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Chapter 1

Introduction

With the increased availability of large-scale data in many fields, including economics, finance, and

marketing, the need for econometric tools to cope with the challenges associated with dealing with

big data has increased in recent years. While the term “Big Data” has been used with different

definitions, such as data that cannot be stored on memory being the original definition, here we

define it as large-scale data that cannot be effectively estimated using traditional methods, e.g.,

OLS, Bayesian regression with non-informative priors etc. For example, one prominent case of

this is the p >> n problem, where the number of parameters exceeds the number of data. In

this case, ordinary econometric tools fail in properly estimating the model, leading to improper

forecasts, inference, and decision making. Although many methods have been developed to deal

with these challenges, especially in the field of statistical/machine learning, not all developments

are done with economic datasets in mind. To this end, this dissertation develops methodological

and computational tools or modeling, inference, forecasting, and decision making for big data.

There are several benefits in analyzing big data for economic analysis. One prevailing practice

in economics and finance is to model at the aggregate level. For example, while there are hundreds

or thousands of assets that can be analyzed, many analysis in the literature analyze the aggregate

indices. Although modeling the aggregate has its benefits, such as having lesser noise than its

individual components, the results might be misleading in terms of its generalization. As such,

there are many examples where a property found in the aggregate level does not appear to exist

(or at least not as strong as the aggregate level) in its components. Analyzing a large set of data,

and developing models for its individual components, greatly increases the economic insight gained

from the analysis.

Another benefit is its practical utility. With a large dataset at hand, the economist should use all

of the data in order to learn about the complex structure of the evolving economy, or information

in order to make better decisions. Utilizing big data, thus, allows the economist to make a fully

informed analysis without constraint or bias (e.g. selection bias). The effectiveness of big data tools

have been shown in many fields, but with limited success in economics. Developing econometric

tools to address the key points in the field to fully utilize large-scale data is therefore critical.

2



Chapter 2

Non-Linear Leverage Effects: Evidence From A
Large Cross-Section of Stock Returns

The estimation, inference, and prediction of volatility is one of the most crucial aspects in ana-

lyzing data with variability. In the field of finance and economics, volatility of financial assets has

been investigated with great scrutiny to further the understanding of the mechanics and structure

of price movement. One aspect of volatility that has gathered special interest is the correlation

between an asset’s return and its volatility; coined the leverage effect. In particular, for decision

making involving predictions, this correlation is critical, as knowing how today’s change will ef-

fect tomorrow’s risk is simply necessary for most sequential decision problems, especially under

considerable shocks. It is often claimed that this correlation is negative, implying that a negative

(positive) shock to an asset’s return results in an increase (decrease) in its volatility. Thus, chang-

ing decisions accordingly based on predictions of increased or decreased volatility, implied by the

previous shock.

This phenomenon is intuitive, as we can expect– and often observe– that an asset under distress

exhibits more variability and uncertainty compared to an asset that is stable or increasing in price.

The term leverage refers to an economic interpretation given by Black (1976) and Christie (1982).

They state that, when an asset’s price declines, the company’s relative debt increases, making the

balance sheet leveraged, resulting in the company being riskier and therefore its market value more

volatile (see Bekaert and Wu 2000, for example, for different interpretations and comparisons of

the leverage effect). Though only a hypothesis, this explanation has held weight in the field and

the effect is widely believed to exist, with supporting evidence from examining major stock indices

(Nelson 1991; Glosten et al. 1993; Dumas et al. 1998, for ARCH-type models and Jacquier et al.

1994; Harvey and Shephard 1996; West and Harrison 1997; Jacquier et al. 2004; Yu 2005; Omori

et al. 2007; Nakajima and Omori 2009; Asai and McAleer 2011; Asai et al. 2012; Nakajima and

Omori 2012; Takahashi et al. 2013; Shirota et al. 2014, for SV-type models). However, contrary

to consensus, the lack of empirical evidence of the effect from individual stocks is paradoxical;

with most stocks exhibiting zero or very weak correlation between asset returns and volatility.

This is troublesome for decision makers wishing to exploit this structure for decision making, since
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mischaracterization of this correlation can lead to considerable loss in utility.

