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1 Chapter 1: Introduction

1.1 Identification problem in econometrics: Motivation and
purpose of the thesis

In research of econometric or statistical methodologies, the primal focus is often
made on estimation. A typical statistical research mainly considers constructing
an estimator and analyzing its asymptotic properties. It enables us to carry out a
statistical inference, that is, hypothesis tests and calculating confidence intervals,
and also provides a reasonable explanation why a proposed estimator is reasonable
in some respects. Besides, the development of a specific algorithm that approxi-
mates the estimator of interest is also a core of modern econometric and statistical
research. As a sample size is getting larger along with the rapid development of
the internet and storage services, and powerful computational resources have be-
come available at an individual level, efficient treatments of estimation with large
data are becoming a more and more important than ever.

In those efforts, the problem is how to deal with a finite number of obser-
vations to draw inference about a population of interest, and one often implicitly
assumes that if one were to obtain an infinite number of observations the problem
is solved. In basic statistical problems, this view may not cause a fundamental
problem. Classical statistical frameworks were originally developed with agricul-
tural applications in mind. Fisher and Neyman-Pearson frameworks mainly focus
on which fertilizer contributes to the growth of crops more effectively. In such
studies, a researcher could completely randomize the assignment of a treatment,
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and almost fully obtain covariates which are needed in an analysis. Therefore, a
researcher has an “ideal” data (compared to econometric applications), and then
the problem is how to draw a statistically reasonable conclusion given a limited
number of observations. In the last decade, machine learning and deep learning
research have made large successes mainly in image recognition and related top-
ics, and been shown to outperform human performances in several specific areas.
Although there still remain many technical difficulties to overcome, in principle,
they are same as classical statistics in a sense that researchers do not pay much
attention to sampling processes nor model identification; predictive performance
is of primal interest.

However, in econometrics, those views are often not true. First, when deal-
ing with economic agents, researchers often cannot carry out a randomized exper-
iment in which they assign particular individuals to take or do something and oth-
ers not to. Besides, even if they can randomize an assignment, it is often the case
that not all the individuals in an experiment comply the assignment they receive.
In such a situation, the observed data does not represent a population of interest.
Second, in observational studies, endogeneity has to be considered. Other than
choice of individuals, simultaneity, that is, the result of economic equilibrium, is
also an important element that causes endogeneity. Under the endogeneity of a
treatment, the observed data is biased, so even if an infinite number of observa-
tions from such sampling process is available we cannot be able to draw a correct
conclusion about a population of interest unless an additional assumption is intro-
duced. Therefore, in econometric research, one always has to ask oneself whether
data at one’s hand can potentially reveal a parameter of interest, and if not, what
kind of assumptions need to be combined.

To make the issue distinct we should separate an inferential problem into
two components: statistical inference and identification components. Studies of
identification concern the conclusions that could be obtained if we could obtain an
unlimited number of observations. On the other hand, studies of statistical infer-
ence consider evaluating generally weaker conclusion about a population arising
from a finite number of observations, such as sampling error or rate of conver-
gence. Obviously, if we cannot obtain a conclusion about a parameter given an
infinite number of observations, nor can we given a finite number of observations.
Therefore, the study of identification has to come first; any statistical study makes
no sense until we guarantee the identification of a parameter of interest.

In this thesis, I study identification and estimation of the joint distribution
of potential outcomes in causal inference. In a standard causal analysis, a pa-
rameter of interest is often an average treatment effect (ATE), or in recent years,
heterogeneous treatment effect (HTE), which is a conditional treatment effect for
a subset of observed covariates. For identifying these parameters, unconfound-
edness plays a primal role. However, if one wants to identify, for example, the
correlation between potential outcomes or quantile of individual treatment effects,
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unconfoundedness is not sufficient. For they are a functional of the joint distribu-
tion of potential outcomes, not of the (conditional) expectations of each potential
outcome. Therefore, for valid inference of these parameters, we need to study
the identification of the joint distribution of potential outcomes. In subsequent
chapters, I study this issue and propose an estimation method for several different
setups.

1.2 Basic concepts of identification problems

For a general discussion, here we provide several important concepts and defini-
tions regarding to identification problem based on probability density distribution.
Followings are mainly based on Rothenberg (1971).

