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This thesis consists of three essays on the estimation of causal parameters that are identified as the ra-

tio of conditional expectation functions (CEFR), and an introduction to the problem of CEFR estimation

in causal inference.

Chapter 1 Introduction

This chapter introduces key concepts and provides a brief background to the issues studied in this thesis.

The potential outcome approach (Rubin, 1974; Imbens and Rubin, 2015) is arguably the most widely

used framework for causal inference in the social sciences. Consider a simple case with a binary treat-

ment, i.e. individuals may receive a treatment or not. Let Y be an outcome of interest, and D be a

treatment status that takes 1 if an individual receives a treatment and 0 otherwise. For example, when

we are interested in assessing the effect of job training on annual income after a year, we can set the

receipt of training as D, and the annual income after a year as Y . The potential outcomes are the re-

sponse that would be observed if an individual were assigned a specific treatment. Let Y1 and Y0 be the

potential outcomes with and without a treatment, and assume that the realized outcome always satisfies

Y = DY1 + (1−D)Y0.

Using the potential outcomes, we can calculate the causal effect of a treatment on an outcome of

interest as Y1 − Y0. However, this calculation is never feasible in practice as we can never observe

both Y1 and Y0 for the same individual. This is known as the fundamental problem of causal inference

(Holland, 1986), indicating that the true value of treatment effects is never observed. The most prevalent

approach to overcome the fundamental problem of causal inference is assuming unconfoundedness and

measuring a treatment effect by the average treatment effect (ATE)E[Y1−Y0]. Unconfoundedness states

that (Y1, Y0) and D are independent, which allows estimation of ATE from the observed variables as:

E[Y1 − Y0] = E[Y1]− E[Y0] = E[Y1|D = 1]− E[Y0|D = 0] = E[Y |D = 1]− E[Y |D = 0],

where the second equality holds by unconfoundedness, and the last equality follows from the assumption
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Y = DY1 + (1−D)Y0.

Unconfoundedness introduced above is very restrictive since it requires that the treatment status is

independent of the potential outcomes unconditionally. Therefore, the following conditional version is

more popular in the literature:

Y1, Y0 ⊥⊥ D|X, (1)

where A ⊥⊥ B|C means A andB are conditionally independent given C, andX is a vector of covariates.

In the job training example, X may include variables characterizing individuals such as age, gender,

education and so on. If the conditional unconfoundedness holds, we can estimate ATE as:

E[Y1 − Y0] = E[Y1]− E[Y0] = E[E[Y1|X]]− E[E[Y0|X]]

= E[E[Y |D = 1, X]]− E[E[Y0|D = 0, X]].

Although ATE can be used to evaluate the size of a treatment effect averaged over the population of

interest, it cannot capture the heterogeneous nature of the effect for different individuals. Quantifying

such heterogeneity is essential in many research areas including precision medicine and target marketing.

Among several different definitions of heterogeneous treatment effects, the most actively studied is a

treatment effect conditional on covariates X , such as the conditional average treatment effect (CATE)

E[Y1 − Y0|X]. All the subsequent chapters deal with the estimation of heterogeneous treatment effects.

There are several treatment effects that are identified as CEFR, and this thesis focuses on the esti-

mation and inference on such causal parameters. A simple example is ratio-based treatment effects such

as the odds ratio, hazard ratio and survival ratio (Dukes and Vansteelandt, 2018; Liang and Yu, 2020;

Yadlowsky et al., 2021; Lee, 2022). They are defined as the ratio of the expected potential outcomes

E[Y1|X]/E[Y0|X], rather than the difference E[Y1|X]−E[Y0|X], and the ratio is a more natural choice

to measure the causal effect such as a treatment effect on the relapse rate of a specific decease, cost saving

effects, the effect of dieting on weight. For example, a fixed amount of weight loss can be of different

importance to individuals with different levels of baseline weight. Chapter 4 develops a novel estimation

method for a ratio-based treatment effect from time-to-event data.