We postulate that this is caused by the simple, but almost universal, representation of the

correlation: Most volatility models in the literature, basic or advanced, assume that the relationship

between an asset’s return and its volatility is linear, even though many advances have been made

on other aspects of the model. However, it is counter-intuitive to think that a large shock in return

effects volatility with the same linear relationship as small daily fluctuations. This notion has

promoted research in considering more complex leverage effects. For example, Hansen et al. (2012)

introduced a more general form of the leverage effect by using a leverage function within the

GARCH framework. In the context of stochastic volatility (SV) models, there has been no advances

in this direction, even though SV models are known to outperform ARCH-type models due to its

flexibility in capturing traits seen in asset returns (Geweke 1994; Fridman and Harris 1998; Kim

et al. 1998). The advances are hindered, partly, due to the computational complexity SV models

entail, as it requires complex Markov chain Monte Carlo (MCMC) methods that are hard to sample

and tune.

We respond to this movement by extending the SV model to include a leverage function in the

form of a Hermite polynomial to examine the nonlinear dynamics of the correlation between an as-

set’s return and its volatility. To achieve this, we develop an effective Bayesian computation method

using sequential Monte Carlo (SMC) by developing and extending the particle learning method of

Carvalho et al. (2010), enabling estimation of the parameters of interest in a fast, efficient, and on-

line manner that would have been previously near impossible. With the new model and algorithm,

we are able to examine and analyze the leverage effect over a large number of equity assets and

over time, and find strong evidence for the leverage effect where it is unobserved, or weak, under

the simple linear representation, with improved predictive performance.
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Chapter 3

Parallel Computing for Large-Scale On-Line Esti-
mation

The state space model (SSM) has been one of the indispensable tools for time series analysis

and optimal control for decades. Although the archetypal SSM is linear and Gaussian, the litera-

ture of more general non-linear and non-Gaussian SSMs has been rapidly growing in the last two

decades. For lack of an analytically tractable way to estimate the general SSM, numerous approx-

imation methods have been proposed. Among them, arguably the most widely applied method

is particle filtering (Gordon et al. 1993; Kitagawa 1996). Particle filtering is a type of sequential

Monte Carlo method in which the integrals we need to evaluate for filtering are approximated by

the Monte Carlo integration. To improve numerical accuracy and stability of the particle filtering

algorithm, various extensions, such as the auxiliary particle filter (Pitt and Shephard 1999a), have

been proposed, and still actively studied by many researchers. For SSMs with unknown parameters,

Kitagawa (1998) proposed a self-organizing state space modeling approach in which the unknown

parameters are regarded as a subset of the state variables and the joint posterior distribution of

the parameters and the state variables is evaluated with a particle filtering algorithm. Other parti-

cle filtering methods that can simultaneously estimate parameters have been proposed by Liu and

West (2001), Storvik (2002), Fearnhead (2002), Polson et al. (2008), Johannes and Polson (2008),

Johannes et al. (2008), Carvalho et al. (2010), just to name a few. These particle filtering meth-

ods that estimate state variables and parameters simultaneously are often called particle learning

methods in the literature. Although the effectiveness of particle filtering methods have been proven

through many different applications (see Montemerlo et al. (2003), Zou and Chakrabarty (2007),

Mihaylova et al. (2008), Chai and Yang (2007), Lopes and Tsay (2011), and Dukic et al. (2012)

among others), it is offset by the fact that it is a time-consuming technique. Some practitioners still

shy away from using it in their applications because of this despite its benefit.

This attitude toward particle filtering would be changed by the latest technology: Parallel com-

puting. As we will discuss in Section 2, some parts of the particle filtering procedure are ready

to be executed simultaneously on many processors in a parallel computing environment. In light
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of inexpensive parallel processing devices such as GPGPUs1 (general purpose graphics processing

units) available to the general public, more and more researchers start to jump on the bandwagon

of parallel computing. Suchard et al. (2010) and Lee et al. (2010) reviewed general attempts at

parallelization of Bayesian estimation methods. Durham and Geweke (2011) implemented a se-

quential Monte Carlo method on the GPU and applied it to complex nonlinear dynamic models,

which are numerically intractable even for the Markov chain Monte Carlo method.