Let Y ∈ Rd be a vector-valued i.i.d. random variable. Suppose that the prob-
ability density function of Y belongs to a family F of density functions on Rd .
Suppose that each member of F is characterized by a parameter α in a parameter
space A. Combining the space of F and A, we denote F (A) and call it as a model.
A parameter α uniquely determines a density function f (·;α) in F . In general, α

can be infinite-dimensional, but here we focus our attention to finite-dimensional
cases for brevity of explanation.

As described before, identification implies that sufficiently large number of
observations can distinguish one point from the others in a parameter space. To
express this notion, we introduce the following concept:

Definition 1. Two parameter points α1 and α2 are said to be observationally
equivalent if f (y,α1) = f (y,α2) for all y ∈ Rd .

Identification of parametric models is defined through the concept of obser-
vationally equivalent as follows:

Definition 2. A model F (A) is said to be identifiable or identified if for any α ∈ A
there is no other point in A which is observationally equivalent.

In mathematical point of view, identifiability is also characterized as the in-
jectivity of density function f :

Definition 3. A model F (A) is identifiable or identified if

f (y;α1) = f (y;α2)⇒ α1 = α2

for any α1,α2 ∈ A and any y ∈ Rd , that is, f (·;α) is injective with respect to α .

The injectivity of a density function will play a significant role in our identi-
fication analysis in subsequent chapters.
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Note that there is another route in which one allows an identified parameter
to be a set, not a point in a parameter space, for avoiding additional restrictions.
This approach is called set identification or partial identification (Manski, 2007;
Tamer, 2010), while identification under the definitions provided above are called
point identification compared with this, and has been extensively studied in recent
years. But we restrict our attention to point identification in the thesis.

Note also that the terms “identifiable” and “identified”, or “identifiability”
and “identification”, are used as synonyms in identification literature (Aldrich,
2002). We use them exchangeably in the thesis.

2 Chapter 2: Parametric Identification of the Joint
Distribution of the Potential Outcomes

2.1 Introduction

A typical quantity of interest in causal inference is an average treatment effect
(ATE), which is defined as the expectation of the difference of the potential out-
comes. Because the potential outcomes are never observed simultaneously for
each unit (which is often mentioned as “the fundamental problem of causal infer-
ence,” (Holland, 1986) one cannot simply take the mean of the difference of the
observed outcomes to estimate ATE. Then, certain conditions for identifiability,
such as strong ignorability (Rosenbaum and Rubin, 1983) or the instrumental vari-
able approach, have been employed to estimate ATE. ATE on the treated (ATT),
which is also a parameter of interest, can be estimated in a similar approach.
Identification and estimation of ATE and ATT are based on the fact that they are
expressed as the function of the marginal expectations of each potential outcome;
then we do not have to identify the joint distribution of the potential outcomes
and can estimate them by using observed data from randomized experiments or
observational studies under the ignorability condition.

However, there are several parameters of interest in which we cannot rely
on this approach for inference. For example, a quantile treatment effect (QTE),
a quantile of the difference of the potential outcomes, cannot be estimated cor-
rectly even in a randomized experiment due to the fundamental problem of causal
inference. Firpo (2007) proposed estimating QTE by the difference of the quan-
tiles of the potential outcomes. However, because taking a quantile is not a linear
operator, it is not a consistent estimator for the quantile of the treatment effect in
general; we actually need to know the joint distribution of the potential outcomes.

In this chapter, we propose a parametric identification approach for the joint
distribution of the potential outcomes. We show that the non-normality of the
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distribution of the untreated outcome or the conditional distribution of the treated
outcome given the untreated outcome can play a significant role for the identifica-
tion. Because non-normal distributions are accurately approximated by a mixture
of normal distributions with a finite number of components, our result implies the
identification of sufficiently large classes of distributions (Ferguson, 1973; Ish-
waran and Zarepour, 2000; Ishwaran and James, 2001). We mainly focus on the
case of a randomized control trial, but by incorporating covariates into the model,
our approach can be extended to an observational study case in which the ignora-
bility assumption holds.

2.2 Main Results

We take the setup of Rubin’s potential outcome model (Rubin, 1974). Let y0,y1 ∈
R be scalar potential outcomes when receiving the control and treatment condi-
tion, respectively. Denote by Pv(ω) = {p(v;ω) : ω ∈ Ω} the class of the density
function of random variable v characterized by the parameter ω . Throughout this
chapter, we restrict our attention to continuous potential outcomes.

