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Abstract

This thesis is a collection of three essays on mechanism design. I study three

economic problems on auction theory, matching theory, and social choice theory.

In each problem, I design a mechanism which satisfies “desirable properties”, such

as efficiency, fairness, and incentive compatibility.

In Chapter 1, I study multi-unit ascending-bid auctions. Lawrence M. Ausubel

(2004) introduces a new ascending-bid auction rule for multiple homogeneous ob-

jects, called the Ausubel auction, which is a dynamic counterpart of the Vickrey

auction. He claims that in the Ausubel auction with private values, sincere bid-

ding by all bidders is an ex post perfect equilibrium, which is a tuple of strategies

constituting ex post equilibria at all nodes of the dynamic auction game. How-

ever, I show that this claim does not hold in general. In my counterexample,

there exists a node at which sincere bidding by all bidders is not an ex post equi-

librium. I then examine properties of the sincere bidding equilibrium. Finally, I

provide two modifications of the Ausubel auction in which sincere bidding by all

bidders is an ex post perfect equilibrium.

In Chapter 2, I study a rescheduling problem in the Ground Delay Pro-

gram. The Ground Delay Program is an air traffic control program in the Uniter

States. When inclement weather strikes an airport, the airport needs to reduce

arrival slots and reassigns flights to available slots. I first show that FAA’s cur-

rent mechanism may not maximize the number of flights assigned to available



slots. To resolve this inefficiency, I introduce a new efficiency criterion, universal

non-wastefulness. Then, I design a new mechanism that satisfies universal non-

wastefulness and a fairness requirement. Furthermore, I show that no airline has

an incentive to misreport flight delay under our mechanism.

In Chapter 3, I study voting rules. Jean-Charles de Borda (1774) provided

an example in which the plurality rule selects an alternative, so-called pairwise-

majority-loser, which is defeated by any other alternative in pairwise comparison.

To avoid selecting such an alternative, he introduced a new social choice rule,

called the Borda rule. A social choice rule satisfies Borda’s criterion if it never

selects a pairwise-majority-loser. I show that the Borda rule is the only social

choice rule which satisfies anonymity, neutrality, consistency, continuity, and

Borda’s criterion.
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Chapter 1

Perfect Incentive Compatibility

on Multi-Unit Ascending-Bid

Auctions

*1

1.1 Introduction

In his seminal work, Lawrence M. Ausubel (2004) designs a new ascending-bid

auction rule for multiple homogeneous objects, called the Ausubel auction. This

auction yields the Vickrey outcome at the sincere bidding equilibrium with private

values.*2 His main result claims that sincere bidding by all bidders is an ex post

perfect equilibrium that constitutes ex post equilibria at all nodes of the dynamic

auction game.

In this chapter, we show that this claim does not hold by providing a coun-

terexample. That is, sincere bidding by all bidders is not always an ex post

perfect equilibrium. In our counterexample of a dynamic auction game, there

exists a subgame such that some bidder has an incentive not to sincerely bid

(Examples 1 and 3).

*1This chapter is based on my paper “An Efficient Ascending-Bid Auction for Multiple Ob-
jects: Comment”, which is forthcoming in the American Economic Review.

*2For example, see Milgrom (2004), for a detail of the Vickrey auction.
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We then show that for any subgame, if a bidder dose not bid in excess of

her demand just before the subgame, then she has an incentive to bid sincerely.

Therefore, for any subgame, if each bidder does not bid more quantity than her

demand just before the subgame, then sincere bidding by all bidders is an ex post

equilibrium (Proposition 1).

Next, we provide two modifications of the Ausubel auction in which sincere

bidding by all bidders is an ex post perfect equilibrium. In the first modification,

we introduce a new rationing rule for tie-breaking. In the second modification,

we introduce a new tie-breaking system such that each bidder can select whether

she accepts an excess supply or not. In these modified auction, sincere bidding

by all bidders is an ex post perfect equilibrium (Theorems 1 and 2).

This chapter is organized as follows. In Section 2, we introduce definitions. In

Section 3, we give a counterexample to Ausubel’s claim. In Section 4, we examine

equilibrium properties of the Ausubel auction and give two modifications. In

Section 5, we conclude the paper. All proofs are relegated to Appendix.

1.2 Definitions

Our definitions and notation almost follow Section II and III of Ausubel (2004),

but we generalize some definitions so as to investigate details of the dynamic

auction games.

1.2.1 Bidders

We construct the model of auction for multiple objects with private values. A

seller puts M homogeneous goods for an auction. A finite set of bidders is N =

2



{1, 2, . . . , n} with n ≥ 2. Each bidder i ∈ N has a consumption set Xi = [0,λi]

with 0 < λi ≤ M and a valuation function Ui : Xi → R+. When a bidder i ∈ N

is assigned xi ∈ Xi and pays yi ∈ R, bidder i’s utility is Ui(xi) − yi. For each

xi ∈ Xi, the value Ui(xi) can be calculated by the integral of a corresponding

marginal value function ui : Xi → {0, 1, . . . , u}, so that

Ui(xi) =

∫ xi

0

ui(q)dq ∀xi ∈ Xi.

We also assume that each ui is a weakly decreasing function in Xi, and ui(xi) is

an integer in {0, 1, . . . , u} for all xi ∈ Xi. We assume that u < ∞.

1.2.2 The auction rule

We revisit the rule of the Ausubel auction with discrete times {0, 1, . . . , T} where

T < u. For each time t ∈ {0, 1, . . . , T}, we define the price by pt = t. All bidders

know the price at each time. An auction starts at t = 0, and it proceeds as

follows.

t = 0: Each bidder i ∈ N simultaneously bids a quantity x0
i ∈ Xi. If

∑
i∈N x0

i ≤ M , then the auction ends at t = 0 with the assignment (x∗
i )i∈N such

that

x∗
i = x0

i ∀i ∈ N.

Otherwise, for each bidder i ∈ N , let

C0
i = max

{
0,M −

∑

j ̸=i

x0
j

}
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be bidder i’s cumulative clinches at t = 0, and the auction continues to t = 1.

t = s < T : The auctioneer announces the prior bids by all bidders to each

bidder Each bidder i ∈ N simultaneously bids a quantity xs
i ∈ Xi satisfying the

constraint

Cs−1
i ≤ xs

i ≤ xs−1
i .

If
∑

i∈N xs
i ≤ M , the auction ends at t = s with an assignment (x∗

i )i∈N such that

∑

i∈N

x∗
i = M

xs
i ≤ x∗

i ≤ xs−1
i ∀i ∈ N.

Otherwise, let Cs
i = max

{
0,M −

∑
j ̸=i x

s
j

}
be bidder i’s cumulative clinches at

t = s, and the auction continues to s+ 1.

t = T : The auctioneer announces the prior bids by all bidders to each bidder

Each bidder i ∈ N simultaneously bids a quantity xT
i ∈ Xi with CT−1

i ≤ xT
i ≤

xT−1
i . In any case, the auction ends. If

∑
i∈N xT

i > M , an assignment (x∗
i )i∈N is

such that
∑

i∈N x∗
i = M and

x∗
i ≤ xT

i ∀i ∈ N.

Otherwise, similarly to the case which ends at t = s < T , an assignment (x∗
i )i∈N

is such that
∑

i∈N x∗
i = M and xT

i ≤ x∗
i ≤ xT−1

i for each i ∈ N .
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This auction process finishes in at most T + 1 steps. Let L be a last time of

the auction game, that is,
∑

i∈N xL
i ≤ M or L = T . For each bidder i ∈ N , define

cumulative clinches of the last time by i’s assignment, CL
i = x∗

i . Then, by this

process, we obtain a vector of cumulative clinches
{
(Ct

i )i∈N
}L

t=0
. We define the

vector of current clinches
{
(cti)i∈N

}L

t=0
as follows: For each i ∈ N and t ≥ 1,

cti = Ct
i − Ct−1

i ,

and c0i = C0
i .

Each bidder’s payment is calculated as follows: For each i ∈ N , the payment

is given by

yi =
L∑

t=0

ptcti.

When an auction ends with the last bid (xL
i )i∈N such that

∑
i∈N xL

i < M

(L ≥ 1),*3 a rationing rule for tie-breaking assigns the excess supply quantity

M −
∑

i∈N xL
i to bidders such that

∑
i∈N x∗

i = M and

xL
j ≤ x∗

j ≤ xL−1
j for all j ∈ N.

Some bidder may be assigned a quantity in excess of the bidder’s final bid at the

final price. However, the following lemma ensures that such “over assignment”

does not reduce the bidder’s utility if the bidder bids sincerely.

*3In the case that
∑

i∈N xL
i > M with L = T , we need to consider another type of rationing

rules for tie-breaking. However, our results hold under all rationing rules for this case.
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Lemma 1. For each i ∈ N and each p ∈ {1, 2, . . . , u},

Qi(p− 1) = max{arg max
xi∈Xi

(Ui(xi)− pxi)}.

For sincere bidding xt
i = Qi(pt), this lemma implies that

min{arg max
xi∈Xi

(Ui(xi)− pLxi)} ≤ x∗
i ≤ max{arg max

xi∈Xi

(Ui(xi)− pLxi)}. (1.1)

Ausubel employs rationing rules that satisfy the following monotonicity prop-

erty, which is introduced in Footnotes 17 and 18 of Ausubel (2004).

Monotonicity property: If i’s final bid xL
i strictly increases and the final bids

xL
−i of the other bidders do not change, then i’s assignment x∗

i strictly increases.*4

An example of a rationing rule that satisfies the monotonicity property is propor-

tional rationing, which is introduced by Ausubel (1997):*5

x∗
j = xL

j +

(
M −

∑

i∈N

xL
i

)
xL−1
j − xL

j(∑
i∈N xL−1

i − xL
i

) .

1.2.3 Histories

At each t ∈ {1, . . . , T + 1}, a history ht is a vector of prior bids to t

ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈

(
×i∈N Xi

){0,1,...,t−1}

*4This is the formulation for a divisible-good. By changing the assigned quantity x∗
i to the

expected assigned quantity E(x∗
i ), we can also apply this property to the indivisible-good model.

*5Ausubel (1997) is a working paper version of Ausubel (2004).
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such that for each i ∈ N and each s ≤ t− 1,

Cs−1
i ≤ xs

i ≤ xs−1
i , (1.2)

∑

j∈N

xt−2
j > M. (1.3)

Define the history of starting point t = 0 by empty sequence, h0 = Ø. Let H t be

the set of histories at t. Then, the set of all histories is given by H ≡
⋃T+1

t=0 H t.

We call a history zt+1 = (xs
1, . . . , x

s
n)s≤t ∈ H t+1 terminal if

∑
i∈N xt

i ≤ M or

t = T ; i.e., t = L. Let Zt be the set of terminal histories at t, and Z ≡
⋃T+1

t=1 Zt

be the set of all terminal histories. We can see a terminal history as a result of

the auction game, because this represents all bids from beginning to end. Then,

for each z ∈ Z, an assignment vector (x∗
i )i∈N and a payment vector (yi)i∈N are

determined by the auction rule.

1.2.4 Strategies

At each time t ∈ {1, 2, . . . , T}, the auctioneer observes a history ht ∈ H t \

Zt. Then, the auctioneer announces some information ht
i to each bidder i ∈ N .

Ausubel introduces three important informational rules : “full bid information”,

“aggregate bid information”, and “no bid information”. We study auctions with

full bid information so that each bidder i ∈ N can observe all prior bids ht
i = ht

at each time t.