As for parallelization of particle filtering, a few researches (see Montemayor et al. (2004), Bolic

et al. (2005), Maskell et al. (2006), Hendeby et al. (2007), Hendeby et al. (2010), Chao et al.

(2010), Gong et al. (2012), for example) have been reported, though the field is still in a very early

stage. However, all of these state of the art methods are either 1) simple implementations onto

parallel devices, 2) modifies the algorithm in a way that introduces additional estimation errors, or

3) depends on device-specific functionalities that would make it inapplicable for other devices. For

example, Lee et al. (2010) and Durham and Geweke (2011) are both parallel implementations of

the particle filter, however, the resampling step for both implementations are computed sequentially

and thus they are not fully parallel algorithms. Hendeby et al. (2010) and Gong et al. (2012), on

the other hand, use device-specific functionalities of the GPU to parallelize the resampling step

that cannot be implemented in other devices. One method that has been used is what is called

local resampling (Chao et al. 2010), which breaks up the resampling step in to several blocks and

sequentially resample within that block. This method is obviously not a fully parallel algorithm

as, while the computationally burden is lessened, it requires sequential computation within blocks,

and thus not exploiting the full power of the parallel framework. A fully parallel algorithm for

particle filters have yet to be developed, to the best of the authors’ knowledge.

In developing parallel algorithms, with particularly GPUs in mind, there are a few bottlenecks

one should avoid. First, processing sequential algorithms on the GPU can be inefficient because of

the GPU’s device memory architecture and its lack of clock speed compared to the CPU. Roughly

speaking, a GPU has two types of memory: memory assigned to each core and memory shared

1A high-performance GPU (graphics processing unit) was originally developed for displaying high-resolution 2D/3D
graphics necessary in video games and computer-aided design. Because a GPU is designed with a massive number of
processor cores to conduct single-instruction multiple-data (SIMD) processing, it has been regarded as an attractive plat-
form of parallel computing and researchers started to use it for high-performance computing. As GPU manufacturers try
to take advantage of this opportunity, it has evolved into a more computation-oriented device called GPGPU. Nowadays
almost all GPUs have more or less capabilities for parallel computing, so the distinction between GPUs and GPGPUs are
blurred.
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by all cores. Access to the core-linked memory is fast while access to the shared memory takes

more time. Generally, one should try as much to keep all calculations on each core without any

large-scale communications among cores. The second bottleneck is that it is time-consuming to

transfer memory between the host memory, which the CPU uses, and the device memory, which the

GPU uses. In other words, the bandwidth between the GPU’s device memory and the CPU’s host

memory is very narrow. We can see that a fully parallel algorithm defined above would be ideal for

GPU devices as it would, automatically and without manipulation, be able to calculate everything

within the GPU and without bottlenecks.

With these bottlenecks in mind, we have developed a new parallel resampling algorithm to

complete the first fully parallel algorithm that computes the full cycle of the particle filtering al-

gorithm in a massively and fully parallel manner. This includes the computing of the likelihood

for each particle, constructing the cumulative distribution function (CDF) for resampling, resam-

pling the particles with the CDF, and propagating new particles for the next cycle. By keeping all

of our computations within the GPU and avoiding all memory transfer between the GPU and the

CPU during the execution of the particle filtering algorithm, we exploit the great benefits of parallel

computing to the fullest while avoiding its short comings, especially on the GPU. While we designed

our algorithm with GPUs in mind, since our parallel algorithm is a fully parallel algorithm, it can

be easily implemented on other parallel computing devices.

In order to compare our new parallel algorithm with conventional sequential algorithms, we

conduct a Monte Carlo experiment in which we apply the competing particle learning algorithms

to estimate a simple state space model (stochastic trend with noise model) and record the execution

time of each algorithm. The results show that our parallel algorithm on the GPU is far superior to

the conventional sequential algorithm on the CPU by around 30×. Focusing only on the resampling

step, we have achieved a speed up of around 10×, which considering the sequential nature of the

algorithm, is a significant improvement.
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Chapter 4

