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Chapter 1

Introduction

Gerhard Gentzen was a German logician in the early 20th century. He pro-
vided three proofs for the consistency of elementary number theory, which
showed that no contradictory results are derivable in the theory. Gentzen
inherited the research on the consistency of elementary number theory from
David Hilbert. Hilbert was a German mathematician and significantly con-
tributed to the foundational issues of mathematics between the late 19th
and early 20th centuries. Members of his school, including Gentzen, also
investigated these issues, one of them being the proof of the consistency of
elementary number theory and analysis.

This thesis discusses Gentzen’s three consistency proofs for elementary
number theory. In this introduction, we explain the background of the thesis.

1.1 The Axiomatic Method and Hilbert’s Pro-

gram

In the paper “Mathematische Probleme” published in 1900, David Hilbert
proposed the axiomatic method (die axiomatische Methode), from which the
Hilbert School’s consistency proofs, including Gentzen’s proofs, are derived.
The axiomatic method involves a procedure of foundational investigation:
One begins with a presentation of axioms to formulate a mathematical the-
ory and then shows the consistency and the completeness of the axioms.
Hilbert explained the notions of consistency and completeness as follows. An
axiomatic system of a mathematical theory is complete if no statement within
the theory is held to be correct unless it can be derived from the axioms of
the system by means of a finite number of logical steps. Furthermore, an
axiomatic system is consistent if a finite number of logical steps based on the
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system’s axioms never lead to contradictory results.1

On the significance of the problems of consistency, Hilbert made the fol-
lowing observation. A proof for the consistency of an axiomatic system is
at the same time a proof of the existence of the mathematical structure this
system describes.2 This idea about the existence of a mathematical structure
came from Hilbert’s conception of a mathematical structure: It is a system
of things such that mutual relations among these things are governed by the
axioms for the structure.3 For Hilbert, it suffices to show that, for example,
the axioms of real numbers or the axioms of analysis are consistent to prove
the existence of the complete system of real numbers.

At the International Congress of Mathematicians in 1900, Hilbert posed
the problem of the consistency of analysis as the second of 23 mathematical
problems. This problem was to prove the consistency of analysis directly ; that
is, to prove its consistency without reducing the consistency of the axioms of
analysis to the consistency of another branch of mathematics.

Henri Poincaré, in his paper [Poi06] published in 1906, raised an objec-
tion against Hilbert’s consistency proofs. Poincaré claimed that Hilbert’s

1The following passage from “Mathematische Probleme” includes these explanations:

When we are engaged in investigating the foundations of a science, we must
set up a system of axioms which contains an exact and complete description
of the relations subsisting between the elementary ideas of that science. The
axiom so set up are at the same time the definitions of those elementary
ideas; and no statement within the realm of the science whose foundation we
are testing is held to be correct unless it can be derived from those axioms
by means of a finite number of logical steps.

[. . .]

But above all I wish to designate the following as the most important among
the numerous questions which can be asked with regard to the axioms: To
prove that they are not contradictory, that is, that a finite number of logical
steps based on them can never lead to contradictory results. ([Ewa96, p.1104],
italics original)

2The following passage includes this observation:

If contradictory attributes be assigned to a concept, I say, that mathemat-
ically the concept does not exist. So, for example, a real number whose
square is −1 does not exist mathematically. But if it can be proved that
the attributes assigned to the concept can never lead to a contradiction by
the application of a finite number of logical inferences, I say that the math-
ematical existence of the concept (for example, of a number or a function
which satisfies certain conditions) is thereby proved. ([Ewa96, p.1105], italics
original)

3Cf. [Ewa96, p.1105].
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argument in [Hil05] for the consistency of a certain arithmetical theory used
the principle of complete induction, i.e., the induction principle on the length
of a given derivation for an equation.4 Here, Poincaré suggested that con-
sistency proofs for an arithmetical theory with the induction axiom must
include circular reasoning.

During the 1920s, Hilbert developed his mature method for the problem of
the consistency of analysis and responded to Poincaré’s objection above. Let
us explain Hilbert’s mature method first. To prove the consistency of anal-
ysis, he proposed the finitary standpoint (der finite Standpunkt), which he
considered the foundation of not only mathematics but all sciences. Roughly
speaking, the finitary standpoint admits only inferences and principles about
the definite manipulation of concrete symbols.5 This standpoint identifies nu-
merals with natural numbers and considers the operation of concatenating
the symbol ′ to the right-hand side of a given numeral to be the successor
function for natural numbers. Addition and multiplication are defined by
primitive recursion, which is also admissible from the finitary standpoint:

n+ 0 = n,

n+m′ = (n+m)′,

n · 0 = 0,

n ·m′ = (n ·m) + n.