Let p(y0) ∈ Py0(λ ), p(y1 | y0) ∈ Py1|y0(θ), and p(y1) ∈ Py1(ξ ), where
λ ∈ Λ, θ ∈ Θ, and ξ ∈ Ξ. Considering the identity

p(y1) =
∫

p(y1 | y0)p(y0)dy0, (1)

we can write

ξ = (ξ1,ξ2) = (ψ(θ ,λ ),ψ(λ )), (2)

where ψ : Θ×Λ → Ξ1 ⊂ Ξ, ψ : Λ → Ξ2 ⊂ Ξ, Ξ1 ∩Ξ2 = /0, Ξ1 ∪Ξ2 = Ξ. The
notation (2) implies that the parameter for p(y1) can be expressed as the function
of that of p(y0) and p(y1 | y0), and is partitioned into two parts, one of which is
dependent on θ , while the other is independent of θ . Because we can identify
the marginal distributions of each potential outcome, that is, λ and ξ , using the
observed data, our problem reduces to: under what conditions θ is identified given
the information λ and ξ1. In what follows, we treat λ as a known constant, not a
parameter, since our interest lies in the identification of θ .

With this setup, if

ψ(θ ,λ ) = ψ(θ ′,λ )⇒ θ = θ
′ (3)

for any fixed λ , then θ is identified. Therefore, a general identification condition
for θ can be stated as follows.

Proposition 1. The parameter for p(y1 | y0), θ , is identified if ψ is injective with
respect to θ .
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A necessary condition for the injectivity of ψ is

dim(ψ(θ ,λ ))≥ dim(θ). (4)

Then, our identification analysis consists of two steps: (a) first, we examine con-
dition (4), and if it is true, then (b) we try to construct the inverse mapping ν such
that, for any fixed λ ,

ν ◦ψ(θ ,λ ) = θ . (5)

Investigating those conditions, we obtain the two main theorems. First one
is about a simple normal model.

Theorem 1. Suppose p(y1 | y0) = N(y1;β0 + β1y0,σ
2
10) and that p(y0) is not a

degenerate distribution. Then, the dimension condition (4) is satisfied if and only
if p(y0) is not a normal distribution.

This theorem suggests that, when the relation between the potential outcomes
is supposed to be linear, we may have the identification of the joint distribution of
potential outcomes if the distributions of observed variables are skewed.

Second, we extend this result to a more flexible model where the joint distri-
bution p(y1,y0) is directly specified by normal mixtures. It is well known that any
continuous distribution is represented as the mixture of an infinite number of dis-
tributions, except for several unusual cases (Ferguson, 1973). Besides, even with
a finite number of components, a mixture distribution provides a good approxima-
tion of a target distribution if it has enough components (Ishwaran and Zarepour,
2000; Ishwaran and James, 2001). Then, the specification of p(y1,y0) with a fi-
nite normal mixture broadens the scope of identifiable relationships between the
potential outcomes.

We focus on a model of the form

p(y1,y0) =
K

∑
k=1

w(k){N(y1;β0(k)+ρ(k)r(k)y0,(1−ρ
2
(k))r

2
(k)σ

2
0(k)) (6)

×N(y0; µ0(k),σ
2
0(k))}

where β0(k) = µ1(k)−ρ(k)r(k)µ0(k) and r(k) = σ1(k)/σ0(k). Similar to Theorem 1,
we have the following result.

Theorem 2. Suppose the model (6) (K ≥ 2) and if:

(A1) ρ(k) = ρ for k = 1, . . . ,K;

(A2) there exists k1,k2 such that β0(k1) = β0(k2);

(A3) w(k) ̸= w(k′) for all k ̸= k′,

then p(y1,y0) is identified.
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Note that under (6), the conditional expectation of y1 given y0 can be ex-
pressed as a simplified form of a local linear regression (Müller et al., 1996):

E[y1 | y0] =
1

p(y0)

∫
y1 p(y1,y0)dy1 =

K

∑
k=1

w(k)(β0(k)+ρr(k)y0),

where w(k) = w(k)N(y0; µ0(k),σ
2
0(k))/p(y0). Then, even under the identification

conditions (A1)–(A3), the model (6) can express complex relationships between
the potential outcomes to some extent. Furthermore, we can introduce covariates
to (6), which enables our analysis to be extended to observational studies under
unconfoundedness.