Dynamic Sparse Factor Analysis

The premise of dynamic factor analysis (DFA) is fairly straightforward: there are unobservable

commonalities in the variation of observable time series, which can be exploited for interpretation,

forecasting, and decision making. Dating back to, at least, Burns and Mitchell (1947), the fun-

damental idea that a small number of indices drive co-movements of many time series has found

plentiful empirical support across a wide range of applications including economics (Stock and

Watson 2002a; Bai and Ng 2002; Bernanke et al. 2005; Baumeister et al. ????; Cheng et al. 2016),

finance (Diebold and Nerlove 1989; Aguilar et al. 1998; Pitt and Shephard 1999b; Aguilar and West

2000; Carvalho et al. 2011), and ecology (Zuur et al. 2003), to name just a few. More notably, in

their seminal work on DFA, Sargent et al. (1977) showed that two dynamic factors could explain

a large fraction of the variance of U.S. quarterly macroeconomic variables. Motivated by a similar

(but significantly larger) application, we develop scalable Bayesian DFA methodology and deploy

it to glean insights into the hidden drivers of the U.S. macroeconomy before, during and after the

Great Recession.

With large-scale cross sectional data becoming readily available, the need for developing scal-

able and reliable tools adept at capturing complex latent dynamics have spurred in both statistics

and econometrics (Beyeler and Kaufmann 2016; Kaufmann and Schumacher 2017; Fruehwirth-

Schnatter and Lopes 2018; Nakajima et al. 2017). While “dynamic factor models have been the

main big data tool used over the past 15 years by empirical macroeconomists” (Stock and Watson

2016), there are remaining methodological challenges. It is now commonly agreed that high-

dimensional inference can hardly be formalized and executed without any sparsity assumptions.

The fundamental goal of our research is to facilitate sparsity discovery (i.e. data-informed spar-

sity), when in fact present. In doing so, we keep in mind three main pillars that we regard as

essential for building a stable foundation for sparse factor modeling.

Firstly, the latent factor loadings should account for time-varying patterns of sparsity. In (macro-

)economics and finance, the sequentially observed variables may go through multiple periods of

shocks, expansions, and contractions (Hamilton 1989). It is thus expected that the underlying

latent structure changes over time– either gradually or suddenly– where some factors might be
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active at all times, while others only at certain times. For example, in our empirical analysis we

find that certain factors exert influence on some series only during a crisis and later permeate

through different components of the economy as the shock spreads. Dynamic sparsity plays a very

compelling role in capturing and characterizing such dynamics. Recent developments in sparse

factor analysis reflect this direction of interest (West 2003; Carvalho et al. 2008; Yoshida and West

2010; Lopes et al. 2010). More recently, Nakajima and West (2013c) deployed the latent threshold

approach of Nakajima and West (2013a) in order to induce zero loadings dynamically over time.

Our methodological contribution builds on this development, but poses far less practical limitations

on the dimensionality of the data and far less constraints on identification.

Related to the previous point is the question of selecting the number of factors. This modeling

choice is traditionally determined by a combination of a priori knowledge, a visual inspection of

the scree plot (Onatski 2009), and/or information criteria (Bai and Ng 2002; Hallin and Liska

2007). In the presence of model uncertainty, the Bayesian approach affords the opportunity to

assign a probabilistic blanket over various models. Bayesian non-parametric approaches have been

considered for estimating the factor dimensionality using sparsity inducing priors (Bhattacharya

and Dunson 2011; Rockova and George 2016). The added difficulty stemming from time series

data, however, is that the number of factors may change over time. Despite plentiful empirical

evidence for this behavior in macroeconomic data (Bai and Ng 2002), the majority of existing DFA

tools treat the number of factors as fixed over time. As a remedy, we turn to dynamic sparsity

as a compass for determining the number of factors without necessarily committing to one fixed

number ahead of time.

The third essential requirement is accounting for structural instabilities over time with time-

varying loadings and/or factors. One seemingly simple solution has been to deploy rolling/extending

window approaches to obtain pseudo-dynamic loadings. These estimates, however, lack any sup-

porting probabilistic structure that would induce smoothness and/or capture sudden dynamics.

