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Abstract

Since Markowitz (1952) proposed the mean-variance model for optimal

portfolio selection, it has remained an important foundation in research of

portfolio theory as well as in practice of portfolio management. Although

numerous solutions have been proposed for various problems on the mean-

variance model in decades of its history, there remains some challenging tasks;

(1) p > n problem in case of high-dimensional data with many assets (p: the

number of assets, n: the number of data points) and (2) modeling of a

skewed and fat-tailed distribution with real-world data. To deal with these

challenges, we will discuss researches on new statistical modeling techniques

with Bayesian Markov Chain Monte Carlo (MCMC) and their applications

to real-world data in this doctoral dissertation.

The first challenge is a problem how to construct the optimal portfolio

when the number of assets p exceeds the number of observations of asset

returns n. In a conventional Markowitz-type portfolio, the optimal weights

depend on the inverse of the covariance matrix or the precision matrix of

asset returns. It is well-known that the calculation of the inverse matrix of

the sample covariance matrix becomes unstable as p approaches n, and it

becomes impossible when p is greater than n. Thus, to solve this p > n

problem, numerous dimensional compression methods have been proposed

in the literature. For example, dimensional compression methods based on

factor models such as Fama and French (1993) model or BARRA model have

widely been used in the field of finance. In recent years, however, another

type of dimension compression method that directly estimates the precision
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matrix of high-dimensional asset return data with a graphical model such as

graphical LASSO (e.g., Meinshausen and Bühlmann (2006), Friedman et al.

(2008), Yuan and Lin (2007), Banerjee et al. (2008), Guo et al. (2011)) has

been developed in the literature of machine learning. This dissertation will

tackle the first challenge in Chapter 2 and 3 from the perspective of the

second approach.

In Chapter 2, we focus on a serious flaw in the Bayesian graphical LASSO

estimation method proposed by Wang (2012) and propose a remedy for it. In

Wang (2012)’s algorithm, the precision matrix is partitioned into three parts:

the i-th diagonal element (i = 1, . . . , p), a (p � 1) ⇥ 1 vector of o↵-diagonal

elements which is corresponding to the precision matrix’s i-th column ex-

cluding the diagonal element, and the remaining (p � 1) ⇥ (p � 1) block of

the precision matrix. Based on this partition, Wang (2012) derived the full

conditional posterior distribution of each diagonal element as well as that of

the corresponding o↵-diagonal elements and constructed a Gibbs sampling

algorithm to iteratively generate the precision matrix along with the other

parameters in the graphical LASSO model. Wang (2012) defined the vec-

tor of the o↵-diagonal elements in the i-th column of the precision matrix

as � and � as the diagonal element minus the quadratic form of � and the

(p� 1)⇥ (p� 1) block of the precision matrix. Note that the necessary and

su�cient condition for positive definiteness of the precision matrix is that

the diagonal element is larger than the corresponding quadratic form in the

partition used by Wang (2012). Given �, this condition is satisfied for � since

� > 0 always holds in Wang (2012)’s algorithm as long as we use a positive-

valued distribution (e.g., gamma distribution) as the prior for �. This is why

Wang (2012) argues that the positive definiteness of the precision matrix is

su�ciently guaranteed in the algorithm.

Unlike �, however, � does not necessarily satisfy the condition for positive

definiteness of the precision matrix. We demonstrate in Chapter 2 that the

precision matrix is not always positive definite in the Gibbs sampler under the

designs of numerical experiments adopted by Wang (2012). For some design
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of the precision matrix, the positive definiteness is violated for more than

20% of the iterations. The reason is simple. Wang (2012) naively supposes

that the full conditional posterior distribution of � is a multivariate normal

distribution, but it turns out that an additional constraint must be imposed

upon the distribution of � so that the quadratic form of � must be less than

the corresponding diagonal element of the precision matrix. In other words,

to assure the positive definiteness of the precision matrix, the full conditional

posterior distribution must be a truncated multivariate normal distribution.

If we generate � from the unconstrained multivariate normal distribution,

the positive definite condition can be broken at the moment � is updated.

To solve this issue, we propose a modified algorithm that samples � from

the truncated multivariate normal distribution by using Bélisle et al. (1993)’s

hit-and-run algorithm. To demonstrate the superiority of the proposed al-

gorithm, we conducted the Monte Carlo experiments in which we inherited

the settings from Wang (2012) and generated artificial data with p = 30 or

p = 100 and six designs of the precision matrix (AR1, AR2, Block, Star, Cir-

cle, and Full) as the true structure. The results show that this modification

not only stabilizes the sampling procedure but also significantly improves the

performance of parameter estimation and graphical structure learning. Inter-

estingly, the proposed algorithm also improves the performance in scenarios

where Wang (2012)’s algorithm does not violate the positive definiteness.

In Chapter 3, we discuss an application of graphical models to portfolio

management. The previous studies (e.g., Goto and Xu (2015), Brownlees

et al. (2018), Torri et al. (2019) among others) already applied graphical

models to portfolio optimization. Especially, Torri et al. (2019) examined

performance of the global minimum variance portfolio constructed by graph-

ical LASSO (glasso), Student’s t-based graphical LASSO (tlasso), random

matrix theory filtering (Bouchaud and Potters (2009)), Ledoit-Wolf shrink-

age estimation (Ledoit and Wolf (2004)), the conventional sample covariance

approach and the equal weight approach in long-term portfolio management

with US stock return data. Though Torri et al. (2019)’s research was inno-
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vative, its scope of study was limited in case of p < n. Moreover, Torri et al.

(2019) only tested non-Bayesian graphical models and Bayesian models were

not included in comparison. Thus, we develop a data-driven portfolio frame-

work based on a Bayesian graphical LASSO model proposed in Chapter 2,

and try to construct the global minimum variance portfolio in case of p > n.

In the empirical study, we constructed the global minimum variance port-

folio of 100 assets for di↵erent sample lengths with the proposed Bayesian

approach, variations of non-Bayesian graphical LASSO (graphical LASSO

with both diagonal and o↵-diagonal elements shrinkage, graphical LASSO

with only o↵-diagonal elements shrinkage), random matrix theory filtering,

Ledoit-Wolf shrinkage estimation, the conventional sample covariance ap-

proach, and the equal weight approach as a benchmark, and compared their

out-of-sample performance in 10-year portfolio management from 2011 to

2020. We used monthly return data on 100 portfolios of US companies formed

on size and book-to-market ratios provided by Kenneth French and test five

scenarios: (p, n) = (100, 120), (100, 60), (100, 12), (100, 6) and (100, 3),

which were corresponding to the sample period of 10 years, 5 years, 1 year,

2 quarters, and 1 quarter respectively. Each portfolio was rebalanced once

every three months, and it was assumed that there were no short selling

restrictions and no trading fees assumed for the sake of simplicity. In this

experiment, we confirmed advantages of the proposed approach over the oth-

ers in terms of return-risk tradeo↵ and portfolio composition. Both Sharpe

ratios and indices of portfolio composition were relatively stable for the pro-

posed approach while they are either unstable for non-Bayesian graphical

LASSO approaches. Even in the most severe scenario where the precision

matrix of 100 assets must be estimated with only 3 observations, the pro-

posed approach was able to estimate the precision matrix and outperformed

the equal weight portfolio without taking abnormal values in regard to indices

of portfolio composition.

The second challenge is that the normality assumption of the traditional

Markowitz’s approach for asset returns is not necessarily satisfied for real-
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world data. Actually it is well-known that they tend to follow a fat-tailed,

possibly skewed distribution as Kon (1984), Mills (1995), Markowitz and Us-

men (1996), Peiró (1999) among others have pointed out. Thus, researchers

have proposed numerous distributions that can express these characteristics

of asset returns well. In particular, a so-called skew-t distribution is often

assumed for asset return since Hansen (1994) first used it for modeling fi-

nancial data. There are many types of skew-t distribution known in the

literature, but arguably the most famous one is generalized hyperbolic (GH)

skew-t distribution (Hansen (1994), Fernández and Steel (1998) and Aas and

Ha↵ (2006)) as a special case of the GH distribution originally proposed by

Barndor↵-Nielsen (1977). Especially, application of the GH distribution has

been recently advanced in the field of asset price volatility models. Although

the GH distribution is flexible enough to model a single asset on many occa-

sions, it has di�culty in capturing the skewness dependency among multiple

assets. Fund managers would find the skewness dependency useful in par-

ticular when the financial market crashes and almost all assets suddenly go

south since such sharp price co-movement may not be captured by the second

moment (i.e., correlation) only.

In Chapter 4, we examine a skew-elliptical distribution which is another

type of distribution that can express these characteristics of asset return to

circumvent the aforementioned shortcoming of the GH distribution. The

skew-elliptical distribution was proposed by Branco and Dey (2001) as a

generalization of the multivariate skew-normal distribution by Azzalini and

Valle (1996) and later improved by Sahu et al. (2003). Unlike the GH distri-

bution, it is straightforward to extend the skew-elliptical distribution to the

multivariate case. The multivariate skew-normal distribution has another

advantage: its Bayesian estimation can be conducted via pure Gibbs sam-

pling. For example, Sahu et al. (2003) proposed a Gibbs sampler for a linear

regression model in which the error term follows a skew-elliptical distribu-

tion without skewness dependency. Moreover, Harvey et al. (2010) improved

Sahu et al. (2003)’s method, and applied it to Bayesian estimation of the
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multivariate skew-normal distribution as well as portfolio optimization that

considers up to the third moment in the presence of skewness dependency.

Harvey et al. (2010)’s research is considered to be a model that is of great

interest to researchers because it is frequently cited in papers on portfolio

selection with the downward risk.

In our assessment, however, the Bayesian estimation method of the mul-

tivariate skew-elliptical distribution by Harvey et al. (2010) has an identifi-

cation issue about the skewness parameters due to so-called label switching.

Precisely speaking, a summation in each element of matrix multiplication of

the latent variable and the skewness matrix in Harvey et al. (2010)’s model

is invariant in terms of permutation, the likelihood of the model takes the

same value for any permutations of the columns in the skewness matrix. As

a result, it is likely that the columns of the skewness matrix are randomly

misaligned during the Gibbs sampler and their interpretability is lost. This

problem is well-known in the field of latent factor models.

To solve the issue, we propose a modified model in which the lower-

triangular constraint (e.g., Geweke and Zhou (1996), West (2003) and Lopes

and West (2004)) is imposed upon the skewness matrix. Moreover, we devise

an extended model with the horseshoe prior for both skewness matrix and

precision matrix to further improve the estimation accuracy. In the simula-

tion study, we compared the proposed models with the model of Harvey et al.

(2010) in three structural designs of the skewness matrix; Diag, Sparse, and

Dense. The results show that the proposed models with the identification

constraint significantly improved the estimation accuracy of the skewness

matrix.

In Chapter 5, as concluding remarks of this dissertation, we review key

points of the thesis and comment on a future development.
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Chapter 1

Introduction

This doctoral dissertation attempts to address two challenges in modeling

asset return data; (1) p > n problem in case of high-dimensional asset return

data (p: the number of assets, n: the number of data points) and (2) modeling

of a skewed and fat-tailed distribution in real-world data. To deal with these

challenges, we will discuss new statistical modeling techniques with Bayesian

Markov Chain Monte Carlo (MCMC) and their applications to real-world

data in this doctoral dissertation.

As for the p > n problem, the Bayesian graphical model may be a promis-

ing solution. However, a popular Bayesian MCMC estimation method for the

graphical model by Wang (2012) has a serious problem that the positive def-

initeness of the precision matrix in the model is not always assured in the

Gibbs sampler. This issue is not yet addressed in the literature and the

proposed solution (positive-definiteness-assured Gibbs sampler) is one of the

main contributions of this dissertation. In Chapter 2, we will show that the

proposed algorithm can significantly improve the estimation accuracy of the

precision matrix.

Furthermore, in Chapter 3, we propose a data-driven portfolio manage-

ment approach based on the proposed algorithm. In long-term portfolio

management experiments with real data of asset returns, we will show the

superiority of the proposed approach over non-Bayesian graphical models

1



2 CHAPTER 1. INTRODUCTION

and other dimension compression methods.

The summaries of Chapter 2 and 3 are given as follows.

• Chapter 2, ”A Positive-definiteness-assured Block Gibbs Sampler for

Bayesian Graphical Models with Shrinkage Priors”

This research focuses on the development of block Gibbs sampler for the

Bayesian graphical LASSO originally proposed by Wang (2012), which has

been widely applied and extended to various shrinkage priors in recent years.

Our contribution is that we discover that Wang (2012)’s algorithm has a

less noticeable but severe disadvantage that the positive definiteness of the

precision matrix in the Gaussian graphical model is not guaranteed in each

cycle of the Gibbs sampler. Specifically, if the dimension of the precision

matrix exceeds the sample size, the positive definiteness of the precision

matrix will be barely satisfied and the Gibbs sampler will almost surely fail.

In this research, we propose modifying the original block Gibbs sampler so

that the precision matrix never fails to be positive definite by sampling it

exactly from the domain of the positive definiteness. As we have shown

in the Monte Carlo experiments, this modification not only stabilizes the

sampling procedure but also significantly improves the performance of the

parameter estimation and graphical structure learning. We also apply our

proposed algorithm to a graphical model of the monthly return data in which

the number of stocks exceeds the sample period, demonstrating its stability

and scalability. This chapter is based on Oya and Nakatsuma (2022).

• Chapter 3, ”A Bayesian Graphical Approach for Large-Scale Portfolio

Management with Fewer Historical Data”

In the field of finance, managing a large-scale portfolio with many assets is

one of the most challenging tasks in the field of finance. It is partly because

estimation of either covariance or precision matrix of asset returns tends

to be unstable or even infeasible when the number of assets p exceeds the

number of observations n. For this reason, most of the previous studies on
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portfolio management have focused on the case of p < n. To deal with

the case of p > n, we propose to use a new Bayesian framework based

on adaptive graphical LASSO for estimating the precision matrix of asset

returns in a large-scale portfolio. Unlike the previous studies on graphical

LASSO in the literature, our approach utilizes a Bayesian estimation method

for the precision matrix proposed by Oya and Nakatsuma (2022) so that the

positive definiteness of the precision matrix should be always guaranteed. As

an empirical application, we construct the global minimum variance portfolio

of p = 100 for various values of n with the proposed approach as well as the

non-Bayesian graphical LASSO approach, and compare their out-of-sample

performance with the equal weight portfolio as the benchmark. We also

compare them with portfolios based on random matrix theory filtering and

Ledoit-Wolf shrinkage estimation which were used by Torri et al. (2019). In

this comparison, the proposed approach produces more stable results than

the non-Bayesian approach and the other comparative approaches in terms

of Sharpe ratio, portfolio composition and turnover even if n is much smaller

than p. This chapter is based on Oya (2022).

Regarding the second challenge, modeling of a skewed and fat-tailed dis-

tribution, we conducted research on the parameter estimation of a multi-

variate skew-elliptical distribution, which can flexibly capture the skewness

dependency among assets. In this research, we discovered an error in a

Bayesian parameter estimation model of a previous study and constructed a

revised one. In addition, we also proposed an extended model with a shrink-

age prior for the key parameters and showed that the proposed models could

improve the estimation accuracy of the skewness matrix and the precision

matrix in a simulation study. This research is presented in Chapter 4.

• Chapter 4, ”Identification in Bayesian Estimation of the skewness Ma-

trix in a Multivariate Skew-Elliptical Distribution”

This research focuses on the Bayesian estimation method for a multivariate

skew-elliptical distribution, one of asymmetric fat-tailed distributions. Har-

vey et al. (2010) extended the Bayesian estimation method by Sahu et al.
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(2003) to the multivariate skew-elliptical distribution with a general skew-

ness matrix, and applied it to Bayesian portfolio optimization with higher

moments. Although their method is epochal in the sense that it can han-

dle the skewness dependency among asset returns and incorporate higher

moments into portfolio optimization, it cannot identify all elements in the

skewness matrix due to label switching in the Gibbs sampler. To deal with

this identification issue, we propose to modify their sampling algorithm by

imposing a positive lower-triangular constraint on the skewness matrix of the

multivariate skew-elliptical distribution and improved interpretability. Fur-

thermore, we propose a Bayesian sparse estimation of the skewness matrix

with the horseshoe prior to further improve the accuracy. In the simula-

tion study, we demonstrate that the proposed method with the identification

constraint can successfully estimate the true structure of the skewness depen-

dency while the existing method su↵ers from the identification issue. This

chapter is based on Oya and Nakatsuma (2021).

Finally, we provide summary review of the thesis and remarks on a di-

rection of the future research in Chapter 5.



Chapter 2

A

Positive-Definiteness-Assured

Block Gibbs Sampler for

Bayesian Graphical Models

with Shrinkage Priors

2.1 Introduction

Suppose Y is an (n ⇥ p) data matrix of p variables and n observations

and the t-th row vector of Y , yt (1 5 t 5 n), follows a multivariate normal

distribution N (0,⌦�1), where ⌦ = (!ij), (1 5 i, j 5 p) is the inverse of the

covariance matrix, called the precision matrix. In the multivariate normal

distribution, !ij = 0 implies that yti and ytj are independent. Therefore, a

set of nonzero o↵-diagonal elements in ⌦ constitutes an undirected graphical

structure among (yt1, . . . , ytp) that is called the Gaussian graphical model.

