0.5550, 0.0923]c [ 0.5967, 0.8106] [ 0.2750, 0.4187]

3.04d 3.87 4.39

SV-G (8) 0.0397 0.9191 0.0917 2.2475

[−1.7042, 2.0695] [ 0.8122, 0.9694] [ 0.0604, 0.1442] [ 2.0089, 2.7055]

4.27 4.05 4.58 2.6736

SV-SG (5) 0.0380 0.8965 0.0991 −0.0001 2.2622

[−1.5878, 1.9299] [ 0.6761, 0.9664] [ 0.0647, 0.1610] [−0.0530, 0.0531] [ 2.0102, 2.7308]

4.24 4.46 4.61 1.24 2.85

SV-T (7) -0.7862 0.914 0.0673 3.30

[−4.7784, 2.8361] [ 0.9825, 0.9979] [ 0.0511, 0.0886] [ 2.7141, 4.0299]

3.91 2.83 4.43 3.17

SV-ST (7) −0.6862 0.9909 0.0690 −0.0027 3.3647

[−4.4268, 2.9433] [ 0.9816, 0.9976] [ 0.0535, 0.0902] [−0.0376, 0.0323] [ 2.7611, 4.0958]

3.93 2.77 4.42 1.50 3.14

Note: a: the selected Bernstein polynomial order, b: posterior mean, c: 95% credible interval and d: inefficiency factor

Table 4.9: Estimation results for TOPIX returns (week 3)

γ ϕ τ α ν

SV-N (9)a 0.0514b 0.6249 0.2950

[−0.3345, 0.4436]c [ 0.3506, 0.8190] [ 0.2042, 0.3872]

2.71d 4.39 4.54

SV-G (5) 0.0639 0.4533 0.0919 2.2888

[−1.8134, 1.9573] [ 0.1344, 0.7393] [ 0.0632, 0.1413] [ 2.0155, 2.7501]

4.20 4.33 4.57 2.65

SV-SG (10) −0.2023 0.7992 0.0851 −0.0031 2.3419

[−2.1985, 1.7331] [ 0.2317, 0.9511] [ 0.0596, 0.1250] [−0.0546, 0.0485] [ 2.0232, 2.9008]

4.20 4.59 4.55 [ 1.17 2.99

SV-T (8) −0.2369 0.9871 0.0661 4.0539

[−3.6943, 3.4453] [ 0.9755, 0.9960] [ 0.0514, 0.0837] [ 3.2156, 5.1327]

3.86 2.83 4.39 3.39

SV-ST (8) −0.3313 0.9866 0.0670 −0.0034 4.1237

[−4.2240, 3.6835] [ 0.9730, 0.9957] [ 0.0521, 0.0900] [−0.0426, 0.0361] [ 3.2114, 5.2538]

3.98 3.07 4.42 1.59 3.44

Note: a: the selected Bernstein polynomial order, b: posterior mean, c: 95% credible interval and d: inefficiency factor
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Table 4.10: Estimation results for TOPIX returns (week 4)

γ ϕ τ α ν

SV-N (6)a −0.6502b 0.9336 0.1526

[−1.8098, 0.2658]c [ 0.8831, 0.9704] [ 0.1038, 0.2117]

3.53d 4.01 4.57

SV-G (8) −1.4435 0.9689 0.0853 2.9487

[−3.6134, 0.6862] [ 0.9454, 0.9859] [ 0.0657, 0.1098] [ 2.1879, 3.9161]

4.11 3.10 4.43 3.63

SV-SG (5) −1.7146 0.9694 0.0846 −0.0068 2.93

[−4.0432,−0.4361] [ 0.9458, 0.9868] [ 0.0650, 0.1116] [−0.0599, 0.0471] [ 2.14, 3.94]

4.18 3.11 4.46 1.54 3.64

SV-T (8) −1.4043 0.9869 0.0824 4.5805

[−4.4147, −1.6809] [ 0.9747, 0.9960] [ 0.0634, 0.1060] [ 3.5659, 5.8472]

