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Abstract

Researchers have developed more complex models for more realistic data analysis.
In general, model complexity tends to increase computational burdens in terms of both
computing time and memory/storage usage. As for Bayesian statistics in particular,
the model complexity makes statistical inference with the posterior distribution almost
intractable and impractical. To tackle this problem, numerous computational methods
have been developed since the late 20th century. Among them, the most prominent ones
are Markov chain Monte Carlo (MCMC) methods such as the Gibbs sampler (Geman
and Geman (1984); Gelfand and Smith (1990)), the Metropolis-Hastings (MH) method
(Metropolis et al. (1953); Hastings (1970)) and the data augmentation (Tanner and Wong
(1987)). Since the adoption of MCMC in late 1980s, computational Bayesian statistics
has attracted more attention for its ability to deal with highly complex problems that

were previously unsolvable.

Even after the extraordinary progress of computers in the last several decades, how-
ever, naive implementation of MCMC methods is still insufficient to handle the increasing
complexity of statistical models. For a high-dimensional complex model, random series
of model parameters drawn from the posterior distribution with MCMC often exhibits
strong positive autocorrelation. Since such high autocorrelation causes slow convergence
to the true posterior distribution, acceptable precision of the posterior statistics cannot
be achieved in practice. Although it may be possible to solve this problem by generating a
huge sample from the posterior distribution through gigantic computer processing power
(e.g., supercomputers), this is neither practical nor eco-friendly.

Numerous studies have been conducted to improve the sampling efficiency of MCMC.
Among them, the ancillarity-sufficiency interweaving strategy (ASIS) proposed by Yu
and Meng (2011) is an easy-to-implement and widely applicable sampling algorithm for
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improving the sampling efficiency of MCMC. In principle, ASIS samples random series of
parameters and latent variables alternately from the posterior distribution with central-
ized parametrization (CP) or from the one with non-centralized parametrization (NCP).
Whether CP outperforms NCP or not depends on models and data sets and we cannot
precisely say which is better in general. ASIS tries to solve this problem by combining
two types of parametrization in one sampling cycle of MCMC.

In our doctoral dissertation, we will focus on applications of ASIS to several models
used in applied econometric analysis and demonstrate the efficacy of ASIS in Bayesian
computation. The organization of our dissertation is as follows.

In Chapter 2, the formal definition of ASIS and an illustrative example of its appli-
cation will be presented. As the example, we estimated a panel data regression model
with wage data used by Vella and Verbeek (1998), which is a balanced panel data set,
to check whether ASIS can improve the sampling efficiency of random series from the
posterior distribution and the precision of Monte Carlo evaluation of the posterior means
and variances. As a result, we found that ASIS could help improve MCMC efficiency in
panel data regression analysis.

In Chapter 3, we propose a hierarchical Bayesian model of evaluating horse ability and
jockey skills in horse racing and estimate it with ASIS. In the proposed method, we aim to
estimate unobservable individual effects of horses and jockeys simultaneously along with
regression coefficients for explanatory variables such as horse age, racetrack conditions
and others in the regression model. The data used in this study are records on 1800-m
races (excluding steeplechases) held by the Japan Racing Association from 2016 to 2018,
including 22,183 runs with 4,063 horses and 143 jockeys. Since the number of entries
varies by racehorses and jockeys, unlike the example in Chapter 2, it is an unbalanced
panel data set. We apply the hierarchical Bayesian model to stably estimate such a large
amount of individual effects. Since some racehorses and jockeys have extremely small
numbers of runs, it is difficult to make stable estimation of the individual effects with
conventional sampling methods. Hence, we use the Gibbs sampling coupled with ASIS for
Bayesian estimation of the model and choose the best model with the widely applicable
information criterion (WAIC) as a model selection criterion. As a result, we found a

large difference in the ability among horses and jockeys. Additionally, we observed a
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strong relationship between the individual effects and the race records for both horses
and jockeys.

In Chapter 4, we apply ASIS to complex stochastic volatility (SV) models with high-
frequency intraday time series data of stock returns. Since intraday financial data tend
to have time-dependent characteristics such as volatility clustering and intraday season-
ality, it is crucial to properly capture them. Our modeling strategy is two-fold. First, we
model the intraday seasonality of return volatility as a Bernstein polynomial and estimate
it along with the stochastic volatility simultaneously. Second, we incorporate skewness
and excess kurtosis of stock returns into the SV model by assuming that the error term
follows a family of generalized hyperbolic distributions including variance-gamma and
Student’s t distributions. Furthermore, we developed an efficient MCMC sampling al-
gorithm for Bayesian inference of the proposed model. To improve efficiency of MCMC
implementation, we apply ASIS and generalized Gibbs sampling. As a demonstration of
our new method, we estimated intraday SV models with 1-minute return data of a stock
price index (TOPIX), and conducted model selection among various specifications with
WAIC. The result shows that the SV model with the skew variance-gamma error is the
best among the candidates.

In Chapter 5, we provide the summary of this dissertation and remarks on the future

prospects of further research.
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Chapter 1

Introduction

Researchers in the field of data science have developed more complex and sophis-
ticated models for more realistic data analysis. In general, model complexity tends to
increase computational burdens in terms of both computing time and memory /storage
usage. As for Bayesian statistics in particular, the model complexity not only raises such
burdens prohibitively high but also makes statistical inference with the posterior distribu-
tion almost intractable and impractical. To tackle this problem, numerous computational
methods have been developed since the late 20th century. Among them, the most promi-
nent ones are Markov chain Monte Carlo (MCMC) methods such as the Gibbs sampler
(Geman and Geman (1984); Gelfand and Smith (1990)) and the Metropolis-Hastings
(MH) method (Metropolis et al. (1953); Hastings (1970)). Since the adoption of MCMC
in late 1980s, with the further development of computers, computational Bayesian statis-
tics has attracted more attention of academic researchers as well as practitioners for its

ability to deal with highly complex problems that were previously unsolvable.

Even after the extraordinary progress of computers in the last several decades, how-
ever, naive implementation of MCMC methods is still insufficient to handle the increasing
complexity of statistical models. For a high-dimensional complex model, random series
of model parameters drawn from the posterior distribution with MCMC often exhibits
strong positive autocorrelation. Since such high autocorrelation causes slow convergence
to the true posterior distribution, acceptable precision of the posterior statistics cannot
be achieved in a meaningful time even by a high-powered workstation. Although it may

be possible to solve this problem by generating a huge sample from the posterior distribu-
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tion through gigantic computer processing power (e.g., supercomputers), this is neither
practical nor eco-friendly. In addition, in fields such as national security and disaster
forecasting, where computing time is a crucial factor, the convergence inefficiency would
be a major issue.

Numerous studies have been conducted to improve the sampling efficiency of MCMC.
Among them, the ancillarity-sufficiency interweaving strategy (ASIS) proposed by Yu
and Meng (2011) is an easy-to-implement and widely applicable sampling algorithm
for improving the sampling efficiency of MCMC. ASIS is a strategy that alternately
samples parameters and latent variables from the posterior distribution with central-
ized parametrization (CP) or from the one with non-centralized parametrization (NCP).
Whether CP outperforms NCP or not depends on models and data sets and we cannot
precisely say which is better in general. ASIS tries to solve this problem by combining
two types of parametrization in one sampling cycle of MCMC.

In our doctoral dissertation, we will focus on applications of ASIS to several models
used in applied econometric analysis and demonstrate the efficacy of ASIS in Bayesian

computation. The organization of our dissertation is as follows.
o Chapter 2, Ancillarity-Sufficiency Interweaving Strateqy (ASIS)

The purpose of this chapter is to clarify how ASIS is defined and why ASIS works,
and to present a simple example of how ASIS works to improve the convergence efficiency
of MCMC sampling. As the illustrative example to demonstrate improvement in the
convergence rate due to ASIS, we applied ASIS to hierarchical Bayesian modeling of
a panel data regression model with wage data used by Vella and Verbeek (1998) and
compared estimation results, sample autocorrelation and other aspects of convergence
with and without ASIS.

It is barely recognized among researchers that ASIS can be applied to the panel data
regression analysis. As far as the author knows, Gelfand et al. (1995) first proposed to use
the centered parametrization (CP) form of a panel data regression model. They showed
that centering the parameters would make a significant difference in convergence rate as
well as stability of sampled series. What Gelfand et al. (1995) applied in parametrization,

however, was not ASIS but mere centralization of the hierarchical prior for regression



coefficients in the panel data regression model. ASIS, on the other hand, combines random
number generation from both CP form and NCP form into a unified sampling scheme.
By comparing generated random series with and without ASIS in terms of sample au-
tocorrelation and convergence diagnostic, we demonstrated that ASIS not only improved
the convergence rate, but also enabled the convergence itself, which seems impossible for

the original parametrization.

o Chapter 3, Application to Unbalanced Panel Data: Horse Race Results in Japan

In Chapter 2, we showed that ASIS worked well in panel data analysis with simple
and well-prepared balanced panel data datasets. Contrarily, this chapter aims to show
that ASIS also works well for panel data analysis with more complex model specifications
using unbalanced panel data; horse race running data in Japan. The data used in this
study are records on 1800-m races (excluding steeplechases) held by the Japan Racing
Association from 2016 to 2018, including 4,063 horses and 143 jockeys.

With the horse race data, we proposed a new method of evaluating horse ability and
jockey skills in horse racing. In the proposed method, we aimed to estimate unobservable
individual effects of horses and jockeys simultaneously with regression coefficients for
explanatory variables such as horse age, racetrack conditions and others in the regression
model. We applied a hierarchical Bayesian model to stably estimate such a large amount
of the individual effects. We used the MCMC method coupled with ASIS for Bayesian
estimation of the model and chose the best model with the widely applicable information
criterion (WAIC) by Watanabe (2010) as a model selection criterion. Since some of
these racehorses and jockeys have a small number of runs (the minimum number of
runs is four), plain-vanilla MCMC was not able to estimate the individual effects stably.
However, the application of ASIS made this estimation possible, indicating that ASIS
is particularly effective for high-dimensional and small sample-size data. As a result,
we found a large difference in the ability among horses and jockeys. Additionally, we
observed a strong relationship between the individual effects and the race records for

both horses and jockeys.

o Chapter 4, Application to Time Series Data: High Frequency Stock Returns
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This chapter is based on Nakakita and Nakatsuma (2021). In Chapter 4, we intend to
show that ASIS can improve the MCMC efficiency not only in the framework of panel
data analysis, but also in the framework of time-series data analysis. As a framework
for time series analysis, we employed complex stochastic volatility (SV) models of high
frequency intraday stock returns. High frequency intraday data of stock returns exhibit
not only typical characteristics (e.g., volatility clustering and leverage effect) but also a
cyclical pattern of return volatility that is known as intraday seasonality. In this chapter,
we extend the SV model for application with high frequency intraday financial time series
data and develop an efficient MCMC sampling algorithm for Bayesian inference of the
proposed model. As a demonstration of our new method, we estimated intraday SV
models with 1-minute return data of a stock price index (TOPIX).