With full bid information, the set of observable histories of each bidder is

H \ Z. Then, a strategy of bidder i is a function σi : H \ Z → Xi such that for

7



any t ∈ {0, 1, . . . , T} and ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈ H t \ Zt,

Ct−1
i ≤ σi(h

t) ≤ xt−1
i

where Ct−1
i = max{0,M −

∑
j ̸=i x

t−1
j }.

For each i ∈ N , let Σi be the set of bidder i’s strategies. For any n-tuple of

strategies (σi)i∈N ∈ ×i∈NΣi, we attain a terminal history zL+1 which represents

a result of an auction game. We denote πi((σj)j∈N) the utility of some bidder i

at an n-tuple of strategies (σj)j∈N .

We define sincere bidding, which is the strategy reporting truthfully the min-

imum demand at any history unless the bidder breaks the bidding constraint.

Definition 1. Bidder i’s sincere demand at price p ∈ Z+ is defined by

Qi(p) = min{arg max
xi∈Xi

(Ui(xi)− pxi)}.

Bidder i’s sincere bidding is the strategy σ∗
i such that for any t ≥ 1 and ht ∈

H t \ Zt,

σ∗
i (h

t) = min{xt−1
i ,max{Qi(p

t), Ct−1
i }},

and σ∗
i (h

0) = Qi(p0).

We note that for each p ∈ {0, 1, 2, . . . , u}, the existence of Qi(p) is guaranteed

in this model. By Lemma 1, for each i ∈ N , if the bidder plays the auction game

sincerely, then an assignment x∗
i satisfies

min{arg max
xi∈Xi

(Ui(xi)− pxi)} ≤ x∗
i ≤ max{arg max

xi∈Xi

(Ui(xi)− pxi)}.

8



That is, although some bidder may be assigned more quantity than her final bid,

the quantity maximizes her utility at the final price.

1.2.5 Subgames

The Ausubel auction provides an extensive form game with simultaneous actions.

In the case with full bid information, for each nonterminal history h ∈ H \ Z, a

subgame that follows h is well-defined.*6

Consider any h ∈ H \Z. The set of histories in the subgame that follows h is

given by

H|h = {h′ ∈ H : h′ = (h, h′′) for some sequence h′′}.

Then, the set of terminal histories in the subgame is given by

Z|h = Z ∩H|h.

For each z ∈ Z and each z′ ∈ Z|h, if z = z′, then let the result of z′ in the

subgame be identical to the result of z in the original game.

A strategy of bidder i in the subgame is a function σi : H|h \ Z|h → Xi such

that for any h′ = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈ H|h \ Z|h,

Ct−1
i ≤ σi(h

′) ≤ xt−1
i

*6An auction game with full bid information is an extensive form game with perfect infor-
mation. Thus, we can define subgames for all histories. On the other hand, the auction with
aggregate bid information or no bid information is an extensive form game with imperfect infor-
mation. Therefore, a subgame for some history is not always well-defined. Although Ausubel
(2004) states that sincere bidding by all bidders is an ex post equilibrium or a weakly dominant
strategy equilibrium after any history, his statement is not entirely well-defined. We cannot use
the usual definitions of such equilibrium notions after some history. See, for example, Osborne
and Rubinstein (1994) for details on extensive form games.
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where Ct−1
i = max{0,M −

∑
j ̸=i x

t−1
j }. For each strategy σi ∈ Σi in the original

game, we denote σi|h ∈ Σi|h the strategy which is induced in the subgame, that

is, for each h′ ∈ H|h \ Z|h, σi|h(h′) = σi(h′).

Let Σi|h be the set of bidder i’s strategies in the subgame. Similarly to the

original game, we denote πi((σj)j∈N) bidder i’s utility at an n-tuple of strategies

of the subgame (σj)j∈N ∈ ×j∈NΣj|h.

1.3 Counterexample

Ausubel (2004) extends Selten’s (1975) perfectness concept of the extensive form

game to the dynamic auction game. In extensive form games, a famous equilib-

rium notion is subgame perfect equilibrium, which is a tuple of strategies constitut-

ing Nash equilibria in all subgames. On the other hand, we sometimes investigate

an ex post equilibrium in auction games. Ausubel (2004) combines these two con-

cepts and introduces the notion of ex post perfect equilibrium. Then, he claims

that sincere bidding by all bidder is an ex post perfect equilibrium in the Ausubel

auction.

Definition 2. An n-tuple of strategies (σi)i∈N ∈ ×i∈NΣi is an ex post perfect

equilibrium if for each h ∈ H \ Z, (σi|h)i∈N is an ex post equilibrium in the

subgame that follows h.*7

Claim 1 (Ausubel 2004, Theorem 1). In the Ausubel auction with private values,

sincere bidding by all bidders is an ex post perfect equilibrium, yielding the efficient

outcome of the Vickrey auction.

*7An n-tuple of strategies is an ex post equilibrium if it is a Nash equilibrium for any realization
of all bidders’ valuation functions. See, for example, Crémer and Richard (1985) and Krishna
(2009).
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Here, we provide a simple counterexample showing that sincere bidding by

all bidders is not an ex post perfect equilibrium under proportional rationing. In

the Appendix, we give a general counterexample showing that Claim 1 does not

hold under all rationing rules that satisfy the monotonicity property.

Example 1: Consider the case with two bidders, A and B, and two quantities

of an object. The marginal value function of bidder A is given by

uA(q) =

⎧
⎪⎪⎨

⎪⎪⎩

3 if q ∈ [0, 1),

1 if q ∈ [1, 2].

Consider the history h2 = (xt
A, x

t
B)t=0,1 =

(
(2, 2), (2, 2)

)
. Assume that B’s sincere

bidding is x2
B = 0 after h2. At t = 2, A’s sincere demand is 1. Let us consider

the results with sincere bidding x2
A = 1 and misreporting x̂2

A = 0.

The result with sincere bidding

If bidder A bids x2
A = 1 and bidder B bids x2

B = 0 after h2, then the auction ends

at z3 =
(
(2, 2), (2, 2), (1, 0)

)
. First, bidder A is assigned x2

A = 1 which is A’s final

bid. In addition, since there is an excess supply quantity 1, proportional rationing

assigns 1
3 to bidder A. Then, bidder A is assigned 4

3 at price 2. Therefore, A’s

utility is
∫ 4

3

0

uA(q)dq − 2 · 4
3
= 3 + 1 · 1

3
− 8

3
=

2

3
.

The result with misreporting

If bidder A bids x̂2
A = 0 and bidder B bids x2

B = 0 after h2, then the auction

ends at ẑ3 =
(
(2, 2), (2, 2), (0, 0)

)
. Since there is an excess supply quantity 2,

proportional rationing assigns 1 to bidder A. Then, bidder A is assigned 1 at

11



price 2. Therefore, A’s utility is

∫ 1

0

uA(q)dq − 2 · 1 = 3− 2 = 1.

Hence, bidder A has an incentive to misreport x̂2
A = 0 after h2.

1.4 Amending the result

In Section 2, we give a counterexample to a result of Ausbel. In this section, we

amend this result. First, we examine equilibrium properties. Next, we modify

the rule of the Ausubel auction.

1.4.1 Examining equilibrium properties

In our counterexample, we considered a history where some bidder bids a quantity

in excess of the bidder’s sincere demand just before the history. An assignment

of the bidder may be more than Qi(pL−1), even if the bidder’s final bid is Qi(pL).

Therefore, inequality (1.1) does not hold, and Ausubel’s proof is invalid after such

a history.

On the other hand, for any history, if a bidder does not bid a quantity in

excess of the bidder’s sincere demand just before the history, the bidder has an

incentive to bid sincerely in the subgame that follows the history. Before the

starting point h0 = Ø, since all bidders do not bid a quantity in excess of their

sincere demands, Ausubel’s proof is valid at h0; that is, sincere bidding by all

bidders is an ex post equilibrium in the Ausubel auction. The following lemma

summarized what Ausubel has essentially shown.
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Lemma 2. Consider any bidder and history under which the bidder did not over-

bid just before the history. After the history, the bidder’s sincere bidding is an

“ex post best response” to the other bidders’ sincere bidding; that is, the bidder’s

sincere bidding is a best response to the other bidders’ sincere bidding for any

realization of all bidders’ valuation functions. The same argument holds under

all rationing rules.

Proof. See Appendix.

Applying this Lemma to all bidders, we have the following result.

Proposition 1. In the Ausubel auction, sincere bidding by all bidders is an ex

post equilibrium.

Proof. Immediately follows from Lemma 2.

1.4.2 The sequential rationing rule

In this section, we shall design a rationing rule for tie-breaking such that each

bidder has an incentive to bid sincerely after any history. Our “sequential” ra-

tioning rule assigns the excess supply quantity M −
∑

i∈N xL
i as follows: Bidder

1 is assigned the excess supply up to xL−1
1 , bidder 2 is assigned the remaining

excess supply up to xL−1
2 , and so on. Formally, the assignment (x∗

i )i∈N is

x∗
1 = min{xL−1

1 , xL
1 +M −

n∑

i=1

xL
i },

x∗
2 = min{xL−1

2 , xL
2 +M −

n∑

i=2

xL
i − x∗

1},

...

13



x∗
j = min{xL−1

j , xL
j +M −

n∑

i=j

xL
i −

j−1∑

i=1

x∗
i },

...

x∗
n = min{xL−1

n , xL
n +M − xL

n −
n−1∑

i=1

x∗
i }.

Note that because

x∗
j = min{xL−1

j , xL
j +M −

n∑

i=j

xL
i −

j−1∑

i=1

x∗
i },

= min{xL−1
j ,M −

n∑

i=j+1

xL
i −

j−1∑

i=1

x∗
i },

each j’s final bid xL
j does not explicitly appear in x∗

j .

In the next example, we show that bidder A of Example 1 has no incentive to

misreport under our rationing rule.

Example 2: Consider the case with two bidders, A and B, and two quantities

of an object. The marginal value function of bidder A is given by

uA(q) =

⎧
⎪⎪⎨

⎪⎪⎩

3 if q ∈ [0, 1),

1 if q ∈ [1, 2].

Consider the history h2 = (xt
A, x

t
B)t=0,1 =

(
(2, 2), (2, 2)

)
. Assume that bidder B

bids x2
B = 0 after h2. There are two possible orderings on the bidders: (i) A = 1

and B = 2 and (ii) A = 2 and B = 1.

(i) A = 1 and B = 2: For any bidding x2
A, the excess supply 2−x2

A is assigned

to bidder A by our rationing rule. Bidder A is always assigned 2. Therefore,

14



bidder A has no incentive to misreport.

(ii) A = 2 and B = 1: For any bidding x2
A, the excess supply 2−x2

A is assigned

to bidder B by our rationing rule. Then, bidder A is assigned only x2
A, which is

A’s final bid. Therefore, bidder A has no incentive to misreport.

Theorem 1. In the Ausubel auction with sequential rationing, sincere bidding by

all bidders is an ex post perfect equilibrium.

1.4.3 Selecting option of the excess supply

In the original Ausubel auction, bidders may be assigned in excess of their last bid

without they are not asked whether they want or not. In the Ausubel auction with

selecting option of the excess supply, at each time, each bidder reports quantity

and selects whether she accepts an excess supply or not. If at the last time of the

auction, a bidder reports that she does not want to be assigned more quantity

than her last bid, then she is assigned only her last bid.