In some problem settings, we can estimate some difference-based treatment effects as in the form of

CEFR. A typical example is LATE. Besides that, Yamane et al. (2018) showed that CATE is identified

as CEFR in the data combination setting, where Y and D cannot be observed simultaneously in a single

dataset. Chapter 2 extends their work to the estimation of LATE by data combination. Chapter 3 develops
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it may become more difficult to combine multiple pieces of information online as well. Although causal

inference by data combination has been actively studied (Ridder and Moffitt, 2007; Bareinboim and

Pearl, 2016; Lee et al., 2020), LATE estimation using multiple datasets has not received much attention

despite its practical importance. We extend the problem setting considered in (Yamane et al., 2018),

where two different treatment regimes are available, to allow for the existence of noncompliance (Figure

1). Under the extended setting, LATE is shown to be identified as:

E[Y (1)|X]− E[Y (0)|X]

E[D(1)|X]− E[D(0)|X]
,

where Y is the outcome of interest, D is the treatment status, X is a vector of the baseline covariates,

and a superscript represents the treatment regime.

For the estimation, we show that the direct estimation method originally developed for CATE under

the complete compliance (Yamane et al., 2018) can be applied to the LATE estimation in our setting.

However, their method has a practical issue in that model selection and hyperparameter tuning can be

unstable owing to its minimax objective formulation. We then propose a weighted least squares esti-

mator to avoid the minimax objective, and improve the stability in practice. Unlike the inverse prob-

ability weighted (IPW) estimator (Wooldridge, 2002, 2007; Seaman and White, 2013), which is often

employed to estimate treatment effects, the proposed estimator directly uses the estimated propensity-

score-difference as a weight without inversion. Therefore, our method can also avoid the common issue

in the IPW methods, that is, high variance at points with a propensity score extremely close to zero.

The contributions of this study lie in the following three parts. First, we show that LATE is identified

even when an outcome and treatment status cannot be observed simultaneously in a single dataset, and

the treatment assignment is completely missing. Second, we find that the positivity assumption, which is

necessary in the standard setting with one regime, can be omitted in our setting. We show this relaxation

of the conditions further facilitates data collection. Third, we develop a novel estimator that enables

simpler model selection while maintaining the essence of direct estimation as much as possible.

Our method displayed stable performance in the synthetic experiments. We also apply the proposed

method to estimate the effect of job training on the total earnings over 30 months after a random assign-

ment using the dataset of the National Job Training Partnership Act study. The result was consistent with

the previous studies. Although the promising performance of our method has been verified, there are

sometimes concerns about the homogeneity of the populations from which the separate samples come.

This issue is addressed in the next chapter.
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Chapter 3 Orthogonal Series Estimation for the Ratio of Conditional Expectation Func-

tions

In various fields of data science, researchers often face problems of estimating CEFR. Although CEFR

appears not only in causal inference studies, there are several important examples of CEFR in the

treatment effect estimation literature. When an outcome of interest is the relapse rate of a specific

disease, it is more natural to consider the ratio of the conditional expectation of potential outcomes

E[Y1|X]/E[Y0|X], rather than the difference E[Y1|X] − E[Y0|X], as a measure of causal effects of a

medical treatment, where Y1 and Y0 are the potential outcome with and without a treatment, respectively,

and X is a vector of baseline covariates. Likewise, ratio-based treatment effects such as the odds ratio

and hazard ratio have been widely used especially in clinical settings. Furthermore, in a data combination

setting where an outcome and a treatment status are only separately observed, both CATE and LATE are

identified in the form of CEFR (Yamane et al., 2018; Shinoda and Hoshino, 2022), while these effects

are defined as the difference of the potential outcomes.

In this chapter, I start by developing a novel series estimator for CEFR in a very simple setting with-

out selection bias in observed data. This series estimator is itself useful in estimating treatment effects

when data can be collected completely at random from the population of interest, but such randomized

data are often not available in practice. Technically, when there is selection bias in collected data, we

need to estimate potentially infinite-dimensional nuisance parameters to adjust for the bias, but these pa-

rameters may be hard to estimate with a “sufficiently high quality” in observational studies on complex

systems since they can be very high-dimensional and/or highly nonlinear. The highly complex nuisance

parameters do not satisfy the traditional assumptions that limit the complexity of a function class, and

therefore the resulting semiparametric estimator fails to be
√
N -consistent. I employ the debiased ma-

chine learning (DML), a set of techniques to enable the use of flexible machine learning (ML) methods

for the nuisance estimation, to develop a simple and general framework for constructing a high quality

estimator for CEFR even in the presence of selection bias in observed data.