3 Chapter 3: Estimation of Heterogeneous Treat-
ment Effects under Non-ignorable Assignment

3.1 Introduction

Extending the methods developed in Chapter 2, we consider identifying and esti-
mating heterogeneous treatment effects (HTEs) in non-randomized settings. Ex-
isting studies often define HTEs as a function of the observable variables; however
in this chapter we discuss the identification and inference of HTEs which we de-
fine as

HTE(y0) = E[y1 − y0 | y0] ,

where y1 ∈ R and y0 ∈ R are the potential outcome variable under the (special)
treatment condition (with higher cost) and the (default) control condition respec-
tively. This HTE is a function of y0, which can indicate how much effect the unit
whose outcome is y0 under the untreated condition, would get if the unit is as-
signed to the treatment condition. This information may be more informative to
policy makers or medical practitioners than HTEs in a standard definition.

To this end, we introduce the following two assumptions. First, we consider
relaxing strong ignorability condition, which is often assumed in observational
studies, as

p(z | y1,y0,x) = p(z | y0,x), (7)

where x ∈ Rd is a d-dimensional covariate vector and z ∈ {0,1} is the binary
indicator which is z = 1 when y1 is observed (i.e. when assigned and complying
with the treatment condition). We refer to this assumption as weak ignorability.

Besides, although we assumed completely randomized experiments in the
last chapter, here we extend them to a case in which there exists a nonignorable
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noncompliance under weak ignorability. Under weak ignorability, the probability
of being treated is not identified in general. To deal with this issue, we assume that
the information on the distribution of the untreated outcome p(y0) or its moments
is available.

As typical examples where p(y0) can be obtained, we consider the follow-
ing two setups prevalent in applied studies (see also Figure 1): (a) randomized
controlled trials which “one-sided noncompliance” (Imbens and Rubin, 2015), in
that for the control group all the participants comply with the control condition
while for the treatment group not all the participants comply with their treatment,
or individuals are allowed to choose their treatment, and (b) observational stud-
ies in which external information on the population or a random sample of the
population is available.

random assignment

y0 x

Missing

Missing

Assigned to 
the control 

condition (r=0)

y1

𝑝 𝑧 𝑦 , 𝑦 , 𝑥 𝑝 𝑧 𝑦 , 𝑥
⇔ 𝑝 𝑦 𝑦 , 𝑥, 𝑧 1 𝑝 𝑦 𝑦 , 𝑥

missing

Assigned to 
the treatment 
condition (r=1)

y0 xy1

Choose the 
treatment 

condition (z=1)
Choose the 

control 
condition (z=0)

Population

Whole sample for RCT

Random sampling    (dependent on x)

(a) RCT with one-sided non-
compliance

Population

Random sampling   (with inclusion probability dependent on x)

Macro-level 
data

Micro-
level 

dataset

or

y0 x

Missing

y1

missing
Choose the 
treatment 

condition (z=1)
Choose the 

control 
condition (z=0)

y0 xy1

Observational 
study (r=1)

Population 
information

(r=0)

𝑝 𝑟 𝑦 , 𝑦 , 𝑥 𝑝 𝑟 𝑥

𝑝 𝑧 𝑦 , 𝑦 , 𝑥 𝑝 𝑧 𝑦 , 𝑥
⇔ 𝑝 𝑦 𝑦 , 𝑥, 𝑧 1 𝑝 𝑦 𝑦 , 𝑥

(b) Observational study with popu-
lation information

Figure 1: The two setups we considered in this chapter

3.2 Main results

Applying the result of Hirano et al. (2001), who consider the identification of a
model for a panel data in which there is a non-ignorabile attrition but refreshment
samples avaiable, and Takahata and Hoshino (2019), we have the following main
theorem.

Theorem 2. Under weak ignorability and if:

(c.1) p(y0) is known;

(c.2) p(z = 1 | y0,x) has no interaction term between y0 and x;

(c.3) y1 = γ0y0 +φ10(x)+ ε10, ε10 ∼ N(0,σ2
10), where φ(x) is an arbitrary func-

tion of x;
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(c.4) p(y0 | x,z = 1) is not a degenerate distribution nor the normal distribution
nor a mixture of them;

then, HTE and ATE are identifiable.

Condition (c.3) requires that the conditional expectation of y1 given y0 and
x is linear with respect to y0. This seems to be somewhat restrictive, but the
conditional expectation of y1 given y0 is generally nonlinear with respect to y0 by
integrating out x. Therefore, various kinds of heterogeneity in treatment effects
can be captured to some extent even under (c.3).