We use the same model in Section 2. The process of the Ausubel auction with

selecting option of the excess supply is as follows.

t = 0: Each bidder i ∈ N simultaneously reports quantity x0
i ∈ Xi and a

signal a0i ∈ {0, 1} for tie-breaking. If
∑

i∈N x0
i ≤ M , the auction ends at t = 0

with the assignment (x∗
i )i∈N which is

x∗
i = x0

i ∀i ∈ N.
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Otherwise, for each bidder i ∈ N , let

C0
i = max

{
0,M −

∑

j ̸=i

x0
j

}

be bidder i’s cumulative clinches at t = 0, and the auction continues to t = 1.

t = s < T : The auctioneer announces information of prior bids to each

bidder. Each bidder i ∈ N simultaneously reports quantity xs
i ∈ Xi satisfying

the constraint

Cs−1
i ≤ xs

i ≤ xs−1
i ,

and a signal asi ∈ {0, 1}. If
∑

i∈N xs
i ≤ M , the auction ends at t = s with an

assignment (x∗
i )i∈N which is decided by the following way: Let N0 = {i ∈ N :

ai = 0} and N1 = {i ∈ N : ai = 1}. Then

x∗
i = xs

i ∀i ∈ N0

x∗
j = xs

j +min{xs−1
j ,

xs−1
j − xs

j∑
k∈N1

xs−1
k − xs

k

·
(
M −

∑

i∈N

xs
i

)
} ∀i ∈ N1

Otherwise, let Cs
i = max

{
0,M −

∑
j ̸=i x

s
j

}
be bidder i’s cumulative clinches, and

the auction continues to s+ 1.

t = T : The auctioneer announces information of prior bids to each bidder.

Each bidder i ∈ N simultaneously bids quantity xT
i ∈ Xi with CT−1

i ≤ xT
i ≤ xT−1

i

and signal aTi ∈ {0, 1}. In any case, the auction ends, even when there is excess
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demand. If
∑

i∈N xT
i > M , an assignment (x∗

i )i∈N is such that
∑

i∈N x∗
i = M and

x∗
i ≤ xT

i ∀i ∈ N.

Otherwise, similarly to the case ends at t = s < T an assignment (x∗
i )i∈N is

decided.

Note that M homogenous good may not be assigned entirely by the modified

Ausubel auction. However, we can assign entirely and achieve an efficient outcome

at sincere bidding equilibrium by defining sincere bidding as follows.

To define the strategies, we introduce the histories of the Ausubel auction

with selecting option of excess supply which are very similar to Section 3. At

each time t ∈ {1, 2, . . . , T + 1}, a history ht is a summary of prior reports to t

ht =
(
(xs

1, a
s
1), (x

s
2, a

s
2) . . . , (x

s
n, a

s
n)
)
s≤t−1

∈
(
×i∈N

(
Xi × {0, 1}

)){0,1,...,t−1}

such that for each i ∈ N and each s ≤ t− 1,

Cs−1
i ≤ xs

i ≤ xs−1
i ,

∑

j∈N

xt−2
j > M.

Let h0 = Ø be the history of starting point t = 0. Let H t be the set of histories

at t, and H ≡
⋃T+1

t=0 H t. A history zt+1 =
(
(xs

1, a
s
1), . . . , (x

s
n, a

s
n)
)
s≤t

∈ H t+1 is

terminal if t = L. Let Zt be the set of terminal histories at t, and Z ≡
⋃T+1

t=1 Zt be

all terminal histories. In this modified auction, we use the similar informational

rule to full bid information, so ht = ht
i for all i ∈ N .
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A strategy of bidder i is a function σi : H \ Z → Xi × {0, 1} satisfying the

bidding constraint. In the modified Ausubel auction, sincere bidding is defined

as follows.

Definition 3. Bidder i’s sincere bidding in the Ausubel auction with selecting

option excess supply is the strategy σ∗
i such that for any t ≥ 1 and ht ∈ H t \ Zt,

σ∗
i (h

t) = (min{xt−1
i ,max{Qi(p

t), Ct−1
i }}, 1(xt−1

i )≤Qi(pt−1)),

and σ∗
i (h

0) = (Qi(p0), 1).

We define subgames and ex post perfect equilibrium same as Section 2. Then,

we have the following result.

Theorem 2. In the Ausubel auction with selecting option of the excess suppy,

sincere bidding by all bidders is an ex post perfect equilibrium.

Proof. See Appendix.

1.5 Conclusion

We have investigated the sincere bidding equilibrium in the Ausubel auction. We

first gave a counterexample to one of main results of Ausubel (2004). That is,

we showed that sincere bidding by all bidders is not always an ex post perfect

equilibrium. We then amended this result. We showed if a bidder does not bid

her demand just before a node, then she has an incentive to sincerely bid at the

node. Furthermore, sincere bidding by all bidders is an ex post equilibrium in the

Ausubel aution. We also introduced two modifications of the Ausubel auction in

which sincere bidding by all bidders is an ex post perfect equilibrium.
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1.6 Appendix

The following counterexample shows that sincere bidding by all bidders is not

always an ex post perfect equilibrium under all rationing rules that satisfy the

monotonicity property.

Example 3

Consider a case where there are two bidders, A and B, and three quantities of an

object. Let uA, uB be the marginal value functions of the two bidders such that

uA(q) = uB(q) =

⎧
⎪⎪⎨

⎪⎪⎩

5 if q ∈ [0, 1)

1 if q ∈ [1, 3].

Consider the history h4 = (xt
A, x

t
B)t=0,1,2,3 =

(
(3, 3), (3, 3), (3, 3), (3, 3)

)
. After h4,

sincere bidding of each bidder is 1.

The result under sincere bidding x4
A = 1

If the bidders report x4
A = x4

B = 1 after h4, then the auction ends at z5 =

(h4, (1, 1)), yielding an assignment (x∗
A, x

∗
B) such that

1 ≤ x∗
A ≤ 3,

1 ≤ x∗
B ≤ 3,

x∗
A + x∗

B = 3.

Without loss of generality, suppose that x∗
A ≥ 3

2 . Since bidder A did not clinch

at t ≤ 3, A’s payment is y∗A = 4x∗
A. Therefore, A’s utility is UA(x∗

A)− 4x∗
A at z5.
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The result under misreporting x̂4
A = 0

If bidder A reports x̂4
A = 0, and bidder B reports x4

B = 1 after h4, then

the auction ends at ẑ5 = (h4, (0, 1)), yielding an assignment (x̂A, x̂B). Since

0 = x̂4
A < x4

A = 1 and any other condition of ẑ5 is the same as z5, by the

monotonicity property, x̂A must be strictly less than x∗
A. Similarly to case with

sincere bidding, A’s utility at ẑ5 is UA(x̂A)− 4x̂A.

We calculate the difference between A’s utilities at z5 and ẑ5,

(
UA(x

∗
A)− 4x∗

A

)
−

(
UA(x̂A)− 4x̂A

)

=

(∫ x∗
A

0

uA(q)dq − 4x∗
A

)
−

(∫ x̂A

0

uA(q)dq − 4x̂A

)

=

(∫ x∗
A

0

uA(q)dq −
∫ x̂A

0

uA(q)dq

)
− 4 ·

(
x∗
A − x̂A

)

=

∫ x∗
A

x̂A

uA(q)dq − 4 ·
(
x∗
A − x̂A

)
. (1.4)

Case 1: x̂A ≥ 1. We calculate (1.4) such that

x∗
A − x̂A − 4 ·

(
x∗
A − x̂A

)
= −3 ·

(
x∗
A − x̂A

)
< 0.

Case 2: x̂A < 1. We calculate (1.4) such that

(
x∗
A − 1

)
+ 5 ·

(
1− x̂A

)
− 4 ·

(
x∗
A − x̂A

)

= −3x∗
A − x̂A + 4 < 0 (∵ x∗

A ≥ 3

2
).

Thus, A’s utility at ẑ5 is strictly greater than that at z5, and bidder A has an
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incentive to misreport after h4. Therefore, sincere bidding by all bidder is not an

ex post perfect equilibrium.
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Proof of Lemma 1

Since ui is a weakly decreasing integer-valued function, there is a partition {a0, . . . , am} ⊂

Xi with 0 = a0 < · · · < am = λi and values {b1, . . . , bm} ⊂ {0, 1, . . . , u} with

b1 > b2 > · · · > bm such that for each k with 1 ≤ k ≤ m,

ui(xi) = bk if ak−1 < xi < ak.

Note that m ≤ T . Consider any x′
i ∈ Xi. Let

k = arg min
ℓ

{aℓ : x′
i ≤ aℓ}.

By the definition of Riemann Integral,

Ui(x
′
i) =

∫ x′
i

0

ui(q)dq =
k−1∑

ℓ=1

bℓ(aℓ − aℓ−1) + bk(x
′
i − ak−1). (1.5)

Take any p ∈ {1, . . . , T}. Define b0 = T + 1. Let

r = arg min
ℓ

{bℓ : p− 1 < bℓ},

r′ = arg min
ℓ

{bℓ : p ≤ bℓ}.

By equation (1.5), we can verify that

ar = min{arg max
xi∈Xi

Ui(xi)− (p− 1)xi},

ar′ = max{arg max
xi∈Xi

Ui(xi)− pxi}.
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Because bℓ ∈ Z for each ℓ,

{bℓ : p− 1 < bℓ} = {bℓ : p ≤ bℓ}.

Therefore ar = a′r, that is,

min{arg max
xi∈Xi

Ui(xi)− (p− 1)xi} = max{arg max
xi∈Xi

Ui(xi)− pxi}.

To prove Lemma 2 and Theorem 1, we explain a property of the Ausubel

auction.

Property 1

For each t ≥ 1, if there exists a bidder i ∈ N such that xt
i = Ct−1

i and Ct−1
i > 0,

then the auction ends at t, i.e., t = L. Therefore, if the auction does not end at

t, then for each bidder i ∈ N , xt
i ̸= Ct−1

i or Ct−1
i = 0.

Proof. Suppose that xt
i = Ct−1

i and Ct−1
i > 0. Then, xt

i = M −
∑

j ̸=i x
t−1
j . By

bidding constraint for each j ∈ N , xt
j ≤ xt−1

j . Therefore
∑

j∈N xt
j ≤ M .

Note that this property holds under all rationing rules. We use the property

in proofs of Lemma 2 and Proposition 1.
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Proof of Lemma 2

Consider any t ∈ {0, 1, . . . , T},

ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈ H t \ Zt,

and (uj)j∈N . For each j ∈ N , let σ∗
j be sincere bidding which is corresponding to

uj, and σ∗
j |ht be induced sincere bidding in the subgame that follows ht.

Take any i ∈ N and σi ∈ Σi|ht . Suppose that xt−1
i ≤ Qi(pt−1). We shall show

that

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Let

zL+1 = (xs
1, x

s
2, . . . , x

s
n)s≤L

be the terminal history which is reached by (σ∗
j |ht)j∈N , and

wL′+1 = (x̂s
1, x̂

s
2, . . . , x̂

s
n)s≤L′

be the terminal history which is reached by (σi, (σ∗
j |ht)j ̸=i). Denote {(Ct

j)j∈N}Lt=0

the cumulative clinches of zL+1, and {(Ĉt
j)j∈N}L

′
t=0 the cumulative clinches of

wL′+1.

Step 1. xL−1
i ≤ Qi(pL−1).

If L− 1 = t− 1, xL−1
i = xt−1

i ≤ Qi(pt−1) = Qi(pL−1). Then, let L− 1 ≥ t. By
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the definition of sincere bidding,

xL−1
i = σ∗

i |ht

(
(xℓ

1, . . . , x
ℓ
n)ℓ≤L−2

)
= min{xL−2

i ,max{CL−2
i , Qi(p

L−1)}}.

By Property 1, xL−1
i ̸= CL−2

i or CL−2
i = 0. Then, xL−1

i = min{xL−2
i , Qi(pL−1)}.

Therefore, xL−1
i ≤ Qi(pL−1).