We may estimate ⌦ by maximizing the log likelihood:

`(⌦) = �np

2
log 2⇡ +

n

2
log |⌦|� 1

2
tr (S⌦) , (2.1)

5



6 CHAPTER 2. POSITIVE-DEFINITENESS-ASSURED SAMPLER

where S = (sij) = Y |Y . In practice, however, a maximum likelihood es-

timator (MLE) with (2.1) does not produce estimates of o↵-diagonal !ij’s

that are exactly equal to zero. To obtain “zero estimates” of !ij’s, we may

employ a LASSO-type penalized MLE:

max
⌦2M+

n

2
log |⌦|� 1

2
tr (S⌦)� �k⌦k1, (2.2)

where k⌦k1 =
P

i5j |!ij| and M+ are the subsets of the parameter space of

⌦ in which ⌦ is a positive definite precision matrix. The solution of (2.2) is

called the graphical LASSO estimator, and there have been many research

studies on this model in recent years, including those by Meinshausen and

Bühlmann (2006), Yuan and Lin (2007), Banerjee et al. (2008), Friedman

et al. (2008), and Guo et al. (2011) among others.

Note that the penalty in (2.2) is equivalent to the logarithm of

p(!ij) =

8
<

:
�e��!ii , (i = j);

�
2e

��|!ij |, (i 6= j).
(2.3)

From the viewpoint of Bayesian statistics, as in Marlin et al. (2009) and

Marlin and Murphy (2009), the graphical LASSO estimator is a maximum

a posteriori estimator of ⌦ in which the prior distribution of each diagonal

element is exponential and that of each o↵-diagonal element is Laplace as in

(2.3). This is a natural extension of the original Bayesian LASSO by Park

and Casella (2008) who have extended the LASSO regression by Tibshirani

(1996) to a Bayesian counterpart.

Based on this interpretation, Wang (2012) and Khondker et al. (2013)

have independently proposed Markov chain sampling algorithms to generate

the precision matrix ⌦ from its posterior distribution. The di↵erence be-

tween Wang (2012) and Khondker et al. (2013) is described in Table 1. The

main di↵erence is that Wang (2012) has developed a Gibbs sampling algo-

rithm, while Khondker et al. (2013) have devised a random walk Metropolis-

Hastings algorithm. Considering an application of these algorithms to high-

dimensional data, Wang (2012)’s algorithm is relatively e�cient in that it
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does not su↵er from a low acceptance rate. Moreover, Wang (2012)’s al-

gorithm does not require parameter tuning while Khondker et al. (2013)’s

algorithm requires it. Thanks to this feature, Wang (2012)’s algorithm is

more scalable compared with Khondker et al. (2013)’s.

Due to these merits of Wang (2012)’s algorithm, it has become an indis-

pensable building block for recent applied research on the Bayesian analysis

of Gaussian graphical models. For example, as natural extensions of the

block Gibbs sampler, Wang (2015) has extended the original algorithm to

a graphical spike-and-slab model, while Li et al. (2019) have applied it to a

graphical horseshoe model.

Table 2.1: Di↵erence between the methods of the previous studies and ours

Khondker et al. (2013) Wang (2012) This Paper

Algorithm Random Walk Gibbs Gibbs

Metropolis-Hastings Sampler Sampler

Acceptance Rate low 1 1

Positive Definiteness of ⌦ Assured Insu�cient Assured

Parameter Tuning Required Not Required Not Required

Scalability 4 � �
Note: The better features are boldfaced.

Although Wang (2012)’s algorithm (block Gibbs sampler) and its variants

proposed in recent years are nice and elegant, we think that an important

point is overlooked in the literature. As shown in Table 2.1, these sampling

algorithms cannot su�ciently assure the positive definiteness of the precision

matrix ⌦ and ⌦ generated with them is not necessarily positive definite. To

explain the problem, let us briefly review the block Gibbs sampler, which

we will discuss in more detail in Chapter 2.2. Wang (2012)’s block Gibbs

sampler generates the i-th diagonal element !ii and the o↵-diagonal elements

in the i-th column (or row) alternatively in the following fashion.1

1Although we have simplified the steps here for a brief overview of the algorithm, there
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Block Gibbs sampler for the precision matrix◆ ⇣
For i = 1, . . . , p, repeat Step 1 to Step 3.

Step 1: Partition ⌦ into the i-th diagonal element !ii, the o↵-diagonal

elements (!1i, . . . ,!i�1,i, !i+1,i, . . . ,!pi), and the rest.

Step 2: Generate (!1i, . . . ,!i�1,i, !i+1,i, . . . ,!pi) from the full condi-

tional posterior distribution.

Step 3: Generate !ii from the full conditional posterior distribution.✓ ⌘
The violation of the positive definiteness of ⌦ occurs because the o↵-

diagonal elements of ⌦ are not generated from M+ in Step 2. To a varying

degree, this problem occurs regardless of whether the choice of the prior

distribution is LASSO (Wang [2012]), spike-and-slab prior (Wang [2015]),

or horseshoe prior (Li et al. [2019]); although, a strong shrinkage prior

may somehow o↵set the lack of positive definiteness. To demonstrate our

point, herein, we run Monte Carlo experiments similar to those conducted

by Wang (2012). We generate data sets with six di↵erent graph structures

(AR(1), AR(2), Block, Star, Circle, and Full) and two di↵erent dimensions

(p = 30, 100), and apply the block Gibbs sampler for the Bayesian adaptive

LASSO2 in which the shrinkage parameter � may di↵er from element to

element in ⌦. The number of iterations in the block Gibbs sampler is 10,000

for each experiment. Thus, if we count every ⌦ that is partially updated

from Step 1 to Step 3 as distinctive, we have 300,000 (p = 30) or 10,000,000

(p = 100) replications of⌦ in one experiment. The results of the Monte Carlo

experiments are summarized in Table 2.2. In the case of p = 30, violation

of the positive definiteness occurs in all designs. In particular, about one

quarter of the generated ⌦’s do not satisfy the positive definiteness in the

Circle design. In the case of p = 100, the violation of the positive definiteness

is less severe for some designs, but the ratio of violation is still high (20.51%)

are other steps for sampling the shrinkage parameters. Please see Chapter 2.2 for details.
2We have explained the Bayesian adaptive LASSO in Chapter 2.2. In our experience,

violation of the positive definiteness occurs whether it is adaptive or not.
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Table 2.2: The number of violations in the positive definiteness of ⌦

p AR(1) AR(2) Block Star Circle Full

30 7,644 561 12 27 77,768 14

(2.55) (0.19) (0.00) (0.01) (25.88) (0.00)

100 566 9 0 2,524 205,093 0

(0.06) (0.00) (0.00) (0.25) (20.51) (0.00)

Notes: (a) The number of generated ⌦’s is p⇥ 10, 000.

(b) The figures in parentheses are the % ratios.

in the Circle design.

To address this issue, we propose improving Wang (2012)’s block Gibbs

sampler so that the generated ⌦ will never fail to be positive definite. Al-

though it seems too intractable to guarantee the positive definiteness of ⌦ in

each cycle of the block Gibbs sampler, the hit-and-run algorithm by Bélisle

et al. (1993) is applicable to the Bayesian (adaptive) graphical LASSO in a

fairly straightforward manner, and the resultant algorithm is a pure Gibbs

sampler without the Metropolis-Hastings step. Therefore, our proposed al-

gorithm enjoys the same e�ciency as Wang (2012)’s but can prevent ⌦ from

violating the positive definiteness. In other words, our proposed algorithm

achieves the merits of both Khondker et al. (2013) and Wang (2012) as de-

scribed in Table 2.1.

The main body of this paper is organized as follows: In Chapter 2.2, we

briefly reviewWang (2012)’s block Gibbs sampling algorithm for the Bayesian

adaptive graphical LASSO, though Wang (2012) has also derived an algo-

rithm for the Bayesian graphical LASSO with the common shrinkage param-

eter. This is because the core part of the block Gibbs sampling algorithm

is almost identical in both prior settings. In Chapter 2.3, we discuss why

the positive definiteness of the precision matrix is violated in Wang (2012)’s

algorithm and derive a modified Gibbs sampling algorithm that guarantees
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positive definiteness. In Chapter 2.4, we compare our proposed algorithm

with Wang (2012)’s in several Monte Carlo experiments and report the re-

sults of the performance comparison. Finally, in Chapter 2.5, we state our

concluding remarks.

2.2 Review of Wang (2012)’s Algorithm

In this section, we briefly review a Gibbs sampling algorithm developed by

Wang (2012). Although, Wang (2012) derived it for the Bayesian graphical

LASSO with the prior distribution (2.3), we consider a more general prior

setting that allows � in (2.3) to vary for each element of precision matrix ⌦,

namely

p(!ij) =

8
<

:
�iie��ii!ii , (i = j);

�ij

2 e��ij |!ij |, (i 6= j),
(2.4)

which is called the adaptive graphical LASSO. Here, note that our expres-

sion is slightly di↵erent from Wang (2012)’s. Wang (2012) assumed that the

prior distribution of each diagonal element !ii is
�ii
2 exp

�
��ii

2 !ii

�
instead of

�ii exp (��ii!ii) because Wang (2012) employed k⌦k1 =
Pp

i=1

Pp
j=1 |!ij| as

the penalty, in which each o↵-diagonal element !ij (i 6= j) appears twice.

However, ours is k⌦k1 =
Pp

i=1

Pi
j=1 |!ij|, which includes the lower trian-

gular part of ⌦ only. Since Wang (2012) demonstrated that the Bayesian

adaptive LASSO outperforms its nonadaptive counterpart in terms of pa-

rameter estimation and graphical structure learning, we will illustrate the

Gibbs sampling algorithm for the adaptive LASSO in detail.

To derive the Gibbs sampling algorithm, Wang (2012) utilized the well-

known fact that the Laplace distribution in (2.4) is expressed as a scale

mixture of normal distributions with the exponential distribution:

!ij|⌧ij ⇠ N (0, ⌧ij), ⌧ij ⇠ Exp
✓
�2
ij

2

◆
. (2.5)

By using gamma distribution Ga(r, s) as the common prior for �ij (1 5
i 5 j 5 p), we obtain the joint posterior distribution of ! = {!ij}i5j,
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⌧ = {⌧ij}i<j and � = {�ij}i5j as

p(!, ⌧ ,�|Y ) / |⌦|n2 exp

�1

2
tr(S⌦)

� pY

i=1

�iie
��ii!ii

⇥
Y

i<j

1p
2⇡⌧ij

exp

✓
�

!2
ij

2⌧ij

◆
�2
ij

2
exp

✓
�
�2
ij

2
⌧ij

◆
1M+(⌦)

⇥
Y

i5j

�r�1
ij e�s�ij , (2.6)

where 1M+(⌦) is the indicator function that will be equal to 1 if ⌦ 2 M+;

otherwise, it is equal to 0. To construct a Gibbs sampler for the posterior dis-

tribution in (2.6), we need to derive all full conditional posterior distributions

for !, ⌧ , and �.

It is straightforward to show that the full conditional posterior distribu-

tion of 1/⌧ij (1 5 i < j 5 p) is the inverse Gaussian distribution:

1

⌧ij

����✓�⌧ij ,Y ⇠ IG
✓

�ij

|!ij|
,�2

ij

◆
, (2.7)

while that of �ij (1 5 i 5 j 5 p) is the gamma distribution:

�ij|✓��ij ,Y ⇠ Ga (r + 1, s+ |!ij|) , (2.8)

where ✓ represents the vector of all parameters and latent variables in the

model and expressions such as ✓�x indicate that a parameter x is excluded

from ✓. Note that ⌧ij is integrated out in (2.8).

To generate ! from the full conditional posterior distribution, Wang

(2012) proposed a Gibbs sampling algorithm that iteratively generates each

diagonal element and the corresponding o↵-diagonal elements of the precision

matrix ⌦ from their full conditional posterior distributions, i.e., the block

Gibbs sampler. The block Gibbs sampler is based on the following partition

of ⌦:

⌦ =

"
⌦11 !12

!|
12 !22

#
, (2.9)

where ⌦11 is a (p� 1⇥ p� 1) matrix, !12 is a (p� 1⇥ 1) vector, and !22 is a

scalar. Without a loss of generality we can rearrange the rows and columns
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of ⌦, so that the lower-right corner of ⌦, !22 is the diagonal element to be

generated from its full conditional posterior distribution. Likewise, we can

partition S, ⌥, and � as

S =

"
S11 s12

s|12 s22

#
, ⌥ =

"
⌥11 ⌧ 12

⌧ |
12 0

#
, � =

"
�12

�22

#
, (2.10)

where ⌥ is a (p⇥p) symmetric matrix in which the o↵-diagonal (i, j) element

is ⌧ij and all diagonal elements are equal to zero, while �22 is the element in

� that corresponds with the diagonal element !22 in the prior distribution

(2.4).

With the partition of ⌦ in (2.9) and S in (2.10), we have

tr (S⌦) = s22!22 + 2s|12!12 + tr (S11⌦11) ,

and

|⌦| =
��!22 � !|

12⌦
�1
11 !12

�� |⌦11| .

Then, the likelihood can be expressed as

p(Y |⌦) / |⌦|n2 exp

�1

2
tr(S⌦)

�

/
��!22 � !|

12⌦
�1
11 !12

��n2 |⌦11|
n
2

⇥ exp


�1

2
{s22!22 + 2s|12!12 + tr (S11⌦11)}

�
. (2.11)

Wang (2012) reparametrized (!22,!12) to (�,�), where

� = !22 � !|
12⌦

�1
11 !12, � = !12. (2.12)

Thus, the likelihood (2.11) can be expressed as follows:

p(Y |⌦) / �
n
2 exp


�1

2

�
s22� + s22�

|⌦�1
11 � + 2s|12� + tr(S11⌦11)

 �

/ �
n
2 exp


�1

2

n
s22� + s22�

|⌦�1
11 � + 2s22�

o�
. (2.13)



2.3. PROPOSED ALGORITHM 13

With the adaptive prior (2.4) and the flat prior p(�) / constant, Wang (2012)

proposed using

�|✓��,Y ⇠ N (�Cs12, C) , (2.14)

C =
�
(s22 + 2�22)⌦

�1
11 +D�1

⌧

 �1
, D⌧ = diag(⌧ 12),

�|✓�� ,Y ⇠ Ga
⇣n
2
+ 1,

s22
2

+ �22

⌘
(2.15)

as the full conditional posterior distribution of � and �.

In summary, Wang’s (2012) block Gibbs sampler is given as follows:3

Block Gibbs sampler for all parameters◆ ⇣
For i = 1, . . . , p, repeat Step 1 to Step 5.

Step 1: Rearrange ⌦, S, ⌥, and � so that !ii is in the place of !22 in ⌦

and partition them as in (2.9) and (2.10).

Step 2: If i = 2, �  N (�Cs12,C), and set !12 = �.

Step 3: �  Ga
�
n
2 + 1, s222 + �22

�
, and set !22 = � + !12⌦

�1
11 !12.

Step 4: �12  Ga (r + 1, s+ |!12|).

Step 5: �  IG
⇣

�12
|!12| ,�

2
12

⌘
, and set ⌧12 = 1/�.✓ ⌘

2.3 Proposed Algorithm

As we pointed out in the introduction, Wang (2012)’s block Gibbs sam-

pler does not necessarily guarantee the positive definiteness of the generated

⌦’s. Therefore, in this section, we propose an e�cient sampling method to

generate them under the positive definiteness constraint: ⌦ 2 M+.

First, let us derive the full conditional posterior distribution of �. Here,

we need to take care in choosing the prior distribution of (�, �). Given that

3In Wang’s (2012) study, Step 4 and Step 5 are calculated together outside the for

loop, but since there is no essential di↵erence, they are shown in the for loop here.



14 CHAPTER 2. POSITIVE-DEFINITENESS-ASSURED SAMPLER

⌦ from the previous iteration of the block Gibbs sampler is positive definite,

the newly generated !22 and !12 must satisfy

!22 > !|
12⌦

�1
11 !12 (2.16)

to ensure that the updated ⌦ is also positive definite. This condition (2.16)

requires

� = !22 � �|⌦�1
11 � > 0.

as the prior distribution of �. In other words, the conditional prior distribu-

tion of � given � and ⌦11 must be

p(�|�,⌦11) / �22 exp (��22�)1M+
�
(�), (2.17)

where M+
� = {� : � > 0}. Therefore, by ignoring the parts that do not

depend on � in (2.11), we obtain

p(�|✓�� ,Y )

/ |�|
n
2 exp

⇣
�s22

2
�
⌘
⇥ exp (��22�)1M+

�
(�)

/ |�|
n
2 exp


�s22 + 2�22

2
(�)

�
1M+

�
(�). (2.18)

The full conditional posterior distribution of � in (2.18) is the gamma distri-

bution:

�|✓�� ,Y ⇠ Ga
⇣n
2
+ 1,

s22
2

+ �22

⌘
(2.19)

Obviously, the distribution of � in (2.19) is equivalent to that in (2.15).

Thus, (2.19) and (2.15) are basically identical to each other, and � generated

from either (2.19) or (2.15) always satisfies the positive definiteness condi-

tion (2.16) because random variables generated from the gamma distribution

always have positive values.

Next, let us derive the full conditional posterior distribution of �. For

the same reason as in (2.17), the conditional prior distribution of � must be

the following truncated multivariate normal distribution:

p(�|�,⌦11) / exp

✓
�1

2
�|D�1

⌧ �

◆
1M+

�
(�), (2.20)
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where M+
� = {� : !22 > �|⌦�1

11 �}. As a result, the full conditional posterior

distribution of � is also a truncated multivariate normal distribution:

�|✓��,Y ⇠ N (�Cs12, C)1M+
�
(�). (2.21)

However, Wang (2012) proposed using the unconstrained multivariate nor-

mal distribution (2.14), which does not impose the truncation 1M+
�
(�), to

generate �. Consequently, if we generate � from (2.14), there is no guarantee

that the newly updated !12 will satisfy the positive definiteness condition

(2.16). This is why generated ⌦’s are not always positive definite, as shown

in Table 2. Therefore, to ensure the positive definiteness of ⌦, it is prefer-

able to use the truncated multivariate normal distribution (2.21) in the block

Gibbs sampler.

