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Chapter 1. Introduction 

Causal inference and missing data 

Inferring causal effects of some interested treatments is a fundamental goal in many 

disciplines. In observational studies, such as social and behavioral science, researchers seek to 

conduct quasi-experiments, where randomized controlled trials (RCTs) are not feasible. The 

potential outcome framework is often applied to the causal inference, in which one of the outcomes 

(treatment or control) is observed and the rest are missing. Therefore, causal inference is inherently a 

problem of missing data. 

    A frequently applied methodology for estimating causal effects is the propensity score analysis 

developed by Rosenbaum and Rubin (1983); the number of articles published that use the propensity 

score method is rising exponentially (Thoemmes and Kim, 2011). Propensity score is a conditional 

probability that indicates how likely it is for each participant to be assigned to the treatment group 

given the covariates representing its features. Given the propensity score, each participant is 

randomly assigned to the treatment or control group, enabling us to infer the causal effect as if RCTs 

are carried out. 

    Although propensity score analysis is not robust enough to the effect of the unobserved 

confounding, the instrumental variables (IV) method can be a strong technique if one can employ 

sufficient IV. Under the recent situation of several kinds of data, the IV method has become 

increasingly important in many empirical fields. Therefore, while initially, IV estimation and its 

application were restricted to empirical economics, it has begun to be applied in other fields such as 

epidemiology for causal inference. In particular, IV approaches are employed when it is not feasible 

to carry out RCTs or the standard causal inference methodology, which assumes that no unobserved 

confounding exists. If it is possible to find sufficient IV predictive of endogenous variables, having 

no direct impact on the outcome, and independent of the unobserved confounders, then the effect of 

the unobserved confounders can be controlled. Therefore, introducing sufficient IVs itself can be a 

great invention, and many researchers are trying to find them. 

    On the other hand, issues regarding missing data are critical in observational and experimental 

research as they induce loss of information and biased results. Unfortunately, the missing data 

problem is ubiquitous. The National Research Council (2010) published a report including 

recommendations on treating missing data in medical science research, indicating that researchers 

should employ as many confounders as possible in order to obtain valid estimates. However, when 

they employ a greater number of covariates, the number of observations with at least one missing 

component increases. Additionally, if a researcher is interested in using a regression model 

containing missing components in covariates, a complete case analysis, which is thought to be the 

most applied "method" for treating the missing data, results in biased estimates in many cases. 



    In this thesis, we propose and apply the methods for causal inference and missing data. As 

stated above, causal inference and missing data are inherently the same problem. We apply 

semiparametric causal inference method to the social science field using propensity score, propose a 

new semiparametric missing data imputation method, and propose a new semiparametric causal 

inference method based on instrumental variable. 

 

Semiparametric model 

    In this thesis, we use the term "semiparametric" frequently. Probabilistic models used in this 

thesis are partially specified and others are not (parametrically) specified. We use parametric (or 

finite-dimensional) specification to the model where the parameters are of interest, and use 

nonparametric (or infinite-dimensional) parameters to the model of less interest or nuisance. 

    Semiparametric models are often appeared in many kinds of disciplines. Famous statistical 

methodologies with semiparametric models are generalized method of moments (GMM), 

proportional hazards model, and semiparametric estimators are shown to be well-behaved (Tsiatis, 

2006). 

    In Chapter 2, we use propensity score matching method, and this is a kind of semiparametric 

model. We specify parametric logistic regression model for estimating the propensity score. On the 

other hand, we do not assume parametric regression model between the outcome and the covariates. 

    From Chapter 3 to Chapter 5, we use Bayesian semiparametric models. While we assume a 

parametric structure for the model of the main interest (e.g. the substantive model in Chapter 3, or 

the structural equation in Chapter 4 and 5), we do consider Bayesian nonparametric form rather than 

a parametric form for the less interested model which we should avoid parametric assumptions. The 

examples of nonparametric models of this thesis are covariate distribution in Chapter 3, or the 

reduced form equation in Chapter 4 and 5. Since these distribution can be the modeled by a large 

number of covariates with a large number of the outcome, and moreover, prespecification of the 

model are generally difficult, we use nonparametric Bayes model to avoid misspecification bias 

(Chib, 2007). 