Based on Theorem 2, we propose a quasi-Bayesian estimation method. To re-
flect an auxiliary information in the likelihood, we rely on a GMM-based method
by Nevo (2003). Combing this method with the data augmentation algorithm (or
numerical integration), we can derive a MCMC procedure for posterior approxi-
mation.

We apply the proposed method to real job-training data set from the National
Job Training Partnership Act (JTPA) Study. This data set has been analyzed by
various researchers. Based on the estimates of HTE, we show a novel findings
about women participants, along with consistent result with existing studies.

4 Chapter 4: Nonparametric point identification and
a Bayesian estimation of the joint distribution of
potential outcomes

4.1 Introduction

This chapter further extend the results in previous chapters from parametric spec-
ifications to nonparametric ones.

In economic program evaluation, average treatment effects (ATEs) has long
been a primal parameter of interest. Identification and estimation of ATEs are
extensively studied (see Imbens and Wooldridge (2009) and Abadie and Cattaneo
(2018) for a review). While ATEs summarize the effect of a treatment of interest
by a scaler value, distributional treatment effects are known to be more informa-
tive than ATEs in some applications.

Quantile treatment effects (QTEs) are a special case of distributional treat-
ment effect and many methods are suggested for the identification and estimation
of QTEs (e.g. Chernozhukov and Hansen (2005) and Firpo (2007)). However,
QTEs considered in previous studies are not a quantile of a treatment effect, as
discussed in Chapter 2. To deal with inferences on exactly defined QTEs, we
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need to know the joint distribution of the potential outcomes. In addition to QTEs,
there are several parameters in which we need to identify the joint distribution of
the potential outcomes. Takahata and Hoshino (2019) discuss several examples,
including causal mediation analysis and heterogeneous treatment effects.

To overcome this issues, we consider a sufficient condition for nonparamet-
ric point identification of the joint distribution of the potential outcomes. As de-
scribed later, the identification problem reduces to the uniqueness of the solu-
tion to certain integral equation. Hu et al. (2017) illustrate that several economic
problems which concern the uniqueness of an integral equation can be solved by
transforming it to a Volterra integral equation of the second-kind. They propose
the moving support condition, which requires the support of one of the potential
outcomes to vary according to the control variable, to make the transormation pos-
sible. Volterra integral equations of the second-kind are known to have a unique
solution, then we readily obtain the identification once the integral equation of
interest is transformed to it.

For this purpose, we assume the existence of a control variable, which is
employed in various literature in econometric research. We show that, given the
existence of the control variable which satisfy the moving support condition, the
joint distribution of the potential outcomes is nonparametrically identified. While
the existence of the control variable is untestable and its validity needs to be ar-
gued based on the background of a specific example, we demonstrate that the
moving support condition is approximately satisfied in the wide range of distri-
butions. For estimation, we employ a nonparametric Bayesian density estimation
with the data augmentation technique to deal with the missing outcomes. Finally,
we show the results of numerical experiments that encourage our identification
result.

4.2 Main results

We follow Rubin’s potential outcome framework (Rubin, 1974, 1990; Imbens and
Rubin, 2015), as same as the previous chapters. We focus on randomized experi-
ments without non-compliance, but the analysis may be extended to observational
studies or other designs by introducing additional ignorability conditions.

Suppose that a vector of pretreatment covariates w ∈ Rd is available for all
the individuals. The key identity is

p(y1 | w) =
∫

p(y1 | y0,w)p(y0 | w)dy0. (8)

If all the variables are discrete, we consider the integral in (8) as summation. In
a randomized experiment, p(y1 | w) and p(y0 | w) are identified using the obser-
vations. Therefore, we can consider the identity (8) as an integral equation with
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respect to p(y1 | y0,w) and the identification problem reduces to the uniqueness
of the solution to (8). Note that the whole discussion of this chapter holds if we
switch roles between y1 and y0. That is, we can also develop our analysis on the
identity

p(y0 | w) =
∫

p(y0 | y1,w)p(y1 | w)dy1,

instead of (8). However, for simplicity of exposition, we develop our analysis
based on (8).

In the field of integral equations a known function inside the integral is called
a kernel. In our case, the kernel is p(y0 | w). The difficulty of our problem is
that the dimension of arguments of the kernel is smaller than that of the function
of interest. Integral equations of such class have not been studied well, and do
not allow us to investigate theoretical properties. Therefore, we introduce several
assumptions that enable us to refer to the existing framework of integral equations.