Since both the naive rejection method and Metropolis-Hastings algorithm

are ine�cient, even for a modest-size graphical model, we can apply the hit-

and-run algorithm (Bélisle et al. (1993)) to generate � from the truncated

multivariate normal distribution (2.19).

Hit-and-run algorithm◆ ⇣
Step 1: Pick a point ↵ on the unit sphere randomly as ↵ = z

kzk , z ⇠
N (0, I).

Step 2: Generate a random scalar  from the distribution with the den-

sity

f() / p(� + ↵)1M+
�
(� + ↵), (2.22)

where p(·) is the density of N (�Cs12,C) in (2.21).

Step 3: Set � + ↵ as the new �.✓ ⌘
It is straightforward to show that the distribution of  in (2.22) is

 ⇠ N
�
µ, �

2


�
1M+

�
(� + ↵), (2.23)

where

µ = �s|12↵+ �|C�1↵

↵|C�1↵
, �2

 =
1

↵|C�1↵
.
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The indicator function 1M+
�
(� + ↵) is equal to 1 if and only if

(� + ↵)|⌦�1
11 (� + ↵)� (� + �|⌦�1

11 �) < 0.

This means that  must satisfy

�
↵|⌦�1

11 ↵
�

| {z }
a

2 + 2
�
�|⌦�1

11 ↵
�

| {z }
b

+ (��)| {z }
c

< 0.

Note that a > 0, c < 0 as long as the current ⌦ is positive definite, which

implies that the quadratic equation a2 + 2b + c = 0 has two distinctive

real roots. Therefore, the distribution in (2.23) is the truncated univariate

normal distribution on the interval:

R+ =

⇢
 :

�b�
p
b2 � ac

a
<  <

�b+
p
b2 � ac

a

�
.

Thus, using the hit-and-run algorithm, sampling from the seemingly in-

tractable distribution (2.19) is reduced to sampling from the truncated uni-

variate normal distribution:

 ⇠ N
�
µ, �

2


�
1R+(),

and the sampling procedure becomes much simpler.

By replacing (2.15) in Step 2 with (2.19) and (2.14) in Step 3 with

the hit-and-run algorithm, we obtain the modified block Gibbs sampler as

follows:
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Modified block Gibbs sampler◆ ⇣
For i = 1, . . . , p, repeat Step 1 to Step 5.

Step 1: Rearrange ⌦, S, ⌥, and � so that !ii is in the place of !22 in ⌦

and partition them as in (2.9) and (2.10).

Step 2: If i = 2,

(a) z  N (0, I), and set ↵ = z
kzk .

(b)   N (µ, �2
)1R+(), and update the old � with � + ↵.

Then, set !12 = �.

Step 3: �  Ga
�
n
2 + 1, s222 + �22

�
and set !22 = � + !12⌦

�1
11 !12.

Step 4: �12  Ga (r + 1, s+ |!12|).

Step 5: �  IG
⇣

�12
|!12| ,�

2
12

⌘
, and set ⌧12 = 1/�.✓ ⌘

Since Wang (2012)’s algorithm and our proposed algorithm are Gibbs

sampler, there should be no problem in calculating the posterior distribution

even if the order of the steps is changed. In fact, Wang (2012) sampled Step

4 and Step 5 first in the code disclosed before. However, we confirmed that

Wang’s code disclosed before does not work if we swap Step 2 and Step 3.

This implies that Wang (2012)’s algorithm cannot sample from the correct

posterior distribution. In contrast, we confirmed that our algorithm proposed

in Chapter 2.3 works even if we exchange Step 2 and Step 3.

2.4 Performance Comparison

2.4.1 Simulation Study

In this section, we report the results of the Monte Carlo experiments

to compare our modified block Gibbs sampler with Wang (2012)’s original

algorithm in terms of accuracy in the parameter estimation and graphical
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structure learning. For brevity, we shall refer to Wang (2012)’s original al-

gorithm as the BGS (block Gibbs sampler) and our modified version as the

HRS (hit-and-run sampler). Following Wang (2012), we examined the follow-

ing six di↵erent specifications of the Gaussian graphical model in the Monte

Carlo experiments:

(a) AR(1): �ij = 0.7|i�j|.

(b) AR(2): !ii = 1.0, !i,i�1 = !i�1,i = 0.5, and !i,i�2 = !i�2,i = 0.25.

(c) Block: �ii = 1, �ij = 0.5 for 1  i 6= j  p/2 , �ij = 0.5 for p/2 + 1 
i 6= j  10, and �ij = 0.0 otherwise.

(d) Star: !ii = 1.0, !1,i = !i,1 = 0.1, and !ij = 0.0 otherwise.

(e) Circle: !ii = 2.0, !i�1,i = !i,i�1 = 1.0, !1p = !p1 = 0.9.

(f) Full: !ii = 2.0, !ij = 1.0 for i 6= j.

Here, �ij (1 5 i, j 5 p) is the (i, j) element of the covariance matrix ⌦�1 in

the Gaussian graphical model.

The other settings for the Monte Carlo experiments also mirrored Wang

(2012)’s. For each model, we generated a sample of (p ⇥ 1) random vectors

y1, . . . ,yn independently from N (0,⌦�1). We considered two cases: (n, p) =

(50, 30) and (n, p) = (200, 100). Thus, we tried 12 (= 6 ⇥ 2) scenarios in

the experiments. The hyperparameters in the prior distribution of �ij were

r = 10�2 and s = 10�6. For both the BGS and HRS, the number of burn-

in iterations were 5,000, and the Monte Carlo sample from the following

10,000 iterations was used in the Bayesian inference.4 We repeated each

simulation scenario 100 times and obtained a set of point estimates of ⌦.

All computations were implemented on a workstation with 64 GB RAM

and a six-core 3.4 GHz Intel Xeon processor using Python 3.6.1. For the

4The same simulation design (specifications of ⌦, combinations of (n, p), hyperparam-

eters, burn-in iterations, and the size of the Monte Carlo sample) was used in producing

the results in Table 2.2.
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BGS, we rewrote Wang’s disclosed MATLAB code ”BayesGLassoGDP.m”

into Python and used it. Although not mentioned in Wang (2012)’s study,

there is a part that arbitrarily cuts a range of random number generations

of �12 and ⌧12 in Wang’s disclosed code. We took over this adjustment in

our rewritten Python code because the BGS calculation resulted in an error

if we excluded the adjustment. The HRS required additional computations

because it explicitly imposed the positive definite constraint ⌦ 2 M+, but

we observed only a modest di↵erence in computation time between the HRS

and BGS.

To compare the HRS with the BGS in terms of accuracy in the point

estimation of the precision matrix ⌦, we computed two sample loss func-

tions, Stein’s loss and the Frobenius norm, as measurements of discrepancy

between the point estimate and the true ⌦. Table 2.3 shows the sample me-

dian loss (Stein’s loss in the upper half, and the Frobenius norm in the lower

half) of 100 replications in 12 scenarios for the BGS and HRS. The figures

in parentheses are the standard errors. The loss was unanimously and sub-

stantially smaller in the HRS than in the BGS. This observation was valid

not only for the Circle model, in which the positive definiteness of ⌦ was

most frequently violated as shown in Table 2.2, but also for the other models

with di↵erent graphical structures. Interestingly, the HRS outperformed the

BGS even for the Full model in which ⌦ was not sparse and the estimation

loss of the graphical LASSO was expected to be much worse. Furthermore,

this tendency was unchanged in either the small (p = 30) or large (p = 100)

model. All in all, the results in Table 2.3 suggest that imposing the posi-

tive definiteness constraint remarkably improved the accuracy in the point

estimation of ⌦ in the Bayesian adaptive graphical LASSO.

To assess the performance of the graphical structure learning, we checked

whether the point estimate of ⌦ could successfully restore the true structure

from the simulated data. Recall that there was no connection between nodes,

e.g., node i and node j (1 5 i, j 5 p), if !ij = 0. Like Fan et al. (2009), we

used the following rule to determine whether a pair of nodes was connected
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Table 2.3: Sample median loss in the point estimation of ⌦

AR(1) AR(2) Block Star Circle Full

Stein’s loss

p = 30

BGS 1.78 4.28 1.36 1.52 1.73 19.15

(0.33) (0.43) (0.27) (0.24) (0.30) (0.82)

HRS 0.61 0.76 0.66 0.86 0.54 13.71

(0.18) (0.18) (0.18) (0.18) (0.15) (0.55)

p = 100

BGS 3.01 4.17 2.75 3.79 3.09 70.06

(0.15) (0.23) (0.18) (0.23) (0.16) (0.93)

HRS 0.50 0.56 0.53 0.90 0.47 41.98

(0.08) (0.07) (0.07) (0.10) (0.06) (0.66)

Frobenius norm

p = 30

BGS 4.05 2.99 2.19 2.21 2.51 29.60

(0.53) (0.17) (0.36) (0.29) (0.43) (0.06)

HRS 1.48 0.79 1.24 1.34 0.38 19.85

(0.27) (0.14) (0.23) (0.20) (0.07) (0.53)

p = 100

BGS 4.35 2.33 2.89 3.22 2.62 99.62

(0.26) (0.11) (0.12) (0.13) (0.19) (0.02)

HRS 1.27 0.62 1.04 1.04 0.24 47.78

(0.11) (0.04) (0.07) (0.08) (0.03) (0.44)

Notes: (a) The smaller losses are boldfaced.

(b) The figures in parentheses are the standard errors.
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Table 2.4: Accuracy in graphical structure learning

AR(1) AR(2) Block Star Circle

Specificity

p = 30

BGS 5.97 10.39 7.09 7.17 12.79

HRS 73.28 70.09 78.83 79.45 84.52

p = 100

BGS 10.46 20.45 12.92 12.24 28.47

HRS 93.35 92.89 94.23 95.66 98.44

Sensitivity

p = 30

BGS 100.00 99.32 100.00 96.27 100.00

HRS 100.00 100.00 100.00 91.23 100.00

p = 100

BGS 100.00 100.00 100.00 100.00 100.00

HRS 100.00 100.00 100.00 100.00 100.00

MCC

p = 30

BGS 7.82 12.53 5.19 4.00 11.99

HRS 46.92 52.94 35.39 49.19 61.14

p = 100

BGS 5.89 11.20 3.89 6.43 10.86

HRS 55.58 63.60 39.32 66.22 82.42

Notes: (a) The better results are boldfaced.

(b) The figures are in percentages.
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or not:

8
<

:
|!̂ij| = 10�3 (node i and node j are connected);

|!̂ij| < 10�3 (node i and node j are not connected),
(2.24)

where !̂ij is the point estimate of !ij computed with the Monte Carlo sam-

ple of ⌦ that we generated for each scenario with the HRS or BGS. Then,

with the estimated graphical structures (100 in total), the accuracy in the

graphical structure learning was measured with three criteria: specificity,

sensitivity, and the Matthews correlation coe�cient (MCC), namely

Specificity =
TN

TN + FP
, Sensitivity =

TP

TP + FN
,

MCC =
TP⇥ TN� FP⇥ FNp

(TP + FP)(TP + FN)(TN + FN)(TN + FN)
, (2.25)

where TP, TN, FP, and FN are the number of true positives, true negatives,

false positives, and false negatives, respectively, in the 100 replications.

Table 2.4 reports the calculated criteria for the 12 scenarios. As in Table

2.4, the HRS outperformed the BGS for all scenarios, except for the sensi-

tivity of the Star model with p = 30, though the sensitivity of the HRS was

still over 90%. Specifically, in the case of p = 100, the values of specificity

were over 90% for the HRS, which means that most of the zero o↵-diagonal

elements in ⌦ were correctly identified. This accuracy is crucial when trying

to detect the true graphical structure in practice. It seems that imposing the

positive definiteness constraint also enhanced the graphical structure learning

in the Bayesian adaptive graphical LASSO.

In addition, in order to make the estimation results visually easy to un-

derstand, the posterior mean ⌦ of each scenario in the 50th replication are

shown in Figures 2.1 – 2.6. In each figure, left-half shows p = 30 case and

right-half shows p = 100 case. From Figures 2.1 – 2.6, HRS adequately de-

scribes the structure of the true ⌦, while BGS has a slightly broken structure.

As for BGS, non-zero o↵-diagonal elements that are not in the true structure

can be seen. Also, in the scenario of Full structure shown in Figure 2.6,
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the o↵-diagonal elements of ⌦ estimated by BGS shrinks to 0 while the true

values are 1. This also implies that the estimation of BGS is not working

well.

Finally, let us explain about a reason why the results of the BGS in Table

2.4 are far di↵erent from those in Wang (2012)’s Table 2 and BGS’s perfor-

mance is significantly lower than HRS. We assumed that this discrepancy was

caused by the di↵erence in the criteria for detecting connections. p882, Wang

(2012) stated that “we claim {!ij = 0} if !̂ij < 10�3 as Fan et al. (2009),”

which means that a negative !̂ij, whether near or far from 0, is regarded as

evidence against a connection between nodes. As a result, negative relations

between nodes would be over-rejected and the estimated graphical structure

would be too sparse in the sense that the precision matrix would include too

many zeros in the o↵-diagonal elements. To confirm this conjecture, we recal-

culated the three criteria in (2.25) without the absolute value in (2.24) and

found that the recalculated results were comparably similar to those of Wang

(2012). In a disclosed Python code of this paper, the three criteria with the

absolute value and without the absolute value are implemented for reference.

See https://github.com/oyakeioecon/onglasso for more details.

2.4.2 Application to S&P500 Stock Return Data

Next, we applied the BGS and HRS to stock return data and estimated

⌦. We used the standardized monthly excess return data against the S&P

500 stock index for 483 stocks continuously listed from the end of December

2013 to the end of January 2018 of 505 constituents of the S&P 500 as of

February 2018 (n = 50, p = 483). The settings were the same as those for

the simulation data.

Although violation of the positive definiteness after updating the o↵-

diagonal elements reached 808,009 times (16.73%) in the BGS, it never oc-

curred in the HRS. Figures 2.7 and 2.8 show the posterior mean of ⌦ by

the BGS and HRS. Here, to make it easier to compare the BGS and HRS,

we adjusted the scale of ⌦ so that the diagonal elements were one. The ⌦
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(a) True (p = 30) (b) True (p = 100)

(c) BGS (p = 30) (d) BGS (p = 100)

(e) HRS (p = 30) (f) HRS (p = 100)

Figure 2.1: AR(1) : True Structure and estimated ⌃ = ⌦�1
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(a) True (p = 30) (b) True (p = 100)

(c) BGS (p = 30) (d) BGS (p = 100)

(e) HRS (p = 100) (f) HRS (p = 100)

Figure 2.2: AR(2): True Structure and estimated ⌦
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(a) True (p = 30) (b) True (p = 100)

(c) BGS (p = 30) (d) BGS (p = 100)

(e) HRS (p = 30) (f) HRS (p = 100)

Figure 2.3: Block: True Structure and estimated ⌃ = ⌦�1
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(a) True (p = 30) (b) True (p = 100)

(c) BGS (p = 30) (d) BGS (p = 100)

(e) HRS (p = 100) (f) HRS (p = 100)

Figure 2.4: Star: True Structure and estimated ⌦
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(a) True (p = 30) (b) True (p = 100)

(c) BGS (p = 30) (d) BGS (p = 100)

(e) HRS (p = 100) (f) HRS (p = 100)

Figure 2.5: Circle: True Structure and estimated ⌦
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(a) True (p = 30) (b) True (p = 100)

(c) BGS (p = 30) (d) BGS (p = 100)

(e) HRS (p = 100) (f) HRS (p = 100)

Figure 2.6: Full: True Structure and estimated ⌦
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estimated by the BGS in Figure 2.7 had many nonzero values remaining in

the o↵-diagonal elements, while the o↵-diagonal elements of ⌦ estimated by

the HRS in Figure 2.8 shrunk.

2.5 Conclusion

In Chapter 2, we proposed a modification of Wang (2012)’s block Gibbs

sampling algorithm for the Bayesian graphical LASSO that we used as the

primary example. Our modified algorithm guarantees the positive definite-

ness of the precision matrix throughout the sampling procedure by generating

the o↵-diagonal elements of the precision matrix from a truncated multivari-

ate normal distribution whose support is the region wherein the updated

precision matrix remains positive definite. To facilitate sampling from such

a complicated distribution, we proposed utilizing the hit-and-run algorithm

by Bélisle et al. (1993). The derived algorithm is still a pure Gibbs sam-

pler and maintains the e�ciency and scalability of Wang (2012)’s original

algorithm. In the simulation study, we showed that our modified algorithm

remarkably improved the accuracy in the point estimation and graphical

structure learning. We also demonstrated that our modified algorithm could

estimate the precision matrix even when the dimension of the precision ma-

trix exceeds the sample size by applying it to the monthly return data of 483

stocks over 50 months. Since the key part of the Gibbs sampling algorithm in

which the precision matrix is updated is common to other graphical models

with shrinkage priors, such as the spike-and-slab prior (Wang [2015]), the

horseshoe prior (Li et al. [2019]), and other scale-mixture-of-normals shrink-

age priors, it would be simple to incorporate our modified algorithm into the

Gibbs sampling algorithm for those models.
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Figure 2.7: Posterior mean of ⌦ by the

BGS

Figure 2.8: Posterior mean of ⌦ by the

HRS
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Chapter 3

A Bayesian Graphical

Approach for Large-Scale

Portfolio Management with

Fewer Historical Data

3.1 Introduction

Since Markowitz (1952) proposed the mean-variance model for optimal

portfolio selection, it has remained an important foundation in research of

portfolio theory as well as in practice of portfolio management. For exam-

ple, many of robot advisor services developed in the recent fintech boom

are basically based on the mean-variance model or its variants such as the

Black-Litterman approach (Black and Litterman (1991, 1992)). Although

numerous solutions have been proposed for various problems in the mean-

variance model over its long history, one of the most challenging tasks is how

to construct the optimal portfolio when the number of assets p exceeds the

number of observations of asset returns n. This issue is often referred to as

the p > n problem in the literature.