Our contributions in this chapter may be summarized as follows. First, we successfully
captured a feature of high frequency intraday stock returns called intraday seasonality by
using Bernstein polynomials. Second, we extended the error term of the SV model to a
family of generalized hyperbolic distributions including variance-gamma and Student’s ¢
distributions, as well as skew variance gamma and skew ¢ distributions. Needless to say, as
the distributions used for the model become more complex, computational efficiency and
convergence rate of generated random series become more crucial. Therefore, we applied
ASIS to efficiently generate random series and estimated the posterior distribution. As a
result, the application of ASIS successfully reduced the sample autocorrelation of (latent)
volatility and parameters in the model.

Finally, we provide the summary of this dissertation and comments on the future

prospects of further research in Chapter 5.



Chapter 2

Ancillarity-Sufficiency Interweaving

Strategy (ASIS)

2.1 Introduction

In the recent development of statistics, data science and other related fields, model
specifications used in data analysis have been becoming more and more complex over
years. In particular, most of probabilistic models used in Bayesian inference, which seem
conceptually sound, are computationally infeasible for application. To deal with such
complex models, a simulation-based approach called Markov chain Monte Carlo (MCMC)
has been developed since the late 20th century. The MCMC approach includes the Gibbs
sampler (Geman and Geman (1984); Gelfand and Smith (1990)), the Metropolis-Hastings
(MH) method (Metropolis et al. (1953); Hastings (1970)), During the same time period,
computing technology made a great leap forward. Thanks to so-called Moore’s law,
computers are becoming faster and having more memory and storage. A smartphone of
today is far more capable than a supercomputer in 1980s.

Unfortunately, however, even the ground-breaking invention of MCMC and the rapid
evolution of computing technology are not sufficient to tackle increasing complexity of
statistical models. One problem we often encounter in MCMC implementation for a large-
scale complex model with many parameters is strong positive autocorrelation in generated
random series. By construction of MCMC, generated random series are realizations of a

Markov chain whose stationary density is equivalent to the posterior density. Therefore

5
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the generated random series are no longer independent, though it is well known that
the law of large numbers still holds for those random series under certain conditions.
See Robert and Casella (2004) for more details. In theory, any random series drawn
with MCMC will eventually converge to the true posterior distribution and the sample
statistics of the series such as the sample mean and the sample variance will also converge
to the true ones in the posterior distribution due to the law of large numbers. In practice,
however, the convergence rate of the sample statistics depends on mixing of generated
random series. If autocorrelation in the random series is strongly positive even for longer
lags, the convergence of the sample statistics will become rather slow. Thus the precision
of the sample statistics with the MCMC sample as estimates of the true posterior statistics
is possibly far worse than those with the i.i.d. sample, and we need a much larger sample
of generated parameters.

As a possible solution to the problem of slow convergence, Yu and Meng (2011)
proposed the ancillarity-sufficiency interweaving strategy (ASIS). ASIS is a strategy that
alternately samples parameters with and without centralization (“interweaving”), thus
taking advantages of both convergence and mixing of random series. ASIS is a very
simple tool that can be adaptable to a wide variety of models and data, and has shown
significant efficiency improvements in many cases.

In this chapter, we first introduce the basic idea behind ASIS and explain why ASIS
works. Then, as an illustrative example, we derived a ASIS sampling scheme for hier-
archical Bayesian analysis of a panel data regression model and apply it to real-world
data (wage panel data used by Vella and Verbeek (1998)) for demonstrating how ASIS
improves the sampling efficiency of MCMC for the panel data regression model.

Application of ASIS in the context of panel data regression is little studied in the liter-
ature of MCMC. Gelfand et al. (1995) first proposed to use an alternative parametrization
of a panel data regression model for facilitating mixing of random series and improving
the convergence rate. In fact, their reparametrizing approach is related to the centered
parametrization form of the panel data regression model, which we will describe later in
this section. They showed that the reparametrization would make a significant difference
in convergence rate and improve results of the convergence diagnostic (e.g., Gelman and

Rubin (1992)) of generated random series.
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In our study, on the other hand, we propose to interweave the Gibbs sampling scheme
based on the centered parametrization by Gelfand et al. (1995) with the widely-applied
Gibbs sampling scheme based on the non-centered parametrization, and form an ASIS
sampling scheme for the panel data regression model. In our best knowledge, no previous
studies have applied ASIS to hierarchical Bayesian analysis of the panel data regression
model.

The rest of this chapter is organized as follows. Section 2.2 describes the definition
and principle of ASIS by using a two-level normal hierarchical model as an example.
Section 2.3 explains the ASIS scheme for the panel data regression model. Section 2.4
presents the results of empirical comparisons between the ASIS scheme and the non-ASIS
Gibbs sampling scheme for the panel data regression model with the wage panel data.

Finally, conclusion of this chapter is given in Section 2.5.

2.2 Definition of ASIS

To illustrate the definition and procedure of ASIS, we cite a two-level normal hi-
erarchical model from Yu and Meng (2011), which was originally used in Liu and Wu

(1999),

}/obs’(ga Ymis ~ N (Ymisa 1) ) (21>

where Y, is the observed value while Y,,;, is the missing value. We suppose the expected
value of Y,,;s, 0, is unknown but the variance of Y,,;s, V', is a known constant. Thus the
hierarchical model (2.1)—(2.2) have two unknown quantities (¥,,;s,6).

The standard data augmentation (DA) algorithm for (Y5, #) draws them from Y,,,;5|0, Yops

and 0|Y,,.:s, Yops alternately as

V}/;bs+9 V
Yinisl0, Yops ~ 2.
mzs|97 obs N( 1—|—V ’1+V)7 ( 3)
H‘Ymisay;)bs NN(szsav) (24)

Because the right-hand side of (2.1) is free of #, Yu and Meng (2011) call the DA scheme
(2.3)—(2.4) sufficient augmentation (SA), since Y5 is a sufficient statistic for 6 in the
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augmented-data model. Note that, in the SA setting, the augmented-data posterior
distribution of # in (2.4) depends on Y,,;s alone.

Contrarily, if we define
sz’s = Ymis - 0, (25>
and treat f/mis as the missing value, the model can be rewritten as

Yvobs|9a ?mis ~ N (?mzs + 07 1)a (26)
?mis ~ N(Oa V)a (27)

which gives a different DA algorithm:

> V(%bs - 0) V
Ymis 9; Y;) s ™ ’ ) 2.

6, Yor N( 1+V 1+v> (2:8)
9|}~/mi37 }/obs ~ N(%bs - Y/mis; 1) (29>

Yu and Meng (2011) call the DA scheme (2.8)—(2.9) ancillary augmentation (AA), because
the distribution of Y, in (2.7) is free of # and Y,nis is an ancillary statistic for 6. As we
can see in (2.6) and (2.7), Yinis and 0 are independent a priori in the AA setting.

You may wonder about the fact that the posterior distributions of (2.4) and (2.9)
are essentially equivalent in the sense that we can obtain (2.9) by centering (2.4) to zero.
Since random series generated from either SA (2.3)—(2.4) or AA (2.8)—(2.9) will eventually
converge to the same posterior distribution, it seems that the sampling efficiency is not
affected by using SA or AA at first glance. On the contrary to this naive intuition, the
convergence rates of two algorithms are usually different.

Previous studies such as Dempster, Laird and Rubin (1977) discussed that the conver-
gence rate of EM-type algorithms depended on “the fraction of missing information.” van
Dyk and Meng (2001, 2010) extended this idea to the convergence behavior of DA-type
algorithms and found that there was a difference between the convergence rates of the
centralized form and non-centralized form of DA. In the two-level normal hierarchical
model, when the variance V' is smaller, Y,,;s is more informative about 6 for SA because
the distribution in (2.2) concentrates around the mean 6. For AA, on the other hand, a
smaller V' implies that we know more about fﬁm's since the distribution in (2.4) concen-

trates around zero. In the extreme case of V = 0, we know Y,,;; = 0 for sure. Therefore
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we expect SA to be slow in convergence but AA to be fast when V' is small, and vice
versa when V' is large.

To exploit the aforementioned relationship between SA and AA, Yu and Meng (2011)
proposed an ASIS algorithm that interweaves SA and AA together, which is called the

global interweaving strategy or GIS. A general form of GIS is given as follows.

- Global Interweaving Strategy (GIS) ~

Y( —+0.5)

mis

Step 1-a: Draw given O from p(Yy,0®).

Step 1-b: Draw 0(+%%) given me % from p(9|Y(t+0 5))

mes

Step 2-a: Draw y ) given (Y(t+0 5)’ 605 from p( mw|y (+0. 5)7 gU+0:5)).

mis mas mis

Step 2-b: Draw 0(+1) given V(7" from p(0]Y,;:").

mis mas

N J

where (Y.s, Yiiss 0) are the missing values in SA (or AA), the missing values in AA (or
SA) and the unknown parameters in the model respectively.

If joint sampling of 6 from p(6|Yinis) or p(0]Yim:s) is difficult, we may apply Gibbs
sampling to each element or subgroup of . Yu and Meng (2011) called this type of ASIS
the component-wise interweaving strategy or CIS. Basically, CIS breaks down Step 1-b
and Step 2-b in GIS into a series of Gibbs sampling from the conditional distributions

of elements/subgroups in 6.

In many applications, the conditional distribution in Step 2-a determines Y;,;, com-
pletely given (Y.s,0). For example, in the two-level normal hierarchical model (2.1)-

(2.2), Step 2-a is equivalent to Y"1 = y 05 _ g(t+05) Thys a GIS algorithm for the

mis mis

two-level normal hierarchical model is given as follows.

s GIS for the Two-level Normal Hierarchical Model ~

Step 1-a: Draw Y, "7%% given 60) from p(V,.:|0®) in (2.4).

mes

Step 1-b: Draw 60®+05 given Y519 from p(O]Y, 0 5)) in (2.3).

mis mas

Step 2-a: Let V(Y = y(H09) _ p(t+0.5)

mis mas

Step 2-b: Draw 0®+) given V"™ from p(|V51) in (2.9).

mis mis

o J
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Let us verify that the GIS sampling chain preserves the stationary density p(f), i.e.,

p(t') = / K(0'16)p(6)db,

where p(f) is shared by the original two DA algorithms (SA and AA), k(¢'|f) is the

transition kernel of GIS:

Suppose p(Yis, Yiiss 0) is well-defined, and p(Y,,;s, #) and p(f/mis, 0) are the stationary
densities of DA chains (SA or AA) that share the same p(f). By Fubini’s theorem, we

have
/ k(O/]0)p(0)d0 — / / PO | Vonis )P (Vi Vi) [ / p(me)pw)dG} AV iy ¥ i
= / PO |Vrnis) { / P(f/mz's|Ymis)P(sz’s)dez’s} dY i
— [ Vo p (T

p(¥)

Therefore p(#) is the stationary density of the transition kernel (2.10).
Finally, we cite two theorems given by Yu and Meng (2011) to show that ASIS is
useful for improving MCMC efficiency.