To the best of my knowledge, the previous works on the estimation of the ratio-based treatment effects

all impose assumptions on the functional form somewhere in the model (Dukes and Vansteelandt, 2018;

Liang and Yu, 2020; Yadlowsky et al., 2021; Lee, 2022). For example, Liang and Yu (2020) supposes that

the ratio-based treatment effects can be expressed as the monotone single index model, and Yadlowsky

et al. (2021) imposes a stronger condition that the monotone link function is an exponential function.

On the other hand, this study considers a fully nonparametric model for treatment effects, imposing
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no assumptions on the functional form of CEFR. Furthermore, Yamane et al. (2018) and Shinoda and

Hoshino (2022) show that difference-based CATE and LATE are identified in the form of CEFR in the

data combination setting where we cannot observe an outcome and a treatment status simultaneously in

a single dataset, and develop estimation methods for CEFR. This study accommodates the generalized

version of their problem settings, where each separate dataset contains selection bias. Their estimators

cannot handle the selection bias without introducing additional nuisance parameters, but their methods

are not orthogonal to the nuisance parameters.

The major contribution of this study is the development of the novel inference framework for CEFR

with theoretical guarantees. I derive the general asymptotic results for estimation and uniform inference

on the best linear approximation to the target CEFR under the proposed framework, including the validity

of the Gaussian bootstrap. It is worth noting that we do not have to add stronger regularity conditions

than the assumptions previously known in the literature to establish the theoretical results in this chapter.

In addition to the general results, I provide a set of low-level sufficient conditions to apply the proposed

framework to several specific settings. Besides the asymptotic analysis, I conduct numerical simulations

to evaluate the performance of the proposed method on finite samples.

I also apply the proposed framework to estimate the causal effect of participation in the 401(k) pro-

gram on household net financial assets. I conduct analyses based on the usual one-sample LATE esti-

mation and two-sample LATE estimation, which is similar to the data combination setting considered in

Chapter 2. The parameter of interest is LATE as a function of income. Figure 2(a) and (b) illustrate the

estimated LATE function of income and its 95% uniform confidence band constructed by one-sample

estimation and two-sample estimation, respectively. The point estimate of LATE for households with

annual income $50000 is $16225 in one-sample estimation and $17141 in two-sample estimation, which

are consistent with the analysis in Ogburn et al. (2015) whose estimate is $14910.

The present study also has some limitations. By construction of the proposed method, we can per-

form model selection based on cross validation (CV) only when the denominator function of CEFR is

strictly positive almost surely. In several practical settings, the positivity of the denominator function

is guaranteed, and it is shown in the simulation study that CV for the proposed estimator works well.

However, there are also situations where the denominator function can take both positive and negative

values, such as LATE estimation. Therefore, a model selection method for the general situation is key

to increasing the practicality of the proposed framework. Despite its practical importance, little attention

has been paid to model selection in the treatment effects estimation (Schuler et al., 2018; Caron et al.,

2020). To the best of my knowledge, there exist only a few attempts in the literature to develop a flexible
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Singh and Sun (2019) and the proposed one is beyond the scope of this study, but intuitively, leveraging

information expressed in the form of interaction of Y and D can improve efficiency. However, the

contribution of this study for offering the flexible inference framework in the data combination settings

is significant, as the method in Singh and Sun (2019) does not apply to situations where Y and D are

separately observed.

Chapter 4 Estimation of a Treatment Effect from Survival Data with a Cure Fraction

Under Insufficient Follow-Up

In survival analysis, there exist many applications where a certain fraction of subjects never experience

the event of interest, but the classical survival models suppose that all subjects will experience the event

over the course of time. An important and natural example of such applications is the analysis on a

relapse risk of a specific disease. Obviously, a proportion of patients will never have the relapse, thus,

they are considered cured of their disease. Following such medical applications, the extended survival

models that accommodate cured subjects are referred to as cure models in the literature. Other examples

can be found in a broad range of areas including, but not limited to, sociology (time until recidivism from

release), marketing (time until a consumer makes a purchase), and economics (time until a company goes

bankrupt and time until the unemployed get a job).