    Our nonparametric Bayes representations are based on DPM (Dirichlet Process mixture) 

modeling. DPM modeling is frequently utilized in applied statistical modeling when researchers 

intend to avoid making assumptions about parameter distribution within the Bayesian framework. 

For example, Hirano (2002) developed autoregressive models with individual effects where the 

disturbances are not restricted to a parametric class. Rodriuez et al. (2009) used DPM to develop a 

Bayesian semiparametric approach for functional data analysis. Miyazaki and Hoshino (2009) 

proposed a Bayesian semiparametric item response model with DP prior. Kunihama and Dunson 

(2016) constructed a method for variable selection within Bayesian nonparametric DPM. Kunihama 

et al. (2016) developed a nonparametric Bayes model with DPM to incorporate sample survey 



weights. The theoretical properties of DPM were investigated by Shen et al. (2013). Fortunately, the 

DPM model can be estimated with a relatively simpler MCMC algorithm by applying blocked Gibbs 

sampling (Ishwaran and James, 2011). 

Our Bayesian modeling of Chapter 3, 4, and 5 is the product of the parametric part and the 

nonparametric part with the Bayesian theorem, hence we call these models the semiparametric 

model. 

 

 

Chapter 2. Semiparametric causal inference in positive 

accounting and auditing research 

In this chapter, we introduce the application of semiparametric causal inference methodology 

to social science field, especially the positive accounting and auditing research. Even though Japan is 

a developed country with the second largest economy in the world as of 2011 and has a unique 

business culture and power dynamic among audit firms, there remains a dearth of literature 

investigating the Japanese audit market. This chapter applied semiparametric causal inference 

method of propensity score matching, and discusses the features of the Japanese audit market and 

attempts to verify the relationship between accruals-based audit quality and auditor size in Japan.  

Many existing studies evaluate the relationship between audit quality and auditor size. Starting 

with DeAngelo (1981), studies on the U.S. market reveal that, generally, large audit firms with 

international brand names (hereinafter, Big N) provide better audit quality than do other firms (e.g., 

Becker et al., 1998; Behn et al., 2008; Francis et al., 1999). The office size of audit practices is also 

positively related to audit quality (e.g., Choi et al., 2010; Francis and Yu, 2009). The literature also 

notes that audit practice office size is positively related with audit quality (e.g., Francis and Yu 2009; 

Choi et al. 2010). 

Auditors' incentive to provide high quality audit service can be influenced by the following 

environmental characteristics: litigation risk and reputation concerns for audit firms. The Japanese 

market is categorized in the low litigation risk group (e.g., Numata and Takeda, 2010; Skinner and 

Srinivasan, 2012), leaving auditors' reputation concerns as the most important audit quality incentive 

in Japan. East Asia cultures, including Japan, are well known for their strong emphasis on the 

importance of reputation or "face" (Wong and Ahuvia, 1998). It could be expected that audit firms in 

Japan will work to maintain a high level of reputation, and the Big N firms might provide better 

services because they have a higher reputation or "face" to lose. 
Using discretionary accruals, our findings provide empirical evidence that no relationship 

between audit quality and auditor size exists in the Japanese audit market, after client characteristics 



effects have been properly controlled using semiparametric causal inference. The low litigation and 

high reputation characteristics of Japanese audit environment shows no effect on the audit quality 

difference between Big N and Non-Big N after controlling for confounding variables related to 

Japanese companies. Since these results are not obtained from prior surveys, semiparametric causal 

inference seems to be useful when applied to social science in which many confounders exist. 

 

 

Chapter 3. Semiparametric Bayes multiple imputation for 

regression models with missing mixed continuous-discrete 

covariates 

For datasets with mixed continuous and discrete variables in various study areas, multiple 

imputation by chained equation (MICE), in which missing variables are iteratively imputed based on 

full conditional specification (FCS), has been cited numerous times by researchers from several 

fields including medical statistics (van Buuren, 2007; White et al., 2011; Paton et al., 2014). This is 

because the researchers, especially the imputers, are not required to construct an explicit joint 

multivariate model with mixed-scale variables (continuous, categorical, ordinal, and so on). More 

specifically, the MICE-FCS approach specifies a multivariate imputation model using a sequence of 

seemingly "appropriate" univariate regression models corresponding to the types of missing 

variables; namely, one only needs to assign a univariate linear regression with a normally distributed 

error term for an incomplete continuous variable, a logistic regression for an incomplete binary 

variable, an ordered logistic regression for an incomplete ordinal variable, and so on. Moreover, 

researchers can easily implement MICE-FCS using several existing statistical software packages, 

such as the mice package in R and S-plus, proc mi with the FCS option in SAS, and mi impute in 

STATA. 