Let us restate this problem in the context of optimal portfolio selection.

33
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For the sake of simplicity, we consider the variance minimization problem

without setting the target level of the expected return of the portfolio, i.e.,

min
w

w|⌃w

s.t. ◆|w = 1,
(3.1)

where

w =

2

664

w1

...

wp

3

775 , ⌃ =

2

664

�2
1 . . . �1p

...
. . .

...

�p1 . . . �2
p

3

775 , ◆ =

2

664

1
...

1

3

775 .

w is a p⇥ 1 vector of allocation weights and ⌃ is a p⇥ p covariance matrix

of asset returns. ◆ is a p ⇥ 1 vector whose elements are all equal to one. In

this setup, the solution of (3.1) is given by

wGMV =
1

◆|⌃�1◆
⌃�1◆, (3.2)

where wGMV is called the global minimum variance portfolio.

Note that wGMV depends on ⌃�1, the inverse matrix of the covariance

matrix ⌃ or the precision matrix. For later use, we define ⌦ = ⌃�1. Since

the precision matrix ⌦ is unknown in practice, we need to estimate it with

asset return data before we apply the formula in (3.2). The simplest estima-

tion method for ⌦ is to replace each element of ⌃ with its sample analog,

which is called the sample covariance matrix, and then compute the inverse

of the sample covariance matrix to obtain an estimate of ⌦. In principle,

however, we cannot compute the inverse of the sample covariance matrix

when the number of assets p is larger than the number of asset return ob-

servations n. Moreover, even if p is smaller than n, it is well known that

computation of the inverse of the sample covariance matrix tends to be un-

stable as p approaches n. Therefore, in order to replace ⌃ in (3.2) with the

sample covariance matrix, we need to prepare a su�ciently larger number of

asset return observations than the number of assets in the portfolio.

This requirement would be a great hindrance in practice. For example,

when we want to manage 500 assets in a fund, we need more than two years’
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worth of data in case of daily returns and more than 42 years’ worth of data

in case of monthly returns. The latter is rather impractical, of course.

Let us point out another situation related to the p > n problem. Suppose

a large-scale IPO is made due to a privatization of a state-owned enterprise

or a large-cap firm merges with another one and relists itself. For those

stocks with large market-cap, available historical data after IPO or merger is

too few. Thus it is di�cult to evaluate the risk of a portfolio which includes

those stocks because of the p > n problem.

Besides the problem of data availability, using long historical asset return

data may cause another problem. Suppose we observe large market turmoil

in the past few days. Although it is preferable to incorporate this recent

shock into the estimation of the precision matrix, influence of older obser-

vations well before the shock is still so dominating in long historical data

that we could underestimate the risk of the new shock and it might result in

under-performance. To avoid this issue, we may cut out most of the older

observations. But then again we are faced with the p > n problem due to a

shorten sample period.

In the literature, many researchers have tackled the p > n problem in dif-

ferent contexts and proposed many possible solutions. Among them, one of

the most widely explored methods is dimension compression. In particular,

factor models are quite popular as tools for dimension compression in the

field of finance. A typical factor model assumes that the variation in asset

returns is mostly explained by a set of common factors and the residuals are

independent of each other as well as the common factors. In this way, the

covariance matrix of asset returns ⌃ is decomposed into two matrices: the

covariance matrix induced by the common factors and the diagonal covari-

ance matrix of the residuals. It is well known that ⌃ in a factor model will

be non-singular as long as the common factors are linearly independent. In

a typical factor model, the number of the common factors, say k, is much

smaller than the number of observations n. For most cases, this property

itself is su�cient to guarantee the linear independence among the common
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factors and the existence of the precision matrix⌦. Furthermore, since k < p,

the dimension of the parameter space is largely reduced. So it is regarded as

a type of dimension compression method. There are many variants of factor

models including dynamic ones, but arguably the most famous one is the

three-factor model proposed by Fama and French (1993).

As the factor model gains popularity in both academia and business, the

number of potential candidates for common factors has been exploding. Ac-

cording to Harvey et al. (2016), it reaches 316 and counting. Thus it is

necessary to select appropriate factors among a huge set of candidates in

practice. Here again, we can utilize dimension compression for this pur-

pose. In the context of linear regression with many explanatory variables,

the penalized regression method is widely used for simultaneously select-

ing appropriate variables and estimating the corresponding coe�cients as a

convenient way to apply dimension compression. It includes least absolute

shrinkage and selection operator or LASSO (Tibshirani (1996)), elastic net

(Zou and Hastie (2005)), adaptive LASSO (Zou (2006)), Bayesian LASSO

(Park and Casella (2008)), horseshoe prior (Carvalho et al. (2009, 2010a)),

Bayesian adaptive LASSO (Alhamzawi et al. (2012), Leng et al. (2014)),

generalized double Pareto (Armagan et al. (2013)) among others. In relation

to the p > n problem, Guhaniyogi and Dunson (2015) proposed a new ap-

proach called “Bayesian compressed regression” which randomly compresses

a scaled predictor vector prior to analysis. Guhaniyogi and Dunson (2015)

tested a case of p = 25, 000 and n = 110 in simulation, though it has not yet

been applied to asset management as far as we know. For the application

of BCR to finance field, Koop et al. (2019) extended BCR to a multivariate

VAR model and applied it to macroeconomic variable prediction, and Luo

and Chen (2020) applied BCR to a realized volatility model.

Another popular approach1 is to use a Gaussian graphical model2 for di-

1In addition to these two major approaches we mention here, alternative approaches

such as Ledoit and Wolf (2004), Laloux et al. (1999) among others are known in the

literature.
2Although we separately explain the factor model and the Gaussian graphical model
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rect estimation of the precision matrix ⌦. The Gaussian graphical model

take advantage of the fact that all elements in ⌦ can be treated as unknown

parameters in the likelihood function if asset returns are supposed to jointly

follow a p-dimensional multivariate normal distribution with the zero mean

vector and the covariance matrix ⌃. The term “graphical” comes from a

property of the multivariate normal distribution that any pair of normal ran-

dom variables are independent if and only if the corresponding o↵-diagonal

element in ⌦ is zero. Therefore ⌦ gives a network of dependence among the

random variables where non-zero o↵-diagonal elements are regarded as links

connecting random variables (nodes in the context of graphical modeling)

and any zero o↵-diagonal element indicates no link between two nodes.

Since the number of elements in ⌦ is p(p + 1)/2, the number of param-

eters to be estimated will be considerably high for a large-scale graphical

model. Therefore it is important to force weak and unessential links to be

zero so that the estimated structure of network would become more sparse

and interpretable. To penalize inclusion of such redundant links in the model,

aforementioned LASSO proposed by Tibshirani (1996) has been applied to

the Gaussian graphical model by Meinshausen and Bühlmann (2006), Fried-

man et al. (2008), Yuan and Lin (2007), Banerjee et al. (2008), Guo et al.

(2011) among others. This type of LASSO is called graphical LASSO or

glasso. Alternatively, Finegold and Drton (2011) proposed tlasso which used

the multivariate Student’s t distribution in place of the multivariate normal

distribution in the likelihood function.

In this chapter, to deal with the p > n problem in large-scale portfolio

management, we pursue the second approach and propose to utilize graphical

LASSO to cull unnecessary dependence among assets in ⌦ so that the global

minimum variance portfolio (3.2) should be stabilized even in case of p > n.

The Gaussian graphical model was already applied to portfolio optimization

by Goto and Xu (2015), Brownlees et al. (2018), Torri et al. (2019) among

in this introduction, distinction between them is rather arbitrary. In practice, we can

combine both approaches together as we do in Chapter 3.3.
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others. Especially, Torri et al. (2019) examined performance of the global

minimum variance portfolio (3.2) constructed by both glasso and tlasso in

long-term asset management3, though Torri et al. (2019) limited the scope

of their study in case of p < n. Instead, we try to construct (3.2) in case of

p > n and push the envelope of graphical LASSO. As far as we know, ours

is the first attempt to estimate ⌦ in case of p > n and use it in performance

comparison of long-term asset management.

For this purpose, we develop a data-driven portfolio framework based on a

Bayesian version of graphical LASSO. From the Bayesian perspective, graph-

ical LASSO is regarded as a maximum a posteriori (MAP) estimator with

the Laplace prior for each element in ⌦. Therefore it is natural for Bayesian

statisticians to extend graphical LASSO by introducing a hierarchical struc-

ture among priors such as adaptive graphical LASSO (Wang (2012)) and co-

variance LASSO (Khondker et al. (2013)), or replacing the Laplace prior with

alternative shrinkage priors such as the spike-and-slab prior (Wang (2015))

and the horseshoe prior (Li et al. (2019)). These aforementioned previous

studies on Bayesian graphical LASSO except for Khondker et al. (2013) re-

lies on the block Gibbs sampler proposed by Wang (2012) which is used to

generate a pseudo-random sample of ⌦ for Monte Carlo integration. Wang

(2012)’s algorithm is a pure-and-simple Gibbs sampler and easy to imple-

ment, but Oya and Nakatsuma (2022) pointed out that it could not exactly

guarantee the positive-definiteness of generated ⌦. Instead they developed

a positive-definiteness-assured block Gibbs sampler for Bayesian adaptive

graphical LASSO. We apply their algorithm to estimate ⌦ and construct the

optimal portfolio.

As Torri et al. (2019) mentioned, the previous studies (e.g., DeMiguel

et al. (2009) and Fan et al. (2012)) suggested that the expected return of

any asset could not be reliably estimated. Thus we will focus on the global

3Torri et al. (2019) also constructed portfolios based on random matrix theory filtering

(Bouchaud and Potters (2009)) and Ledoit-Wolf shrinkage estimation (Ledoit and Wolf

(2004)) as comparative approaches. We also test these approaches in Chapter 3.3.
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minimum variance portfolio (3.2) which does not require any estimate of

the expected return. In performance comparison, we construct the global

minimum variance portfolio of 100 assets for di↵erent sample lengths with

our new approach or commonly-used non-Bayesian graphical LASSO, and

compare their out-of-sample performance in long-term asset management.

The main body of this chapter is organized as follows. In Chapter 3.2, we

briefly review the basic idea of graphical LASSO as well as its Bayesian in-

terpretation, and explain the Markov chain sampling algorithm for Bayesian

adaptive graphical LASSO by Oya and Nakatsuma (2022). In Chapter 3.3,

we report the results of experiments on long-term portfolio management with

asset return data of 100 assets. Lastly, we state our concluding remarks in

Chapter 3.4.

3.2 Bayesian Adaptive Graphical LASSO

In this section, we introduce the basic framework of graphical LASSO and

outline the Bayesian graphical LASSO approach based on Oya and Nakat-

suma (2022) which we employ for portfolio management with many assets.

Suppose Y is a n ⇥ p matrix of asset return data with p assets and

n observations and each row vector of Y follows the multivariate normal

distribution N (0,⌦�1) where ⌦ = (!ij), (1 5 i, j 5 p) is the precision

matrix. Then graphical LASSO is formulated as the following penalized

maximum likelihood estimation:

max
⌦2M+

n

2
log |⌦|� 1

2
tr (S⌦)� �k⌦k1, (3.3)

where k⌦k1 =
P

i5j |!ij|4 and M+ are subsets of the parameter space of ⌦ in

which ⌦ is positive definite. S is defined as S = Y |Y and called the scatter

4We introduce a general version of non-Bayesian graphical LASSO which shrinks all

the elements of ⌦ here, but there is another type of non-Bayesian graphical LASSO which

shrinks only the o↵-diagonal elements with k⌦k1 =
P

i<j |!ij |. Because the Bayesian

graphical LASSO does not shrink the diagonal elements, we also report results for the

latter type of non-Bayes graphical LASSO in Chapter 3.3 for comparison.
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matrix. The first two term of the objective function in (3.3) is corresponding

to the log likelihood function of the multivariate normal distribution. The

last term in (3.3) is the penalty for complexity of the graph structure and �,

which is called the shrinkage parameter, dictates the magnitude of penalty

for adding an extra link to the graph structure.

As Park and Casella (2008) pointed out, the penalty in (3.3) is equivalent

to the log density of a Laplace distribution:

p(!ij) =
�

2
e��|!ij |, (1 5 i 5 j 5 p). (3.4)

Note that �/2 can be ignored because it does not a↵ect the solution of (3.3).

With this interpretation, the graphical LASSO (3.3) is regarded as a maxi-

mum a posteriori (MAP) estimator. Pushing further to this line of thinking,

we can conduct a fully Bayesian analysis of the Gaussian graphical model.

In a general Bayesian framework, we first assume the probability distri-

bution of the data generating process and set up the likelihood function.

In graphical LASSO (3.3), the data generating process is the multivariate

normal distribution and the likelihood function is

p(Y |!) / |⌦|n2 exp

�1

2
tr(S⌦)

�
1M+(⌦), (3.5)

where ! = {!ij}15i5j5p is a p(p + 1)/2 ⇥ 1 vector of elements in the upper

or lower triangular part of ⌦ and 1M+(⌦) is an indicator function to check

whether ⌦ is positive definite or not.

Next, we set up the probability distribution of unknown parameters in

the likelihood function, which is called the prior distribution or the prior to

be short, to express non-data information about the parameters. Although

we may use the original Laplace prior for our Bayesian analysis, we instead

propose to use the following prior for each element in ⌦:

p(!ij|�ij) =

8
<

:
�iie��ii!ii , (i = j);

�ij

2 e��ij |!ij |, (i 6= j),
(3.6)
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which means that the prior of each diagonal element is exponential while that

of each o↵-diagonal element is Laplace. Note that we allow the shrinkage pa-

rameter �ij to di↵er from element to element. Unlike the original graphical

LASSO (3.3) where the Laplace prior is also assumed for the diagonal ele-

ments in ⌦, the exponential prior is assumed in (3.6). The exponential prior

is not a shrinkage prior, but this will not cause any problems because, in prin-

ciple, we dot no have to force the diagonal elements in ⌦ to be zero because

they represent links to nodes themselves and must be non-zero. Therefore,

in order to achieve sparsity of ⌦, we only need to apply a shrinkage prior to

the o↵-diagonal elements5.

Furthermore, we treat each shrinkage parameter �ij as an unknown pa-

rameter and assume the common prior for all �ij’s as

p(�ij) =
sr

�(r)
�r�1
ij e�s�ij , (3.7)

which is a gamma distribution. This type of “prior of priors” is called the

hierarchical prior.

Lastly, we derive the posterior distribution, which incorporate both data-

related information in the likelihood function and non-data information in

the prior, with Bayes’ theorem:

p(!,�|R) / p(R|!)p(!|�)p(�),

p(!|�) =
Y

15i5j5p

p(!ij|�ij),

p(�) =
Y

15i5j5p

p(�ij),

(3.8)

5Alternative shrinkage priors have been developed for Bayesian graphical LASSO in

the literature. The spike-and-slab prior (Wang (2015)) is a widely applied shrinkage prior

in particular for variable selection in a regression model. Basically, it is a mixture of two

distributions; one is normal with large variance and another is the Dirac delta at zero.

When the latter is realized in the mixture of distributions, the corresponding link will

be excluded from the graph structure. Another popular choice is the horseshoe prior (Li

et al. (2019)) which assumes that each o↵-diagonal element in ⌦ follows a half-Cauchy

distribution.



42 CHAPTER 3. LARGE-SCALE PORTFOLIO MANAGEMENT

where � = {�ij}15i5j5p is a p(p+1)/2⇥1 vector of the shrinkage parameters.

If all �ij’s in (3.6) take a common value � (or we may use two di↵erent values;

one for the diagonal elements and another for the o↵-diagonal elements), the

posterior distribution (3.8) is reduced to a simpler model called Bayesian

graphical LASSO. In case they can take di↵erent values for any elements in

⌦ as we assume in (3.6), it is called Bayesian adaptive graphical LASSO. By

adding an additional layer of uncertainty, the adaptive version of graphical

LASSO can flexibly adjust the shape of the posterior distribution and may

hopefully capture the reality in the financial market better.

Unfortunately, we cannot analytically evaluate the posterior distribution

(3.8), which means that we need to use a numerical approximation method to

obtain an estimate of⌦. In this paper, we employ the Markov chain sampling

algorithm by Oya and Nakatsuma (2022) for generating a pseudo-random

sample of ⌦, {⌦(t)}Tt=1, along with other parameters from the posterior dis-

tribution (3.8), and use the generated sample in Monte Carlo integration to

approximate the posterior mean of ⌦ as its point estimate, i.e.,

b⌦ =
1

T

TX

t=1

⌦(t). (3.9)

In the rest of this section, we briefly describe the Markov chain sampling

algorithm by Oya and Nakatsuma (2022). In general, the term “Markov

chain sampling” refers to a generic random number generating method which

utilizes the convergence of a Markov chain to its invariant distribution. The

basic principle of the Markov chain sampling is rather simple. If a Markov

chain is convergent to the invariant distribution, any sequence of pseudo-

random numbers drawn from such a Markov chain will eventually converge

to the invariant distribution. Furthermore, under some mild conditions, the

law of large numbers is applicable to the drawn sequence even though it is

not an independent process. Therefore, if we can construct a Markov chain

whose invariant distribution is the posterior distribution such as (3.8), we

will obtain a pseudo-random sample of the parameters by drawing them

repeatedly from the Markov chain until the sequence will be stabilized.
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One of the popular algorithms for Markov chain sampling is the Gibbs

sampler. Suppose it is possible to draw each parameter in the posterior

distribution from its conditional distribution given the rest of the parameters,

which is called the full conditional posterior distribution in the literature.