Hilbert’s strategy for solving the problem of the consistency of analysis
was to prove the following from the finitary standpoint: the consistency
of the axiomatic system of analysis that is formulated as a formal system,
namely, a meaningless symbolic system. This strategy is now called Hilbert’s
Program. Through this program, Hilbert aimed to justify the practice of
classical mathematics: He aimed to justify both the introduction of ideal
elements into mathematics and the application of classical reasoning to those
elements.6

Hilbert’s strategy above responded to Poincaré’s objection against consis-
tency proofs. In this strategy, Hilbert distinguished the induction principle
used in the finitary standpoint from the one included in a formal system of
analysis. The former is different from the latter in the respect that the appli-
cation of the former is considerably restricted. In applying it, an inductive

4[Poi06, Section XX].
5[Hil26, pp.170-171]. For lack of space, the formal theory to which the finitary stand-

point corresponds cannot be discussed here. There is a fairly general agreement that it
includes Primitive Recursive Arithmetic. See [Tai02], [Zac03] and [SR05].

6[Hil26, pp.178-179], [Hil28, p.74].
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predicate A(x) must be decidable; that is, it must be possible to decide in
finitely many steps whether A(n) holds for a given numeral n. For example,
the commutative law for addition

n+m = m+ n

is provable by means of complete induction in the finitary standpoint. Hilbert’s
Program aimed to prove the consistency of analysis with this restricted in-
duction principle.

Despite Hilbert’s efforts, Kurt Gödel published his proofs of the incom-
pleteness theorems in 1931, which showed that Hilbert’s Program at least
needed some modification. Roughly speaking, the incompleteness theorems
showed that if second-order arithmetic, which is a formal system of analysis,
is consistent, its consistency cannot be proved from the finitary standpoint
in the original form. The incompleteness theorems also apply to first-order
arithmetic, which is a formal system of elementary number theory: If first-
order arithmetic is consistent, its consistency cannot be proved from the
finitary standpoint unless it is extended.

Gentzen’s consistency proofs for first-order arithmetic were completed in
the period following Gödel’s incompleteness theorems. Gentzen proved its
consistency by extending the finitary standpoint.

1.2 Gentzen’s Works on the Consistency of

Arithmetic

Gentzen, who was born in Greifswald on November 24, 1909, studied math-
ematics at the University of Greifswald for one year and then spent the
academic year 1929–30 at the University of Göttingen.7 Gentzen attended
Hilbert’s lectures on set theory there. After this academic year, he spent
one semester at Munich, a further semester at Berlin, and then returned to
Göttingen. He was granted a doctorate by the University of Göttingen in
1933 and became Hilbert’s assistant in 1934. As is well known, Hilbert’s
works on foundations of mathematics had a great influence on Gentzen’s
research.

Modifying Hilbert’s finitary standpoint, Gentzen gave three proofs for
the consistency of first-order arithmetic.8 He explicitly used the induction

7We owe the brief bibliographical explanation in this paragraph to [Gen69, p.vii] and
[Sie12, pp.108-109]. For a detailed bibliographical description, see [Men07].

8Note that Gentzen intended his proofs to comprehend not only first-order Peano arith-
metic but also any system that may have as an axiom any finitistically valid (quantifier-
free) formula. See [Gen36, §6.2] and [Gen38b, §1.4].
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principle up to ε0 for quantifier-free arithmetical formulas in his second and
third consistency proofs.

The first proof was included in a paper submitted in 1935 and posthu-
mously published in 1974 ([Gen74]), since Gentzen withdrew the paper be-
cause of Paul Bernays’ criticism.9 The second and third proofs were published
in 1936 ([Gen36]) and 1938 ([Gen38b]), respectively. Note that the method
of the third proof, i.e., the cut elimination method became a standard tech-
nique of proof theory of first-order arithmetic.10 In this thesis, we discuss
the first and second proofs rather than the third proof. Hereafter, we call the
first, second, and third proofs the 1935 proof, the 1936 proof, and the 1938
proof, respectively.11

This thesis focuses on Gentzen’s interpretation of first-order arithmeti-
cal formulas, i.e., his assignment of a sense or meaning to every first-order
arithmetical formula. He formulated this interpretation in the 1935 and 1936
proofs. We state it in the following form:

A formula A is correct

if and only if

a reduction procedure is statable for the sequent → A.