Theorem 1 (Yu and Meng (2011, p.539)). Given a posterior distribution of interest
p(0|Yops), 0 € ©, suppose we have two augmentation schemes Ypis1 and Yoo such that
their joint distribution, conditioning on both 0 and Y,s, is well defined for 0 € © (almost
surely with respect to p(0|Y,ps)). Denote the geometric rate of convergence of the DA
algorithm under Y,;s; by 15,1 = 1,2, which are allowed to take value 1 (i.e., being sub-

geometric). Then
rg2 < Rigy/Tir2 (2.11)

where 112 15 the geometric rate of the GIS sampler interweaving Yipis1 and Y2, and R o

is the maximal correlation between Y,,is1 and Yiiso in their joint posterior distribution

p(Ymis,b Ymis,Z |Y:)bs) .
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Theorem 2 (Yu and Meng (2011, p.561)). Given a posterior distribution p(0|Yos) of
interest, suppose we have two augmentation schemes Yy,is1 and Y5 2 such that their joint
distribution in well defined conditional on 0 and Yops. Let N = 0(Yinis1) N0 (YVinis2), that
is, the intersection of the o-algebras generated by Yis1 and Y,,iso in the joint posterior

of (60, Yomis 1, Yimisz2). Then g, the geometric rate of convergence of GIS, satisfies
rig2 < RQ(eaN) + (]- - Rz(gyN))RN(ea Ymis,l)RN(Ymis,la Ymis,Q)RN(ea Ymis,2)~ (212)

Theorem 1 and 2 show that ASIS improves the convergence rate. We leave the details of

these theorems to Yu and Meng (2011).

2.3 Hierarchical Bayesian Modeling of Panel Data

In the rest of this chapter, we examine the efficacy of ASIS in hierarchical Bayesian
modeling of panel data. For this purse, in this section, we first introduce the panel data
regression model with individual effects and then derive the ASIS scheme for its hierar-
chical Bayesian analysis as well as its counterpart in Gibbs sampling as the benchmark.

Suppose we have panel data about N individuals recorded over T periods. Let i €
{1,..., N} be the index for each individual and ¢ € {1,...,7} be the index for each

period. Furthermore, we suppose the panel data have the following variables:

e 1y — dependent variable for individual ¢ in period ¢

e x;; — K x 1 vector of independent variables for individual 7 in period ¢
Consider the regression model of panel data:
yit:ai_’_w;tﬁ—i_eita €it 1’1\51'/\/’(070-52)7 (NS {17‘-'7N}7 le {1""7T}7 (213)

where 8 is a K x 1 vector of regression coefficients. «a; in (2.13) is interpreted as an
unobservable variable that only affects the dependent variable of individual ¢ and cannot
be explained by other factors. We call «; the individual effect.

Let us define vectors and matrices as follows.

Yi1 ;1 €1

Yir ;T €T
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Then, the regression model in (2.13) can be summarized as
y, =l + X,B+e€, €~N(0,01T), (2.14)

where 1 is a vector whose elements are all ones, 0 is a a vector whose elements are all
zeros, and I is the identity matrix. For simplicity, we will not add any indicator of

dimension to 1, 0 or I as long as the dimension is obvious in the context. By defining

Y1 1 X
Y= , U= , X = )
€1 aq
(81
Z:[U X]’ €= y = , 0= )
B
EN anN

we have

y=Ua+ XpB+e€
(2.15)

=Zd+e € NN(O,USI).
To conduct Bayesian inference on the panel data regression model in (2.13), we need
to set up the posterior distribution. Note that the conditional distribution of y given Z
in (2.15) is N(Z48,02I). Thus the likelihood of the unknown parameters (4, o) is

w 1 ,
(Y1 Z.8,0.) x (67) ¥ exp [—Tﬂ(y 26 (y - z«sﬂ (2.16)
T 2
o (02)7= exp [_Z;:Tl;lt] , i = Yir — ay — X5 (2.17)

We assume the following prior distributions for the parameters (6, o).

ol o1
O~N (X)), p= , XY= , (2.18)

s s
e~ CT(0,5.), (2.19)

where C*(0, 0.) is the half-Cauchy distribution with the probability density:

2s
€|ve) — d e>0; E>0.
p(oe|se) py o s

o2+ s2)’
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Note that the prior distribution in (2.18) is equivalent to assuming

Q; i'ri'vd'/\/'(pa,ai), ie{l,...,N},

/6 ~ N(/”',B? Eﬁ)'

(2.20)

If we regard «; as a random effect in (2.20), it can be interpreted as a latent variable
specific to a particular individual that follows N (pa, 02). If o is treated as a fixed effect,
on the other hand, N(j4,02) can be interpreted as the common prior distribution for
all fixed effects that are unknown parameters. Either interpretation does not change
the fact that «; is an unobservable quantity and does not affect the resulting posterior
distribution of the individual effect as a parameter.

In the prior distributions of the parameters (4§, 0.), (g, %) in (2.18) and s, in (2.19)
are fixed to specific values as hyperparameters. For (p,,0,) in (2.18), however, we set

the following hierarchical prior distributions:

Ho ™~ N(SOCH Tc%)? Oa ™~ C+<07 Scx)y (221)

and attempt to estimate them simultaneously with (8, o.) in the Bayesian approach. The
hyperparameters (pq, 72, o) in (2.21) are fixed to preset values. In summary, the param-
eters to be estimated in the hierarchical Bayesian analysis of the panel data regression

model (2.13) are

0= (57/'La70-a70.6) = (ala'"7aN7ﬁ17'"761(7:“0170-0470-6)'

By applying Bayes’ theorem to the likelihood p(y|Z,d,0.) in (2.16) and the prior
distribution p(@) in (2.18), (2.19) and (2.21), we obtain the posterior distribution of 8 as

p(6|D) x p(y|Z,d,0)p(0), D =(y,2). (2.22)

Because we cannot analytically evaluate either posterior distribution or posterior statistics
(e.g., mean, median, variance, quantiles), we will employ the Markov chain Monte Carlo

(MCMC) method. In this case, we can derive the conditional posterior distributions for
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all parameters (their derivations are given in Appendix):

D0 5~ N ((0:222+27) 022y +37'p) (0,222 +37) ), (2:23)

—92 N —92
N . |
1ol D, 0 ~ N ("a L1 Gt Ty > , (2.24)

) - 1 )
0N + 7, 0, *°N + 71,

N 1 N i~ Ma 2 1 1 1
UZ|D’0_O'LV7£0¢ NIQ( i 721:1(a a ) +_> ) galga NIQ (17;"}__)7

2 2 £y 5 Sa
(2.25)

T+1 SV T 20 1 1
a§|D,005,56~1g< i ,Zl=12t=16”+—>,§€|ae~zg (1,—2+—>, (2.26)
o)

2 2 €e : s

where 0_, indicates that the parameter a is excluded from 8, and ZG(a, b) is the inverse

gamma distribution with the probability density:

p(zx|a,b) = %x

—(a+1) e_v%.

The conditional posterior distributions in (2.23)—(2.26) are standard ones and efficient
random number generation algorithms are available for them. Therefore Gibbs sampling
can be used to generate the parameters 6 from the posterior distribution (2.22).

If the individual effects a are regarded as latent variables or missing values in the
model, the Gibbs sampling scheme based on (2.23)—(2.26) is regarded as a SA scheme for
o This is because the panel data regression model (2.13) does not depend on p, given
a while the hierarchical prior of a, N (jia,0?) in (2.21), does depend on p,. In other
words, what (2.1) and (2.2) are to the two-level normal hierarchical model, (2.13) and
N (1o, 02) are to the panel data regression model. Furthermore, since p, in N (jiq,0?)
is not necessarily equal to zero, the panel data regression model in (2.13) is said to be
in the non-centered parametrization (NCP) form. We use this SA-type Gibbs sampling
scheme based on the NCP form as the benchmark and compare it with the ASIS scheme
for the panel data regression model.

To derive the ASIS scheme for the panel data regression model, we introduce its

centered parametrization (CP) form:
Yit = Ho + Ty + Qi + €, A e~ N(0,02), e e N(0,0?), (2.27)

where @; can be interpreted as a random effect for individual ¢ in the sense of the tradi-

tional panel data regression analysis. Since the mean of the hierarchical prior A’(0,02) is
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equal to zero, the Gibbs sampling scheme based on the CP form (2.27) is regarded as an
AA scheme for p,. Therefore, by interweaving it with the SA-type Gibbs sampling based
on the NCP form (2.13), we can construct the ASIS scheme for the panel data regression
model.

Note that a; and «; have the following relationship:
Q= — o, O =&+ e, 1€{1,...,N}. (2.28)
With (2.28) and

Ui =Y — 0y, 1€{1l,....,N}, te{l,....,T}, (2.29)
(2.27) is rewritten as

Uit = fo + T8 + €1, €1t S N(0, U?)- (2.30)

Furthermore, by introducing the notations:

Y11 1 xy
y=| | z= ca=|"
_ , p
YNT L xyr
(2.30) becomes
y=2Z6+e, €e~N(0,0I). (2.31)
It is straightforward to show that the prior for § is
. I [ I
O~N(,X), p= , X = . (2.32)
s g

Then the conditional posterior distribution of & is obtained as

o|D,0_s

-~ - _ - -~ _ -~ - —1
NN<(U;QZ’Z+2 1) <g;2z’g+2 1ﬁ) , (a;2Z’Z+2 1) ) (2.33)

in exactly the same manner as (2.23).

Thus the Gibbs sampling scheme with ASIS can be formulated as follows.
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~ ASIS Scheme for the Panel Data Regression Model ~

Step 1: Given the s-th generated 8%, apply Gibbs sampling based on the conditional
posterior distributions of (2.23)-(2.26) to generate 8% and compute

5‘58+0‘5) _ a§s+0.5) _ M((ls+0'5)-

Step 2: Given 9009 apply Gibbs sampling based on the conditional posterior
distributions of (2.33) and (2.25)~(2.26) to generate (8, s ol 0!), and
compute

ozl(»s) _ d§s+o.5) 4 MS)-

- J

In Step 1, we generate the individual effects a along with the rest of the parameters in
0 from the posterior distribution in the NCP form. Since it is impractical to draw @ from
the posterior distribution at once, we apply CIS, i.e., a typical Gibbs sampling scheme to
random number generation of 8. At the last stage of Step 1, we transform {;}Y, into
{a;}¥, with (2.28), which is corresponding to Step 2-a in GIS. In Step 2, we generate
(B, ttas 0o, 0c) from the posterior distribution in the CP form where we treat {a;}Y, as
fixed values. At the last state of Step 2, we transform {a;}, back into {;}X ;. This is
optional. If we update {a;}¥, at the very first stage of Step 1, the old {a;}¥, computed
at the last stage of Step 2 in the previous cycle of the ASIS scheme will be overwritten
with the newly generated ones in Step 1 before they are used in sampling of the other

parameters.