3.96 2.89 4.41 3.43

SV-ST (10) −1.6482 0.9882 0.0788 −0.0045 4.4738

[−5.1451, 1.6390] [ 0.9777, 0.9964] [ 0.0623, 0.0982] [−0.0460, 0.0362] [ 3.4944, 5.7573]

4.05 2.64 4.36 1.70 3.39

Note: a: the selected Bernstein polynomial order, b: posterior mean, c: 95% credible interval and d: inefficiency factor

Table 4.11: Estimation results for TOPIX returns (week 5)

γ ϕ τ α ν

SV-N (7)a −0.2602b 0.8529 0.1428

[−1.5977, 0.8891]c [ 0.6617, 0.9395] [ 0.0858, 0.2348]

3.47d 4.38 4.62

SV-G (7) −1.1175 0.8638 0.0873 3.6578

[−3.7543, 1.4340] [ 0.6609, 0.9457] [ 0.0642, 0.1144] [ 2.4812, 5.1414]

4.21 4.24 4.45 3.86

SV-SG (10) −1.0562 0.8226 0.0828 -0.0042 3.5728

[−4.0335, 2.0096] [ 0.1974, 0.9485] [ 0.0587, 0.1170] [−0.0565, 0.0490] [ 2.4627, 4.8738]

4.27 4.60 4.52 1.19 3.73

SV-T (8) −1.2853 0.9727 0.0730 6.2435

[−4.7632, 1.8139] [ 0.9448, 0.9898] [ 0.0547, 0.0998] [ 4.5496, 8.6440]

3.92 3.59 4.50 3.71

SV-ST (8) −1.5744 0.9726 0.0735 −0.0084 6.2388

[−5.5186, 1.9908] [ 0.9459, 0.9898] [ 0.0566, 0.0992] [−0.0536, 0.0378] [ 4.6016, 8.6696]

4.04 3.56 4.46 1.84 3.74

Note: a: the selected Bernstein polynomial order, b: posterior mean, c: 95% credible interval and d: inefficiency factor
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(a) SV-G of Bernstein order 8 in the first

week

(b) SV-SG of Bernstein order 8 in the first

week

(c) SV-G of Bernstein order 5 in the second

week

(d) SV-SG of Bernstein order 5 in the sec-

ond week

(e) SV-G of Bernstein order 5 in the third

week

(f) SV-SG of Bernstein order 5 in the third

week

(g) SV-G of Bernstein order 8 in the fourth

week

(h) SV-SG of Bernstein order 8 in the

fourth week

(i) SV-G of Bernstein order 10 in the fifth

week

(j) SV-SG of Bernstein order 10 in the fifth

week

Figure 4.6: Intraday seasonality with Bernstein polynomial approximation
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4.6 Conclusion

In this chapter, we extended the standard SV model into a more general formulation

so that it could capture key characteristics of intraday high frequency stock returns such

as intraday seasonality, asymmetry and excess kurtosis. Our proposed model uses a

Bernstein polynomial of time stamps as the intraday seasonal component of the stock

volatility and the coefficients in the Bernstein polynomial are simultaneously estimated

along with the rest of the parameters in the model. To incorporate asymmetry and

excess kurtosis into the standard SV model, we assume that the error distribution of

stock returns in the SV model belongs to a family of generalized hyperbolic distributions.

In particular, we focus on two sub-classes of this family: skew Student’s t distribution

and skew variance-gamma distribution. Furthermore we developed an efficient MCMC

sampling algorithm for Bayesian inference on the proposed model by utilizing AWOL,

ASIS and the generalized Gibbs sampler.

As an application, we estimated the proposed SV models with 1-minute return data of

TOPIX in various specifications and conducted model selection with WAIC. The model

selection procedure chose the SV model with the variance-gamma-type error as the most

suitable one. The estimated parameters indicated strong excess kurtosis in the error

distribution of 1-minute returns, though the asymmetry was not supported since both

leverage parameter γ and asymmetry parameter α were not significantly different from

zero. Furthermore our proposed model successfully extracted intraday seasonal patterns

in the stock volatility with Bernstein polynomial approximation, though the shape of the

intraday seasonal component was not necessarily U-shaped.
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Chapter 5