Step 2. For each j ̸= i and s ≤ min{L − 1, L′ − 1}, xs
j = x̂s

j . This implies that

for each s ≤ min{L− 1, L′ − 1},

Cs
i = M −

∑

j ̸=i

xs
j = M −

∑

j ̸=i

x̂s
j = Ĉs

i .

For each s ≤ t− 1, obviously xs
j = x̂s

j .

For the cases with t ≤ s ≤ min{L− 1, L′ − 1}, we shall show by induction.

Let s = t. Because xt
j = σ∗

j |ht(ht) and x̂t
j = σ∗

j |ht(ht), xt
j = x̂t

j.

Let s = k with t + 1 ≤ k ≤ min{L − 1, L′ − 1}). Suppose that xℓ
j = x̂ℓ

j for all ℓ

with t+ 1 ≤ ℓ ≤ k − 1. By the definition of sincere bidding,

xk
j = σ∗

j |ht

(
(xℓ

1, . . . , x
ℓ
n)ℓ≤k−1

)
= min{xk−1

j ,max{Ck−1
j , Qj(p

k)}},

x̂k
j = σ∗

j |ht

(
(x̂ℓ

1, . . . , x̂
ℓ
n)ℓ≤k−1

)
= min{x̂k−1

j ,max{Ĉk−1
j , Qj(p

k)}}.

Since k ≤ min{L−1, L′−1}, by Property 1, xk
j ̸= Ck−1

j or Ck−1
j = 0. Thus, xk

j =

min{xk−1
j , Qj(k)}. Similarly, we have x̂k

j = min{x̂k−1
j , Qj(k)}. Since xk−1

j = x̂k−1
j ,

xk
j = x̂k

j .

Step 3. πi((σ∗
j |ht)j∈N) ≥ πi(σi, (σ∗

j |ht)j ̸=i).

We consider three cases; L = L′, L > L′ and L < L′.
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Case 1. L = L′.

By step 2, for all s ≤ L− 1 = L′ − 1, Cs
i = Ĉs

i . We calculate CL
i and ĈL

i for

two cases with xL
i ≥ Qi(pL) and xL

i < Qi(pL).

Case 1-1. xL
i ≥ Qi(pL).

By step 1, xL−1
i ≤ QL−1

i . Thus,

Qi(p
L) ≤ xL

i ≤ CL
i ≤ xL−1

i ≤ Qi(p
L−1).

Therefore, by lemma 1,

min{arg max
xi∈Xi

(Ui(xi)− pLxi)} ≤ CL
i ≤ max{arg max

xi∈Xi

(Ui(xi)− pLxi)}.

Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Case 1-2. Let xL
i < Qi(pL).

We shall show that xL
i = xt−1

i . By the definition of sincere bidding,

xL
i = σ∗

i |ht((xs
1, . . . , x

s
n)s≤L−1) = min{xL−1

i ,max{CL−1
i , Qi(p

L)}}.

Since xL
i < Qi(pL), xL

i = xL−1
i . If L− 1 = t − 1, xL−1

i = xt−1
i . Then, we assume

t− 1 ̸= L− 1. By the definition of sincere bidding,

xL−1
i = σ∗

i |ht((xs
1, . . . , x

s
n)s≤L−2) = min{xL−2

i ,max{CL−2
i , Qi(p

L−1)}}.
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Since Qi(pL) ≤ Qi(pL−1), xL−1
i = xL

i < Qi(pL−1). Hence, we have xL−1
i = xL−2

i .

By repeating this procedure, xL
i = xL−1

i = · · · = xt−1
i . Thus, CL

i = xt−1
i .

Since bidder i cannot bid more quantity than xt−1
i after ht, ĈL

i ≤ xt−1
i . Then,

ĈL
i ≤ CL

i < Qi(p
L).

Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Case 2. L > L′.

By step 2, for each s ≤ L′ − 1, Cs
i = Ĉs

i . Then, we calculate {Cs
i }Ls=L′ and

ĈL′
i . Since the auction does not end at L′ in the history zL+1, by Property 1 for

each j ̸= i, xL′
j ̸= CL′−1

j or CL′−1
j = 0. Then, by the definition of sincere bidding,

for each j ̸= i,

xL′

j = min{xL′−1
j , Qj(p

L′
)}.

On the other hand,

x̂L′

j = min{x̂L′−1
j ,max{ĈL′−1

j , Qj(p
L′
)}}.

Since xL′−1
j = x̂L′−1

j , xL′
j ≤ x̂L′

j . Thus,

ĈL′

i ≤ M −
∑

j ̸=i

x̂L′

j ≤ M −
∑

j ̸=i

xL′

j = CL′

i .

By the definition of cumulative clinches, for each s ∈ {L′, . . . , L − 1}, Cs
i ≤ xs

i

and xL
i ≤ CL

i ≤ xL−1
i . For each s ∈ {L′, . . . , L − 1}, because s ≥ t, xs

i is sincere

27



bidding. That is,

xs
i = min{xs−1

i ,max{Cs−1
i , Qi(p

s)}}.

Since the auction does not end at s ≤ L− 1 in the history zL+1, by Property 1,

xs
i = min{xs−1

i , Qi(p
s)}.

Therefore, for each s ∈ {L′, . . . , L− 1}, xs
i ≤ Qi(ps). Thus,

Cs
i ≤ Qi(p

s) ∀s ∈ {L′, . . . , L− 1},

ĈL′

i ≤ CL′

i ≤ Qi(p
L′
),

CL
i ≤ xL−1

i ≤ Qi(p
L−1) = max{arg max

xi∈Xi

(Ui(xi)− pLxi)}.

Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Case 3. L < L′.

We first show that Qi(pL) ≤ xL
i . Suppose that Qi(pL) > xL

i . Similarly to

case 1-2, we have xL
i = xt−1

i . By bidding constraint, x̂L
i ≤ xt−1

i . Then, x̂L
i ≤ xL

i .

Since L < L′, the auction does not end at L in the history wL′+1. Therefore,

by Property 1, for each j ̸= i, x̂L
i ̸= ĈL

i or ĈL
i = 0. By the definition of sincere

bidding

xL
j = min{xL−1

j ,max{CL−1
j , Qj(p

L)}},

x̂L
j = min{x̂L−1

j ,max{ĈL−1
j , Qj(p

L)}} = min{x̂L−1
j , Qj(p

L)}.
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For each j ̸= i, since by step 2, xL−1
j = x̂L−1

j , we have xL
j ≥ x̂L

j . Hence for each

j ∈ N , xL
j ≥ x̂L

j . Since the auction ends at L in the history zL+1,
∑

j∈N xL
j ≤ M .

Therefore,
∑

j∈N x̂L
j ≤ M . This implies the auction ends at L in the history

wL′+1. This contradicts to L < L′. Thus, Qi(pL) ≤ xL
i .

By step 2, for each s ≤ L−1, Cs
i = Ĉs

i . Similarly to case 2, we have CL
i ≤ ĈL

i .

Because xL
i ≤ CL

i , Qi(pL) ≤ CL
i ≤ ĈL

i . Moreover, for each s ≥ L, ĈL
i ≤ Ĉs

i and

Qi(ps) ≤ Qi(pL). Thus, for each s ≥ L, Qi(ps) ≤ Ĉs
i . Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Proof of Theorem 1

Consider any t ∈ {0, 1, . . . , T},

ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈ H t \ Zt,

and (uj)j∈N . For each j ∈ N , let σ∗
j be sincere bidding which is corresponding to

uj, and σ∗
j |ht be induced sincere bidding in the subgame that follows ht.

Take any i ∈ N and σi ∈ Σi|ht . We shall show that

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

If xt−1
i ≤ Qi(pt−1), we can show by Lemma 2. Suppose that xt−1

i > Qi(pt−1).

Let

zL+1 = (xs
1, x

s
2, . . . , x

s
n)s≤L
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be the terminal history which is reached by (σ∗
j |ht)j∈N , and

wL′+1 = (x̂s
1, x̂

s
2, . . . , x̂

s
n)s≤L′

be the terminal history which is reached by (σi, (σ∗
j |ht)j ̸=i). Denote {(Ct

j)j∈N}Lt=0

the cumulative clinches of zL+1, and {(Ĉt
j)j∈N}L

′
t=0 the cumulative clinches of

wL′+1.

We consider three cases; L > t, L′ > L = t and L′ = L = t.

Case 1. L > t.

Since L− 1 ≥ t, by the definition of sincere bidding,

xL−1
i = σ∗

i |ht

(
(xℓ

1, . . . , x
ℓ
n)ℓ≤L−2

)
= min{xL−2

i ,max{CL−2
i , Qi(p

L−1)}}.

By Property 1, xL−1
i ̸= CL−2

i or CL−2
i = 0. Then, xL−1

i = min{xL−2
i , Qi(pL−1)}.

Therefore, xL−1
i ≤ Qi(pL−1), which is the same argument as step 1 of Lemma 2.

Note that we only use the assumption xt−1
i ≤ Qi(pt−1) in step 1 of Lemma 2.

Thus, we can prove this case similarly to Lemma 2.

Case 2. L′ > L = t.

For each j ∈ N and each s ≤ t − 1, obviously xs
j = x̂s

j . Therefore, for each

s ≤ t− 1 = L− 1, Cs
i = Ĉs

i . We will calculate CL
i and {Ĉs

i }L
′

s=L.

We first show that Qi(pL) ≤ CL
i . By the definition of sincere bidding,

xL
i = min{xL−1

i ,max{CL−1
i , Qi(p

L)}}.
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Since xL−1
i ≥ CL−1

i and xL−1
i > Qi(pL−1) ≥ Qi(pL),

xL
i = max{CL−1

i , Qi(p
L)}.

Therefore, Qi(pL) ≤ xL
i . Because xL

i ≤ CL
i ≤ xL−1

i , Qi(pL) ≤ CL
i .

Next we show that CL
i ≤ ĈL

i . For each j ̸= i, because t = L, xL
j = σ∗

j |ht(ht)

and x̂L
j = σ∗

j |ht(ht). Therefore, for each j ̸= i, xL
j = x̂L

j . Since the auction does

not end at L in the history wL′+1,

ĈL
i = M −

∑

j ̸=i

x̂L
j = M −

∑

j ̸=i

xL
j .

On the other hand, since the auction ends at L in the history zL+1,

CL
i ≤ M −

∑

j ̸=i

xL
j .

Therefore, CL
i ≤ ĈL

i .

Hence, Qi(pL) ≤ CL
i ≤ ĈL

i . Furthermore, for all s ≥ L + 1, Qi(ps) ≤ Ĉs
i ,

because Qi(ps) ≤ Qi(pL) and ĈL
i ≤ Ĉs

i . Thus,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Case 3. L′ = L = t.

For each j ∈ N and each s ≤ t− 1, obviously xs
j = x̂s

j . Furthermore, for each

j ̸= i, xL
j = σ∗

j |ht(ht) = x̂L
j . Since for each s ≤ L − 1, Cs

i = Ĉs
i , we calculate CL

i

and ĈL
i .
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Case 3-1. CL
i = xL

i .

By the definition of sincere bidding,

xL
i = min{xL−1

i ,max{CL−1
i , Qi(p

L)}}.

Since xL−1
i ≥ CL−1

i and xL−1
i > Qi(pL−1) ≥ Qi(pL),

xL
i = max{CL−1

i , Qi(p
L)}.

If xL
i = Qi(pL), then CL

i = Qi(pL) and we have

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Suppose that xL
i = CL−1

i . Then, CL−1
i ≥ Qi(pL) and CL

i = CL−1
i . Since ĈL

i ≥

ĈL−1
i and CL−1

i = ĈL−1
i , ĈL

i ≥ CL
i . Therefore, Ĉ

L
i ≥ CL

i ≥ Qi(pL). Hence

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Case 3-2. CL
i > xL

i .