Recent DFA developments (Del Negro and Otrok 2008; Nakajima and West 2013a) have treated

both the factors and loadings as stochastic and dynamic. Adopting this point of view, we blend

smoothness with sparsity via Dynamic Spike-and-Slab (DSS) priors on factor loadings (Rockova

and McAlinn 2017). This prior regards factor loadings as arising from a mixture of two states:

an inactive state represented by very small loadings and an active state represented by smoothly
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evolving large loadings. The mixing weights between these two states themselves are time-varying,

reflecting past information to prevent from erratic regime switching. The DSS priors allow latent

factors to effectively, and smoothly, appear or disappear from each series, tracking the evolution of

sparsity over time.

In this work, we develop methodology for sparse dynamic factor analysis that is built on the

three foundational principles mentioned above. Using this methodology, we examine a large-scale

balanced panel of macroeconomic indices that span multiple corners of the U.S. economy from

2001 to 2015. Our method helps understand how the economy evolves over time and how shocks

affect its individual components. In particular, examining the latent factor structure before, during,

and after the Great Recession, we obtain insights into the channels of dependencies and we assess

permanence of structural changes.

To ensure that our implementation scales with large datasets, we propose an EM algorithm for

MAP estimation that recovers evolving sparse latent structures in a fast and potent manner. As the

EM algorithm finds a likely sparse structure, it does not require strong identification constraints that

would be needed for MCMC simulation. While interpretation can be achieved with ex-post rotations

(Bai and Ng 2013; Kaufmann and Schumacher 2017), here we deploy rotations to sparsity inside

the EM algorithm along the lines of Rockova and George (2016) to (a) accelerate convergence and

(b) obtain better oriented sparse solutions.
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Chapter 5

Large-Scale Predictive Regression

The increasing availability of large datasets, both in terms of the number of variables and the

number of observations, combined with the recent advancements in the field of econometrics,

statistics, and machine learning, have spurred the interest in predictive models with many explana-

tory variables, both in finance and economics.2 As not all predictors are necessarily relevant, de-

cision makers often pre-select the most important candidate explanatory variables by appealing to

economic theories, existing empirical literature, and their own heuristic arguments. Nevertheless, a

decision maker is often still left with tens– if not hundreds– of sensible predictors that may possibly

provide useful information about the future behavior of quantities of interest. However, the out-of-

sample performance of standard techniques, such as ordinary least squares, maximum likelihood,

or Bayesian inference with uninformative priors tends to deteriorate as the dimensionality of the

data increases, which is the well known curse of dimensionality.3

Confronted with a large set of predictors, two main classes of models became popular, even

standard, within the regression framework. Sparse modeling focus on the selection of a sub-set

of variables with the highest predictive power out of a large set of predictors, and discard those

with the least relevance. LASSO-type regularizations are by far the most used in both research

and practice. Regularized models take a large number of predictors and introduce penalization to

discipline the model space. Similarly, in the Bayesian literature, a prominent example is the spike-

and-slab prior proposed by George and McCulloch (1993), which introduced variable selection

through a data-augmentation approach. A second class of models fall under the heading of dense

modeling; this is based on the assumption that, a priori, all variables could bring useful information

for prediction, although the impact of some of these might be small. As a result, the statistical

features of a large set of predictors are assumed to be captured by a much smaller set of common

latent components, which could be either static or dynamic. Factor analysis is a clear example of

2See, e.g., Elliott and Timmermann (2004), Timmermann (2004), Bai and Ng (2010), Rapach et al. (2010), Billio
et al. (2013), Manzan (2015), Pettenuzzo and Ravazzolo (2016), Harvey et al. (2016), Giannone et al. (2017), and
McAlinn and West (2017), just to cite a few.

3Even with a moderate number of predictors the empirical investigation of all possible model combinations could
rapidly become infeasible. For instance, for a moderate size linear regression with p = 30 regressors, investigating the
whole set of possible features combinations would require estimating 230 ≈ 1.07 billion regression models.
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dense statistical modeling, which is highly popular in applied macroeconomics (see, e.g., Stock and

Watson (2002b) and De Mol et al. (2008) and the references therein).