Summary and Future Prospects

In this doctoral dissertation, we introduced the problem of inefficient sampling in

Markov chain Monte Carlo (MCMC). Although MCMC is arguably the most indispens-

able tool for Bayesian statisticians, effective usage of this tool relies on a proper choice

of sampling scheme. Bayesian statisticians have devised numerous sampling methods

that could solve the problem of slow convergence. In our own opinion, the Ancillarity-

suffciency interweaving strategy (ASIS) proposed by Yu and Meng (2011) is possibly one

of the most powerful of such methods. ASIS is a versatile tool that can be applied to

a wide variety of data and model specifications appropriate for analyzing them. Indeed,

from Chapter 2 through Chapter 4, we have shown that ASIS is capable of providing sig-

nificant improvements in the efficiency of MCMC not only for simple balanced panel data,

but also for more complex, high-dimensional unbalanced panel data and high-frequency

time series data.

In Chapter 2, we first provided the definition and principle of ASIS. Then we developed

a new ASIS scheme for the panel data regression model and compared this new scheme

with the traditional non-ASIS Gibbs sampling scheme. In the empirical study with the

real-world panel data used by Vella and Verbeek (1998), we showed that the ASIS scheme

could improve the efficiency of MCMC sampling in terms of stability and mixing of

generated random series. Without ASIS, many parameters in the panel data regression

model failed to pass the convergence diagnostic test because generated random series

exhibited strongly positive and persistent autocorrelation. With ASIS, on the other hand,

generated random series are far more stable and their sample autocorrelation declines far
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much faster. Furthermore, even though the panel data regression model includes hundreds

of parameters, all of them succeeded in passing the convergence diagnostic test. In sum,

the ASIS scheme archived efficient sampling for all parameters while the performance of

the non-ASIS scheme was dismal.

In Chapter 3, we conducted a hierarchical Bayesian analysis of racehorse running

ability and jockey skills by using the running records of all 1800-m races held by JRA

from 2016 to 2018 excluding obstacle courses. Three factors were considered to affect the

racehorse speed during a race, which were as follows: the individual racehorse’s ability,

the environment in which the race is run, and the jockey’s ability to control the horse.

The horserace data is higher-dimensional and more complex than in Chapter 2; 22,183

runs with 140 jockeys and 4,063 racehorses. In addition to the characteristics of the

model that includes a large number of parameters as racehorse’s and jockey’s individual

effects, the racehorse race data used in this study are unbalanced panel data in which

the number of times each racehorse has run is not uniform; thus, we apply a hierarchical

Bayesian analysis method following Silverman (2012). Furthermore, ASIS is applied to

improve the efficiency of convergence of the random series. Moreover, WAIC is used to

select combinations of explanatory variables in the regression model.

The application of ASIS leads to a lower autocorrelation of the MCMC sample, which

results in a more efficient sampling. The improvement in efficiency is so great that,

although the analysis of this study’s model is impractical without ASIS, it is now possible

to perform the analysis at a level that can be considered efficient in general.

In Chapter 4, we applied ASIS to a complex SV model using time series data; high

frequency trading data of stock prices. We extended the standard SV model into a more

general formulation so that it could capture key characteristics of intraday high frequency

stock returns such as intraday seasonality, asymmetry and excess kurtosis. Our proposed

model uses the Bernstein polynomials of time stamps as the intraday seasonal component

of the stock volatility and the coefficients for the Bernstein polynomial are simultaneously

estimated along with the rest of the parameters in the model. To incorporate asymmetry

and excess kurtosis into the standard SV model, we assume that the error distribution of

stock returns in the SV model belongs to a family of generalized hyperbolic distributions.

In particular, we focus on two sub-classes of this family: skew Student’s t distribution
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and skew variance-gamma distribution. Furthermore, we developed an efficient MCMC

sampling algorithm for Bayesian inference on the proposed model by utilizing ASIS with

AWOL and the generalized Gibbs sampler.