2.4 Application to Wage Panel Data

In this section, we apply the ASIS scheme for the panel data regression model, which
we derived in Section 2.3, to real-world data and demonstrate its efficacy and improvement
in the convergence rate.

For this purpose, we employ a data set on individual wages and attributes used in
the study by Vella and Verbeek (1998), which is publicly available in the data archive
of Journal of Applied Econometrics (http://qed.econ.queensu.ca/jae/) , statistical

packages such as R, and popular econometrics textbooks such as Wooldridge (2019).


http://qed.econ.queensu.ca/jae/
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Table 2.1: Variables in Wagepan data set

Variable  Description

lwage log of wages

educ years of education

exper years of experience
expersq years of experience squared
black black dummy

hisp Hispanic dummy

hours hours worked per year
married marriage dummy

occl-occ9  occupation dummies
d81-d87  year dummies

union labor union membership dummy

Since this date set is often called Wagepan (or wagepan) in those archives, we use this

tag to refer to the data set in this section.

Vella and Verbeek (1998) estimated the premium of joining a labor union among young
male workers in the face of declining rates of union membership. In their estimation, they
obtained data on years of education, race, and whether or not the worker was married
in order to control for effects other than union membership or nonunion membership.
Specifically, the variables in Table 2.1 are included in Wagepan. These variables are
cleaned up so that they have no missing values. As a result, we have a balanced panel
data that includes complete records of N = 545 persons for T' = 8 years. Thus the total

number of records is 4360.

With Wagepan, we estimate a panel data regression model of the log wage (“lwage” in
Table 2.1). Independent variables in the regression model are those in Table 2.1 except for
the dependent variable “Iwage” and a occupation dummy “occl” to avoid multicollinear-

ity. Thus the number of the independent variables is K = 23. The hyperparameters



18 CHAPTER 2. ASIS

(g, X8; Pa 72, Sa, S¢) in the prior distribution are set as follows.
ps=0g, X3=100Ig, ¢,=0, 75=100, s5,=s5c=1. (2.34)

For both Gibbs sampling scheme with and without ASIS, we initiate the sampling
chain with 10,000 random number generation as burn-in until the random series of the
parameters become stable. Then we iterate 10,000 random number generation to obtain
the Monte Carlo sample {8®}5_ (S = 10,000) for parameter estimation. The posterior
statistics of the regression coefficient 3 and other parameters are summarized in Table
2.2. To visualize the convergence of generate random series, we draw time series plots of
random series in Figure 2.1 and their sample autocorrelation plots in Figure 2.2. To save
the space, Figure 2.2 shows the plots only for selected parameters.

The p-value of Geweke (1992)’s convergence diagnostic in Table 2.2 is at least 0.07
or higher for 571 random series of the parameters (the number of the parameters is
N +k+3 =545+ 23 + 3 = 571). Thus the convergence diagnostic fails to reject the
null hypothesis of the constant mean at 5% significance level for all parameters in the
panel data regression model. This result indicates that the generated random series in
the ASIS scheme are well stabilized after 10,000 burn-in. We get the same impression
from the time series plots in Figure 2.1. All random series from the ASIS scheme seem
stable and well mixed around the constant level which is corresponding to the posterior
mean. This finding is also consistent with the sample autocorrelation plots in Figure 2.2.
All plots for the ASIS scheme go down to zero fairly quickly.

For the non-ASIS scheme, one the other hand, the convergence diagnostic in Table
2.2 rejects the null hypothesis for many variables including all year dummies. Time series
plots in Figure 2.1 also show wild and often persistent swings in trajectories of generated
random series. These results suggest that the non-ASIS scheme fails to generate stable
random series for some parameters.

Let us pick up a few parameters and examine them in detail. First we examine
two regression coefficients: Beqy. for “education” and S0, for “union” as representative
cases. When we compare the posterior mean and the 95% credible interval in Table 2.2,
we do not see any noteworthy difference between the ASIS scheme and the non-ASIS

scheme for both f.que and Bupion, though the posterior mean of [.4,. may be a little
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underestimated without ASIS. As for Geweke (1992)’s convergence diagnostic, Bunion
passes the convergence diagnostic test with or without ASIS since the p-value is above
the conventional level of significance for both cases. For S.g.., on the other hand, we see a
stark difference between the ASIS scheme and the non-ASIS scheme. The random series
with ASIS seems sufficiently convergent because the p-value exceeds the conventional
level of significance. For the random series without ASIS, however, the p-value is less
than 0.0001, which implies that the null hypothesis of the constant mean is rejected.
This finding is consistent with the sample autocorrelation plots in Figure 2.2. The sample
autocorrelation plot of Bunion is almost zero for both cases. For Segu., however, the sample
autocorrelation plot for the non-ASIS scheme exhibits strongly positive and persistent
autocorrelation while the plot for the ASIS scheme goes down to zero quickly. These
results indicate that the sampling efficiency of the non-ASIS scheme may heavily rely on
the nature of the data we use and it may be a matter of luck for researchers whether
the non-ASIS scheme works or not. Given its consistent performance throughout the
parameters, the ASIS scheme seems more trustworthy than the non-ASIS scheme in the
sense that the former is more likely to produce stable and well mixed random series from

the posterior distribution than the latter.

Next, we examine parameters related to the individual effects: «; (i € {1,...,545}),
1o and o,. Since the panel data regression model has 545 individual effects, we focus only
on ;. In Figure 2.1, we find a noticeable difference in stability for a; and p,. Random
series of «; and pu, generated with the non-ASIS scheme exhibit persistent up-and-down
movements and, as a result, they does not seem stationary at all. Furthermore their
movements are more or less synchronized with each other. This pattern of fluctuation
we observe in Figure 2.1 virtually disappears when we apply ASIS. This result strongly
suggests that ASIS improves the efficiency of random number generation of these param-
eters. The sample autocorrelation plots in Figure 2.2 also demonstrate that ASIS can
dramatically reduce autocorrelation and improve mixing of the generated random series.
For o,, however, there is no remarkable difference between the ASIS scheme and the
non-ASIS scheme in either Figure 2.1 or Figure 2.2.

These findings have important implications on how ASIS should be designed. Recall
that the distinction between the NCP form (2.13) and the CP form (2.27) is whether
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o appear in the regression equation or not. If we try a sampling scheme based on the
NCP form and encounter poor mixing as shown in Figure 2.1 and Figure 2.2, we must
suspect that the latent variables ¢ have little information about p,. Since the sampling
scheme based on the NCP form is a SA, non-informative latent variables lead to a poor
performance in sampling i, (see the discussion about distinction between SA and AA in
Section 2.2). If this is the case, it may be worth trying ASIS on a problematic parameter
(o in this example) to boost the mixing. Since i, is directly linked to observed dependent
variables y;; in the CP form (2.27), we can utilize more information about i, in sampling

with ASIS.
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Table 2.2: Posterior statistics

B ASIS not applied

ASIS applied

1.0903 % 107!
exper [ 7.8653 x 1072, 1.3927 % 1071]
0.0004
—5.0933 % 1073
expersq [ —6.4737 % 1073, —3.7491 % 1079
0.3643
—1.5128 ¥ 107!
hours [~1.9534 % 107!, —1.0796 % 107!
0.0005
7.9404 % 107"
educxk [5.9500 % 1071, 9.8375 % 1071
0.0000
1.0546 % 10~
union [ 7.0247 % 1072, 1.4015 % 1071]
0.4807
6.5194 1072
married [3.2305 % 1072, 9.7504 * 1072
0.6280
race dummies
—1.3882 % 107!
black [ —5.0847 x 1073, 0.0000]
0.0000
2.0601 * 102
hisp [ —6.5229 x 1072, 1.0764 * 1071]
0.0825
occupation dummies
—2.3871 %1072
oce2 [ —8.4192 % 1072, 3.7516 % 1072
0.0937
—7.3565 % 1072
oce3 [ —1.4389 % 107!, —4.7938 % 1079
0.7707
~1.0808 % 107!
occd [ -1.6519 %1071, —5.0719 % 1072
0.4829
—4.9790 + 1072
occh [ —1.0478 x 107", 4.7431 % 10~%]
0.4785
~5.9567 + 1072

1.1210 % 10~
[ 8.1297 1072, 1.4296 % 107']
0.7896
—5.0847 % 1073
[ —6.4634 % 1073, —3.7328 x 1079
0.6115
—1.4687 % 107!
[ —1.9139 % 107!, —1.0208 x 107!]
0.4967
8.4341 % 107!
[6.2176 1071, 1.0754]
0.2806
1.0507 % 10~
[6.9144 % 1072, 1.4075  1071]
0.4985
6.4275 % 1072
[3.1095 % 1072, 9.8140 * 1072
0.7096

—1.3856 % 10!
[ —2.3338 % 1071, —4.3749 1072
0.7326
2.3650 x 1072
[ —6.1646 = 1072, 1.1086 * 1072
0.3289

—2.3619 % 102
[ —8.3586 % 1072, 3.6566 * 102
0.6773
—7.2782 %102
[ —1.4305 % 1071, —2.9789 % 10~3]
0.9860
—1.0672% 10~
[ —1.6396 % 107, —4.9217 % 10~2]
0.8015
—4.8114 %102
[ —1.0335 % 1071, 6.9549 103
0.4729
—5.8000 % 102

occ6 [ —1.1581 % 1071, —3.5336 * 1077 [ —1.1499 % 1071, —3.6984  10~]
0.5421 0.9445
—8.7038 x 1072 —8.5258 * 1072
occ7 [ —1.4979 % 1071, —2.3085 x 1072 [ —1.4812% 1071, —2.2730 % 1072
0.4890 0.3196
—1.4486 % 107! —1.4413 % 1071
occ8 [ —2.6774 % 1071, 2.1343 % 1072 [ —2.6536 * 1071, —2.0586 * 1072]
0.8954 0.7886
—1.2512 % 107! —1.2356 % 1071
occ9 [—1.8797 %1071, —6.1441 x 1072 [ —1.8602 % 107!, —6.0517 x 1072
0.3724 0.8851
Note: Data marked with * are logarithmic.
In each cell, the upper number is the posterior mean, the middle [-,-] is the 95% credible interval and

the lower number is Geweke’s Diagnostics.
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Table 2.2: Posterior statistics (continued)