Then the Gibbs sampler is defined as an iterative algorithm which repeatedly

draws each parameter from its full conditional posterior distribution and

replaces the previous value of the parameter with the new one before the

next parameter will be drawn from its full conditional posterior distribution.

In this way, the new values of the parameters are obtained at the end of

each cycle of the Gibbs sampler. By construction, any sequence of pseudo-

random numbers generated with the Gibbs sampler is a Markov chain whose

invariant distribution is the posterior distribution, and this Markov chain

will convergent to the posterior distribution in most applications including

the Gaussian graphical model we study here.

To derive the Gibbs sampling algorithm for the posterior distribution

(3.8), we make use of the fact that the Laplace distribution in (3.6) is ex-

pressed as a scale mixture of normal distributions with the exponential dis-

tribution:

p(!ij|⌧ij) =
1p
2⇡⌧ij

exp

✓
�

!2
ij

2⌧ij

◆
,

p(⌧ij) =
�2
ij

2
exp

✓
�
�2
ij

2
⌧ij

◆
.

(3.10)

Define ⌧ = {⌧ij}15i<j5p. Then the posterior distribution (3.8) is rewritten as

the joint distribution of !, � and ⌧ :

p(!, ⌧ ,�|Y ) / |⌦|n2 exp

�1

2
tr(S⌦)

�
1M+(⌦)⇥

pY

i=1

�iie
��ii!ii

⇥
Y

15i<j5p

1p
2⇡⌧ij

exp

✓
�

!2
ij

2⌧ij

◆
�2
ij

2
exp

✓
�
�2
ij

2
⌧ij

◆

⇥
Y

15i5j5p

�r�1
ij e�s�ij .

(3.11)

To derive the full conditional posterior distribution of !, we consider the
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following partition of the precision matrix ⌦:

⌦ =

"
⌦11 !12

!|
12 !22

#
, (3.12)

where ⌦11 is a (p� 1)⇥ (p� 1) matrix, !12 is a (p� 1)⇥ 1 vector, and !22

is a scalar. Without a loss of generality we can rearrange rows and columns

of ⌦ so that the lower-right corner of ⌦, !22, is the diagonal element to be

generated from its full conditional posterior distribution. Likewise, we can

partition S, ⌥, and � as

S =

"
S11 s12

s|12 s22

#
, ⌥ =

"
⌥11 ⌧ 12

⌧ |
12 0

#
, � =

"
�12

�22

#
, (3.13)

where ⌥ is a p⇥ p symmetric matrix in which the o↵-diagonal (i, j) element

is ⌧ij and all diagonal elements are equal to zero, while �22 is the element in

� that corresponds with the diagonal element !22 in the prior distribution

(3.6). According to Oya and Nakatsuma (2022), the full conditional posterior

distribution of !22 is derived as the shifted gamma distribution:

!22 = � + !|
12⌦11!12, � ⇠ Gamma

⇣n
2
+ 1,

s22
2

+ �22

⌘
, (3.14)

while that of !12 is obtained as the truncated multivariate normal distribu-

tion:

!12 ⇠ Normal (�Cs12, C)1M+
!
(!12), (3.15)

where

C =
�
(s22 + 2�22)⌦

�1
11 +D�1

⌧

 �1
, D⌧ = diag(⌧ 12),

and the indicator function 1M+
!
(!12) implies that the domain of the distri-

bution is truncated within

M+
! = {!12 : !22 > !|

12⌦11!12}. (3.16)

The constraint (3.16) imposed on !12 is the key to assure the positive defi-

niteness of ⌦. Oya and Nakatsuma (2022) suggested using the Hit-and-Run

algorithm to draw !12 from the truncated multivariate normal distribution
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(3.15). See Oya and Nakatsuma (2022) for more details on the derivation of

their algorithm. It turns out that we can easily construct a Gibbs sampler

for the posterior distribution in the form of (3.11).

Moreover, it is straightforward to show that the full conditional posterior

distribution of �ij (1 5 i 5 j 5 p) is the gamma distribution:

�ij ⇠ Gamma (r + 1, s+ |!ij|) , (3.17)

while that of 1/⌧ij (1 5 i < j 5 p) is the inverse Gaussian distribution:

1

⌧ij
⇠ Inverse Gaussian

✓
�ij

|!ij|
,�2

ij

◆
. (3.18)

The outline of the Gibbs sampler is summarized as follows.

Gibbs sampler for Bayesian adaptive graphical LASSO◆ ⇣
For i = 1, . . . , p, repeat Step 1 to Step 5.

Step 1: Rearrange ⌦, S, ⌥, and � so that !ii is in the place of !22 in ⌦

and partition them as in (3.12) and (3.13).

Step 2: If i = 2, !12  Normal (�Cs12,C)1M+
!
(!12).

Step 3: �  Gamma
�
n
2 + 1, s222 + �22

�
and set !22 = � + !12⌦

�1
11 !12.

Step 4: �ij  Gamma (r + 1, s+ |!ij|) for j = i, . . . , p.

Step 5: �ij  Inverse Gaussian
⇣

�ij

|!ij | ,�
2
ij

⌘
and set ⌧ij = 1/�ij for j =

i+ 1, . . . , p.✓ ⌘
From now on we refer to Oya and Nakatsuma (2022)’s positive-definiteness-

assured Bayesian adaptive graphical LASSO approach as Bada-PD.

3.3 Performance Comparison in Long-term

Portfolio Management

We compare Bada-PD with non-Bayesian graphical LASSO (glasso) in

terms of long-run portfolio management with the dataset of portfolios pro-
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vided by Kenneth French6. Following Torri et al. (2019), we choose monthly

return data on 100 portfolios of US companies formed on size and book-

to-market ratio. According to the description given in Kenneth French’s

website, these portfolios are the intersections of 10 portfolios formed on size

(market equity, ME) and 10 portfolios formed on the ratio of book equity

to market equity (BE/ME). Although Torri et al. (2019) used the original

portfolio return data, we use the OLS residuals in the Fama-French three-

factor model of these portfolio returns7. This is because the precision matrix

of the original portfolio returns is not sparse, possibly due to the existence of

common factors. The data used for estimating the Fama-French three-factor

model are also retrieved from Kenneth French’s website.

In our empirical study, we test five scenarios: (p, n) = (100, 120), (100,

60), (100, 12), (100, 6) and (100, 3), which are corresponding to the sample

period of 10 years, 5 years, 1 year, 2 quarters, and 1 quarter respectively.

The description of these scenarios is summarized in Table 3.1. The p/n ratio

of the scenarios ranges from 5/6 = 0.833 . . . to 100/3 = 33.333 . . . and Case

(b) – (e) are corresponding to the p > n problem. In particular, Case (e) is

an extreme scenario in which we construct a portfolio of 100 assets with only

3 observations.

The backtesting for performance comparison is conducted as follows. We

form the global minimum variance portfolio (3.2) with an estimate of ⌦. For

glasso, we estimate ⌦ by using the functionality of GraphicalLassoCV in a

Python package sklearn.covariance. For Bada-PD, we estimate ⌦ with

its posterior mean8 in (3.8). To obtain a stable sequence of the Markov chain,

6The dataset is available at Kenneth French’s website http://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html.
7We first estimate the three-factor model for the whole sample period (n = 120) and

use the residuals in (a) – (e) to remove the influence of the common factors.
8When optimizing a portfolio in a Bayesian approach, we generally use the predictive

distribution of asset returns which is derived with the posterior distribution of the unknown

parameters. As far as we apply the mean-variance model to portfolio selection, however,

we do not have to evaluate the predictive distribution explicitly. As an example relevant to

our study, let us consider the case of the multivariate normal distribution Normal(µ,⌃). In
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Table 3.1: Descriptive Statistics of the Dataset

p n p / n Time Period Data Frequency

Case : p < n

(a) 100 120 (10Y) 0.833 01/2001 - 09/2020 monthly

Case : p > n

(b) 100 60 (5Y) 1.667 01/2006 - 09/2020 monthly

(c) 100 12 (1Y) 8.333 01/2010 - 09/2020 monthly

(d) 100 6 (2Q) 16.667 07/2010 - 09/2020 monthly

(e) 100 3 (1Q) 33.333 10/2010 - 09/2020 monthly

we first iterate the Gibbs sampler 15,000 times for Case (a) and 5,000 times

for Case (b) – (e) as burn-in and store pseudo-random numbers drawn in

the next 20,000 iterations9. In addition to glasso and Bada-PD, we form

the equal weight portfolio (EW) as the benchmark. We also tested the

non-Bayesian graphical LASSO with �ii = 0 graphical LASSO10 (glasso -

this case, the covariance matrix of the predictive distribution is expressed as the sum of the

posterior covariance matrix of the mean vector µ and the posterior mean of the covariance

matrix ⌃. If we assume µ = 0, the covariance matrix of the predictive distribution is

identical to the posterior mean of ⌃. Thus evaluating the posterior mean of ⌃ or ⌦ will

su�ce to construct the global minimum variance portfolio (3.2).
9We also conducted an additional performance test of the proposed approach with

simulated data in a case where the p/n ratio is much higher than the experiment on long-

term portfolio management. In this simulation study, it is also shown how we examined the

convergence of the proposed model. See Appendix for more details. Since it is impossible to

know a true structure of a precision matrix here unlike the simulation study in Appendix,

we alternatively confirmed the convergence of the top 10 eigenvalues in Chapter 3.3. Based

on results of the convergence diagnostic, it is figured that we need to increase the number

of burn-in to 15,000 times for Case (a) although 5,000 times burn-in is su�cient for Case

(b) – (e).
10We used QuicGraphLassoCV in a Python package skggm based on Hsieh et al. (2014).

This package is available at https://github.com/skggm/skggm. This algorithm is based

on the second order method. Thus, strictly speaking, it is di↵erent from the algorithms

of the first order method models such as glasso and Rothman et al. (2008)’s SPICE with
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�ii = 0) as another type of non-Bayesian graphical LASSO algorithm that

does not impose penalties on diagonal elements as mentioned in Chapter

3.2. Random matrix theory filtering11 (RMT, Bouchaud and Potters (2009))

and Ledoit–Wolf shrinkage estimation12 (LW, Ledoit and Wolf (2004)) are

also compared as in Torri et al. (2019). Moreover, we try to estimate the

covariance matrix with its sample analog for Case (a) in which the sample

covariance matrix is non-singular since p < n. The out-of-sample period is

from January 2011 to December 2020 for all cases. We examine out-sample-

performance of each portfolio strategy by using a rolling window approach

by rebalancing the portfolios once every three months. For the sake of sim-

plicity, we ignore transaction fees and selling restrictions. All computations

are implemented with Python codes on a desktop PC with 128GB RAM and

3.8GHz i7-10700K Intel processor.

First, we examine 10-year performance of each portfolio strategy in terms

of risk-return tradeo↵. Table 3.2 shows three performance measures of port-

folios: mean return, standard deviation and Sharpe ratio. As for the per-

formance comparison among EW, RMT, LW, glasso - �ii = 0, glasso and

Bada-PD, we focus on the Sharpe ratio in the fourth column of Table 3.2.

EW achieves the lowest Sharpe ratio in all cases because of its large stan-

dard deviation in Case (a) – (d). In Case (a) where p is less than n, the

Sharpe ratio is the highest for the global minimum variance portfolio with

the sample covariance matrix, though it cannot be applicable to Case (b) –

(e) because the sample covariance matrix is singular in those cases.

The graphical LASSO approaches (Bada-PD, glasso and glasso - �ii = 0)

consistently out-perform EW in Case (a) – (d) and their Sharpe ratios even

exceed 1. However, the standard deviation increases sharply for both in Case

(e) where the p/n ratio reaches 33 and, as a result, the Sharpe ratio declines

�ii = 0. Since SPICE has problems related to computational load and complexity as Duchi

et al. (2008) pointed out and implementation of Hsieh et al. (2014) is relatively easy, we

use this algorithm as an example of non-Bayesian graphical LASSO with �ii = 0.
11We used a Python package pyRMT (https://github.com/GGiecold/pyRMT).
12We used Ledoit-Wolf in a Python package sklearn.covariance.



3.3. PERFORMANCE COMPARISON 49

below 1. As for non-Bayesian models, glasso significantly dropped to 0.235,

underperforming EW. Glasso - �ii = 0 fails to estimate the precision matrix.

Bada-PD, on the other hand, succeeds in estimating the precision matrix

even in Case (e) and still out-performs EW in terms of the Sharpe ratio. LW

achieves constantly high performance in Case (a) – (d). Even in Case (e),

LW’s performance is comparable to EW although it does not reach Bada-

PD. RMT out-performs the graphical LASSO approaches in Case (a) and

achieves approximately the similar performance as glasso - �ii = 0 in Case

(b) – (d). In Case (e), RMT slightly underperforms EW.

Next, we compare the portfolio strategies in terms of portfolio compo-

sition such as shorting, diversification and turnover. Following Torri et al.

(2019), we calculate the summary statistics for portfolio composition and

report them in Table 3.3. “Gross exp.” in the second column of Table 3.3 is

the gross exposure which is defined as the sum of the absolute values of the

weights
P

i |wi|. “Short exp.” in the third column means the short expo-

sure, i.e., the total amount of the short position. “Max short” in the fourth

column indicates the maximum negative exposure of individual assets. HDI

in the fifth column is the modified Herfindahl diversification index corrected

to account for short portfolio:

HDI =
pX

i=1

w⇤
i
2, w⇤

i =
wiPp

i=1 |wi|
.

This index measures a level of diversification of the portfolio. “Active pos.”

in the sixth column means the percentage of active position of the portfolio.

Since we do not impose any restrictions on the weights in this study, all

values are equal to 100%. “Turnover” in the seventh column indicates the

turnover ratio.

First, let us examine the risk exposures of each portfolio strategy. For the

global minimum variance portfolio with the sample covariance matrix, the

gross exposure is over 23 times higher than the initial endowment and the

short exposure is almost 11, in spite of the fact that the p/n ratio is less than

1 in Case (a). Thus we may conclude that using a plain sample estimate
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Table 3.2: Out-of-sample Performance of the Portfolios

Portfolio Mean Return Standard Deviation Sharpe Ratio

EW 0.148 0.254 0.499

p < n

(a) p = 100, n = 120

sample covariance 0.299 0.119 2.332

glasso 0.152 0.103 1.265

glasso - �ii = 0 0.187 0.150 1.108

Bada-PD 0.160 0.107 1.295

RMT 0.171 0.114 1.311

LW 0.218 0.088 2.225

p > n

(b) p = 100, n = 60

glasso 0.160 0.104 1.327

glasso - �ii = 0 0.181 0.142 1.124

Bada-PD 0.168 0.109 1.343

RMT 0.149 0.109 1.171

LW 0.185 0.086 1.890

(c) p = 100, n = 12

glasso 0.157 0.105 1.287

glasso - �ii = 0 0.186 0.149 1.103

Bada-PD 0.172 0.099 1.521

RMT 0.142 0.106 1.138

LW 0.211 0.123 1.548

(d) p = 100, n = 6

glasso 0.188 0.129 1.294

glasso - �ii = 0 0.187 0.138 1.197

Bada-PD 0.185 0.111 1.481

RMT 0.166 0.125 1.156

LW 0.188 0.130 1.283

(e) p = 100, n = 3

glasso 0.086 0.274 0.235

glasso - �ii = 0 NA NA NA

Bada-PD 0.134 0.184 0.611

RMT 0.125 0.220 0.469

LW 0.119 0.198 0.492

Note: NA means we cannot estimate by the model because of ill condition.
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Table 3.3: Statistics of Portfolio Composition1

Portfolio Gross exp. 2 Short exp. 3 Max short 4 Active pos. HDI5 Turnover

EW 1.000 0.000 0.000 100% 0.010 0.000

p < n

(a) p = 100, n = 120

sample covariance 23.195 11.098 -1.626 100% 0.017 11.727

glasso 5.976 2.488 -0.220 100% 0.020 1.144

glasso - �ii = 0 5.670 2.335 -0.380 100% 0.019 1.399

Bada-PD 6.014 2.507 -0.454 100% 0.021 1.792

RMT 8.290 3.645 -0.315 100% 0.019 1.914

LW 9.450 4.225 -0.471 100% 0.017 2.676

p > n

(b) p = 100, n = 60

glasso 5.553 2.276 -0.216 100% 0.021 1.149

glasso - �ii = 0 5.465 2.233 -0.355 100% 0.019 1.354

Bada-PD 5.795 2.397 -0.747 100% 0.022 1.850

RMT 7.497 3.249 -0.397 100% 0.020 1.895

LW 6.626 2.813 -0.375 100% 0.018 2.001

(c) p = 100, n = 12

glasso 5.302 2.151 -0.627 100% 0.025 2.172

glasso - �ii = 0 5.251 2.125 -0.350 100% 0.019 1.226

Bada-PD 5.266 2.133 -0.590 100% 0.024 2.309

RMT 6.854 2.927 -0.666 100% 0.024 2.716

LW 5.078 2.039 -0.305 100% 0.018 1.996

(d) p = 100, n = 6

glasso 5.251 2.126 -0.580 100% 0.030 3.925

glasso - �ii = 0 4.965 1.982 -0.367 100% 0.019 1.464

Bada-PD 4.829 1.914 -0.858 100% 0.027 3.202

RMT 6.676 2.838 -0.769 100% 0.029 4.227

LW 4.684 1.842 -0.324 100% 0.019 2.508

(e) p = 100, n = 3

glasso 4.503 1.751 -4.136 100% 0.139 7.266

glasso - �ii = 0 NA6 NA NA NA NA NA

Bada-PD 3.592 1.296 -0.559 100% 0.033 4.429

RMT 4.530 1.765 -0.856 100% 0.063 6.511

LW 3.581 1.291 -0.343 100% 0.022 3.700

1 These statistics are averaged across all rebalancing periods.
2 Gross exp. is

Pp
i=1 |wi|.