As an application, we estimated the proposed SV models with 1-minute return data of

TOPIX in various specifications and conducted model selection with WAIC. The model

selection procedure chose the SV model with the variance-gamma-type error as the most

suitable one. The estimated parameters indicated strong excess kurtosis in the error

distribution of 1-minute returns, though the asymmetry was not supported since both

leverage parameter γ and asymmetry parameter α were not significantly different from

zero. Furthermore our proposed model successfully extracted intraday seasonal patterns

in the stock volatility with Bernstein polynomial approximation.

The advantage of ASIS is not only its large effect on improving MCMC efficiency, but

also the fact that it is a very “cost-effective” method. For example, in Chapter 2, MCMC

efficiency can be improved by simply adding the process of sampling from a “centralized”

version of the latent variable or missing data without changing the whole structure of the

model.

The future prospects for research include: further development of ASIS to improve

the efficiency of MCMC sampling; application of ASIS to other statistical models and

real-world data to solve problems that could not be solved in the past; and development

of new analytic tools for effective Bayesian inference based on the ideas of ASIS. Although

MCMC is very powerful, it is undeniable that the degree of efficiency improvement de-

pends on models and data we use. Thus we would like to develop ASIS that can be

applicable to a variety of statistical models and real-world data. In addition, ASIS is

still less known among researchers even though its practicality is outstanding. This is

because there are not so many examples of its usage in applied fields. Through the future

research, we aim not only to develop ASIS, but also to promote it as a widely applicable

powerful tool for Bayesian inference.
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Appendix A

Derivations of Conditional Posterior

Distributions

From the Bayesian perspective, there is no essential difference between the following

panel data regression models:

• the regression model of balanced panel data with the one-way individual effect in

Chapter 2;

• the regression model of unbalanced panel data with the two-way individual effect

in Chapter 3,

because the two models share almost identical model structures, variables and parameters

(the definitions of vectors and matrices in the formulae are a little different between them).

Hence we will derive the conditional posterior distributions for the latter since the former

is nested in the latter.

Conditional posterior distribution of δ

The conditional posterior distribution of δ is

p(δ|D,θ−δ) ∝ exp

[
− 1

2σ2
ϵ

{
(y −Zδ)′(y −Zδ) + (δ − µ)′Σ−1(δ − µ)

}]
, (A.1)
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with likelihood (3.4) and prior distribution (3.6). Applying the square completion for-

mula, we obtain

σ−2
ϵ (y −Zδ)′(y −Zδ) + (δ − µ)′Σ−1(δ − µ)

= δ′ (σ−2
ϵ Z ′Z +Σ−1

)
δ − 2

(
σ−2
ϵ Z ′y +Σ−1µ

)′
δ + Constant

=
(
δ −

(
σ−2
ϵ Z ′Z +Σ−1

)−1 (
σ−2
ϵ Z ′y +Σ−1µ

)) (
σ−2
ϵ Z ′Z +Σ−1

)
×
(
δ −

(
σ−2
ϵ Z ′Z +Σ−1

)−1 (
σ−2
ϵ Z ′y +Σ−1µ

))
+ Constant.

where “Constant” means a term that does not depend on δ. The conditional posterior

distribution of (A.1) is

p(δ|D,θ−δ)

∝ exp

[
−1

2

(
δ −

(
σ−2
ϵ Z ′Z +Σ−1

)−1 (
σ−2
ϵ Z ′y +Σ−1µ

)) (
σ−2
ϵ Z ′Z +Σ−1

)
×
(
δ −

(
σ−2
ϵ Z ′Z +Σ−1

)−1 (
σ−2
ϵ Z ′y +Σ−1µ

))]
. (A.2)

This is equivalent to the probability density function of the distribution in (3.11).