The most significant assumption made in our analysis is the following.

Assumption 1. (existence of a control variable) There exists a subset of w = (v,u)
such that

y0 ⊥̸⊥ v | u, (9)
y1⊥⊥v | y0,u.

Intuitively, this requires that there exists a variable v such that it does not
affect a heterogeneity of treatment effects. Assumption 1 is related to the con-
trol function assumption, which is employed in various kinds of literature, such
as (nonparametric) simultaneous equation models, nonseparable models, or mea-
surement error models (Heckman and Robb Jr, 1985; Newey et al., 1999; Blundell
and Powell, 2003; Florens et al., 2008; Su and Ullah, 2008; Imbens and Newey,
2009; Blundell et al., 2013; Wiesenfarth et al., 2014).

Under Assumption 1, we have

p(y1 | v,u) =
∫

p(y1 | y0,u)p(y0 | v,u)dy0. (10)

By fixing y1 at an arbitrary (finite) value, we observe that the kernel p(y0 | v,u)
has the arguments of larger dimensions than the function of interest. Therefore,
we can study the uniqueness of the solution to (9) based on the existing literature
on linear integral equations.

Without loss of generality, we can assume that v is a scalar. Besides, the
discussions below hold for any fixed u. Then, we will suppress the conditioning
on u in what follows and rewrite the integral equation of interest as

p(y1 | v) =
∫

p(y1 | y0)p(y0 | v)dy0. (11)
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It is still difficult for us to analyze the identification condition with this expression.
However, if we consider (11) as a Volterra integral equation of the first-kind, we
can develop further our analysis.

Hu et al. (2017) suggests a set of regularity conditions that a Volterra equation
of the first-kind can be transformed into the second-kind, which is known to admit
a unique solution. Here we adapt their approach to our setting. Suppose that the
range of integration in (11) is bounded, and is a function of v, [b(v),b(v)], which
is called the moving support condition. Fixing y1 and viewing it as a “parameter”,
we rewrite (11) as

h(v) =
∫ b(v)

b(v)
K(v,y0)g(y0)dy0, (12)

where, h(v) = p(y1 | v), K(v,y0) = p(y0 | v), and g(y0) = p(y1 | y0).

Similar to Theorem 2.1 in Hu et al. (2017), we obtain the identification of
g(y0), that is, p(y1 | y0) for fixed y1. Since this argument holds for arbitrarily fixed
y1, we obtain the identification of p(y1 | y0).

Theorem 3. Suppose Assumptions 1–8 (see the main text) hold. Then, given the
identification of p(y1 | v) and p(y0 | v), p(y1 | y0) is identified.

The moving support condition and associated regularity conditions look dif-
ficult to be satisfied. Particularly, that the upper bound of y0 must be monotone
increasing and the support diminish on the lower bound seems to be demanding.
However, we can demonstrate that it can be approximately satisfied in many cases
when we transform variables each of which is supported on a real line into the unit
interval, [0,1]. Importantly, several standard specifications on R3 approximately
satisfy the moving support condition by this transformation, while there are some
exceptions.

To examine the derived identification results, we propose a Bayesian non-
parametric estimation method and carry out numerical experiments based on it.
In frequentist’s approach, we need to integrate out the unobserved variables (i.e.,
y0 in the treatment group and y1 in the control group) in the conditional likelihood
function for inference. With a large sample, it requires a numerical integration
as high-dimensional as the sample size, which is computationally expensive. On
the other hand, in Bayesian inference, we can use data augmentation algorithms
(Tanner and Wong, 1987; Damien et al., 1999), where the integration for unob-
served variables is replaced by simply sampling unobserved outcomes given the
other parameters in each iteration of Markov Chain Monte Carlo algorithm, and
marginalizing these augmented variables. Although its computational cost also
increases with the sample size, sampling is by far simpler than numerical integra-
tion. In this respect, the use of a Bayesian approach is encouraging.

We employ Dirichlet Process Mixture models (Ferguson, 1973; MacEachern
and Müller, 1998; Ishwaran and James, 2001; Gelman et al., 2013) for avoiding
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misspecification and taking advantage of the nonparametric identification result.
Given the augmented variables, the Gibbs sampling algorithm based on the stick-
breaking prior can be used, which allows for simple posterior computations.

The results of experiments for several different data-generating processes
encourage our identification results.
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