3 Short exp. is the total amount of the short position.
4 Max short is the maximum negative exposure of each asset.
5 HDI =

Pp
i=1w

⇤
i
2 where w⇤

i = wi/(
Pp

i=1 |wi|).
6 NA means that we fail to estimate the precision matrix because of the ill condition.
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of the covariance matrix has a tendency to take extreme short positions.

For the graphical LASSO approaches, on the other hand, the gross exposure

is considerably lower than that of the sample covariance case and gradually

decreases as the p/n ratio increases. As for RMT and LW, LW takes relatively

larger gross exposure than the graphical LASSO approaches in Case (a) –

(b), however, the gross exposure decreases as the p/n ratio increases and

becomes the same level as them. For RMT, gross exposure decreases as the

p/n ratio increases, but is relatively higher than the other approaches except

sample covariance. Note that EW takes only long position for all asset by

definition and the gross exposure is always equal to 1.

Next, let us check the degree of portfolio diversification. As for HDI,

we do not observe any noticeable di↵erences between the graphical LASSO

approaches except for Case (e) in which the HDI of glasso is 4 times higher

than that of Bada-PD and glasso - �ii = 0 cannot estimate the precision

matrix. In Case (e), the p/n ratio is beyond 33 and Max short of glasso is

much more extreme than the other cases. We speculate that this is because

the estimation procedure for the precision matrix may become unstable if

the p/n ratio is too high. On the other hand, Bada-PD seems to construct

portfolios with stable HDI even in Case (e). Glasso - �ii = 0 stably takes a

low HDI in Case (a) – (d), but fails to obtain the estimate of the precision

matrix in Case (e). LW remarkably takes the most stable HDI, whereas RMT

takes a large HDI in Case (e).

Finally, let us look into the turnover ratio. Obviously, the turnover ratio

of EW is equal to zero and portfolios with the sample covariance matrix have

the highest turnover ratio. For both Bada-PD and glasso, the turnover ratio

tends to increase as the p/n ratio gets higher, though the rate of increment

is less severe for Bada-PD than glasso. Glasso - �ii = 0 stably takes the low

turnover ratio, but fails to estimate the precision matrix in Case (e). LW

takes a low turnover ratio in Case (c) – (e), although takes lager turnover

ratio in Case (a) – (b) than the other models except sample covariance.

RMT tends to take a large turnover as the p / n ratio increases, showing no
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significant di↵erences compared to other models. Unlike Bada-PD and LW,

the turnover rises a little steeply in Case (e) like glasso.

3.4 Conclusion

Limited availability of historical data on asset returns has been a hin-

drance to asset management because the sample covariance matrix of asset

returns is singular when the number of asset p exceeds the number of ob-

servations n. In this paper, we explored a possible solution to this so-called

p > n problem in large-scale portfolio management. To solve this prob-

lem, we proposed a new data-driven portfolio framework based on Bayesian

adaptive graphical LASSO with the Markov chain sampling algorithm pro-

posed by Oya and Nakatsuma (2022). The proposed approach can directly

estimate the precision matrix of asset returns even in case of p < n as we

demonstrated in Chapter 3.3. We tested out-of-sample performance of the

proposed approach in long-term portfolio management by using monthly re-

turn data of 100 portfolios available at Kenneth French’s website in various

scenarios. We also compare them with portfolios based on another type of

non-Bayesian graphical LASSO which shrinks only the o↵-diagonal elements,

random matrix theory filtering and Ledoit-Wolf shrinkage estimation.

In this experiment, we confirmed advantages of the proposed approach

over the conventional sample covariance approach, non-Bayesian graphical

LASSO and other approaches in comparison in terms of return-risk tradeo↵

and portfolio composition. Both Sharpe ratios and indices of portfolio com-

position were relatively stable for the proposed approach while they were

either unstable for non-Bayesian graphical LASSO. Even in the most severe

scenario where the precision matrix of 100 assets must be estimated with

only 3 observations, the proposed approach was able to estimate the pre-

cision matrix and outperformed the equal weight portfolio without taking

abnormal values in regard to indices of portfolio composition.
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3.5 Appendix

In Chapter 3.3, we tested the proposed approach in case of p = 100 due

to the data constraint. In addition, we test whether the proposed model

works properly and converges in a more high-dimensional and more severe

p/n environment using simulated data. As the true design of the precision

matrix ⌦, we assume a AR(4) model:

• AR(4): !ii = 1.0, !i,i�1 = !i�1,i = 0.8, !i,i�2 = !i�2,i = 0.6, !i,i�3 =

!i�3,i = 0.4, and !i,i�4 = !i�4,i = 0.2.

Then, artificial data are generated from a multivariate normal distribution

with zero mean and the precision matrix of the AR(4) model. We also assume

(p, n) = (300, 3) where p/n is 100. Based on the artificial data, we calculate

the posterior statistics of ⌦ with Bada-PD and see if the true structure of

⌦ can be estimated well. We used the Monte Carlo sample from 10,000

iterations after 5,000 burn-in iterations in the Bayesian inference because

the proposed model with the artificial data converges faster than that with

the real data in Chapter 3.3. Settings for hyperpriors are the same as in

Chapter 3.3.

To assess estimation accuracy, we consider performance of the graphical

structure learning as Fan et al. (2009) and Oya and Nakatsuma (2022). In

the context of graphical modeling, non-zero elements of ⌦ are regarded as

links which connect the corresponding nodes. We use the following criteria

to determine whether the nodes of ⌦ are connected or not:

8
<

:
|!̂ij| = 10�3 (node i and node j are connected);

|!̂ij| < 10�3 (node i and node j are not connected),
(3.19)

where !̂ij is the point estimate of !ij computed with the Monte Carlo sample

of ⌦ with Bada-PD. With the estimated graphical structure, we measure the

accuracy in the graphical structure learning with three indexes: specificity,
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sensitivity, and the Matthews correlation coe�cient (MCC), namely

Specificity =
TN

TN + FP
, Sensitivity =

TP

TP + FN
,

MCC =
TP⇥ TN� FP⇥ FNp

(TP + FP)(TP + FN)(TN + FN)(TN + FN)
, (3.20)

where TP, TN, FP, and FN are the number of true positives, true negatives,

false positives, and false negatives, respectively. Table 3.4 shows the graph

structure learning performance of ⌦ estimated with Bada-PD. All of 2,680

non-zero elements of the true ⌦ were correctly identified, and only 4 out of

87,320 zero elements were misidentified. Also, it can be seen from Figures

3.1 and 3.2 that HRS is able to properly estimate the structure of true ⌦.

Table 3.4: Accuracy in graphical structure learning

(p, n) = (300, 3) TN FP FN TP Specificity Sensitivity MCC

AR(4) 87,316 4 0 2,680 99.9954 100.0000 99.9232

Figure 3.1: True ⌦
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Figure 3.2: Posterior Mean of ⌦ by Bada-PD

Finally, we examine whether the generated sample of ⌦ has converged

properly. ⌦ has 90,000 elements. Even considering the symmetry of ⌦, we

have to confirm the convergence of p(p+ 1)/2 = 45, 150 elements. Although

convergence tests for MCMC simulation with a high-dimensional distribution

have been proposed (e.g., VanDerwerken and Schmidlerb (2017)) in recent

years, there is no definitive method yet to be devised. Therefore, instead

of the elements of ⌦, we check the convergence of the eigenvalues of ⌦.

We first apply principal component analysis13 for the true ⌦ and calculate

the contribution rate of each component. Then, we count the number of

components until the cumulative contribution exceeds 80%. For the AR(4)

model, the number of such components is 42. We compute the eigenvalues

corresponding the top 42 components for simulated ⌦ in each iteration of

MCMC and check the convergence of these eigenvalues with the convergence

diagnostic proposed by Gelman and Rubin (1992). Following Gelman and

Rubin (1992), we conclude that the convergence is achieved if the convergence

13We used PCA in a Python package sklearn.decomposition.
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diagnostic is between 0.99 and 1.01. Table 3.5 shows the posterior statistics

and Gelman-Rubin diagnostic for the top 42 eigenvalues. The results clearly

indicate that the MCMC samples of these eigenvalues are converged. Figures

3.3 – 3.6 show the posterior densities and traceplots for the top 42 eigenvalues.

We can also confirm the convergence of the top 42 eigenvalues from them.
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Table 3.5: Posterior Statistics and Convergence Diagnostics of top 42 eigenvalues

Mean Std 95% HPDI-lower 1 95% HPDI-upper Gelman-Rubin 2

1st 0.0858 0.0018 0.0843 0.0884 1.0002

2nd 0.0846 0.0004 0.0840 0.0854 0.9999

3rd 0.0838 0.0002 0.0835 0.0842 1.0000

4th 0.0835 0.0001 0.0833 0.0837 1.0005

5th 0.0832 0.0001 0.0830 0.0834 1.0011

6th 0.0828 0.0001 0.0825 0.0831 1.0000

7th 0.0823 0.0002 0.0820 0.0826 0.9999

8th 0.0817 0.0002 0.0815 0.0821 0.9999

9th 0.0810 0.0002 0.0807 0.0814 0.9999

10th 0.0803 0.0002 0.0800 0.0806 1.0000

11th 0.0794 0.0002 0.0791 0.0798 0.9999

12th 0.0786 0.0002 0.0784 0.0790 1.0000

13th 0.0778 0.0002 0.0775 0.0782 0.9999

14th 0.0769 0.0002 0.0766 0.0774 0.9999

15th 0.0759 0.0002 0.0756 0.0763 0.9999

16th 0.0747 0.0002 0.0744 0.0750 1.0000

17th 0.0735 0.0002 0.0732 0.0738 0.9999

18th 0.0726 0.0002 0.0722 0.0730 0.9999

19th 0.0713 0.0002 0.0709 0.0717 1.0000

20th 0.0699 0.0002 0.0695 0.0703 0.9999

21st 0.0686 0.0002 0.0682 0.0690 0.9999

22nd 0.0674 0.0002 0.0671 0.0678 0.9999

23rd 0.0659 0.0002 0.0656 0.0664 1.0000

24th 0.0646 0.0002 0.0642 0.0650 0.9999

25th 0.0631 0.0002 0.0627 0.0635 1.0001

26th 0.0616 0.0002 0.0613 0.0620 1.0002

27th 0.0602 0.0002 0.0599 0.0606 0.9999

28th 0.0587 0.0002 0.0583 0.0592 1.0000

29th 0.0571 0.0002 0.0568 0.0575 0.9999

30th 0.0556 0.0002 0.0553 0.0559 0.9999

31st 0.0541 0.0002 0.0537 0.0545 1.0001

32nd 0.0527 0.0002 0.0523 0.0531 0.9999

33rd 0.0510 0.0002 0.0506 0.0514 1.0001

34th 0.0495 0.0002 0.0491 0.0499 1.0000

35th 0.0478 0.0002 0.0475 0.0482 0.9999

36th 0.0463 0.0002 0.0460 0.0466 0.9999

37th 0.0448 0.0002 0.0444 0.0452 1.0000

38th 0.0431 0.0002 0.0428 0.0435 1.0000

39th 0.0415 0.0002 0.0412 0.0418 0.9999

40th 0.0401 0.0002 0.0398 0.0404 0.9999

41st 0.0385 0.0002 0.0382 0.0388 0.9999

42nd 0.0370 0.0002 0.0367 0.0374 0.9999

1 HPDI indicates the highest posterior density interval.
2 The number of chains to calculate the Gelman-Rubin statistic in Table 3.5 is

2. To investigate the e↵ect of the number of the chains on the Gelman-Rubin

statistic, we changed it from 2 to 10 and confirmed that there is no problem in

all cases.
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Figure 3.3: The posterior density and traceplot for top 1 to 10 eigenvalues
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Figure 3.4: The posterior density and traceplot for top 11 to 20 eigenvalues
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Figure 3.5: The posterior density and traceplot for top 21 to 30 eigenvalues



62 CHAPTER 3. LARGE-SCALE PORTFOLIO MANAGEMENT

Figure 3.6: The posterior density and traceplot for top 31 to 42 eigenvalues



Chapter 4

Identification in Bayesian

Estimation of the Skewness

Matrix in a Multivariate

Skew-Elliptical Distribution

4.1 Introduction

The mean-variance approach proposed by Markowitz (1952) still plays

the central role in portfolio management even today. One of the key as-

sumptions of this approach is that asset returns jointly follow a multivariate

normal distribution, though it is well-known that they tend to follow a fat-

tailed, possibly skewed distribution as Kon (1984), Mills (1995), Markowitz

and Usmen (1996), Peiró (1999) among others have pointed out. Therefore,

researches have proposed numerous distributions that can express these char-

acteristics of asset returns well. In particular, a so-called skew-t distribution

is often assumed for asset returns since Hansen (1994) first used it for mod-

eling financial data. There are various types of skew-t distribution known in

the literature, but arguably the most famous one is based on the generalized

hyperbolic (GH) distribution.

63
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The GH distribution, which was originally introduced by Barndor↵-Nielsen

(1977), can flexibly describe many distributions including the normal distri-

bution, hyperbolic distribution, normal inverse Gaussian (NIG) distribution,

Student’s t distribution, and skew-t distribution. The skew-t distribution

as a special case of the GH distribution is called the GH skew-t distribu-

tion. Hansen (1994), Fernández and Steel (1998) and Aas and Ha↵ (2006)

assumed the GH skew-t distribution for asset returns. Especially, application

of the GH distribution has been recently advanced in the field of asset price

volatility models. For example, Nakajima and Omori (2012) assumed the

GH skew-t distribution for the error distribution of the stochastic volatility

(SV) model and proposed a Bayesian Markov chain Monte Carlo (MCMC)

method while Nakajima (2017) constructed a sparse estimation method for

the skewness parameter of the GH skew-t distribution in the SV model and

demonstrated that it could improve prediction accuracy.

Although the GH distribution is flexible enough to model a single asset

on many occasions, it has di�culty in capturing the skewness dependency

among multiple assets. Fund managers would find the skewness dependency

useful in particular when the financial market crashes and almost all assets

suddenly go south since such sharp price co-movement may not be captured

by the second moment (i.e., correlation) only.

To circumvent this shortcoming of the GH distribution, we propose to

use the skew-elliptical distribution, which was proposed by Branco and Dey

(2001) as a generalization of the multivariate skew-normal distribution by

Azzalini and Valle (1996) and later improved by Sahu et al. (2003)1. The

skew-elliptical distribution includes the normal distribution, Student’s t dis-

1Although we take up the skew-elliptical distribution based on Sahu et al. (2003) with

application to portfolio management in mind, there are alternative skew-elliptical-type

distributions known in the literature. Research on skew-elliptical-type distributions to

financial data is very active (e.g., Barbi and Romagnoli (2018), Carmichael and Coën

(2013), Alodat and Al-Rawwash (2014)). Adcock and Azzalini (2020) reviews the recent

development in this field and explains relationship among various types of skew-elliptical

distribution in detail.
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tribution and their skewed counterparts: skew-normal and skew-t distribu-

tion. Unlike the GH distribution, it is straightforward to extend the skew-

elliptical distribution to the multivariate case. The multivariate skew-normal

distribution has another advantage: Its Bayesian estimation can be con-

ducted via pure Gibbs sampling. For example, Sahu et al. (2003) proposed

a Gibbs sampler for a linear regression model in which the error term fol-

lows a skew-elliptical distribution without skewness dependency. Moreover,

Harvey et al. (2010) improved Sahu et al. (2003)’s method, and applied it to

Bayesian estimation of the multivariate skew-normal distribution as well as

portfolio optimization that considers up to the third moment in the presence

of skewness dependency.

In our assessment, however, the Bayesian estimation method of the mul-

tivariate skew-elliptical distribution by Harvey et al. (2010) has an identifi-

cation issue about the skewness parameters due to so-called label switching.

To elaborate on our point, let us look into the definition of a multivariate

skew-elliptical distribution. For simplicity, we only consider the multivariate

skew-normal distribution2. Suppose a p⇥ 1 random vector Yt (t = 1, . . . , n)

of asset returns follows a multivariate skew-normal distribution such that

Yt = µ+�Zt + ✏t, (4.1)

Zt ⇠ N+(0, Ip), ✏t ⇠ N (0,⌦�1),

Zt ? ✏t,

where each element in Zt is supposed to independently follow a positive half

normal distribution with the scale parameter equal to 1. � and ⌦ are the

skewness matrix3 and the precision matrix4 respectively. Harvey et al. (2010)

2In essence, any skew-elliptical distributions have the same identification issue. So

we start with the skew-normal distribution as a representative example. It is straight-

forward to extend our argument to any skew-elliptical distributions including the skew-t

distribution which we will deal with in Appendix.
3Here we call � the skewness matrix though it does not match the skewness of the

distribution in this model. For more information, see Section 2.2 and Appendix A of

Harvey et al. (2010).
4Harvey et al. (2010) used the covariance matrix in their specification of the skew-
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did not impose any restriction and assumed � is full matrix :

� =

2

66666664

�11 �12 �13 · · · �1p

�21 �22 �23 · · · �2p

�31 �32 �33 · · · �3p
...

...
...

...

�p1 �p2 �p3 · · · �pp

3

77777775

.

By defining

Y =

2

664

Y |
1
...

Y |
n

3

775 , Ỹ =

2

664

Ỹ |
1
...

Ỹ |
n

3

775 =

2

664

(Y1 � µ)|

...

(Yn � µ)|

3

775 , Z =

2

664

Z|
1
...

Z|
n

3

775 , E =

2

664

✏|1
...