Conditional posterior distribution of µα

The conditional posterior distribution of µα is

p(µα|D,θ−µα) ∝ exp

[
−
∑N

i=1(αi − µα)
2

2σ2
α

− (µα − φα)
2

2τ 2α

]

∝ exp

[
−1

2

{(
σ−2
α N + τ−2

α

)
µ2
α − 2

(
σ−2
α

N∑
i=1

αi + τ−2
α φα

)
µα

}]

∝ exp

−1

2

(
σ−2
α N + τ−2

α

)(
µα − σ−2

α

∑N
i=1 αi + τ−2

α φα

σ−2
α N + τ−2

α

)2
 , (A.3)

from (3.8) and (3.9). This is equivalent to the probability density function of the distri-

bution in (3.12).
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Conditional posterior distribution of µγ

The conditional posterior distribution of µγ is

p(µγ|D,θ−µγ ) ∝ exp

[
−
∑M

i=1(γi − µγ)
2

2σ2
γ

− (µγ − φγ)
2

2τ 2γ

]

∝ exp

[
−1

2

{(
σ−2
γ M + τ−2

γ

)
µ2
γ − 2

(
σ−2
γ

M∑
i=1

γi + τ−2
γ φγ

)
µγ

}]

∝ exp

−1

2

(
σ−2
γ M + τ−2

γ

)(
µγ −

σ−2
γ

∑M
i=1 γi + τ−2

γ φγ

σ−2
γ M + τ−2

γ

)2
 , (A.4)

from (3.8) and (3.9). This is equivalent to the probability density function of the distri-

bution in (3.13).

Conditional posterior distributions of σ2α and ξα

The conditional posterior distribution of σ2
α is

p(σ2
α|D,θ−σ2

α
, ξα)

∝ (σ2
α)

−N
2 exp

[
−
∑N

i=1(αi − µα)
2

2σ2
α

]
× (σ2

α)
−( 1

2
+1) exp

(
− 1

ξασ2
α

)

∝ (σ2
α)

−(N+1
2

+1) exp

[
−

1
2

∑N
i=1(αi − µα)

2 + ξ−1
α

σ2
α

]
, (A.5)

given the latent variable ξα from equations (3.8) and (3.17). This is equivalent to the

probability density function of the distribution of σ2
α in equation (3.14). Whereas, the

conditional posterior distribution of ξα is obtained as

p(ξα|σ2
α) ∝ ξ

− 1
2

α (σ2
α)

−( 1
2
+1) exp

(
− 1

ξασ2
α

)
× ξ

−( 1
2
+1)

α exp

(
− 1

s2αξα

)
∝ ξ−(1+1)

α exp

(
−σ

−2
α + s−2

α

ξα

)
. (A.6)

This is also equivalent to the probability density function of the distribution of ξ2α in

equation (3.14).
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Conditional posterior distributions of σ2γ and ξγ

The conditional posterior distribution of σ2
γ is

p(σ2
γ|D,θ−σ2

γ
, ξγ)

∝ (σ2
γ)

−M
2 exp

[
−
∑M

i=1(γi − µγ)
2

2σ2
γ

]
× (σ2

γ)
−( 1

2
+1) exp

(
− 1

ξγσ2
γ

)

∝ (σ2
γ)

−(M+1
2

+1) exp

[
−

1
2

∑M
i=1(γi − µγ)

2 + ξ−1
γ

σ2
γ

]
, (A.7)

given the latent variable ξγ from (3.8) and (3.17). This is equivalent to the probability

density function of the distribution of σ2
γ in (3.15). Whereas, the conditional posterior

distribution of ξα in (3.15) is derived by replacing σ2
α and s2α by σ2

γ and s2γ in (A.6),

respectively.

Conditional posterior distribution of σ2ϵ and ξϵ

The conditional posterior distribution of σ2
ϵ is

p(σ2
ϵ |D,θ−σ2

ϵ
)

∝ (σ2
ϵ )

−T
2 exp

(
−
∑N

i=

∑Ti

t=1 e
2
it

2σ2
ϵ

)
× (σ2

ϵ )
−( 1

2
+1) exp

(
− 1

ξϵσ2
ϵ

)

∝ (σ2
ϵ )

−(T+1
2

+1) exp

(
−

1
2

∑N
i=1

∑Ti

t=1 e
2
it + ξ−1

ϵ

σ2
ϵ

)
, (A.8)

from (3.5) and (3.17). This is equivalent to the probability density function of the distri-

bution in (3.16). Whereas, the conditional posterior distribution of ξϵ in (3.16) is derived

by replacing σ2
α and s2α by σ2

ϵ and s2ϵ in (A.6) respectively.
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