First, we show that for each j ∈ {1, . . . , i − 1}, CL
j = xL−1

j . Suppose that

there exists j ∈ {1, . . . , i − 1} such that CL
j ̸= xL−1

j . By the definition of our

rationing rule,

CL
j = min{xL−1

j , xL
j +M −

n∑

k=j

xL
k −

j−1∑

k=1

CL
k }
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= xL
j +M −

n∑

k=j

xL
k −

j−1∑

k=1

CL
k .

Therefore,

M =
n∑

k=j+1

xL
k −

j∑

k=1

CL
k .

Since for each k ∈ N , xL
k ≤ CL

k , and
∑

k∈N CL
k = M ,

M =
n∑

k=j+1

xL
k −

j∑

k=1

CL
k ≤

∑

k∈N

CL
k = M.

Therefore, for each k ≥ j + 1, xL
k = CL

k . Because i ≥ j + 1, this contradicts to

CL
i > xL

i .

Next, we show that CL
i ≤ ĈL

i . By the definition of our rationing rule,

CL
i = min{xL−1

i , xL
i +M −

n∑

j=i

xL
j −

i−1∑

j=1

CL
j } = min{xL−1

i ,M −
n∑

j=i+1

xL
j −

i−1∑

j=1

CL
j },

ĈL
i = min{xL−1

i , x̂L
i +M − x̂L

j −
n∑

j=i+1

xL
j −

i−1∑

j=1

ĈL
j } = min{xL−1

i ,M −
n∑

j=i+1

xL
j −

i−1∑

j=1

ĈL
j }.

For each j ≤ i− 1, since xL−1
j = CL

j and xL−1
j ≥ ĈL

j ,

CL
j ≥ ĈL

j .

Therefore,

min{xL−1
i ,M −

n∑

j=i+1

xL
j −

i−1∑

j=1

CL
j } ≤ min{xL−1

i ,M −
n∑

j=i+1

xL
j −

i−1∑

j=1

ĈL
j }.
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Hence, CL
i ≤ ĈL

i .

Similarly to case 2, we can show that Qi(pL) ≤ CL
i . Therefore, Qi(pL) ≤

CL
i ≤ ĈL

i . Thus,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Proof of Theorem 2

Consider any t ∈ {0, 1, . . . , T},

ht =
(
(xs

1, a
s
1), (x

s
2, a

s
2) . . . , (x

s
n, a

s
n)
)
s≤t−1

∈
(
×i∈N

(
Xi,×{0, 1}

)){0,1,...,t−1}

and (uj)j∈N . For each j ∈ N , let σ∗
j be sincere bidding which is corresponding to

uj, and σ∗
j |ht be induced sincere bidding in the subgame that follows ht.

Take any i ∈ N and σi ∈ Σi|ht . If xt−1
i ≤ Qi(pt−1), then we can show similarly

to Proposition 1. Suppose that xt−1
i > Qi(pt−1).

Let

zL+1 =
(
(xs

1, a
s
1)(x

s
2, a

s
2), . . . , (x

s
n, a

s
n)
)

s≤L

be the terminal history which is reached by (σ∗
j |ht)j∈N , and

wL′+1 =
(
(x̂s

1, â
s
1)(x̂

s
2, â

s
2), . . . , (x̂

s
n, â

s
n)
)

s≤L′

be the terminal history which is reached by (σi, (σ∗
j |ht)j ̸=i). Denote {(Ct

j)j∈N}Lt=0

the cumulative clinches of zL+1, and {(Ĉt
j)j∈N}L

′
t=0 the cumulative clinches of

wL′+1.
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We first consider the case L > t. Since the auction does not end at t in the

history zL+1,

xt
i ̸= Ct−1

i .

Because Qi(pt) ≤ Qi(pt−1) < xt−1
i ,

xt
i ̸= xt−1

i .

That is, xt
i = Qi(pt). If the auction ends at t in the history wL′+1,

ĈL′+1
i ≤ Ct

i ≤ Qi(p
t) = min{arg max

xi∈Xi

(Ui(xi)− pxi)}.

On the other hand, the equation Ĉt+1
i = Ct

i holds. Then, since xt
i = Qi(pt), we

can prove the case L < t similarly to Proposition 1.

We next consider the case L = t. Then, σ∗
i |ht(ht) = (max(Ct−1

i , Qi(pt)), 0),

because xt−1
i > Qi(pt−1) ≥ Qi(pt). Thus,

CL
i = max{Ct−1

i , Qi(p
t)}.

Then

ĈL
i ≥ CL

i ≥ Qi(p
t) = min{arg max

xi∈Xi

(Ui(xi)− pxi)}.

Then for all s ≤ t, the clinches Ĉs
i ≥ min{arg max

xi∈Xi

(Ui(xi) − pxi)} s ≤ t reduce

the utility of bidder i. Thus,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).
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Chapter 2

Non-Wasteful Rescheduling on

the Ground Delay Program

2.1 Introduction

The Ground Delay Program is an air traffic control program in the United States.

When inclement weather strikes an airport, the airport needs to reconstruct the

landing schedule. There are mainly two reasons to reschedule: airport’s condition

and flights’ condition. First reason is that airport’s acceptable rate of flights

declines, and the number of available slots decreases. Second reason is that some

flights may delay its arrival or be canceled.

The purpose of this paper is to design a mechanism which always obtains a

non-wasteful schedule. In this paper, we introduce a new efficiency condition,

namely universal non-wastefulness. To construct a non-waste schedule, we need

to aggregate correct information. However, flights’ conditions are private infor-

mation of airlines. Thus, we also investigate incentive conditions of rescheduling

rules.

In the FAA’s current mechanism on the Ground Delay Program, for airport’s

condition, FAA’s decides which arrival slots remain active at the first step.*8 The

center aggregates earliest feasible arrival times of flights from airlines, and assigns

available slots to flights by a rescheduling rule at the second step. We explain

*8See Vossen and Ball (2006a, 2006b), for example, for a survey on FAA’s current mechanism.
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the mechanism by an example.

Example 1: There are ten slots and ten flights in the original schedule.

Because bad weather strikes the airport, airport’s acceptable rate declines one

flight per a minute to one flight per two minutes. The airport selects five slots as

available slots, 10:01, 10:03, 10:05, 10:07, and 10:09. Suppose flights’ conditions

are as in Table 1, that is, f1 can arrive at earliest 10:01, f2 has to be canceled,

f3 can arrive at earliest 10:04, and so on. The FAA’s current mechanism assigns

the schedule such that slot 10:01 is assigned to f1, slot 10:03 is vacant, slot 10:05

is assigned to f3, slot 10:07 is assigned to f6, and slot 10:09 is assigned to f5.

time flight feasible arrival time rescheduling

10:01 f1 10:01 f1

10:02 f2 canceled –

10:03 f3 10:04 vacant

10:04 f4 canceled –

10:05 f5 10:08 f3

10:06 f6 10:06 –

10:07 f7 canceled f6

10:08 f8 canceled –

10:09 f9 10:10 f5

10:10 f10 canceled –

Table 1: The existing procedure

However, we can construct a more efficient schedule. In the schedule of Table

2, slot 10:04 is assigned to f3, slot 10:06 is assigned to f6, slot 10:08 is assigned

to f5, and slot 10:10 is assigned to f9. Therefore, three flights f3, f6 and f5 are
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assigned earlier slots than the above schedule. Furthermore, in this schedule, one

more flight f9 is assigned an available slot. Note that this schedule keeps the

airline’s acceptable rate of one flight per two minutes.

time flight feasible arrival time rescheduling

10:01 f1 10:01 f1

10:02 f2 canceled –

10:03 f3 10:04 –

10:04 f4 canceled f3

10:05 f5 10:08 –

10:06 f6 10:06 f6

10:07 f7 canceled –

10:08 f8 canceled f5

10:09 f9 10:10 –

10:10 f10 canceled f9

Table 2: Non-waste schedule
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Since FAA’s current mechanism fixes available slots, FAA may have to select

a schedule that is wasteful in some situation. Hence, we develop a new procedure

such that available slots are flexible. Then, we investigate properties of non-

wastefulness and fairness on the new procedure. Finally, we analyze airlines’

incentives to report earliest feasible arrival times.

This chapter is organized as follows. In Section 2, we introduce definitions

and notation. In Section 3, we investigate problems of the existing model. In

Section 4, we introduce a new model and design a new mechanism. In Section 5,

we conclude this chapter. Some proofs are relegated to Appendix.

2.2 Notation and Definitions

*9

There is a set of finite original arrival slots S = {1, 2, . . . , |S|}. For any

s, s′ ∈ S, s < s′ means that the time of slot s is earlier than the time of slot s′.

The the null slot, denoted by |S|+ 1, means cancellation.

There is a finite set of airlines A . Each airline A ∈ A has a finite set of

flights FA. Let F ≡
⋃

A∈A FA be the set of all flights. Each flight is initially

assigned to a slot, that is, we assume that |F | = |S|.

Each flight f ∈ F has an earliest feasible arrival time ef ∈ S ∪ {|S|+1}; that

is, for any s ∈ S, flight f can arrive at the time of slot s if s ≥ ef . Note that

f ∈ F cannot arrive at the time of any slot if ef = |S| + 1. An earliest arrival

*9In this section, we follow definitions and notation of Schummer and Vohra (2013) and
Schmmer and Abizada (2017).
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time profile, or simply a time profile, is a list of earliest feasible arrival times

e = (ef )f∈F .

For each A ∈ A , we denote

eA = (ef )f∈FA ,

e−A = (ef )f∈F\FA
.

An original schedule is a bijection g : F → S and its inverse function is denoted

by g−1 : S → F . A schedule is a function π : F → S ∪ {|S| + 1} such that for

each s ∈ S, |{f ∈ F : s = π(f)}| ≤ 1. This condition means that at most one

flight is assigned to a slot except for the null slot.

Let Π be the set of schedules. A schedule π ∈ Π is feasible for eA if for any

f ∈ FA, ef ≤ π(f). Let Π(eA) ⊂ Π be the set of schedules that are feasible

for eA. Similarly, π ∈ Π is feasible for e if for any f ∈ F , ef ≤ π(f). Let

Π(e) =
⋂

A∈A Π(eA).

2.3 Fixed slots problems

In this section, we analyze schedules which are constructed on fixed available

slots. The center decides which slots remain active given any S ⊂ S.

A schedule π ∈ Π is feasible for S ⊂ S if for any s ∈ S \ S,

|{f ∈ F : π(f) = s}| = 0.
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Let Π(S) ⊂ Π be the set of schedules which are feasible for S.

A fixed slots problem is x = (S, (eA)A∈A ). Let X ≡ 2S ×
(
S ∪ {|S| + 1}

)F

be the set of fixed slots problems. An assignment rule on fixed slots problem is a

function ϕ : X → Π which satisfies feasibility for the domain X. Thus, for any

x = (S, (eA)A∈A ) ∈ X, ϕ(x) ∈ Π(x) ≡ Π(S) ∩ Π(e).

We first introduce an efficiency axiom on the fixed slots problem. If a schedule

is partially non-wasteful, then there is no available slot that any unassigned flight

can use.

Axiom 1. Given any x = (S, (eA)A∈A ) ∈ X, a schedule π ∈ Π(x) is partially

non-wasteful for x if there exists no slot s ∈ S such that

π(f) ̸= s ∀f ∈ F

ef ′ ≤ s < π(f ′) ∃f ′ ∈ F.