B

ASIS not applied

ASIS applied

year dummies

ds1

ds2

ds3

ds4

ds6

ds7

4.9033 % 1072
[ 1.0474 % 1073, 9.6422 % 1072
0.0007
4.1197 % 1072
[ =2.0760 % 1072, 1.0412 % 107!]
0.0013
3.9470 % 1072
[ —4.1054 ¥ 1072, 1.2311 % 107!]
0.0000
6.5380 % 1072
[ —3.1462 ¥ 1072, 1.6717 % 107']
0.0001
8.2089 % 1072
[ —3.5523 ¥ 1072, 2.0430 + 107!]
0.0000
1.1823 107!
[ —1.8787 %1072, 2.5852 x 107!]
0.0003 % 102
1.6806 * 107!
[1.1368 ¥ 1072, 3.2963 % 1071
0.0002 & 0.6128

4.5404 % 1072
[ —3.1301 % 1073, 9.4534 % 1072
0.3584
3.4497 % 1072
[ —=3.0911 % 1072, 9.8730 * 1072
0.9079
2.9798 % 1072
[ =5.6492 % 1072, 1.1424 % 107!]
0.9140
5.2504 1072
[ —5.2801 % 1072, 1.5560 * 10~']
0.7074
6.6732 % 1072
[ —5.8809 % 1072, 1.9011 + 10~!]
0.7244
9.8518 % 1072
[ —4.8764 %1072, 2.4322 % 107!]
0.6906
1.4541 % 107!
[ —0.6012 % 1072, 3.1164 % 107']

Ha

Ta

Oe

3.5965 * 1071
[ —1.8911%107", 9.3572 % 107!]
0.0000
3.3442 % 107!
[3.1244 % 1071, 3.5859 % 1071
0.2984
3.4922 % 107!
[3.4165% 1071, 3.5725 % 1071
0.0376 & 0.0861

1.9439 % 107!
[ =5.0302 % 107", 8.7775 % 107']
0.2866
3.3458 + 1071
[3.1213 % 107", 3.5871 % 107!]
0.3137
3.4917 % 107*
[3.4135% 1071, 3.5700 % 1071

Note: Data marked with * are logarithmic.

In each cell, the upper number is the posterior mean, the middle [-,-] is the 95% credible interval and

the lower number is Geweke’s Diagnostics.
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Figure 2.1: 10,000 sampling after 10,000 burn-ins
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(i) oe (ASIS not applied) (j) oe (ASIS applied)

Figure 2.1: 10,000 sampling after 10,000 burn-ins (continued)
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(a) Bunion (ASIS not applied)

(e) a1 (ASIS not applied)

Figure 2.2: Autocorrelation of 10,000 sampling of hierarchical parameters
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(g) 04 (ASIS not applied) (h) oo (ASIS applied)
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(i) o (ASIS not applied) (j) oe (ASIS applied)

Figure 2.2: Autocorrelation of 10,000 sampling of hierarchical parameters (continued)

2.5 Conclusion

In this chapter, we provided the definition and principle of ASIS and examined its
efficacy in hierarchical Bayesian modeling of panel data. For this purpose, we derived a
new ASIS scheme for the panel data regression model with individual effects and applied
it to wage panel data used in the study by Vella and Verbeek (1998).

In the empirical study, we showed that ASIS could improve the efficiency of MCMC
sampling in terms of stability and mixing of generated random series. Without ASIS, due
to strongly positive and persistent autocorrelation in random series, many parameters in
the panel data regression model failed to pass Geweke (1992)’s convergence diagnostic
test even after the burn-in of 10,000 runs. With ASIS, on the other hand, generated
random series are far more stable and their sample autocorrelation tends to decline much
faster. Moreover, although the model consists of near six hundred parameters, all of them

successfully passed the convergence diagnostic test.
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In overall assessment, the ASIS scheme archived efficient sampling for all parameters
while the performance of the non-ASIS scheme was a mixed bag to say the least. Although
our study is limited in terms of the data set we used and the model specification we
examined, the superb performance of ASIS is rather noteworthy, especially given the fact
that the number of parameters (571) is about 13% of the number of observations (4360).

The flexibility is another advantage of ASIS. As we will explore in Chapter 3, the
panel data regression model may have two-way effects (e.g., individual effect and time
effects) or more. It is straightforward to extend the ASIS for such models. See Chapter 3
for more details. Moreover, as Gelfand et al. (1995) proposed, we may extend the ASIS
scheme to mixed effects models in which individual-specific regression coefficients, not
necessarily the constant term, follow a common prior distribution. This extension is also
straightforward.

In addition to the panel data regression model, we may apply ASIS in time series
analysis. For example, Kastner and Frithwirth-Schnatter (2014) proposed an ASIS scheme
to facilitate efficient sampling of the latent log volatility in a stochastic volatility (SV)
model. In Chapter 4, we will develop a new efficient ASIS-based sampling algorithm for
the SV model with heavy-tailed and possibly skewed error and leverage effect. Since this
type of SV model is a nonlinear non-Gaussian state space model, it is hard to generate
stable and well mixed random series of parameters and latent variables from the posterior
distribution. Our new algorithm can handle complexity and scalability of such a complex

model in an efficient manner. See Chapter 4 for more details.
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Chapter 3

Application to Unbalanced Panel

Data: Horse Race Results in Japan

3.1 Introduction

Recently, there has been a worldwide movement to measure the performance of ath-
letes and improve the training methods by analyzing data in sports. Similar move-
ments are being promoted by the public and private sectors in Japan. For example, the
Japan Sports Agency is promoting the formation of the Sports Open Innovation Platform
(SOIP), a testing ground for the growth and industrialization of sports, and supports the
use of data for the development of sports businesses. Additionally, organizations, such
as the Japan Sports Analysts Association and Japan Statistical Society, hold regular
competitions for students to analyze data on various sports such as baseball, soccer, and
rugby, with the aim of promoting academic research on sports statistics and increasing
its recognition in society.

Horse racing is not exempted in the trend to utilize these data. Horse racing in Japan
is attracting a great deal of attention, with ticket sales for races held by the Japan Racing
Association (JRA) exceeding 2.7 trillion yen in 2018'. Horse racing’s popularity has led
to the appearance of websites that provide horse racing data and software that analyzes
the data available on these websites to help users purchase the most appropriate horse

racing tickets. DWANGO Co., Ltd holds a horse racing algorithm competition called

http://company. jra.jp/0000/gaiyo/g_22/g_22_01.pdf.
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“Dennou Sho (Spring)” since 2017, and JRA-VAN, a data provision service operated by
JRA, has been provided to participants of this competition, which has begun to encourage
quantitative analysis of horse racing using data.

However, due to the characteristics of horse racing as public gambling, it is undeniable
that data analysis of horse racing tends to be biased toward the viewpoint of “which horse
to bet on to make a profit.” Therefore, to the best of our knowledge, research on horse
racing conducted from the viewpoint of sports statistics in Japan is lacking, and only a
few related studies have been conducted in other countries as well. Therefore, this study
presents a quantitative analysis of the running ability of racehorses in horse racing in
Japan with the aim of pioneering the study of sports statistics in horse racing in Japan.

To measure a racehorse’s running ability, in addition to race time as a measure of leg
speed, various quantitative indicators such as lifetime or annual winning percentage and
prize money can be considered. However, since the winning percentage and prize money
are interpreted as a cumulative index of the relative time difference from other racehorses
in each race, they are indices that depend on the opponents in the race in which the
horse runs. Furthermore, since the prize money of a race depends on the rating of the
racehorses that are eligible to participate (the higher the rating of a race, such as G1, the
higher the prize money tends to be), the prize money earned also depends on the race
type the horse has entered. Contrarily, race times can be regarded as a numerical value
focusing only on individual racehorses, and thus are considered to be appropriate as a
quantitative indicator of a racehorse’s running ability in a race. Therefore, in this study,
“speed” (in meters per second), calculated by dividing the racehorse’s time in each race
by the distance of the race, is used as a quantitative index of the racehorse’s running
ability, and a regression model with this as the explained variable is used to examine the
determinants of the racehorse’s running ability.

The factors affecting the speed of a racehorse as a quantitative index can be broadly
divided into the following three categories: racehorse’s ability; race environment; and
jockey’s ability. Regarding a racehorse’s ability, which can be further divided into the
horse’s observable (i.e., horse, such as the horse’s weight, age, and sex) and unobservable
factors (horse’s own natural constitution and temperament, and its physical condition

before the race.) Contrarily, the race environment includes the type of track surface and
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the condition of the track surface on the day of the race. The observable variables in the
first and second groups can be used as explanatory variables in a regression model with
the horse’s speed as the explained variable. These data are detailed in Section 3.2.

However, unobservable factors that determine a racehorse performance cannot be
included in the regression model as explanatory variables. Therefore, these factors are
added to the regression model as racehorse-specific parameters (hereafter referred to as
racehorse individual effects). This racehorse individual effect corresponds to a random or
fixed effect that appears in the panel data analysis. In a textbook panel data analysis, it
is customary to assume a balanced panel where the length of the sample period (number
of races in the case of horse racing) for each individual is uniform. In reality, however,
some horses continue to run in many races, whereas others retire after only a few races.
Therefore, the number of races run during the sample period varies greatly from horse
to horse; thus, the run data of racehorses result in an unbalanced panel. Of course,
it would be possible to construct a model that explicitly incorporates the mechanism of
missing data due to cessation of running?, but this would require estimating the racehorse
survival time model as well, making the model considerably more complex. Combined
with the limitations of the available data, this approach would be impractical. Therefore,
in this study, we assume that the “cessation of running” associated with the racehorse
retirement occurs randomly and independently, and we aim to avoid problems associated
with panel data incompleteness by applying the method of hierarchical Bayesian analysis
to the estimation of individual effects of racehorses.

There is no disagreement that the third factor, the jockey’s ability, is extremely im-
portant in determining the winner of a horse race. Horse racing is a competition in which
jockeys compete for position on a racehorse. In other words, horse racing is a sport sim-
ilar to motor sports, except that the jockeys ride horses, which are living animals. The
jockey controls the racehorse to run at optimal pace, taking into account the horse’s tem-
perament, horse’s physical condition on the day of the race, and condition of the course
where the race is being held. This is the jockey’s role during a race; it is the reason why

horse racing is not just a simple game between horses, but a sophisticated sport in which

2The “cessation of running” here does not mean a temporary cessation of running, but rather a

complete cessation of the racehorse’s activity.
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humans engage in intense games of strategy and skill while controlling a racehorse as a

vehicle.