In spite of the widespread use of MICE-FCS, recent studies showed that it leads to severely 

biased estimates in various setups. Liu et al. (2014) proved that using MICE-FCS does not guarantee 

that the asymptotic distribution is equivalent with the existing Bayesian MI estimator when the 

families of the conditional models are "incompatible" (see Section 4 in Liu et al. (2014)). In fact, 

simulation studies by Bartlett et al. (2015) showed that MICE yields biased estimates when treating 

incompatible conditional models. Unfortunately, violation of the compatibility assumption is not 

uncommon (the example of the violation of the compatibility assumption is provided in section 2.1). 

Therefore, although MICE-FCS is simple and convenient to use, it can provide statistically valid 

estimates in very limited cases. 



In this chapter, we propose a new flexible semiparametric Bayesian framework for MI, which 

is capable of treating mixed-scale incomplete variables. The model formulation is different from that 

seen in the existing literature in two ways. 

First, we express the full model as the product of the covariate distribution (conditional 

distribution of incompletely observed covariates given completely observed covariates) and the 

substantive model (the regression model researchers are interested in). We assume the parametric 

model to the substantive model since the researchers conducting applied research are generally 

concerned with the parameters of the functions in the substantive model, which should be built upon 

the existing theories or previous literature in the field of study. Examples of the parametric 

substantive model are the Cox regression and the logistic regression in epidemiological and clinical 

research. On the other hand, with regard to the covariate distribution, we specify a joint distribution 

of the missing variables using the probit stick-breaking process mixture (PSBPM) model proposed 

by Chung and Dunson (2009), whose model specification is based on the Dirichlet process mixture 

(DPM) model. Ibrahim et al. (2005) also pointed out that one of the caveats of treating missing 

covariates lies in specifying the parametric model of the covariate distribution. However, it is nearly 

impossible to correctly prespecify the covariate distribution based on existing theories or some 

inferences, because the relationships of the missing variable and the complete variables are often 

"multivariate-to-multivariate", they can be non-linear relationships, or they may be non-normally 

distributed. Therefore, we employ the nonparametric Bayesian specification; specifically, we use 

PSBPM modeling instead of DPM since the stick-breaking weights can vary depending on the 

predictors. Since our approach do not rely on FCS approach, we do not have to consider the 

compatibility assumption holding. Murray and Reiter (2016) proposed fully nonparametric multiple 

imputation method using DPM model with local dependence. However, they do not consider the 

existence of the substantive model, hence their main scope of the inference is the means or the 

variances of the imputed variables, and it cannot estimate the interested parameters of the 

substantive model. 

Second, we express mixed-scale variables through the transformation of the latent continuous 

variables for probit modeling. This underlying continuous variables approach is used in the context 

of the DPM model, as in Kottas et al. (2005) for ordinal variables; in Canale and Dunson (2011) for 

count variables; and in Kim and Ratchford (2013) for ordinal variables. This approach enables us to 

deal in a straightforward manner with many types of variables in the joint covariate distribution 

without specifying the complicated conditional joint distribution of mixed-scale variables. 

Our exhaustive simulation studies show that the coverage probability of 95 % interval 

calculated using MICE can be less than 1 %, while the MSE of the proposed one can be less than 

one-fiftieth. We also applied our method to the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

dataset, and the results are consistent with those of the previous research works that used panel data 



other than ADNI database, whereas the existing methods such as MICE, resulted in entirely 

inconsistent results. 

 

 

Chapter 4. Semiparametric Bayes instrumental variable 

estimation with many weak instruments 

This article presents a new semiparametric Bayes model for instrumental variables problems. 