In this study, I consider the estimation of a treatment effect using time-to-event data with a cure frac-

tion. Even though the existence of cured subjects is normally found in various real-world applications,

little attention has been paid to causal inference using survival data with a cure fraction. The only previ-

ous study I am aware of is by Gao and Zheng (2017). They propose a method for estimating a treatment

effect using survival data with a cure fraction and noncompliance. However, they assume RCTs and a

parametric model, which raises questions about the usefulness of their method in observational studies.

The major contribution of the present study is to propose novel conditions and a method for nonparamet-

ric identification and estimation of a treatment effect in observational studies while explicitly assuming

a positive cure fraction.

For identification of nonparametric cure models, most previous studies (Laska and Meisner, 1992;

Xu and Peng, 2014; López-Cheda et al., 2017a,b; Chown et al., 2020) require the assumption of sufficient

follow-up, namely the follow-up time is sufficiently long to observe the event of interest occurs for all

uncured subjects. This condition is formally stipulated as

τTd
(v) < τCd

(v) for d = 0, 1 and all v ∈ V ,
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the 95% uniform confidence band. Both graphs indicate that being released on parole or probation is

deterrent against recidivism, while the effect is not so strong. This matches the intuition that parole

and probation decrease the risk of recidivism because if an ex-inmate gets arrested while on parole or

probation, a new prison term is imposed in addition to the rest of the last prison term. However, Bierens

and Carvalho (2007) reports that the directions of the effect of parole and probation on the recidivism

rate are mixed in the eleven states. It may lead to a small overall effect averaged over the eleven states in

this application.

Figure 3(a) implies age weakens relative deterrence of parole and probation against recidivism. Older

ex-inmates may be more experienced in living without committing crime or avoiding being caught, which

reduces the recidivism rate regardless of the type of release. The uniform confidence band indicates the

treatment effect is statistically significantly positive for those younger than 51 years old. Contrary to

age, the actual time served strengthens relative deterrence of parole and probation against recidivism,

which is also intuitively understandable since we can expect that parolees with a longer sentence are

more reluctant to take the risk of rearrest. In Figure 3(b), the treatment effect is statistically significantly

positive for those with the actual time served shorter than 8.4 years.

The key identification assumption used in this study is the equal latency:

P (T0 < t|T0 < ∞, X = x) = P (T1 < t|T1 < ∞, X = x),

which is relatively strong, and sometimes difficult to verify in practice. In addition to the fact that deep

domain knowledge is essential for accurate verification, judgments can easily become subjective. If the

equal latency assumption is not satisfied, the proposed method can be biased. Therefore, developing

testing methods for the equal latency is necessary for the further advancement of the study on causal

inference from survival data with a cure fraction. Furthermore, developing estimation methods based on

alternative assumptions other than the equal latency is also an important future direction.

Although the present study only considers covariates that do not change over time, allowing the use

of time-varying covariates is highly important when analyzing time-to-event data. However, research on

cure models with time-varying covariates is still developing, and there have only been a few previous

works (Beretta and Heuchenne, 2019; Dirick et al., 2019; Tawiah et al., 2020; Lambert and Bremhorst,

2020).
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Frölich M. Nonparametric IV estimation of local average treatment effects with covariates. Journal of Economet-

rics, 139(1):35–75, 2007.

Gao X. and Zheng M. Estimating the causal effects in randomized trials for survival data with a cure fraction and

non compliance. Communications in Statistics: Theory and Methods, 46(8):4065–4087, 2017.

Holland P. W. Statistics and causal inference. Journal of the American Statistical Association, 81(396):945–960,

1986.

Imbens G. W. and Angrist J. D. Identification and estimation of local average treatment effects. Econometrica, 62

(2):467–475, 1994.

Imbens G. W. and Rubin D. B. Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge

University Press, 2015.

Lambert P. and Bremhorst V. Inclusion of time-varying covariates in cure survival models with an application in

fertility studies. Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(1):333–354, 2020.

Laska E. M. and Meisner M. J. Nonparametric estimation and testing in a cure model. Biometrics, 48(4):1223–

1234, 1992.

Lee M. Survival ratio solves random censoring problem for causal effect analysis. Available at SSRN 4224247,

2022.

Lee S., Correa J. D. and Bareinboim E. Identifiability from a combination of observations and experiments. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 13677–13680. AAAI Press,

Apr. 2020.

Liang M. and Yu M. Relative contrast estimation and inference for treatment recommendation. arXiv preprint

arXiv:2010.13904, 2020.
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