However, unlike motor sports such as four-wheeled vehicle, two-wheeled vehicle, boat,
and auto racing that are also public gambling, racehorse “vehicles” are not man-made
objects but living organisms, and there is a large variation in running performance among
individuals®. Moreover, racehorses that are currently considered competitive tend to be
assigned to jockeys with excellent past records and who are considered to be excellent jock-
eys. Therefore, if we use winning percentage and prize money as a measure of a jockey’s
ability, it becomes difficult to distinguish whether a high winning percentage and high
prize money are achieved due to the individual jockey’s superior ability, or whether the
jockey is simply aided by the ability of the racehorse he/she rides. Therefore, this study
aimed to measure the jockey’s ability to control a racehorse by estimating the jockey’s
contribution to the speed recorded by the ridden racehorse in the race. Specifically, an
unobserved parameter unique to the jockey (hereafter referred to as the jockey’s individ-
ual effect) is added as the jockey’s contribution to the racehorse’s speed in the incomplete
panel data regression model with the racehorse’s speed as the explained variable, and this
individual effect is estimated simultaneously with the racehorse’s individual effect using
a hierarchical Bayesian analysis. The jockey’s individual effect is estimated simultane-
ously with the racehorse’s individual effect using a hierarchical Bayesian analysis. In
other words, the jockey’s individual effect in this study is interpreted as the increase or
decrease in the speed of a racehorse caused by a particular jockey’s ride provided that all
other factors, including racehorse ability and track condition, remain the same (ceteris
paribus)?. However, since the individual effects of racehorses are already included in the
regression model, including all jockeys’ individual effects in the same model would lead
to complete multicollinearity, making the model estimation impossible. To avoid this

problem, in this study, the jockey’s individual effect of Yutaka Take® is omitted from the

3In motorsports, it is customary to establish detailed rules and restrictions to equalize the performance

of vehicles among riders and teams as much as possible.
4In this study, for the sake of simplicity, the interaction between the jockey’s individual effects and

racehorse’s individual effects (i.e., the compatibility between the jockey and racehorse) is ignored.
5Yutaka Take is, at the time of writing this study, the record holder for the most wins and most rides

in JRA’s history, and is onamong the best jockeys who can bring out the best in racehorses in the world
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model. Then, the jockey’s individual effect estimated based on Yutaka Take is interpreted
as the difference in ability of the jockeys in question compared to Yutaka Take.

In summary, the model underlying the empirical analysis in this study is an unbal-
anced panel data regression model with the racehorse speed in each race as the explained
variable and the following items as the determinants of the racehorse speed: racehorse’s
individual effect; jockey’s individual effect (relative ability difference between the jockey
and Yutaka Take); observed racehorse characteristics; and observed environmental char-
acteristics of the race. The estimation of this regression model applies the hierarchical
Bayesian analysis method. As explained in Section 3, the model itself is standard; thus it
is relatively easy to generate unknown parameters such as all individual effects and coef-
ficients of explanatory variables from the posterior distribution by means of Gibbs sam-
pling. Although the model itself is standard, the large number of racehorses and jockeys
in the analysis makes stable estimation difficult with conventional methods. Therefore,
this study incorporates a sampling technique called Ancillarity-Sufficiency Interweaving
Strategy (ASIS) to improve sampling efficiency, which enables efficient estimation despite
the fact that the data itself is difficult to estimate using conventional methods. Since
a large number of racehorse and race environmental characteristics are candidates for
explanatory variables to be included in the regression model, the model selection crite-
rion Widely Applicable Information Criterion (WAIC) proposed by Watanabe (2010) was
used to select a combination of these variables.

Silverman (2012) is an example of a regression model that uses hierarchical Bayesian
analysis to explain racehorse speed. The fundamental difference between Silverman
(2012) and this study, with the exception of the data used in this study, is that it focuses
its empirical analysis on measuring racehorses and jockeys the performances, whereas Sil-
verman (2012) focuses on measuring the performance of race winners. Silverman (2012)
claims that the predicted success rate of the first-place finisher in the estimated model
is 21.63%, which is better than the predicted success rate when the horses are chosen
at random (7.14%—12.5%). This result is superior to that of random selection (7.14%—
12.5%). Outside of Japan, more research is being conducted on race winners rather than

racehorse speed. For example, Sung and Johnson (2007) use conditional logit models

of horse racing in Japan.



34 CHAPTER 3. HORSE RACES

to analyze race winners in British horse racing. Meanwhile, Edelman (2007), Lessmann
et al. (2007), Lessman et al. (2009), Chung et al. (2017), and others have attempted
to predict racehorse winners using support vector machines (SVM). Benter (2008) pro-
posed using conditional logistic regression models for horse racing analysis, and Silverman
and Suchard (2013) developed their model by including parameters inspired by the Cox
proportional hazards model. In addition, Lessmann et al. (2010) used a random forest
algorithm to predict the winner of a race. However, to the best of our knowledge, no
academic research has been conducted using scientific statistical methods on data from
horse racing in Japan. Additionally, only Silverman (2012) had employed the hierarchi-
cal Bayesian analysis to examine the determinants of racehorse’s speed, and ours is the
first study to take into account jockey’s individual effect. Thus, the contribution of this
study is not insignificant. Furthermore, it should be emphasized that the data used in
this study were obtained by the authors by scraping from “netkeiba.com,” a website that
provides horse racing information. Considering that similar data are not available in a
form that can be used for statistical analysis, the findings of the empirical study in this
study are valuable.

Finally, this chapter is organized as follows. Section 3.2 describes the horse racing data
used in this chapter and presents descriptive statistics. Section 3.3 describes the panel
data regression model used to explain racehorse speed and the hierarchical Bayesian
analysis method used to estimate it. Section 3.4 presents the detailed results of the
analysis, followed by a summary and discussion of the findings from the empirical analysis

in Section 3.5.

3.2 Data

First, this section describes the details of the horse race data used in this study.
We analyzed 1800-m races held by JRA between 2016 and 2018, excluding steeplechase
races. The 1800-m racefs were chosen because they had the largest number of race records
among the races held by JRA during the same period. These records were obtained by
scraping from netkeiba.com (https://db.netkeiba.com/), a horse racing information

site operated by Net Dreamers, Inc. Before screening, the total number of entries was
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32,667, with 11,198 racehorses and 224 jockeys. However, if racehorses and jockeys who
ran extremely infrequently, or if race records that seemed to have had some kind of trouble
(e.g., extremely long running times) were included, they would become outliers, and it
would be difficult to conduct an accurate analysis. Therefore, we screened the data by
removing records that fulfilled at least one of the following three conditions: Condition
1, records of entries for jockeys who have ridden <10 times in 1800-m races; Condition 2,
records of racehorses that has raced <3 times in 1800-m races; and Condition 3, records
of runs by horses whose speed is in the bottom 5% of all runs. As a result, the number
of racehorses to be eligible for analysis was 4,063, excluding 7,135 racehorses that met
conditions 1-3 above from 11,198. Similarly, the remaining 140 jockeys were selected for
analysis, excluding 83 of the 224 jockeys who met conditions 1-3. Finally, 22,183 race
records were used for analysis. In the screening process, the number of rides by jockeys
was selected before the number of rides by racehorses, resulting in 10 jockeys having fewer
than 10 rides in the data selected.

For a bird’s-eye view of the data, Figure 3.3 shows scatter plots of the mean and
variance of the speeds of 4,063 racehorses and 141 jockeys. Figure 3.3(a) shows the
racehorse speed, which can be roughly categorized into two based on the average of 16.2.
The left cluster is for racehorses that mainly run on dirt courses, whereas the right cluster
is for racehorses that mainly run on turf courses. The racehorses with the largest variance
are those with an average of 16.2, but these racehorses run on both turf and dirt courses,
and we can assume that the variance is greatly influenced by the course and the condition
of the racehorses and jockeys. Next, we examine the relationship between the mean and
variance of speed in terms of the jockeys. Figure 3.3(b) shows a scatter plot of the mean
and speed of 141 jockeys, and it can be seen that none of them have an extreme small
variance compared to the racehorses. The scatterplot of the jockeys shows the left-right
divergence observed in the scatterplot of the racehorses, indicating that the jockeys ride

on both turf and dirt courses equally.
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Figure 3.1: Mean and variance of racehorse and jockey speed

The explained variable in the regression model, the racehorse speed, is the speed per
second (the distance of the race (1800 m) divided by the time (seconds)). Since it is
inappropriate for speed to be non-negative, the speed as the explained variable is log-
transformed to impose a non-negative constraint when estimating, and the regression
coefficient of each explanatory variable is interpreted as the ratio of its effect on speed.
As explanatory variables for the regression model, we use the following features from the
netkeiba.com database that are expected to affect racehorse speed in the race. Table 3.1
summarizes the descriptive statistics (mean, standard deviation, median, maximum, and

minimum) for each feature.
1. Features of a racehorse

« Horse weight (kg)

o Gain or loss in horse weight (kg)

» Horse age (years)

o Horse age squared

« Mare dummy (mare = 1)

o Gelding dummy (castrated stallion = 1)

o Trainer’s evaluation (4 levels: A, B, C, D)
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2. Environmental features of the run

o weight to carry (weight to be borne by jockey, saddle, etc., in kg)
 outer track dummy (run on outer track = 1)
o turf course dummy (run on turf course = 1)

» Racecourse dummies (10 locations: Tokyo, Chukyo, Nakayama, Kyoto, Hako-

date, Kokura, Niigata, Sapporo, Fukushima, and Hanshin)
o track index®

« race index (average time excluding racehorse i record in race it)

In preparation for a hierarchical Bayesian analysis, let us consider the relationship
between racehorse speed and each of the explanatory variables as a preliminary analysis.
For this purpose, we created a correspondence table (Table 3.2) between the frequency
distribution of each explanatory variable and the average racehorse speed within the class.
Figure 3.2 shows the average speed for each quintile of the quantitative explanatory
variables. Table 3.2 shows the average speed within each category for the qualitative
explanatory variables. As shown in Table 3.2, we can guess in advance what effect
the characteristics related to the racehorse and race can have on racehorse speed as an

explanatory variable in the regression model.

Table 3.1: Descriptive statistics for dependent and explanatory variables

Mean Standard Deviation Median Max Min

speed (m/s) 15.9634 0.4913 15.8730 17.2249 15.0250
horse weight 475.6023 28.9928 476 598 378
gain or loss in horse weight  0.3999 6.1309 0 40 —38
Horse age 3.6850 1.2565 3 10 2
Horse age squared 15.1577 11.0182 9 100 4
Weight to carry 54.9787 1.5463 55 60 49
Track index —1.8314 10.7431 -3 71 —30
Race index 15.9210 0.5000 15.8195 17.1227 14.6559

6Track index is a numerical measure of the track condition. The hard-to-run condition is indicated

by a positive value and the easy-to-run condition is indicated by a negative value.
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Figure 3.2: Frequency distribution of explanatory variables and within-class means of

racehorse speed (quantitative explanatory variables)

Table 3.2: Frequency distribution of explanatory variables and within-class means of

racehorse speed (qualitative explanatory variables)

Frequency Mean
Dummy variable 1 0 1 0
Mare 7686 14497 16.0091  15.9391
Gelding 839 21344 16.0208  15.9611
Outer course 3068 19115 16.5636  15.8670
Turf course 8174 14009 16.4876  15.6575
Trainer evaluatoin A B C D
Frequency 378 12789 8281 735
Mean 16.3583 16.0288  15.8604  15.7824
Racetrack Tokyo Chukyo Nakayama Kyoto Hakodate Kokura Niigata Sapporo Fukushima Hanshin
Frequency 1450 1775 4622 4469 490 970 2734 415 833 4425
Mean 16.5103 15.6112 15.6975 15.9365 16.4354  16.5154 15.9254 16.2837 16.4202 15.9644
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Horse weight Figure 3.2 shows that lighter horses tend to run faster. Therefore, the
regression coefficient of horse weight is expected to be negative in the regression

model.