✏|n

3

775 ,

(4.1) can be rewritten as

Ỹ = Z�| + E (4.2)

Note that Z�| in (4.2) is

Z�| =

2

66666664

Z11 Z12 Z13 · · · Z1p

Z21 Z22 Z23 · · · Z2p

Z31 Z32 Z33 · · · Z3p

...
...

...
...

Zn1 Zn2 Zn3 · · · Znp

3

77777775

2

66666664

�11 �21 �31 · · · �p1

�12 �22 �32 · · · �p2

�13 �23 �33 · · · �p3
...

...
...

...

�1p �2p �3p · · · �pp

3

77777775

(4.3)

=

2

666664

Z11�11 + Z12�12 + · · ·+ Z1p�1p · · · Z11�p1 + Z12�p2 + · · ·+ Z1p�pp

Z21�11 + Z22�12 + · · ·+ Z2p�1p · · · Z21�p1 + Z22�p2 + · · ·+ Z2p�pp
...

...

Zn1�11 + Zn2�12 + · · ·+ Znp�1p · · · Zn1�p1 + Zn2�p2 + · · ·+ Znp�pp

3

777775
.

Since the summation in each element of (4.3) is invariant in terms of

permutation, the likelihood of � in the model (4.2) takes the same value

normal distribution and assumed the inverse-Wishart prior for it, which is equivalent to

assuming the Wishart prior for the precision matrix in our specification. We use the

precision matrix because we later examine the extended model that incorporates sparsity

into the graphical structure among asset returns.
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for any permutations of the columns in �. As a result, it is likely that the

columns of � are randomly misaligned during the Gibbs sampler and their

interpretability is lost. This problem is well-known in the field of latent factor

models, which have a structure similar to the model (4.2).

As far as we know, no research5 has examined the identification issue of

Harvey et al. (2010)’s model due to the label switching problem yet. There-

fore we aim to construct a modified model in which the identification issue

of � is resolved and the interpretability is assured. Moreover, we also pro-

pose an extended model assuming a shrinkage prior to further to improve the

estimation accuracy.

This chapter is organized as follows. In Chapter 4.2, we briefly review

the estimation method by Harvey et al. (2010) and propose the modified

method that solves the identification issue. Then we extend our proposed

method by applying the shrinkage prior to the co-skewness. In Chapter 4.3,

we perform simulation studies in multiple settings of the structure of � and

verify whether proposed methods can properly estimate the true structure.

The conclusion is given in Chapter 4.4.

4.2 Proposed Method

First we review the Bayesian MCMC method proposed by Harvey et al.

(2010). Based on (4.1) and (4.2), two equivalent expressions of the joint

5Panagiotelis and Smith (2010) pointed out that, in the model by Sahu et al. (2003)

or Azzalini and Capitanio (2003), it becomes di�cult to identify the parameter when the

skewness parameter approaches to 0, and proposed the improved model with sparsity. The

identification issue we point out in this paper still occurs regardless of the magnitude of the

skewness parameter when the co-skewness is taken into consideration as in Harvey et al.

(2010). Note that this is a separate issue from Panagiotelis and Smith (2010). In this

paper as well, we will study an extended model with sparsity of co-skewness in Chapter

4.2.
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conditional density of Y given Z is obtained as:

p(Y |µ,�,⌦, Z) / |⌦|n2 exp
"
�1

2

nX

t=1

(Yt � µ��Zt)
|⌦(Yt � µ��Zt)

#

(4.4)

/ |⌦|n2 exp

�1

2
tr
n
⌦(Ỹ � Z�|)|(Ỹ � Z�|)

o�
. (4.5)

Harvey et al. (2010) assumed the following normal-Wishart prior for µ, �

and ⌦6:

µ ⇠ N (bµ, A
�1
µ ), � ⇠ N (b�, A

�1
� ), ⌦ ⇠ W(S�1

⌦ , ⌫⌦). (4.6)

We refer to the skew elliptical distribution with the normal- Wishart prior

(4.6) as Full-NOWI. With Bayes’ theorem, the posterior distribution of (µ,�,⌦)

is obtained as

p(µ,�,⌦|Y ) /
Z 1

0

· · ·
Z 1

0

p(Y |µ,�,⌦, Z)p(Z1)dZ1 · · · p(Zn)dZnp(µ)p(�)p(⌦).

(4.7)

Since the multiple integral in (4.7) is intractable, we employ Monte Carlo

integration to compute the summary statistics of parameters in the posterior

distribution (4.7). For this purpose, we apply a Markov chain sampling

method to draw the latent variables (Z1, . . . , Zn) along with the parameters

(µ,�,⌦) from the posterior distribution (4.7).

The full conditional posterior distribution of µ, �, ⌦, and Zt are derived

6While Harvey et al. (2010) sampled µ and � together by jointly assuming the multi-

variate normal prior for them, we describe µ and � separately because we will later extend

our proposed method to the model with a shrinkage prior for �.
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as follows.

µ|· ⇠ N
⇣
Â�1

µ b̂µ, Â
�1
µ

⌘
, Âµ = Aµ + n⌦, b̂µ = Aµbµ + ⌦(Y � Z�|)|◆,

(4.8)

�|· ⇠ N (Â�1
� b̂�, Â

�1
� ), Â� = A� + Z|⌦̃Z, b̂� = A�b� + Z|⌦̃y, (4.9)

⌦|· ⇠ W
⇣
Ŝ�1, ⌫̂

⌘
, ⌫̂ = ⌫⌦ + n, Ŝ = S⌦ + S, S = (Ỹ � Z�|)|(Ỹ � Z�|),

(4.10)

Zt|· ⇠ N+
⇣
Â�1

z b̂z, Â
�1
z

⌘
, Âz = Ip +�|⌦�, b̂z = �|⌦(Yt � µ), (4.11)

where Z|⌦̃Z =
Pn

t=1 Z
|
t ⌦Zt and Z|⌦̃y =

Pn
t=1 Z

|
t ⌦Ỹt. Since it is di�cult to

jointly draw Zt from (4.11), the element-wise Gibbs sampler can be applied

to (4.11). Without loss of generality, we partition Zt, µz = Â�1
z b̂z and Âz as

Zt =

"
z1t

Z2t

#
, µz =

"
µz1

µz2

#
, Âz =

"
a11 a|21
a21 A22

#
,

where z1t, µz1 and a11 are scalars, Z2t, µz2 and a21 are (p � 1) ⇥ 1 vectors,

and A22 is an (p � 1) ⇥ (p � 1) matrix. Then the full conditional posterior

distribution of z1t is

z1t|· ⇠ N+

✓
µz1 �

1

a11
a|21(Z2t � µz2),

1

a11

◆
. (4.12)

The full conditional posterior distribution of the second to the last element of

Zt can be derived in the same manner as (4.12). Then we can construct the

element-wise Gibbs sampler for Zt by drawing each element of Zt sequentially

from its full conditional posterior distribution.

Since columns in � are not identified without imposing any constraints

as we confirmed in the introduction, we use a positive lower-triangular con-

straint (PLT, Geweke and Zhou (1996), West (2003) and Lopes and West

(2004))7 on � which is often used in econometric field. Assume upper-

7Although, Frühwirth-Schnatter and Lopes (2018) recently proposed a generalized

lower triangular condition that generalizes the positive lower-triangular (GLT) condition,

but in the case of the multivariate skew-elliptical distribution, the GLT condition matches

the PLT condition since � is square matrix. Therefore, we used the PLT condition in this

research.
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triangular above the main diagonal of � equals to zero as:

� =

2

66666664

�11

�21 �22

�31 �32 �33
...

...
...

. . .

�p1 �p2 �p3 · · · �p

3

77777775

. (4.13)

By defining

�Zt = Wt�, Wt =

2

666664

z1t

z1t z2t
. . .

z1t · · · zpt

3

777775

| {z }
p⇥ p(p+1)

2

, �t =

2

66666666666664

�11

�21

�22
...

�p1
...

�pp

3

77777777777775

| {z }
p(p+1)

2 ⇥1

,

we can rewrite (4.2) as

y = W � + ✏, ✏ ⇠ N (0, ⌦̃�1), (4.14)

where

y = vec(Ỹ |)| {z }
pn⇥1

, W =

2

664

W1

...

Wn

3

775 , ✏ = vec(E|)| {z }
pn⇥ p(p+1)

2| {z }
pn⇥1

, ⌦̃ = In ⌦ ⌦| {z }
pn⇥pn

.

Using W and �, (4.6) can be rewritten as:

µ ⇠ N (bµ, A
�1
µ ), � ⇠ N (b�, A

�1
� ), ⌦ ⇠ W(S�1

⌦ , ⌫⌦). (4.15)

We refer to the multivariate skew-elliptical distribution with the lower-triangle

constraint (4.13) and the normal-Wishart prior (4.15) as LT-NOWI.
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With (4.14) and (4.15), the full conditional posterior distribution of � is

derived as:

�|· ⇠ N (Â�1
� b̂�, Â

�1
� ), Â� = A� +W |⌦̃W, b̂� = A�b� +W |⌦̃y, (4.16)

where W |⌦̃W =
Pn

t=1W
|
t ⌦Wt and W |⌦̃y =

Pn
t=1W

|
t ⌦Ỹt. The posterior

distribution of ⌦, µ, Z are the same as in (4.10), (4.8) and (4.11).

It is known that, when the normal-Wishart prior is used, the posterior

distribution may not have a sharp peak around zero even if the true value

is exactly equal to zero. In order to make the posterior distribution shrink

toward zero and improve the estimation accuracy, we propose an extended

model with a shrinkage prior for � and ⌦.

To non-zero elements in �, we apply the horseshoe prior (Carvalho et al.

(2010b)):

�j ⇠ N (0,�2
j⌧

2), �j ⇠ C+(0, 1), ⌧ ⇠ C+(0, 1),

✓
j = 1, . . . ,

p(p+ 1)

2

◆
,

(4.17)

where �j is the j-th element in � and C+(·) stands for the half Cauchy

distribution. Note that the half Cauchy distribution in (4.17) is expressed as

a mixture of inverse gamma distributions as in Makalic and Schmidt (2016):

�2
j |⌫j ⇠ IG

✓
1

2
,
1

⌫j

◆
, ⌧ 2|⇠ ⇠ IG

✓
1

2
,
1

⇠

◆
, ⌫j, ⇠ ⇠ IG

✓
1

2
, 1

◆
. (4.18)

For computation, we first randomly generate ⌫j, ⇠ from the inverse Gaussian

distribution. Then, we also randomly generate �2
j , ⌧

2 and set them as initial

values. The derivation of the full conditional posterior distribution of � is

straightforward. Given �1, . . . ,�p, ⌧ , the prior distribution of � is

�|�1, . . . ,�p2 , ⌧ ⇠ N
�
0, ⌧ 2diag

�
�2
1, . . . ,�

2
p2
��

.

Thus, the full conditional posterior distribution of � is identical to (4.16)

except

A� =
1

⌧ 2
diag

 
1

�2
1

, . . . ,
1

�2
p2

!
, b� = 0.
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The full conditional posterior distributions of �2
j and ⌧ 2 in (4.17) are

�2
j |· ⇠ IG

✓
1,

1

⌫j
+

�2j
2⌧ 2

◆
, (j = 1, . . . , p2), (4.19)

⌧ 2|· ⇠ IG

0

@p2 + 1

2
,
1

⇠
+

1

2

p2X

j=1

�2j
�2
j

1

A , (4.20)

while those of the auxiliary variables are

⌫j|· ⇠ IG

✓
1, 1 +

1

�2
j

◆
, (j = 1, . . . , p2), (4.21)

⇠|· ⇠ IG

✓
1, 1 +

1

⌧ 2

◆
. (4.22)

We also apply the graphical horseshoe prior to the o↵-diagonal elements

in ⌦ as in Li et al. (2019). Although it is tempting to use a horseshoe prior

such as

!ij ⇠ N (0, ⇢2ij 
2), (1 5 i < j 5 p), (4.23)

⇢2ij|�ij ⇠ IG

✓
1

2
,
1

�ij

◆
,  2|⇣ ⇠ IG

✓
1

2
,
1

⇣

◆
, �ij, ⇣ ⇠ IG

✓
1

2
, 1

◆
, (4.24)

where !ij is the (i, j) element in ⌦, (4.23) is not appropriate for our pur-

pose because the support of (!ij)i<j in (4.23) includes points where ⌦ is not

positive definite. Thus we need to put the positive definiteness constraint

upon (4.23). In this paper, we refer to the multivariate skew-elliptical dis-

tribution with the lower-triangle constraint (4.13), the horseshoe prior for

the skewness matrix � (4.17) and the positive-definiteness-assured graphical

horseshoe prior for the precision matrix ⌦ (4.23)–(4.24) as LT-HSGHS.

To assure the positive definiteness of ⌦ in the course of sampling, we

apply a block Gibbs sampler by Oya and Nakatsuma (2022). To illustrate

the block Gibbs sampler, we introduce the following partition of ⌦ and S:

⌦ =

"
⌦11 !12

!|
12 !22

#
, S =

"
S11 s12

s|12 s22

#
, (4.25)

where !22 and s22 are scalars, !12 and s12 are (p � 1) ⇥ 1 vectors, and ⌦11

and S11 are (p � 1) ⇥ (p � 1) matrices. In each step of the block Gibbs
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sampler, we draw a diagonal element !22 and o↵-diagonal elements !12 from

their full conditional posterior distributions. Without loss of generality, rows

and columns of ⌦ can be rearranged so that the lower-right corner of ⌦, !22,

should be the diagonal element to be drawn from its full conditional posterior

distribution. By using ⌦ and S in (4.25), we have

tr (⌦S) = s22!22 + 2s|12!12 + tr (⌦11S11) ,

and

|⌦| =
��!22 � !|

12⌦
�1
11 !12

�� |⌦11| .

Then (4.5) is rewritten as

p(Y |µ, �,⌦, Z) / |⌦|n2 exp

�1

2
tr(⌦S)

�

/
��!22 � !|

12⌦
�1
11 !12

��n2 |⌦11|
n
2

⇥ exp


�1

2
{s11!22 + 2s|12!12 + tr (⌦11S11)}

�
. (4.26)

Furthermore, following Wang (2012), we reparameterize (!22,!12) to (⌘,!12)

where

⌘ = !22 � !|
12⌦

�1
11 !12.

Finally we have

p(Y |µ, �,⌦, Z) / ⌘
n
2 exp


�1

2

�
s22⌘ + s22!

|
12⌦

�1
11 !12 + 2s|12!12

 �
, (4.27)

where we ignore the parts that do not depend on ⌘ nor !12.

We need to be careful in choosing the prior distribution of (⌘,!12). Given

that ⌦ from the previous iteration of the block Gibbs sampler is positive

definite, newly generated !22 and !12 must satisfy

!22 > !|
12⌦

�1
11 !12, (4.28)

to ensure that the updated ⌦ is also positive definite. This condition (4.28)

requires

⌘ = !22 � !|
12⌦

�1
11 !12 > 0.
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Hence, we can use a gamma distribution:

⌘ ⇠ Ga(a⌘, b⌘), (4.29)

as the prior distribution of ⌘. Moreover, we suppose the prior distribution of

o↵-diagonal elements !12 is a truncated multivariate normal distribution:

p(!12|!22,⌦11) / exp

✓
�1

2
!|
12A!!12

◆
1M+(!12), (4.30)

where

A! =
1

 2
diag

✓
1

⇢212
, . . . ,

1

⇢21p

◆
, M+ = {!12 : !22 < !|

12⌦
�1
11 !12},

in order to assure that the condition (4.28) holds in the course of sampling.

Applying Bayes’ theorem to (4.29) and (4.27), we have

⌘|· ⇠ Ga
⇣
a⌘ +

n

2
, b⌘ +

s22
2

⌘
. (4.31)

With (4.30), (4.24) and (4.27), the full conditional posterior distribution of

!12 is derived as

!12|· ⇠ N
⇣
�Â�1

! s12, Â�1
!

⌘
1M+(!12), Â! = A! + s22⌦

�1
11 . (4.32)

In order to draw !12 from (4.32), we apply the Hit-and-Run algorithm

(Bélisle et al. (1993)) as in Oya and Nakatsuma (2022).

Step 1: Pick a point ↵ on the unit sphere randomly as ↵ = u
kuk , u ⇠ N (0, I).

Step 2: Draw a random scalar  from N (µ, �2
)1R+() where

µ = �s|12↵ + !|
12Â!↵

↵|Â!↵
, �2

 =
1

↵|Â!↵
,

R+ =

(
 :

�b �
p
b2 � ac
a

<  <
�b +

p
b2 � ac
a

)
,

a = ↵|⌦�1
11 ↵, b = !|

12⌦
�1
11 ↵, c = !|

12⌦
�1
11 !12 � !22.

Step 3: Update the old !12 with !12 + ↵.
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Finally it is straightforward to derive the full conditional posterior distri-

butions of hyper-parameters and auxiliary variables:

⇢2ij|· ⇠ IG

✓
1,

1

�ij
+

!2
ij

2 2

◆
, (1 5 i < j 5 p), (4.33)

 2|· ⇠ IG

 
p(p� 1)

4
+

1

2
,
1

⇣
+

1

2

pX

j=2

j�1X

i=1

!2
ij

⇢2ij

!
, (4.34)

�ij|· ⇠ IG

✓
1, 1 +

1

⇢2ij

◆
, (1 5 i < j 5 p), (4.35)

⇣|· ⇠ IG

✓
1, 1 +

1

 2

◆
. (4.36)

Although we will examine the skew-normal distribution in the next section

in order to simply compare the Harvey et al. (2010)’s sampling method in

terms of identification of �, we can easily extend the multivariate skew-

normal model (4.1) to the multivariate skew-t distribution. See Appendix.