We treat the reduced-form equation (or the "first-stage" regression model) and the joint distribution 

of the error terms as nonparametric and potentially changing in form, corresponding to the values of 

the instrumental variables. In addition, our emphasis is on the semiparametric model formulation. 

Structural equation models (or the "second-stage" regression models), which are of interest in 

inference, are formulated parametrically, whereas the reduced-form equation and the disturbance 

terms are formulated nonparametrically. 
Instrumental variables (IV) methods have become increasingly important in many empirical 

fields. Initially, IV estimation and its application were restricted to empirical economics. However, 

IV methods have been recently applied in other fields, such as epidemiology for causal inference 

(Ramsahai and Lauritzen, 2011; Baiocchi et al., 2014; Wang et al., 2017). In particular, IV 

approaches are employed when it is not feasible to carry out randomized controlled trials (RCT) or 

standard causal inference methodology, which assumes that no unobserved confounding exists. If it 

is possible to find sufficient IV that are predictive of endogenous variables, have no direct effect on 

the outcome, and are independent of the unobserved confounders, then the effect of the unobserved 

confounders can be controlled. 

However, inference based on IV is prone to be imprecise when the instruments explain only a 

small portion of the variation in the endogenous variable (weak instrument case). This problem is 

inherent in samples of small size, as the data is insufficient to identify the parameters of interest 

(Conley et al., 2008). In general, frequentist methods depend on asymptotics and this property can be 

a hindrance when the sample size is small. Therefore they are not occasionally suitable for IV 

problems. By contrast, since Bayesian methods do not rely on asymptotics, applying these methods 

to IV problems is a reasonable choice. Even though there are no direct incentives for adopting 

Bayesian methods, Conley et al. (2008) showed that they incur smaller mean squared error (MSE) 

and provide better interval estimation compared with non-Bayesian methods when the structural 

equation and the reduced-from equation are properly specified. Moreover, Bayesian methods allow 

for more flexible modeling of the structural equation, since Bayesian inference depends only on the 

joint model of the structural and the reduced-form equation, whereas classical methods require the 



development of different estimation procedure according to whether we have discrete, clustered, or 

panel data. 

One of the disadvantages of Bayesian methods is that they impose strong distributional 

assumptions on the parameters. This is the case in IV problems, since Bayesian IV generally 

assumes that the joint distribution of disturbances is bivariate normal. Conley et al. (2008) proposed 

another Bayesian IV method that uses a Dirichlet process mixture (DPM) model for the error terms. 

It moderates the assumption on the disturbances by using DPM nonparametric specification. 

Our proposed procedure is a semiparametric Bayesian IV method and is more flexible than 

Conley's method. We also assume that disturbances have nonparametric structure. Moreover, we use 

nonparametric formulation in the reduced-from equation. In general, the true functional form of the 

reduced-from equation is unknown, and its parameters are not of interest. In addition, if we use 

many instruments, parametric modeling of a large number of variables may result in misspecification 

bias (Chib, 2007). The approaches assuming that the reduced-form equation has some specific 

functional form (linear regression is often assumed), including frequentist and Conley's IV methods, 

yield unbiased estimates of the structural equation. However, they are less efficient. By contrast, if, 

for example, the reduced-from equation is not a simple linear combination with additive 

disturbances, our semiparametric Bayes model fits the data better and yields efficiency gains 

compared with classical parametric method and Conley's method. 

Since the parameters of the structural equation are important in applied research, we assume 

that the structural equation regression model has parametric structure. Moreover, our model is 

different from other frequentist nonparametric IV approaches in that these approaches use 

nonparametric specification in the structural equation and parametric specification in the reduced-

form equation. 

We employ a probit stick-breaking process mixture (PSBPM) model proposed by Chung and 

Dunson (2009) to realize more flexible semiparametric representations for IV. Nonparametrics based 

on Dirichlet process makes it possible to represent a distribution by infinite mixture of well-known 

"base" distributions. Whereas the mean regression structure of the DPM is reduced to a linear 

regression model, PSBPM is more flexible than DPM since it enables us to make a probability 

weight of the components change by predictors in the regression model. Hence, we can treat 

reduced-form equation and the joint distribution of error terms as potentially changing in shape as 

the value of instruments vary. Even in the case that the reduced-form equation and the error terms 

are truly linear and bivariate normal, respectively, our procedure has small efficiency loss, since it is 

not necessary to prespecify the number of components. The optimal number of components, which is 

needed for a finite mixture of regression models, is defined by the data. 