An assignment rule ϕ satisfies partial non-wastefulness if for any problem x ∈ X,

ϕ(x) is partially non-wasteful for x.

Next, we introduce an order preservation axiom. If a schedule is order pre-

serving, any flight is not overtaken by other flights which are later than the flight

in the original schedule.

Axiom 2. Given any problem x = (S, (eA)A∈A ), a schedule π ∈ Π is order

preserving if there exist no flights f, f ′ ∈ F such that g(f) < g(f ′) and π(f) >

π(f ′) ≥ ef .

Order preserving is a certain fairness axiom to flights in rescheduling. If this

condition is satisfied, flights do not face with a situation such that thought a flight
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can use a slot, another flight which is later in the original schedule is assigned to

the slot.

In each problem, we want to find a schedule that is partially non-wasteful

and order preserved. Here, we describe the rule of the flight proposing deferred

acceptance algorithm with the original schedule priority.*10

*10Gale and Shapley (1962) introduces this algorithm. See Roth (2004), for example, for a
suvery.
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Step 1-a.
Each flight proposes to the earlies available slot in its earliest feasible arrival
time. If a flight cannot arrive at any slot, then the flight is assigned to the
null slot.

Step 1-b.
Each slot except for the null slots rejects all but the earliest in the original
schedule of flights which have proposed to the slot, and keeps the earliest
flight.

Step 1-c.
If all flights are kept by slots or assigned to the null slot, the algorithm ends
and each flight is assigned to the that keeps it. If not, go to Step 2-a.

...

Step k-a.
Each flight that has been rejected in the previous step proposes to the
earliest of those available slots that have not yet rejected the flight. If a
flight cannot arrive at any slot which has not yet rejected the flight, then
the flight is assigned to the null slot.

Step k-b.
Each slot except for the null slots rejects all but the earliest in the original
schedule of flights which have proposed to the slot, and keeps the earliest
flight.

Step k-c.
If all flights are kept by slots or assigned to the null slot, the algorithm
ends and each flight is assigned to the slot that keeps it. If not, go to Step
k+1-a.

Figure 1: The flight proposing deferred acceptance algorithm
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In Proposition 1, we prove that the flight proposing algorithm satisfies partial

non-wastefulness and original schedule monotonicity. Moreover, we show the

uniqueness of the schedule that is partially non-wasteful and order preserving.*11

Proposition 1. For each problem, there exists a unique schedule that is par-

tial non-wasteful and order preserving. The flight proposing deferred acceptance

algorithm with the original schedule priority selects this schedule.

Proof. See Appendix.

Next, we investigate incentives in the flight proposing deferred acceptance

algorithm with the original schedule priority. It is well-known that under Gale

and Shapley’s DA algorithm, no one has an incentive to misreport his private

information.*12 In the following results, we show that under the flight proposing

deferred acceptance algorithm with the original schedule priority, no airline has

an incentive to misreport.

Proposition 2. Let ϕ be the flight proposing Deferred Acceptance algorithm with

the original schedule priority. Consider any x = (S, (eA)A∈A ) ∈ X, any A ∈ A ,

and e′A. Let x′ = (S, (e′A, e−A)), ϕ(x) = π and ϕ(x′) = π′. Then, if there

exists f ∈ FA such that ef ≤ π′(f) < π(f), there must exist f ′ ∈ FA such that

ef ′ ≤ π(f ′) < π′(f ′) or π′(f ′) < ef ′ ≤ π(f ′) < |S|+ 1.

Proof. See Appendix.

*11We note that slots proposing deferred acceptance algorithm with same orderings obtains
the same results of flight proposing in these problems. Crawford (1991) showed that if priorities
satisfy certain monotonicity, then the both of man and woman proposing deferred acceptance
algorithm select the same outcome.
*12See Dubins and Freedman (1981) and Roth (1982).
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Proposition 2 states that if an airline which has a flight assigned to a earlier

feasible slot by misreporting, then the airline must have a flight which is assigned

to a later or infeasible slot. That is, any airline cannot improve the schedule by

misreporting on the flight proposing deferred acceptance algorithm.

2.4 Minimum interval problem

So far, we have discussed rescheduling problems on the fixed slots domain. In

this section, we extend the domain so as to accommodate more flights.

The center decides a minimum interval d ∈ S of the intervals between flights.

A schedule π ∈ Π is feasible for d if for any s ∈ S,

∣∣∣
{
f ∈ F : π(f) ∈ [s− d, s+ d] and π(f) ̸= |S|+ 1

}∣∣∣ ≤ 1.

Let Π(d) be the set of schedules which are feasible for d.

A minimum interval problem is y = (d, (eA)A∈A ). Let Y ≡ S×(S∪{|S|+1})F

be the set of problems. An assignment rule on minimum interval problem is a

function φ : Y → Π which satisfies feasibility for the domain Y : For any y ∈ Y ,

φ(y) ∈ Π(y) ≡ Π(d) ∩ Π(e).

Remark 1. Consider any y = (d, (eA)A∈A ) ∈ Y , any S ⊂ S such that for any

s, s′ ∈ S with s < s′, s+ d < s′, and let x = (S, (eA)A∈A ). Then, Π(x) ⊂ Π(y).

In fact, a minimum interval problem extends the domain of feasible schedules.

Thus, we also extend the efficiency axiom in this problem. If a schedule of the

minimum interval problem is universally non-wasteful, then the schedule does not

have a waste interval of times. Thus, it maximizes the number of flights that are
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assigned available slots.*13

Axiom 3. Given y = (d, (eA)A∈A ) ∈ Y , a schedule π ∈ Π(y) is universally

non-wasteful for y if there exists no s ∈ S such that

π(f) /∈ [s− d, s] ∀f ∈ F

ef ′ ≤ s < π(f ′) ∃f ′ ∈ F.

An assignment rule φ satisfies universal non-wastefulness if for any y ∈ Y , φ(y)

is universally non-wasteful for y.

In this model, we also introduce the same axiom of order preserving.

Axiom 4. Given any problem y = (d, (eA)A∈A ) ∈ Y , a schedule π ∈ Π is

order preserving if there exist no flights f, f ′ ∈ F such that g(f) < g(f ′) and

π(f) > π(f ′) ≥ ef .

An assignment rule ϕ satisfies order preserving if for any problem x ∈ X, ϕ(x) is

order preserving.

For each minimum interval problem, we also search a schedule that is uni-

versally non-wasteful and order preserving. Here, we describe a new rule, the

sequential assignment algorithm, in Figure 2.

*13Here, we assume that each airline has a preference order as follows: For any two schedule
π,π′, (i) an airline A strictly prefer π to π′ if for any f ∈ FA, ef ≤ π(f) ≤ π′(f) and for some
f ′ ∈ FA, ef ≤ π(f ′) < π(f ′), (ii) π and π′ is incomparable for A if there exist f, f ′ ∈ FA such
that π(f) < π′(f) and π(f ′) > π′(f ′), and (iii) if there exists f ∈ FA, π(f) < ef , then π is
preferred to all the other schedules by A. A partial non-wasteful schedule is Pareto efficient in
Π(x), but it may not be Pareto efficient in Π(y). On the other hand, a universal non-wasteful
schedule is always Pareto efficient in π(y).
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Step 0.
Given any y = (d, (eA)A∈A ) ∈ Y .

Step 1.
Start at slot 1. Let F1 = {f ∈ F : ef ≤ 1}. If F1 = Ø, go to slot 2. If
F1 ̸= Ø, assign arg minf∈F1

g(f) to slot 1, and go to slot min{2+d, |S|+1}.

...

Step k.
At slot s ∈ S, let

Fs = {f ∈ F : ef ≤ s and f has not been assigned to a slot}.

If Fs = Ø, go to s + 1. If Fs ̸= O, assign arg minf∈Fs
g(f) to s, and go to

slot min{s+ 1 + d, |S|+ 1}.

Step n.
At |S|+1, assign the flights that have not been assigned to slots to the null
slot, and the algorithm ends.

Figure 2: The sequential assignment algorithm
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Theorem 1. For each problem, there exists a unique schedule that is universal

non-wasteful and order preserving. The sequential assignment algorithm selects

this schedule.

Proof. See Appendix.

Next, we investigate airlines’ incentives to misreport earliest feasible arrival

times.

Theorem 2. Let φ be the sequential assignment algorithm. Consider any y =

(d, (eA)A∈A ) ∈ Y , any A ⊂ A and any e′A. Let y
′ = (d, (e′A, e−A)), φ(x) = π and

φ(x′) = π′. If there exists f ∈ FA such that ef ≤ π′(f) < π(f), then there exist

f ′ ∈ FA such that ef ′ ≤ π(f ′) < π′(f ′) or π′(f ′) < ef ′ ≤ π(f ′).

Proof. See Appendix.

Theorem 2 states that if an airline which has a flight assigned to an earlier

feasible slot by misreporting, then the airline must have a flight which is assigned

to a later or infeasible slot. We note that there may exists an airline which

can improve the schedule by making dummy flight in the sequential acceptance

algorithm. That is, by misreporting some airline may make a flight such that

although a flight is assigned to an infeasible slot, the flight is assigned to the

null slot in the schedule of truth-reporting.*14 However, in real situations, it is

difficult for airlines to make a dummy flight, and such airlines may be punished

for making a dummy flight.

*14The difference point between Proposition 2 and Proposition 4 is π′(f ′) < ef ′ ≤ π(f ′) <
|S| + 1 and π′(f ′) < ef ′ ≤ π(f ′). Thus, in Proposition 4, π′(f ′) < ef ′ ≤ π(f ′) = |S| + 1 may
occur.
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2.5 Conclusion

In this study, we first showed that FAA’s current mechanism may not maximize

the number of flights assigned to available slots for all possible cases. Then, we

extended the domain of schedules, and introduce an efficiency axiom, universal

non-wastefulness. We designed a new mechanism, namely the sequential assign-

ment algorithm, that satisfies universal non-wastefulness and order preserving.

Furthermore, we showed that under this mechanism, all airlines have no incen-

tive to misreport. To find a universal non-wasteful mechanism under which there

exists no incentives to make a dummy flight is left to the future research.
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2.6 Appendix

Proof of Proposition 1. Take any x = (S, (eA)A∈A ). Let ϕ be the flight proposing

deferred acceptance algorithm with the original schedule priority, and ϕ(x) = π.

We first show that π is partial non-wasteful. Note that ϕ satisfies feasibility,

that is, for any f ∈ F , ef ≤ π(f). Suppose that there exists s ∈ S such that

π(f) ̸= s ∀f ∈ F

ef ′ ≤ s < π(f ′) ∃f ′ ∈ F.

However, since ef ′ ≤ s < π(f ′), f ′ has proposed to s at some step, and s accept

f ′. This is a contradiction.

Next, we shall show the schedule satisfies order preserving. Suppose that there

exists flights f, f ′ ∈ F with g(f) < g(f ′) such that

π(f) > π(f ′) ≥ ef

Then, f has proposed π(f ′) at some step. Since g(f) < g(f ′), f ′ was rejected by

π(f ′) at some step, or does not proposed to π(f ′). This is a contradiction.

Finally, we shall show the uniqueness of the schedule that is partially non-

wasteful and monotone to the original schedule. Suppose that there exists two

schedule π, π′ which is partially non-wasteful and monotone to the original sched-

ule, and π ̸= π′. Then, there exists f1 ∈ F such that π(f1) ̸= π′(f1). Without

loss of generality, π(f1) < π′(f1).

By partial non-wastefulness, we have ef1 ≤ π(f1) < π′(f1), and there exists

f2 ∈ F such that ef2 ≤ π′(f2) = π(f1). By π′(f2) < π′(f1) and order preserving,
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g(f2) < g(f1). Then, π(f2) < π(f1) = π′(f2). By this way, we have

· · · < π(fk) < · · · < π(f2) < π(f1).