4.3 Performance Comparisons with Simula-

tion

In this section, we report results of Monte Carlo experiments to compare

three models (Full-NOWI, LT-NOWI and LT-HSGHS), which are summa-

rized in Table 4.1, in terms of accuracy in the parameter estimation.

Table 4.1: Overview of comparative models

Constraint for � Prior for � Prior for ⌦

Full-NOWI Nothing Normal Wishart

LT-NOWI Positive Lower-Triangular Normal Wishart

LT-HSGHS Positive Lower-Triangular Horseshoe Graphical Horseshoe

We assume the following three designs of � in this simulation:

1. �-Diag: �ii = 2.0 (i = 2p� 1), �ii = �2.0 (i = 2p), otherwise 0.0.
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2. �-Sparse: �ii = 2.0 (i = 2p � 1), �ii = �2.0 (i = 2p) , �i,i�1 =

�1.0, otherwise 0.0.

3. �-Dense: �ii = 2.0 (i = 2p�1),�ii = �2.0 (i = 2p),�i,i�1 = �1.0,

otherwise the elements in lower-triangular equals to 1.0.

Since our main purpose is to compare estimation of �, we set a simple

assumption for the other parameter; ⌦ is the identity matrix, µ is fixed

to zero. We generate artificial data of n = 1, 500 and p = 15 from the

multivariate skew-elliptical distribution with each specification and evaluate

the posterior statistics of each parameter via MCMC. The hyper-parameters

in the prior distributions are set up as follows.

Full-NOWI bµ = 0, Aµ = 0.01I, b� = 0, A� = 0.01I, S⌦ = pI, ⌫⌦ = p in

(4.6).

LT-NOWI bµ = 0, Aµ = 0.01I, b� = 0, A� = 0.01I, S⌦ = pI, ⌫⌦ = p in

(4.15).

LT-HSGHS bµ = 0, Aµ = 0.01I, b� = 0, A� = 0.01I in (4.15); a⌘ = 1.0 and

b⌘ = 0.0 in (4.29); A! = 0.01I in (4.30)

In all cases, the number of burn-in iterations were 50,000, and the Monte

Carlo sample from the following 100,000 iterations was used in the Bayesian

inference. Also, we repeated simulations 30 times for each setup and obtained

a set of point estimates of � and ⌦. All computations are implemented with

Python 3.7.0 on a desktop PC with 128GB RAM, 8GB GPU and eight-core

3.8GHz i7-10700K Intel processor.

To compare the three models in terms of accuracy in the point estimation

of� and ⌦, we computed the Frobenius norm, as measurement of discrepancy

between the point estimate and the true structure. Tables 4.2 and 4.3 show

the sample median loss with 30 replications for three models. The figures in

parentheses are the standard errors. The smaller the value of the Frobenious

norm, the closer the estimated structure is to the true one. In addition,

in order to make the estimation results visually easy to understand, the
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posterior averages of � and ⌦ of each model in the 30th replication are

shown in Figures 4.1 – 4.6.

First, regarding �, the Frobenious norm of the proposed models (LT-

NOWI, LT-HSGHS) have decreased to 1/8 or less of the Full-NOWI model

for all designs and the estimation accuracy has remarkably improved in Table

4.2. This is because the columns of � is not identified at all in Full-NOWI.

On the other hand, this identification issue is resolved in LT-NOWI and

LT-HSGHS and the structure of � can be estimated well with the proposed

method as shown in Figures 4.1, 4.3 and 4.5. Furthermore, for the �-Diag

case and the �-Sparse case, Table 4.2 reports that the Frobenious norm of

LT-HSGHS is less than half the value of LT-NOWI. This is because that

the horseshoe prior in LT-HSGHS contributes to the estimation performance

by shrinking non-essential elements to zero, while a large amount of non-

zero entries still remain in � for LT-NOWI as shown in Figures 4.1 and

4.3. However, the di↵erence in the Frobenious norm between LT-NOWI

and LT-HSGHS becomes smaller in the �-Dense design because the sparse

assumption of � is not satisfied in this case.

Next, let take a look at results on ⌦. Note that the true structure of ⌦ is

the identity matrix. We examine how the estimation accuracy of ⌦ changes

across the structural designs of �. For all designs of �, the estimation

accuracy is significantly improved in LT-HSGHS, the value of Frobenious

norm is 1/3 or less in Table 4.3 compared with Full-NOWI and LT-NOWI.

In fact, there are a lot of non-zero entries in the o↵-diagonal elements in Full-

NOWI and LT-NOWI in Figures 4.2, 4.4 and 4.6. On the other hand, the

posterior mean of ⌦ in LT-HSGHS becomes the diagonal matrix thanks to the

shrinkage e↵ect. Also, comparing LT-NOWI with Full-NOWI, the Frobenious

norm is slightly smaller in LT-NOWI for all� designs. These findings suggest

that the posterior distribution of ⌦ is a↵ected by the estimation of� as shown

in (4.10).
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Table 4.2: Sample median loss in the point estimation of �

�-Diag �-Sparse �-Dense

Frobenius norm

Full-NOWI 10.587 11.588 12.620

(0.534) (0.743) (0.723)

LT-NOWI 1.344 1.362 1.420

(0.083) (0.115) (0.108)

LT-HSGHS 0.380 0.617 1.214

(0.070) (0.075) (0.138)

Notes: (a) The smaller losses are boldfaced.

(b) The figures in parentheses are the standard errors.

Table 4.3: Sample median loss in the point estimation of ⌦

�-Diag �-Sparse �-Dense

Frobenius norm

Full-NOWI 2.550 2.447 2.352

(0.139) (0.138) (0.136)

LT-NOWI 2.255 2.238 2.210

(0.179) (0.147) (0.155)

LT-HSGHS 0.393 0.479 0.724

(0.101) (0.160) (0.288)

Notes: (a) The smaller losses are boldfaced.

(b) The figures in parentheses are the standard errors.
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(a) True (b) Full-NOWI

(c) LT-NOWI (d) LT-HSGHS

Figure 4.1: �-Diag: True Structure of � and estimated �
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(a) True (b) Full-NOWI

(c) LT-NOWI (d) LT-HSGHS

Figure 4.2: �-Diag: True Structure of ⌦ and estimated ⌦
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(a) True (b) Full-NOWI

(c) LT-NOWI (d) LT-HSGHS

Figure 4.3: �-Sparse: True Structure of � and estimated �
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(a) True (b) Full-NOWI

(c) LT-NOWI (d) LT-HSGHS

Figure 4.4: �-Sparse: True Structure of ⌦ and estimated ⌦
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(a) True (b) Full-NOWI

(c) LT-NOWI (d) LT-HSGHS

Figure 4.5: �-Dense: True Structure of � and estimated �
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(a) True (b) Full-NOWI

(c) LT-NOWI (d) LT-HSGHS

Figure 4.6: �-Dense: True Structure of ⌦ and estimated ⌦
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4.4 Conclusion

In this paper, we have raised a possible identification issue on the skewness

matrix of the skew-elliptical distribution in the Bayesian MCMC method

proposed by Harvey et al. (2010) due to label switching. To avoid this issue,

we proposed a modified model in which the lower-triangular constraint was

imposed upon the skewness matrix. Moreover, we devised an extended model

with the horseshoe prior for both skewness matrix and precision matrix to

further improve the estimation accuracy.

In the simulation study, we compared the proposed models with the model

of Harvey et al. (2010) in the three structural designs of the skewness ma-

trix and found that the proposed models with the identification constraint

significantly improved the estimation accuracy of the skewness matrix.

4.5 Appendix: Extension to multivariate skew-

t distribution

As we mentioned before, Harvey et al. (2010) developed the Gibbs sam-

pling algorithm for the multivariate skew-normal distribution (4.1), but it is

straightforward to extend it to the multivariate skew-t distribution as Sahu

et al. (2003) showed. Since it is expressed as a scale mixture of multivariate

skew-normal distributions, skew-t distributed Yt is expressed as

Yt = µ+�Zt + ✏t,

Zt ⇠ N+

✓
0,

1

�t
Ip

◆
, ✏t ⇠ N

�
0, (�t⌦)

�1� , �t ⇠ Ga
⇣'
2
,
'

2

⌘
,

Zt ? ✏t ? �t,

(4.37)

Given �t, the sampling algorithms for �, ⌦, µ and Zt in (4.37) are almost

identical to the multivariate skew-normal case except that

�: redefine Â� and b̂� in (4.16) as

Â� = A� +
nX

t=1

�tW
|
t ⌦Wt, b̂� = A�b� +

nX

t=1

�tW
|
t ⌦Ỹt.
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⌦: redefine S in (4.10) as

S =
nX

t=1

�t(Yt � µ��Zt)(Yt � µ��Zt)
|.

µ: redefine Âµ and b̂µ in (4.8) as

Âµ = Aµ +
nX

t=1

�t⌦, b̂µ = Aµbµ +
nX

t=1

�t⌦(Yt ��Zt).

Zt: redefine Âz and b̂z in (4.11) as

Âz = �t (Ip +�|⌦�) , b̂z = �t�
|⌦(Yt � µ).

Finally, with the prior ' ⇠ Ga(a', b'), the full conditional posterior distri-

bution of ' is derived as

p('|·) /
nY

t=1

�
'
2

�'
2

�
�
'
2

��
'
2 �1
t exp

⇣
�'�t

2

⌘
⇥ 'a'�1 exp(�b'')

/
�
'
2

�'n
2

�
�
'
2

�n

 
nY

t=1

�t

!'
2 �1

exp

 
�'

2

nX

t=1

�t

!
⇥ 'a'�1 exp(�b'')

/ exp
h⇣'n

2
+ a' � 1

⌘
log'� n log�

⇣'
2

⌘
� b̂''

i
, (4.38)

where

b̂' = b' +
log 2

2
n+

1

2

nX

t=1

(�t � log �t) .

Following Watanabe (2001), we may apply a Metropolis-Hastings algorithm

to draw ' from (4.38). For this purpose, we consider the second-order Taylor

approximation of

f(') =
⇣'n

2
+ a' � 1

⌘
log'� n log�

⇣'
2

⌘
� b̂'',

within the exponential function of (4.38), that is,

f(') ⇡ f('⇤) +rf('⇤)('� '⇤) +
1

2
r2f('⇤)('� '⇤),
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where

rf(') =
n

2
log'+

n

2
+

a' � 1

'
� n

2
r log�

⇣'
2

⌘
� b̂',

r2f(') =
n

2

✓
1

'
� 1

2
r2 log�

⇣'
2

⌘◆
� a' � 1

'2
.

Note that f is globally concave and has a unique mode. If we take the mode

of f as '⇤, we haverf('⇤) = 0. Thus the pdf of the full conditional posterior

distribution (4.38) is approximated as

p('|·) ⇡ K exp


1

2
r2f('⇤)('� '⇤)

�
,

Therefore we can use

' ⇠ N+
⇣
'⇤,

�
�r2f('⇤)

 �1
⌘

as the proposal distribution of ' in the Metropolis-Hastings algorithm.
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Chapter 5

Concluding Remarks

In this doctoral dissertation, we tackled two challenges in modeling asset

returns; (1) p > n problem in case of high-dimensional data with many assets

and (2) modeling of a skewed and fat-tailed distribution with real-world data.

Chapter 2 and 3 examined a solution for the former with Bayesian graphical

models while Chapter 4 focused on the latter.

In Chapter 2, we pointed out a serious issue on the Gibbs sampling algo-

rithm for the Bayesian graphical LASSO model proposed by Wang (2012).

As demonstrated with the simulation study in Chapter 2, Wang (2012)’s al-

gorithm cannot guarantee the positive definiteness of the precision matrix in

the graphical model in each cycle of the Gibbs sampling procedure because

the positive definite condition of the precision matrix is satisfied only for

the diagonal elements, but not always for the o↵-diagonal elements. This

is due to the fact that Wang (2012)’s algorithm generates the o↵-diagonal

elements from the incorrect full conditional posterior distribution, i.e., the

unconstrained multivariate normal distribution.

To solve this issue, we proposed a modification of the original algorithm

so that it should guarantee the positive definiteness of the precision matrix.

The modified algorithm generates the o↵-diagonal elements from a truncated

multivariate normal distribution whose support is the region wherein the

updated precision matrix remains positive definite by utilizing Bélisle et al.

89
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(1993)’s hit-and-run algorithm. It was shown that the proposed algorithm

dramatically improved accuracy in point estimation and graphical structure

learning in the simulation study for all 12 scenarios.

In Chapter 3, we developed a data-driven portfolio framework based on

Bayesian graphical LASSO proposed in Chapter 2. We conducted 10-year

out-of-sample portfolio management experiments from 2011 to 2020 with

monthly return data of US 100 portfolios provided by Kenneth French. We

tested five scenarios: (p, n) = (100, 120), (100, 60), (100, 12), (100, 6) and

(100, 3) by changing the estimation period to analyze portfolio performance

in di↵erent p/n ratios. In the experiment, we compared the global minimum

variance portfolios based on the proposed Bayesian LASSO, two types of

non-Bayesian graphical LASSO (graphical LASSO with both diagonal and

o↵-diagonal elements shrinkage), portfolios based on other types of dimen-

sion compression method such as random matrix theory filtering (Bouchaud

and Potters (2009)) and Ledoit-Wolf shrinkage estimation (Ledoit and Wolf

(2004)), the traditional sample covariance approach, and the equal weight

approach as a benchmark. As far as We know, this is the first attempt to

apply Bayesian graphical LASSO in case of p > n in the literature of port-

folio selection, although there have been researches (e.g., Torri et al. (2019))

that applied non-Bayesian graphical models to portfolio selection in case of

p < n.

In terms of return-risk tradeo↵ and portfolio composition, the results

showed the advantages of the proposed Bayesian approach over the others.

Both Sharpe ratios and indices of portfolio composition were relatively stable

for the proposed approach while they were either unstable for non-Bayesian

graphical LASSO. It is also considered as an important contribution that the

proposed approach is a simple method that combines a factor model, which

is already widely used in the field of finance, with the Bayesian graphical

model, and it is applicable without changing the current business process of

investors significantly.

In Chapter 4, we discussed parameter estimation of the multivariate skew-
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elliptical distribution which could describe the characteristics of asset returns

such as skewness and fat-tail. The multivariate skew-elliptical distribution

can represent the skewness dependency among assets unlike the GH distri-

bution, which is important for application to portfolio management. We

introduced Harvey et al. (2010)’s Bayesian estimation method as a pioneer

research in this field, but raised a problem that Harvey et al. (2010)’s method

cannot identify all elements of the skewness matrix because the likelihood of

the Harvey et al. (2010)’s model takes the same value for any permutations

of the columns in the skewness matrix. Once the columns of the skewness

matrix are randomly misaligned in the Gibbs sampler, their interpretability

is lost.

To solve the issue, we proposed a modified model with the lower-triangular

constraint (Geweke and Zhou (1996), West (2003) and Lopes and West

(2004)) on the skewness matrix. In addition, we extended the model with the

horseshoe prior for the skewness matrix and the precision matrix. In the sim-

ulation study, we compared the proposed models with the model of Harvey

et al. (2010) in three structural designs of the skewness matrix; Diag, Sparse,

and Dense. It was shown that the proposed models with the identification

constraint could successfully estimate the true structure of the skewness de-

pendency in all designs while the Harvey et al. (2010)’s model su↵ered from

the identification issue. Moreover, the extended model with the horse prior

achieved further improvement in the estimation accuracy for both Diag and

Sparse.

To conclude this dissertation, we point out remaining challenges in large-

scale portfolio management for future research. The new algorithm for

Bayesian graphical model and the portfolio approach based on it proposed

in Chapters 2 and 3 enables us to stably estimate a large-scale precision ma-

trix with high estimation accuracy. In our opinion, however, there are two

remaining challenges.

The first one is a heavy computation load of the the proposed model,

though non-Bayesian graphical models may also su↵er from the same prob-
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lem in case of adaptive LASSO. When estimation of the proposed model

is implemented in a programming language with slow matrix computation

like Python, a practical upper limit of the dimension of the precision matrix

is about 1,100 even if we use a high-performance desktop PC with 128GB

RAM, 8GB GPU and eight-core 3.8GHz i7-10700K Intel processor. It may be

improved to some extent by using a fast matrix computing language such as

Julia or MATLAB, but scalability needs to be significantly improved, given

the fact that the number of stocks traded in the world is more than 40,000.

The second one is that graphical models theoretically assume that the

precision matrix to be estimated is a sparse matrix, but the precision matrix

of raw asset return data is largely influenced by common factors and, as

a result, it is not sparse. Therefore, it is necessary to combine it with a

factor model in advance to remove the influence of common factors before

estimating the precision matrix. Although the proposed model itself can work

even in case of p > n, it is still di�cult to make an accurate estimation when

a general factor model is combined with the preprocessing1. As a solution to

this issue, we may apply Bayesian compressed regression (BCR) proposed by

Guhaniyogi and Dunson (2015), which was introduced as one of the related

studies in Chapter 3.

As for the proposed Bayesian estimation of the multivariate skew-elliptical

distribution in Chapter 4, its stable computation can be performed only in

case of p << n. This limitation may hinder us from applying it to large-scale

portfolio management, though this issue arises not only for the skew-elliptical

distribution but also for other distributions in the literature of skew distribu-

tion. Its heavy computation load for sampling latent variables would be an

obstacle to its wider acceptance among practitioners. These problems may

be improved by imposing another kind of identification constraint proposed

in recent years on the skewness matrix. Moreover, since the likelihood of

1In the experiment in Chapter 3, we first estimated the three-factor model for the

whole sample period and used the residuals in each case, but such operation is di�cult in

practice.
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the skew-elliptical distribution is similar to that of a latent variable regres-

sion model, it has a possibility that we can reduce the computational load

by applying the Bayesian compressed regression by Guhaniyogi and Dunson

(2015).
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