We conduct a Monte Carlo simulation study in order to evaluate the performance of the 

proposed method. We investigate the finite sample performance of the estimators when the reduced-



from model is not a simple linear combination. The proposed method may incur as little as 1/30 of 

the MSE incurred by existing procedures. Moreover, the coverage of nominal 95% confidence (or 

credible) intervals of the proposed method is very close to 0.95, whereas the other methods provide 

significantly narrower or wider interval estimates. 

The proposed method is applied to a real Mendelian randomization dataset. In general, the 

number of instrumental variables in Mendelian randomization (i.e. information of the genotype) is 

large, and correct specification of the reduced-form regression model is difficult. In addition, the 

instruments may not explain the endogenous variables satisfactorily, and non-Bayesian methods that 

rely on the asymptotic approximation yield biased results. Therefore, the proposed Bayesian 

nonparametric formulation for the reduced-form equation is appropriate and results in obtaining 

efficient endogenous (causal) parameters. In fact, we provide statistically significant results that are 

not obtained by the standard Bayesian IV approach.  

 

 

Chapter 5. Semiparametric Bayes missing instrumental 

variable estimation with population information 

When it is not feasible to conduct randomized controlled trials (RCT) or quasi-randomized 

experiments, the IV approach can be a very useful tool to infer the causal effect if it is possible to 

find sufficient IVs. Since they can properly eliminate the confoundings caused by unobserved 

factors, IV models are developed and applied in many empirical economics researches, where 

unobserved confoundings are ubiquitous. Therefore, introducing sufficient IVs can in itself be great 

invention, and many researchers are trying to find them. 

Despite the desperate efforts, IVs tend to be missing. For example, information of twin are 

often used as an instrument, but it is only observed for sub-samples. Aaslund and Gronquist (2010) 

used twin birth as an instrument to survey the effect of family size on the quality of children. In this 

case, a twin birth can be observed for families with twins. Of course, the complete case analysis 

seems to result in biased results, and as an alternative approach, restricting the sample to families 

with more than two children lose the efficiency in sample size. Variables on children, such as child 

BMI, are also frequently employed as instruments. However, since child information comes from 

different sources than the endogenous parents' information (e.g. BMI), there is a tendency for the 

former to be missing. Real data analysis shown in Section 5.4 is an example wherein instruments 

are missing for many observations since they are sourced from other surveys. 

In addition to economics, missing IV is a common problem in other fields. Mendelian 

randomization uses genotype information as an instrumental variable to infer the causal effect of a 



biomarker to a disease. Since the appropriate genetic variant is independent of the confounders of the 

intermediate phenotype-outcome association and can affect the outcome only through the causal 

intermediate phenotype as long as it is related to the intermediate phenotype, it has recently been 

applied in economics as well as in biostatistics. In general, as genetic variants explain only a small 

portion of the endogenous population, Mendelian randomization requires large sample sizes (Smith, 

2006) to satisfy enough causal associations. However, Mendelian randomization datasets are often 

missing (Palmer et al., 2011) and a large enough sample size cannot be guaranteed. 

These example of missing IV shows us that complete case analysis, namely, only those 

samples where all the instruments are observed, are used in the analysis, thus resulting in biased 

results and wrong decision-making. In this chapter, we develop a semiparametric method to impute 

the missing portion of IV and simultaneously infer the causal effect. A point that differs from the 

model proposed in Chapter 3 is that we consider the case with not missing at random (NMAR). 

Therefore, missingness of instruments remains associated with the missing instruments even after 

controlling for other observed variables. In the NMAR case, the interested regression model 

cannot be identified without an additional assumption (Little and Rubin, 2002). An example of such 

an assumption is strong parametric assumption on the regression and missing mechanism (Kott and 

Chang, 2010). However, Miao et al. (2015) showed that probit specification on the missing 

mechanism can identify normal and normal-mixture models while logit specification can less 

identify them. 