However, since the numbers of slots and flights are finite, this is a contradiction.

Proof of Proposition 2. Let ϕ be the flight proposing deferred acceptance algo-

rithm with the original schedule priority. Take any x = (S, (eA)A∈A ), A ∈ A ,

and e′A. Let x′ = (S, (e′A, e−A)), ϕ(x) = π and ϕ(x′) = π′. Suppose that there

exists f ∈ FA such that ef ≤ π′(f) < π(f).

Since the deferred acceptance algorithm satisfies group strategy-proofness.

There must exists f ′ ∈ FA such that ef ′ ≤ π(f ′) < π′(f ′) or π′(f ′) < ef ′ ≤ π(f ′).

Then, we consider the case that there exists only the flights f ′ ∈ FA such that

ef ′ ≤ π(f ′) < π′(f ′) or π′(f ′) < ef ′ ≤ π(f ′). We consider the case that there

exists no flight f ′ ∈ FA such that ef ′ ≤ π(f ′) < π′(f ′) = |S|+ 1.

Suppose that for any flight f ′ ∈ FA with π′(f ′) < ef ′ ≤ π(f ′), π(f ′) = |S|+1.

Since π(f) < π(f ′), g(f) < g(f ′). Then, π(f) < π(f ′). Thus, there exists no

flight f ′ ∈ FA such that π′(f ′) < ef ′ ≤ π(f ′) and ef ≤ π(f ′) < π(f ′). This

contradicts to ef ≤ π′(f) < π(f). Therefore, there exist f ′ ∈ FB such that

ef ′ ≤ π(f ′) < π′(f ′) or π′(f ′) < ef ′ ≤ π(f ′) < |S|+ 1.

Proof of Proposition 3. Take any y = (d, (eA)A∈A ). Let φ be the generalized

deferred acceptance algorithm, and φ(y) = π.

We first show universal non-wastefulness. Note that φ satisfies feasibility, that

51



is, for any f ∈ F , ef ≤ π(f). Suppose that there exists exists no s ∈ S such that

π(f) /∈ [s− d, s] ∀f ∈ F (2.6)

ef ′ ≤ s < π(f ′) ∃f ′ ∈ F. (2.7)

By (2.6), in some step, algorithm reached to slot s. By (2.7), Fs ̸= Ø. Therefore,

slot s must be assigned to some flight. This is a contradiction.

Next, we shall show the schedule satisfies order preserving. Suppose that there

exists flights f, f ′ ∈ F with g(f) < g(f ′) such that

π(f) > π(f ′) ≥ ef

Then, at some step, algorithm reached to slot π(f ′). Since π(f) > π(f ′) ≥ ef ,

f ∈ Fπ(f ′). By g(f) < g(f ′), slot π(f ′) must not be assigned to f ′. This is a

contradiction.

By the same way of Proposition 1, we can prove the uniqueness.

Proof of Proposition 4. Let φ be generalized deferred acceptance algorithm. Take

any y = (d, (eA)A∈A ), A ∈ A , and e′A. Let y′ = (S, (e′A, e−A)), φ(y) = π and

φ(y′) = π′. Then, by Proposition 3, π, π′ satisfies universal non-wastefulness and

order preserving for reported earliest feasible arrival times. Suppose that there

exists f ∈ FA such that ef ≤ π′(f) < π(f).

By feasibility of π′, for any f ′ ̸= f , π′(f ′) /∈ [π′(f) − d, π′(f)]. However, by

universal non-wastefulness, there exists f1 ∈ F such that π(f1) ∈ [π′(f)−d, π′(f)].

We consider two case: π′(f1) < π(f1) and π(f1) < π′(f1).

Case 1: π′(f1) < π(f1).
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If f1 /∈ FA, the earliest feasible arrival time is identical in π, π′. Then, by feasibility

of π′, for any f ′ ̸= f1, π′(f ′) /∈ [π′(f1)− d, π′(f1)]. By universal non-wastefulness

and order preserving, there exists f2 ∈ F such that π(f2) ∈ [π′(f) − d, π′(f)].

Then, we also consider two case: π′(f2) < π(f2) and π(f2) < π′(f2).

Then, f1 ∈ FA. Suppose that π′(f1) ≥ eA. Then, by universal non-wastefulness

and order preserving, for any f ′ ̸= f1, π′(f ′) /∈ [π′(f1)− d, π′(f1)] and there exists

f2 ∈ F such that π(f2) ∈ [π′(f)− d, π′(f)]. Therefore, π′(f1) < eA.

Case 2: π(f1) < π′(f1).

If f1 /∈ FA, the earliest feasible arrival time is identical in π, π′. Then, by universal

non-wastefulness and order preserving, there exists f2 ∈ F , π′(f2) ∈ [π(f1) −

d, π(f2)] and π′(f ′) < ef2 . Since π′ satisfies feasibility e′f2 ≤ π′(f2) < ef2 . Since

earliest feasible arrival time of f2 is different between ef2 and e′f2 , f2 ∈ FA.

Otherwise, f1 ∈ FA and ef1 ≤ π(f1) < π′(f1).
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Chapter 3

A Characterization of the Borda

Rule

3.1 Introdcution

In his classical work, Jean-Charles de Borda (1784) pointed out that the plurality

rule may select an alternative which is defeated by any other alternatives in

pairwise comparison. We call such an alternative a pairwise-majority loser. He

then introduced a new social choice rule, called the Borda rule, to avoid selecting a

pairwise-majority-loser. We say that a social choice rule satisfies Borda’s criterion

if it never selects a pairwise-majority-loser.

Young (1974, 1975) developed the model of social choice rules with variable

set of voters.*15 In the model, He characterized the Borda rule (a social choice

rule based on the Borda score) and the scoring rules using variants of the Borda

score by a set of natural conditions.*16 However, Young’s characterization did

not use Borda’s criterion.

The purpose of this study is to characterize the Borda rule by Borda’s criterion

and other standard axioms.*17 In fact, we show that the Borda rule is the only

social choice rule that satisfies anonymity, neutrality, consistency, continuity and

*15Smith (1973) studied social ranking rules in a similar model.
*16See Hansson and Sahlquist (1976) for a survey.
*17Fishburn and Gehrlein (1976) and Okamoto and Sakai (2013) consider the same topic.

Their results show that the Borda rule is the only scoring rule that satisfies Borda’s criterion.
That is, they focus on scoring rules. We study all social choice rules.
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Borda’s criterion.

This chapter is organized as follows. In Section 3.2 we introduce definitions. In

Section 3.3, we characterize the Borda rule. In Section 3.4, we show the tightness

of axioms.

3.2 Definitions

Let X = {x1, x2, . . . , xm} be the finite set of alternatives with m ≥ 3. Let N be

set of of the potential voters and N the collection of all nonempty finite subsets

of N. A preference relation is a linear ordering "i on X, where the symmetric,

asymmetric parts of "i are denoted by ∼i,≻i, respectively.*18 Let P be the set

of preference relations, and
⋃

N∈N PN the set of all preference profiles. For any

N ∈ N , any "N∈ PN , and any x, y ∈ X, let

πxy("N) = |{i ∈ N |x "i y}|.

A social choice rule is a function f :
⋃

N∈N PN → 2X \ {∅} that maps each

preference profile to a nonempty set of alternatives. The Borda rule is the social

choice rule fB such that for each x ∈ X, each N ∈ N and each "N∈ PN ,

x ∈ fB("N) ⇐⇒
∑

y ̸=x

(
πxy("N)−πyx("N)

)
≥

∑

y ̸=z

(
πzy("N)−πyz("N)

)
∀z ∈ X.

We introduce axioms of social choice rules. The first two axioms an fairly

standard in the literature.

*18A linear order is a binary relation which is complete, transitive and anti-symmetry.
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Anonymity requires that a social choice function treat all voters equally.

Anonymity: For any N,N ′ ∈ N , any "N∈ PN , and any "N ′∈ PN , if for each

preference relation, the number of voters who have the preference relation in "N

is same as that in "N ′
, then f("N) = f("N ′

).

Let Σ be the set of permutations on X. For each σ ∈ Σ and "∈ P , let σ̂(")

be such that for all x, y ∈ X

x " y =⇒ σ(x) σ̂(") σ(y).

Neutrality requires that a social choice rule is independent of labeling of alterna-

tives.

Neutrality: For any N ∈ N , any "N∈ PN , and any σ ∈ Σ, f(σ̂("N)) =

σ(f("N)).

The next two axioms are due to Young(1974, 1975). Consider two disjoint

subset of voters and two preference profiles. Consistency requires that if a social

choice rule selects the same alternative for the two preference profile, the social

choice rule selects the alternative for the union of preference profile.

Consistency: For any N,N ′ ∈ N , "N∈ PN and "N ′∈ PN ′
, if N ∩N ′ = ∅ and

f("N) ∩ f("N ′
) ̸= ∅, f("N ,"N ′

) = f("N) ∩ f("N ′
).

Continuity requires that if an anonymous social choice rule selects a single al-

ternative for a particular preference profile, then for any preference profile which

contains sufficiently large numbers of replications of the particular preference

profile, it selects the same alternative.

Continuity: Assume that f satisfies anonymity. For any N,N ′ ∈ N , any "N∈
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PN and "N ′∈ PN ′
if f("N) is a singleton, then there exists n̄ ∈ N such that for

any n ≥ n̄,

f("N ′
, n("N)) = f("N)

where

n("N) = ("N , . . . ,"N

︸ ︷︷ ︸
n times

).

Borda’s criterion requires that a social choice rule never select a pairwise-

majority-loser. Borda’s criterion is often called “Condorcet loser criterion” in the

literature. However, this condition is essentially introduced by Borda in 1770.

For the history of social choice in 18th century, see McLean and Hewitt (1994)

and McLean and Orken (1995).

Borda’s criterion: For any N ∈ N and "N∈ PN , there exists no x ∈ f("N)

such that

πxy("N) < πyx("N), for all y ̸= x.

3.3 Characterization

In this section, we characterize the Borda rule by the five axioms introduced so

far.

Theorem 1. A social choice rule satisfies anonymity, neutrality, consistency,

continuity and Borda’s criterion if and only if it is the Borda rule.

First, we show that the Borda rule satisfies the five axioms.

Lemma 1. The Borda rule satisfies anonymity, neutrality, consistency, continu-

ity and Borda’s criteiron.
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Proof. One can easily check that the Borda rule satisfies anonymity, neutrality,

consistency and continuity. We here only show that the Borda rule satisfies

Borda’s criterion.

Consider any N ∈ N and "N . Let x ∈ fB("N). Then, by the definition of

the Borda rule, for any x′ ∈ X,

∑

y ̸=x

(πxy("N)− πyx("N)) ≥
∑

y ̸=x′

(πx′y("N)− πyx′("N)) (3.8)

Since
∑

x′∈X

∑

y ̸=x′

(πx′y("N)− πyx′("N)) = 0,

by (3.8),

∑

y ̸=x

(πxy("N)− πyx("N)) ≥ 0. (3.9)

Suppose, by contradiction, that for each y ̸= x, πxy("N) < πyx("N). There-

fore,

∑

y ̸=x

(πxy("N)− πyx("N)) < 0.

This contradicts to (3.9). Therefore, fB satisfies Borda’s criterion.

To show the only if part, we need some lemmas.

Lemma 2. Suppose that a social choice rule f satisfies anonymity, neutrality

consistency, and Borda’s criterion. For any N ∈ N , any "N∈ PN , and any
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x ∈ f("N),

∑

y ̸=x

(πxy("N)− πyx("N)) ≥ 0.