Both of these approaches entail either an implicit or explicit reduction of the model space. The

intention is to arbitrarily lower model complexity to balance bias and variance, in order to poten-

tially minimize predictive losses. For instance, in LASSO-type shrinkage estimators, increasing the

tuning parameter (i.e. increasing shrinkage) leads to a higher bias, thus using cross-validation aims

to balance the bias-variance tradeoff by adjusting the tuning parameter. Similarly, in factor models,

the optimal number of latent common components is chosen by using information criteria to re-

duce the variance by reducing the model dimensionality at the cost of increasing the bias (see, e.g.,

Bai and Ng (2002)). In addition, for economic and financial decision making, in particular, these

dimension reduction techniques always lead to a decrease in consistent interpretability, something

that might be critical for policy makers, analysts, and investors.

In this paper, we propose a novel class of data-rich predictive synthesis techniques and con-

tribute to the literature on predictive modeling and decision making with large datasets. We take a

significantly different approach towards the bias-variance tradeoff by breaking a large dimensional

problem into a set of small dimensional ones. More specifically, we retain all of the information

available and decouple a large predictive regression model into a set of smaller regressions con-

structed by clustering the set of regressors into J different groups, each one containing fewer

regressors than the whole, according to their economic meaning or some quantitative clustering.

Rather than assuming a priori the existence of a sparse structure or few latent common compo-

nents, we retain all of the information by estimating J different predictive densities– separately

and sequentially– one for each group of predictors, and recouple them dynamically to generate

aggregate predictive densities for the quantity of interest. By decoupling a large predictive regres-

sion model into smaller, less complex regressions, we keep the aggregate model variance low while

sequentially learning and correcting for the misspecification bias that characterize each group. As

this is the case, the recoupling step benefits from biased models, as long as the bias has a signal

that can be learned. This flips the bias-variance tradeoff around, exploiting the weakness of low

complexity models to an advantage in the recoupling step, therefore improving the out-of-sample

predictive performance.

We implement the proposed the methodology, which we call decouple-recouple synthesis (DRS),
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and explore both its econometric underpinnings and economic gains on both a macroeconomic and

a finance application. More specifically, in the first application we test the performance of our

decouple-recouple approach to forecast the one- and three-, and twelve-month ahead annual in-

flation rate in the U.S. over the period 1986/1 to 2015/12, a context of topical interest (see, e.g.,

Cogley and Sargent (2005), Primiceri (2005), Stock and Watson (2007), Koop et al. (2010), and

Nakajima and West (2013b), among others). The set of monthly macroeconomic predictors con-

sists of an updated version of the Stock and Watson macroeconomic panel available at the Federal

Reserve Bank of St.Louis. Details on the construction of the dataset can be found in McCracken

and Ng (2016). The second application relates to forecasting monthly year-on-year total excess

returns across different industries in the U.S. from 1970/1 to 2015/12, based on a large set of both

industry-specific and aggregate predictors. The predictors have been chosen from previous aca-

demic studies and existing economic theory (see, e.g., Goyal and Welch (2008) and Rapach et al.

(2010)).

Forecasting accuracy is assessed in a statistical sense based on two different out-of-sample

performance metrics. We report as a main performance metric the Log Predictive Density Ratio

(LPDR), at forecast horizon k and across time indices t. In addition, although our main focus is on

density forecasts, we also report the Root Mean Squared Forecast Error (RMSFE), which captures

the forecast optimality for a mean squared utility. Irrespective of the performance evaluation met-

ric, our decouple-recouple model synthesis scheme emerges as the best for forecasting the yearly

total excess returns across different industries. The differences in the LPDRs are stark and clearly

shows a performance gap in favor of DRS.

As far as the out-of-sample economic performance is concerned, we run a battery of tests based

on a power-utility representative investor with moderate risk aversion. The comparison is con-

ducted for the unconstrained as well as short-sales constrained investor at monthly horizons, for

the entire sample. We find that our DRS strategy results in a higher CER (relative to an investor

that uses the historical mean as forecast) of more than 150 basis points per year, on average across

sectors. Consistent with the predictive accuracy results, we generally find that the DRS strat-

egy produces higher CER improvements than the competing specifications, both with and without

short-sales portfolio constraints. In addition, we show that DRS allows to reach a higher CER also

on a “per-period” basis, which suggests that there are economically important gains for a power
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utility investor.
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