Gain or loss in horse weight There is no clear relationship between horse weight and
speed in Figure fig:q5-quantitative-predictor. However, the gain or loss in horse
weight is thought to be related to the training and diet menu of the racehorse. It
is natural to assume that racehorses that gained weight strengthened their instan-
taneous power, whereas those that lost weight strengthened their endurance, and
that this affected the unobserved abilities of the racehorses, thus we add gain or

loss in horse weight as an explanatory variable.

Horse age In Figure 3.2, we found that speed generally tends to increase as horse age
increases, but it decreases at later ages. At a closer look, we can observe that speed
tends to increase until the horse reaches 8 years of age. It is natural to assume that
racehorses grow up to a certain age, but after reaching a certain age, their ability
as racehorses diminishes due to physical strength decline caused by aging. Gramm
and Marksteiner (2010) report that the average speed of racehorses increases until
they reach the age of four, but after that, the average speed gradually slows down.
Their study used data from U.S. horse races, and it is thought that the absolute
running ability of racehorses begins to decline at that age because the load weight
is smaller after 4 years and 8 months of age due to the load weight regulations of
U.S. horse races. Therefore, the horse age squared is also added as an explanatory
variable in the analysis. This allows us to estimate the age at which a racehorse’s

ability begins to decline.

Weight to carry, mare dummy, gelding dummy The weight to carry in Figure 3.2
must be considered together with the mare and gelding dummies in Table 3.2. In
JRA races, the weight to be borne by the jockey, saddle, etc. is regulated, and
although this regulated weight varies depending on the type of race, mares and
gelding generally bear a lighter weight than stallions. Therefore, contrary to our
intuition, the higher the weight to carry in Figure 3.2, the higher the speed of the

runners. In Table 3.2, the average speed of the stallions and gelding is lower than
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that of the mares and gelding combined. This result may be due to the influence
of the individual factors on each other. Hence, it would be significant to add these

variables to the regression model to elucidate the influence of the individual factors.

track index This is an index published by netkeiba.com. The smaller this value is, the
better the race time is expected to be. Figure 3.2 shows that the smaller the value
of the track index, the faster the horse actually runs. Since we expect horses to
run more easily when track conditions are better, and consequently to run faster,
we would expect the regression coefficient to be negative when the track index is

added as an explanatory variable.

Race index The race index is an index original to this study and is the average time
of race t excluding racehorse 7. The race index is an explanatory variable for the
hypothesis that the racehorse speed in a given race is influenced by the speed of
other runners. The regression coefficient of the race index is expected to be positive
because the racehorse speed is not only affected by the speed of other runners, but
also because the race with the highest average speed is likely to be run by the best
runners. Figure 3.2 shows that the average speed clearly increases as the race index

increases.

Outer course dummy This dummy variable indicates that the racehorse raced on the
outer course of the racetrack. Generally, each racetrack has two courses, with one
course encompassing the other course in a double circle-like structure. The outer
course has a gentler curve than the inner course, and the deceleration at curves is
relatively small, thus it is considered easier to run faster on the outer course. In
fact, Table 3.2 shows that the horses that ran the outer course were able to run
faster than those that ran the inner course. Therefore, the regression coefficient for

the outside track dummy is expected to be positive.

Turf course dummy This dummy variable indicates the race was held on a turf course.
There are two types of courses: turf and dirt courses. Horses tend to run faster on
turf courses than on dirt courses. In fact, Table 3.2 shows that horses that ran on

the turf course had a higher average speed than those that ran on the dirt course.
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Therefore, the regression coefficient for the turf course dummy is expected to be

positive.

Trainer evaluation This variable is the trainer’s evaluation of the condition of the
racehorses in each race on a four-point scale of A, B, C, and D. The data obtained
include some cases without trainer evaluation, but the number of such cases was
only 14, so the corresponding race data are excluded. In Table 3.2, the average
speeds for the four levels, A, B, C, and D, are tabulated. Although the trainer
evaluation is a subjective evaluation, Table 3.2 shows that the speed decreases as
the trainer’s evaluation decreases from A, B, C, to D. This trend suggests that
the trainer evaluation may be capturing an aspect of the horse’s ability that is
not observed as an external numerical value. Therefore, we add dummy variables
corresponding to the three levels of evaluation, A, B, and C, to the regression model.
In this way, it would be possible to test the validity of the trainer evaluation based

on D.

The track index is standardized to have a mean of 0 and a variance of 1 according to
Silverman (2012). The positive quantitative variables, including horse weight, weight to

carry, and race index, are logarithmized.

3.3 Hierarchical Bayesian Modeling

In this section, we introduce the panel data regression model of racehorse speed and
explain the procedure for its hierarchical Bayesian analysis. Suppose that N racehorses
ran and M jockeys rode in all the horse races held during the sample period, in the data
used in this study, N = 4,063 and M = 140 (excluding Yutaka Take). Let ¢ € {1,..., N}
denote the index of the racehorse and j € {1,..., M} denote the index of the jockey.
Then, let ¢ be a racehorse that ran 7; times in the sample period, and let ¢ € {1,...,T;}
be the index of each race.

Additionally, we introduce the following variables.

e y; — speed of racehorse i in race t (m/s)
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e d;jy — jockey dummy

p 1, (jockey j rides racehorse i in race t.);
0, (otherwise).

o x; — A K x 1 vector of features for racehorse i and horse condition in race ¢ (this

contains the explanatory variables introduced in Section 3.2)

Then, consider the regression model in which the error term ¢; follows a normal distri-
bution A (0, 0?) for these variables.
M

Yit :Oéi—i‘Z’)/jdijt—i‘iD;t,B—i‘Eit, €it 1'1\(11 N(0,0’?), te {1,,11} (31)

j=1

The a; in (3.1) is interpreted as the racehorse’s individual effect, which cannot be ex-
plained by other factors. Contrarily, 7; is the part of the racehorse’s speed that is
increased when the jockey j exceeds the performance of the reference jockey (Yutaka
Take in this study) (when 7; > 0) or decreased when the jockey’s performance is below
(when 7; < 0). Since the right-hand side of (3.1) controls for racehorse’s individual effect
and racehorse and track conditions, ; is interpreted as the ability difference between the
jockey 7 and reference jockey. Finally, 3 is a vector of regression coefficients for K x 1,
each of which is interpreted as the marginal effect of the variables in @;; on the racehorse
speed.

Here, let us define vectors and matrixes as follows.

Yi1 dia1 -+ dinn Zi1
y,= | |, Di=] : : , X = ;
| YiT; dar, -+ diur, ZiT;
€i1 a1
€= 1|:1, v=
_Em TMm

Then, the regression model of (3.1) corresponding to the run record of racehorse ¢ can be

summarized as

Y, = Oéz']-Ti + Dl’)’ + XZ,B + €;, €; ~ N(OTN O.?ITi)- (32)
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Here 17, is a T; x l-vector whose elements are all ones, Of, is a 7; X 1-vector whose
elements are all zeros, and I, is a T;-dimensional unit matrix.

Lastly, we define

Y1 17, D, X,
Y= , U= , D= , X = ,
Yy 17, Dy XN
€1 Qg o
Z-|u D x|, e- . a= L 6=,
€N an B

then the regression model for all N racehorses can be summarized as

y=Ua+Dvy+ XpB+¢€
N (3.3)
=Zb+e, e~N(0r,0Ir), T=> T.

i=1
Next, we set up the posterior distribution to conduct a hierarchical Bayesian analysis
on the regression model in (3.1). Since the conditional distribution of y under a given Z

in (3.3) is N(Z4, 021I), the likelihood of the unknown parameter (8, 0,) is

, 1 ,
p1Z.8,0) x (72 exp |~y - 20y - 20) (3.4)
2 T Til 62t
X (Ue) 2€exXp [— 5_0_52 ) (3 5)

M
!
€it = Yit — Oy — E Vidjie — T

j=1

Then, the following prior distribution is assumed for the parameter (6, o).

taly ool
O~ N2, p=|ply.|, E= 02Ty ; (3.6)
7% g
e~ CH (0, 50). (3.7)

Here C*(0, 0.) is the half-Cauchy distribution with the probability density:

2s
€lve) — d e>0; E>0.
p(oe|se) py o s

o2+ s2)’
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Since this model is a hierarchical Bayesian model, we used the half-Cauchy distribution
recommended by Gelman (2006) for hierarchical models. Note that the prior distribution

in (3.6) is equivalent to assuming

ai KN (pa, 02), i€{1,...,N},

ii.d. .
v NNy, 02), je{l,... M}, (3.8)
/6 NN(IJ’szﬁ)

If we regard racehorse ¢’s individual effect «; and jockey j’s individual effect v; as
random effects in (3.8), they can be interpreted as randomly generated from a normal
distribution of N (pa,02) and N(u,,0?). Contrarily, if o; and v; are treated as fixed
effects, N'(pa,02) and N (., 03) can be interpreted as a common prior distribution of
the fixed effects as unknown parameters. Either interpretation does not change the fact

that neither o; nor ; are unobservable parameters in the Bayesian approach and does

not affect the resulting posterior distribution of individual effects as parameters.

In the prior distribution of the parameter (d,0.), (tg, X3) in (3.6) and s, in (3.7) are
fixed to a specific value as hyperparameters. However, for (tq, by, 0o, 0) in (3.6), we set

the following hierarchical prior distribution

Ha ™~ /\/’(%”7'3), My ™~ N(SO'yaT»f)a

00 ~CH(0,8,), o, ~CH(0,s,),

(3.9)

and attempt to estimate it simultaneously with (4, 0.) using a Bayesian approach.

The name hierarchical Bayesian analysis is derived from the use of this hierarchical
prior distribution. One advantage of hierarchical Bayesian analysis is that (ta, by, Oa, 0)
in the prior distribution (3.8) are not fixed as hyperparameters, but can be estimated si-
multaneously with other parameters. Another advantage of this analysis is that the

2

shrinkage method can be used to stabilize estimation of the individual effects. (¢q, ¢, 72, T Sas Sy)

in (3.9) is fixed to a specific value as a hyperparameter.

From the above explanation, we can conclude that the parameters to be estimated

in the hierarchical Bayesian analysis of the regression model (3.1) for the ability of the



3.3. HIERARCHICAL BAYESIAN MODELING 45
racehorse and jockey are summarized as
0 = (8, t1as 17, 7s 72, )
=(01,...,an, Y15,V B1, - - BKcs Has oy Oay Oy Oc)-
However, since the posterior distribution
p(0|D) x p(y|Z,d,0)p(6), D=(y Z), (3.10)

of parameter 6, consisting of the likelihood p(y|Z, 8, o.) of (3.4) and the prior distribution
p(0) of (3.6), (3.7) and (3.9), cannot be evaluated analytically, we will proceed with the
hierarchical Bayesian analysis by using the Markov chain Monte Carlo (MCMC) method.