Proof. Consider any N ∈ N , any "N∈ PN , and any x ∈ f("N). Suppose, by

contradiction, that

∑

y ̸=x

(πxy("N)− πyx("N)) < 0. (3.10)

Let Σx be the set of permutations such that for any σ ∈ Σx, σ(x) = x.

By neutrality, since for each σ ∈ Σx, f(σ̂("N)) = σ(f("N)), x ∈ f(σ̂("N)).

By anonymity, for each N ′ ∈ N with |N ′| = |N | if "N ′
consists of the same

preference relations as "N , then f("N) = f("N ′
). We note that |Σx| = (m−1)!.

Let "Nx
the preference profile by an arbitrary voters Nx with Nx = (m− 1)!|N |

such that

"Nx=
(
σ("N)

)
σ∈Σx

= (σ1("N), σ2("N), . . . , σ(m−1)!("N)).

By consistency, x ∈ f("Nx). By construction of "Nx ,

(m− 1)!
∑

y ̸=x

(πxy("N)− πyx("N)) =
∑

y ̸=x

(πxy("Nx)− πyx("Nx)), (3.11)

and for each y, y′ ∈ X \ {x},

πxy("Nx) = πxy′("Nx).
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Therefore for an arbitrary y ̸= x,

∑

y ̸=x

(πxy("Nx)− πyx("Nx)) = (m− 1)(πxy("Nx)− πyx("Nx)).

By (3.10) and (3.11), (m − 1)(πxy("Nx) − πyx("Nx)) < 0. Hence, πxy("Nx) <

πyx("Nx) for all y ̸= x. However, x ∈ f("Nx), a contradiction to Borda’s criterion.

Lemma 3. Suppose that a social choice rule f satisfies anonymity, neutrality,

continuity, consistency, and Borda’s criterion. Consider any N ∈ N and any

"N∈ PN . If for any x ∈ X,

∑

y ̸=x

(πxy("N)− πyx("N)) = 0

then f("N) = X. Furthermore, for any x ∈ X, if

∑

y ̸=x

(πxy("N)− πyx("N)) = 0

x ∈ f("N) ⇐⇒ f("N) = X.

Proof. Consider any N ∈ N and any "N∈ PN such that for any x ∈ X,

∑

z ̸=x

(πxz("N)− πzx("N)) = 0 (3.12)

Suppose that f("N) ̸= X.

Take any y ∈ f("N). Similarly to the proof of Lemma 2, we construct a
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preference profile

"Ny=
(
σ("N)

)
σ∈Σy

= (σ1("N), σ2("N), . . . , σ(m−1)!("N)).

Because f("N) ̸= X, for each x ̸= y, there exists σ ∈ Σy such that

x /∈ f(σ("N)).

Therefore, by consistency,

f("Ny) = {y}.

By construction of "Ny , for all x ∈ X,

πxy("Ny) = (m− 1)!πxy("N),

πyx("Ny) = (m− 1)!πyx("N)

and for each x, x′ ∈ X \ {y},

πxy("Ny) = πx′y("Ny),

πyx("Ny) = πyx′("Ny).

Therefore, by (3.12), for all x ̸= y,

πxy("Ny) = πyx("Ny). (3.13)

Let "j be such that for all x ∈ X, x "j y. By continuity, there exists n ∈ N
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such that

f("j, n("Ny)) = {y}.

However, by (3.13), for all x ̸= y,

πxy("j, n("Ny)) > πyx("j, n("Ny).

This contradicts to Borda’s criterion.

Lemma 4. Suppose that a social choice rule f satisfies anonymity, neutrality,

continuity, consistency, and Borda’s criterion. Consider any N,N ′ ∈ N , any

"N∈ PN and any "N ′∈ PN ′
. If for any x ∈ X,

∑

y ̸=x

(πxy("N)− πyx("N)) =
∑

y ̸=x

(πxy("N ′
)− πyx("N ′

)),

then f("N) = f("N ′
).

Proof. Consider any N,N ′ ∈ N , any "N∈ PN and any "N ′∈ PN ′
such that for

any x ∈ X,

∑

y ̸=x

(πxy("N)− πyx("N)) =
∑

y ̸=x

(πxy("N ′
)− πyx("N ′

)). (3.14)

Let N̄ ∈ N be such that |N | = |N̄ |, N̄ ∩N = ∅ and N̄ ∩N ′ = ∅. Let "̄N̄
be the

inverting preference profile of "N ; that is, for each i ∈ N , there uniquely exists

j ∈ N̄ such that for any x, x′ ∈ X

x "i x
′ ⇐⇒ x′"̄jx.
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By construction of "̄N̄
, for each x, x′ ∈ X

πxx′("N , "̄N̄
) = πx′x("N , "̄N̄

).

Hence, for all x, x′ ∈ X,

∑

y ̸=x

(πxy("N , "̄N̄
)− πyx("N , "̄N̄

) =
∑

y ̸=x′

(πx′y("N , "̄N̄
)− πyx("N , "̄N̄

)).

By (3.14), we also obtain

∑

y ̸=x

(πxy("N ′
, "̄N̄

)− πyx("N ′
, "̄N̄

) =
∑

y ̸=x′

(πx′y("N ′
, "̄N̄

)− πyx("N ′
, "̄N̄

)).

Then, by Lemma 3,

f("N , "̄N̄
) = f("N ′

, "̄N̄
) = X.

Hence, by consistency,

f("N) =f("N) ∩X

=f("N) ∩ f("N ′
, "̄N̄

)

=f("N ,"N ′
, "̄N̄

)

=f("N , "̄N̄
) ∩ f("N ′

)

=X ∩ f("N ′
)

=f("N ′
).
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Lemma 5. Suppose that a social choice rule f satisfies anonymity, neutrality,

continuity, consistency, and Borda’s criterion. Consider any N ∈ N and any

"N∈ PN . For any x, y ∈ X, if

∑

z ̸=x

(πxz("N)− πzx("N)) >
∑

z ̸=y

(πyz("N ′
)− πzy("N ′

)),

then y /∈ f("N).

Proof. Consider any N ∈ N and any "N∈ PN such that

∑

z ̸=x

(πxz("N)− πzx("N)) >
∑

z ̸=y

(πyz("N ′
)− πzy("N ′

)).

Suppose, by contradiction, y ∈ f("N). Note that the Borda score is even for all

alternatives. Let

2k =
∑

z ̸=x

(πxz("N)− πzx("N))−
∑

z ̸=y

(πyz("N ′
)− πzy("N ′

)),

2ℓ =
∑

z ̸=y

(πyz("N ′
)− πzy("N ′

)).

Assume that the number of alternatives m is odd.

Define two preference relations "1 and "2 such that

|{z ∈ X : z "1 x}| =
m+ 1

2
,

|{z ∈ X : z "1 y}| =
m+ 3

2
,

|{z ∈ X : z "2 y}| =
m+ 3

2
,

|{z ∈ X : z "2 x}| =
m+ 1

2
.
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Take any N ′ ∈ N with |N ′| = k + ℓ. Let "̂N ′

such that

"̂N ′

=
(
k("1), ℓ("1,"2)

)
= ("K ,"L).

Then, by construction of "̂N ′

,

∑

z ̸=x

(πxz("N)− πzx("N)) =
∑

z ̸=x

(πxz("̂
N ′

)− πzx("̂
N ′

)),

∑

z ̸=y

(πyz("N)− πzy("N)) =
∑

z ̸=y

(πxy("̂
N ′

)− πzy("̂
N ′

)).

Let Σxy be the set of all permutations such that for any σ ∈ Σxy, σ(x) = x and

σ(y) = y. By a similar way to Lemma 2, define "Nxy and "̂N ′
xy

= ("Kxy ,"Lxy).

Therefore, for all w ∈ X,

∑

z ̸=w

(πwz("Nxy)− πzw("Nxy)) =
∑

z ̸=w

(πxy("̂
N ′

xy
)− πzw("̂

N ′
xy
)).

Hence, by lemma 4, f("Nxy) = f("̂N ′
xy
). By lemmas 2 and 3, f("K′

xy) = {x}

and f("L′
xy) = {x, y}. Thus, f("̂N ′

xy
)) = f("K′

xy ,"L′
xy) = {x}. This contradicts

to y ∈ f("Nxy).

Finally, we show Theorem 1.

Proof of Theorem 1. Consider any N ∈ N and any "N∈ PN . Consider any

x ∈ X such that for any y ∈ X,

∑

z ̸=x

(πxz("N)− πzx("N)) ≥
∑

z ̸=y

(πyz("N)− πzy("N)).
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We use Lemma 5. If for all y ∈ X \ {x},

∑

z ̸=x

(πxz("N)− πzx("N)) >
∑

z ̸=y

(πyz("N)− πzy("N)),

then {x} = f("N). Otherwise, there exists y ∈ f("N) such that

∑

z ̸=x

(πxz("N)− πzx("N)) =
∑

z ̸=y

(πyz("N)− πzy("N)).

Suppose that x ̸= y. In this case, let "̂N ′

= ℓ("2). Then, by a similar way to

Lemma 5, we can show x ∈ f("N).

3.4 Tightness of the characterization result

Finally, we discuss tightness of the characterization result. That is, if we drop

one of the axioms, there are other social choice rules that satisfy the rest of the

axioms.

• Let f1 be the social choice rule such that for any N ∈ N and any "N∈ PN ,

f1("N) = {x ∈ X1|x "i y for all y ∈ X1},

where i ≡ minj∈N j and fB("N) ≡ X1. One can easily check that, f1

satisfies neutrality and consistency, but it violates anonymity. By a similar

way to Lemma 1, we obtain that f1 satisfies Borda’s criterion, because for

any preference profile, f1 winner is one of the Borda winners.
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• Let f2 be the social choice rule such that for any N ∈ N and any "N∈ PN ,

f2("N) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fB("N) \ arg min
xk∈X

k if fB("N) = X,

fB("N) otherwise

Obviously, f2 violates neutrality. One can easily check that f2 satisfies

anonymity, consistency and continuity. By a similar way to Lemma 1, we

obtain that f1 satisfies Borda’s criterion.

• Let f3 be the social choice function such that for any N ∈ N and any

"N∈ PN ,

f3("N) = arg max
x∈X3

|{i ∈ N |x "i y for all y ∈ X3}|.

where X3 = fB("N). One can easily check that f3 satisfies anonymity,

neutrality and consistency. By a similar way to Lemma 1, we obtain that

f3 satisfies Borda’s criterion. For example, let

"1:x y z w

"2:w y x z

"2:y x z w .

Then, f("1,"2) = {x}. However, for all n ∈ N, f("3, n("1,"2)) = {y}.

Therefore, f3 violates continuity.
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• Let f4 be the Kemeny-Young rule.*19 One can easily check that the Kemeny-

Young rule satisfies anonymity, neutrality and continuity, but violates con-

sistency. Sarri and Merlin (2000) show that the Kemmeny Young rule

satisfies Borda’s criterion.

• Let f5 be the plurality rule. Obviously, f5 satisfies anonymity, neutrality,

continuity, and consistency, but violate Bora’s criterion.

The satisfaction and the violation of axioms by these functions are summarized

by Table 3. It shows the independence of the axioms in our Theorem 1.

Anonymity Neutrality Anonymity+Continuity Consistency Borda’s criteiron
f1 − + − + +
f2 + − + + +
f3 + + − + +
f4 + + + − +
f5 + + + + −

Table 3: Tightness of the characterization result

*19For example, see, Young and Levenglick (1978) for the definition of the Kemeny-Young
rule.
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