We take another assumption that the IV distribution of the original population is available as 

an auxiliary information. In many cases, the population-level information is available from other 

data sources such as government statistics or research institutions, and some researches utilize 

this auxiliary information to estimate individual-level causality. Imbens and Lancaster (1994) and 

Hellerstein and Imbens (1999) incorporated population-level information as momentary conditions 

to infer individual-level models using the generalized method of moments (GMM). Another instance 

where population-level information is used is the empirical likelihood estimation (Qin, 2000; 

Chaudhuri et al., 2008). Such approaches are also applied to the missing data issues. Nevo (2003) 

proposed the propensity score weighting method using the moment conditions obtained from 

auxiliary population-level information. Igari and Hoshino (2018) introduced the Bayesian method 

with population-level information that dealt with repeated durations under unobserved missing 

indicators. 

Although prior works incorporating population-level information to deal with missing 

variables use moment conditions, our proposed method uses probability distribution of population as 

auxiliary information since the momentary conditions have less information than original 

distribution. Under the condition that the original population distribution of the missing IV is known, 

followed by the theorem in Hirano et al. (2001), we show that the missing mechanism is 



nonparametrically identified with generalized additive model, and the substantive IV regression 

models are also identified. In general, since fully nonparametric missing mechanism are not 

identified, parametric missing mechanism are frequently assumed (Kott and Chang, 2010). However, 

misspecification of missing mechanisms results in severely biased estimates (Kim and Yu, 2011). 

Kim and Yu (2011) developed a semiparametric missing mechanism approach which incorporates 

nonparametric specifications on observed variables but not on unobserved variables. However, their 

method, as well as other prior works, cannot identify the nonparametric part of unobserved variables. 

On the other hand, we assume the availability of the information of the original population 

distribution of missing IV so that our proposed method can specify the fully nonparametric missing 

mechanisms on observed and unobserved variables. Furthermore, our missing mechanism can 

incorporate cross terms of observed and unobserved variables, which cannot be identified by the 

existing methods. 

We express the full model as the product of the conditional IV distribution (conditional 

distribution of missing IVs given completely observed exogenous), the substantive IV model (the 

structural equation of the main interest and the reduced-form equation), and the missing mechanism. 

We assume the parametric model to the structural model since the researchers conducting IV 

regression are generally concerned with the coefficient parameters of the endogenous variable. On 

the other hand, with regard to the reduced-form equation and the error terms, we specify the PSBPM 

nonparametric model since we can achieve more efficiency when these distributions are misspecified 

as described in Chapter 4. Conditional IV distribution is also represented by PSBPM nonparametric 

formulation since it is nearly impossible to correctly prespecify the covariate distribution based on 

existing theories or some inferences, as the relationships of the missing variable and the complete 

variables are often multivariate-to-multivariate. 

     Simulation studies show that our proposed method yield the smallest MSE compared with 

Bayesian imputation without population level information, MICE, and complete case analysis under 

the situation where original distribution of the IV follows log-normal distribution and missing not at 

random. 

 

Chapter 6. Conclusion 

     In this thesis, we focused on semiparametric causal inference (propensity score analysis and 

instrumental variable method) and semiparametric missing data analysis. 

Future works will be two directions. First one is the development of theoretical aspects of 

proposed statistics. Semiparametric Bayesian instrumental variable method proposed in Chapter 4 

yields considerably more efficient estimates than the existing estimator. The proposed method 

changed the reduced-form equation from the classical specification and some approaches have 



recently proposed which modify the reduced-form. For example, Andrews and Armstrong (2017) 

have proposed mean-unbiased IV estimator by modifying the reduced-form equation. We will clear 

up the statistical property of the estimators including the asymptotics. As stated in Chapter 5, 

identification conditions within NMAR framework for multiple instruments should be revealed. 

Another direction is the applications of the proposed method to wider fields. We focused on 

the application to the medical statistics and empirical economics, we should consider the adoption to 

other kinds of dataset. Such dataset may contain mixed-scale variables, large dimensional covariates, 

and may be sparse. We will extend our semiparametric model to more flexible one by 

accommodating the knowledge such as latent variables, variable selection, and machine learning. 
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