The conditional posterior distribution of each parameter is derived as follows.
8D,6_5 ~ N ((a;2Z'Z + 2N 022y + S, (0.22'Z + 2*1)‘1) o (3.11)

o2 Zfil o + 7720, 1
[,La|D, O_Ha ~ N ( o N m 7__3 —— n — | (312)

o2 Z]Vﬁl Yi 4+ 7720, 1
115D, 6, ~N< SR i J  — — 1, (3.13)
072M+772 J,sz—l-T,yQ
N+1 3N (i —pe)? 1 11
2D, 6_ ~T =1 Fa — ~TC (1. =+ =
0a| ) Ja7€Oé g 2 9 2 + ga Y falo—a g ) O_gl + Sgé )
(3.14)
M 2
M+1 325505 — )" 1 11
2D,0_, & ~T J — ~TC (1. = o+ =
O',Y| ) 7757 g 2 ) 2 + g’y ) 5’7‘07 g 70_?/ + S% )
(3.15)
T+1 SV 5 2 1 1
U€2|D7 070 756 ~ Ig il ) Zl:l Zt:l elt + = ) €€|06 ~ Ig 17 — + = ) (316)
‘ 2 2 & o s

where 0_, indicates that the parameter a is excluded from 6, and ZG(a, b) is the inverse

gamma distribution

T
p(xla,b) = ma: (etle=2,

The derivations of these conditional posterior distributions are explained in Appendix.
In the conditional posterior distribution of (3.14)(3.16), new latent variables (&4, &, &)
are introduced. This is because x ~ C*(0,a) is expressed as

, 11 11
x|z~IQ<§,;), ZNIQ(— —), (3.17)

2" a?
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and is used to derive (3.14). See Appendix for more details.

The conditional posterior distributions in (3.11)—(3.16) have all known efficient ran-
dom number generation algorithms, such as the normal and inverse gamma distributions.
Therefore, Gibbs sampling can be used to generate parameter @ from the posterior distri-
bution. However, when we applied simple Gibbs sampling from the conditional posterior
distribution of (3.11)—(3.16) to the running record data used in this study, the convergence
of the random series tended to take a long time. Therefore, we consider the racehorse’s
individual effect a and the jockey’s individual effect «v as parameters, and apply the ASIS
proposed by Yu and Meng (2011) to improve the efficiency of random number generation.
To demonstrate the ASIS algorithm used in this study, we first assume that (o, 7, fia, tiy)

are generated by Gibbs sampling, and consider the following transformation.

&,-:ozi—ua, iE{l,...,N},

M
Yit = Yir — 0 — Z%dﬁt, te{l,....T;}.
j=1

Then, we use these to rewrite (3.1) as
M
. 5 iid. s
Jit = plo + pnydin + B + €, € = N(0,02),  dy = Zdjita (3.19)
j=1

where Jit is a dummy variable interpreted as

i 0, (Yutaka Take rides racehorse ¢ in race t);
it =
1, (otherwise).

Furthermore, by introducing the notation

Y11 1 dy @, Hao
Y= : . Z=|: : : , 0= for | 5
YNTy 1 dyry, @y, B

(3.19) becomes
y=Zd+e, €~N(0p dIy). (3.20)
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Then the conditional posterior distribution of d is obtained as

~ -~ o~ - _ -1 ~ .~ _ — o~ - —1
5|D,0_5NN((U;QZ’Z+2 1) (U;QZ’@+2 1[L>,<a;2Z/Z+E 1) ) (3.21)

Pa Ta
l:l’ = | ¥y Y= 7—,3 )
Mg g

by exactly the same procedure with (3.11): thus, the Gibbs sampling with the addition

of ASIS can be summarized as follows’.

Step 1 Given the sth generated 0(5), apply Gibbs sampling based on the conditional

posterior distribution of (3.11)~(3.16) to generate 8“5 and denote
~(s5+0.5 s+0.5 s ~(s+0.5 s+0.5 s+0.
aZ(Jr ):al(Jr ) M((XJros)’ ’Y](-Jr ):,Y](+ )_ugy+o5).

Step 2 Given 8% apply Gibbs sampling based on the conditional posterior distri-
bution of (3.21) and (3.14)(3.16) to generate (8" ),ug),ug),ag),og),ags)), and
denote

(s) _ &§s+o.5) + (s) 7(s+o 5 ’u(s)

ai o ) /y‘]

In this study, we use this Gibbs sampling to generate a Monte Carlo sample {8®)}5_,
of @ from the posterior distribution, and analyze the hierarchical Bayesian analysis of a
racehorse’s running ability and a jockey’s ability.

However, as shown in Section 3.2, there are multiple candidate explanatory variables
that should be included in the regression model of (3.1), and it is necessary to determine
which variables should be included in the model in some way. In this study, the WAIC
proposed by Watanabe (2010) is used as a model selection criterion for variable selection.

According to Gelman et al. (2014), the WAIC for (3.1) is calculated as follows

WAIC = —2(lppd — pwaic),

S
Ippd = ;;log( 2:: p(yit| 0" ) (3.22)
S 2
Zogp yit|0) ) :

N

T; S
pwaic = Z Z Z <logp yir|0)

CQ |

"In short, the prior distribution of & is NV(f1, 3).
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where p(y;,|0®) is calculated as the probability density of y; (speed of racehorse i in
race t) in (3.1) using @ generated by the sth (after burn-in) Gibbs sampling. Among the
characteristics introduced in Section 3.2 regarding the racehorse and the environment in
the race, the four variables “horse age,” “horse age squared,” “weight to carry,” “turf

course dummy” and “racetrack dummy” are always included in the regression model,

bREN14 PREN14

whereas “gain or loss in horse weight,” “track index,” “race index,” “outside track

%W )

dummy,” “gelding dummy,” and “trainer evaluation dummy.” In other words, Gibbs
sampling is performed for 26 = 64 regression models, and WAIC is obtained from the
resulting 64 sets of Monte Carlo samples {8®}5_, using (3.22), then the combination of
explanatory variables with the smallest WAIC value is adopted as the optimal regression

model.

3.4 Results and Discussion on Empirical Analysis

To present the results of the hierarchical Bayesian analysis of racehorse running ability
and jockey ability conducted with the data presented in Section 3.2, we first describe the
detailed settings of the prior distribution and the Gibbs sampling used in this study.
The hyperparameters (uﬁ, 25, Pas Py T, T,f, Sas 8+, S¢) of the prior distribution are set as

follows.

Mg =0g, 3X5=100Ix, ©o=py=0, 7,=71, =100, (3.23)
Sq = 8y = 8. = 1.

The Gibbs sampling procedure begins with 2,000 random number generation as burn-
in until the random series of parameters become stable, followed by 10,000 random num-
ber generation to obtain the Monte Carlo sample {0(3) 5_, used for parameter estimation
and WAIC calculations. That is, S = 10,000. As a result of the analysis, the inefficiency
factors are in the single digits for all of the generated random number series (mostly < 2),
and the results of Geweke’s convergence diagnostic proposed by Geweke (1992) are also
good, exceeding 0.2 for all variables.

The WAICs are calculated using this Monte Carlo sample, and as shown in Table

3.3, the results show that the regression model with all explanatory variables is the
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best. Although the regression coefficients for gelding dummies and weight to carry are
not significant because they include 0 in the 95% credible interval, the model including
these variables is selected as the best. The second and third models selected are regres-
sion models that excluded the gelding dummy and gain or loss in horse weight from the
explanatory variables, respectively. Surely, the exclusion of the gelding dummy is under-
standable, given that a gelding is a castrated stallion, and its inborn physical abilities
do not change. Moreover, since gain or loss in horse weight has nothing to do with the
racehorse’s intrinsic ability, it is reasonable to exclude this variable.

The posterior statistics of the regression coefficient 3 and other parameters for the top
three models are summarized in Table 3.3. In Table 3.3, there is no remarkable difference
in the posterior statistics for each parameter among the models. Therefore, Model 1,
which has the lowest WAIC, is used to analyze the racehorse’s and jockey’s performance.

Our first interest is in regression coefficient B: thus, in turn, we will look at the
posterior statistics of 3 summarized in Table 3.3. Note that in the following discussion,
the significance of a regression coefficient means that the 95% credible interval does not
contain zero, and a significantly positive (negative) regression coefficient means that the
95% credible interval contains only positive (negative) values.

First, we discuss the explanatory variables for the physical characteristics of race-
horses. The regression coefficient of horse weight is significantly positive. This indicates
that heavy racehorses, which are thick and muscular, are more suitable for 1800-m races
than light racehorses, which are thin and lean. This result is contrary to the prediction
presented in Section 3.2, but this may be interpreted as a result of the fact that racehorses
competing in races with speedier conditions tend to be lighter in weight. For example, as
described below, the regression coefficients for the turf and outer courses are significant
and positive, but the racehorses that participated in the race conducted in the turf and
outer courses are on average 15.85 and 11.86 kg lighter than those that did not partic-
ipate in these courses, respectively. Therefore, the opposite prediction may have been
made when only horse weight is taken into account. The gain or loss in horse weight is
significantly negative, but this may be due to the fact that horses had lost weight because
of adjusting their condition.

Next, horse age must be interpreted in conjunction with horse age squared. From the
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formula for the quadratic function az? +bx = a(z +b/2a)* + ¢, noting that the quadratic
term is negative, the descending junction point is 4.18 years old by substituting the
second-order coefficient of horse age, a = —0.2359 x 1072, and the first-order coefficient,
b = 1.9701 x 1073, for x = —b/2a respectively. This indicates that the ability of a
racehorse gradually declines from 4 years of age. The average speeds in the speed classes
shown in Figure 3.2 become larger as the horse age increases, which probably reflects
a survival bias. The fastest and most talented racehorses survive in the racing world,
whereas the slowest racehorses are retired at a young age because they are judged to
have no chance of winning even if they run. Therefore, at first glance, it would appear
that racehorses with larger ages are faster than those with smaller ages, and many of
the older racehorses are superior individuals who have achieved success throughout their
racing careers. However, when we control for individual ability, we find that the ability
declines after 4 years of age. The regression coefficient for the mare dummy is significantly
negative, but the gelding dummy is not significant. The negative coefficients are probably
appropriate given that mares are on average less physically fit than stallions. However,
since the sign of the regression coefficient for the gelding dummy is unclear, we can say

that the stallion’s castration does not affect his performance as a racehorse.

Then, we examined the explanatory variables related to the race environment. First,
the regression coefficient for the weight to carry is negative for the posterior mean, but
the 95% credible interval includes 0. The sign of the regression coefficient is understa