We will explain the details of this interpretation in the next chapter. Here, it
suffices to say that Gentzen, in this interpretation, assigned a sense to each
arithmetical formula A by explaining when A is correct.

Gentzen considered the interpretation above finitist (finit). He wrote,

9Cf. [Ber70, p.409]. An English translation of (the main part of) this paper was
published in 1969 as an appendix to [Gen69, ch.4]. For the historical description of the
submission of the first proof, see [Men07, pp.57-62].

10For example, see [Take87, §12].
11There have been many papers with expository sections for the 1935 proof or the

1936 proof. The first reconstruction of Gentzen’s 1935 proof was made by [Ber70], and
[Neg80] refined this reconstruction. [Kre71] claimed that the bar rule is used in the 1935
proof. [Sun83] explained the relation between the devices of the 1935 proof and infinitary
derivations. [Coq95], [Tai05], and [vPl09b] independently revealed the game theoretic
aspect of the 1935 proof. [Tai05] also pointed out the relation between the 1935 proof
and the no-counterexample interpretation. [Aki10] reconstructed the 1935 proof, using
Mints-Buchholz’s method of finite notations for infinitary derivations. [Sie12] investigated
the historical relation between Hilbert’s proof theory and the 1935 proof by scrutinizing
Gentzen’s unpublished manuscripts. [Tai15] argued that Gentzen did not employ the bar
theorem in the 1935 proof.
[Yas80] presented a reconstruction of the 1936 proof and some applications of it. [SP95]

remarked the relation between the 1936 proof and the no-counterexample interpretation.
[Buc15] reconstructed the 1936 proof, using Mints-Buchholz’s method of finite notations
for infinitary derivations.
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Having rejected the actualist interpretation (an-sich-Auffasung)
of transfinite propositions, we are still left with the possibility
of ascribing a ‘finitist’ sense (finiter Sinn) to such propositions,
i.e., of interpreting (zu deuten) them in each case as expres-
sions for definite finitely (endlich) characterizable states of affairs.
([Gen36, p.525], [Gen69, pp.162-163], italics original)12

The “actualist interpretation of transfinite propositions” means the interpre-
tation of quantified arithmetical formulas that treats the infinite sequence of
all natural numbers as closed, i.e., finished. This interpretation admits, for
example, the inference from ¬¬∃xA(x) to ∃xA(x) for an arbitrary arithmeti-
cal predicate A(x). Gentzen wanted to replace such an interpretation with
his interpretation of arithmetical formulas. For our purpose, the following is
important: Gentzen aimed to interpret them as expressing finitely character-
izable states of affairs.13 As we will see in the next chapter, he interpreted an
arithmetical formula to express that a certain process of rewriting syntactical
objects always terminates. This is Gentzen’s example of finitely character-
izable states of affairs and he considered his interpretation of arithmetical
formulas finitist in this respect. Although one might wonder about the rela-
tion between finiteness according to Gentzen and Hilbert, we cannot discuss
it in this thesis for lack of space.

1.3 Objectives of the Thesis

Let us give an outline of the chapters of this thesis. In Chapter 2, we discuss
the relation of Gentzen’s interpretation of arithmetical formulas with the de-
bates between the Hilbert School and the Brouwer School on the significance
of consistency proofs. The Hilbert School was a major force in the founda-
tions of mathematics during the early 20th century. The Brouwer School,
whose founder was Luitzen Egbertus Jan Brouwer, was also a formidable
player then.

Brouwer held intuitionism and maintained that classical mathematics,
whose consistency Hilbert aimed to prove, was based on incorrect methods

12In this thesis, translations of quotations from Gentzen are by Szabo ([Gen69]), with
a few exceptions.

13A comment on our usage. By “a finitist sense of a proposition or formula,” we mean
a meaning of a proposition or formula that is admissible from Gentzen’s finitist stand-
point. In contrast, by “a finitist interpretation of a proposition or formula,” we mean an
assignment of a meaning to a proposition or formula such that the assigned meaning is
admissible from Gentzen’s finitist standpoint.
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and must be revised using intuitionist methods. Moreover, he raised objec-
tions against the significance of consistency proofs for classical mathematics.
According to Brouwer, consistency proofs for classical mathematics hold no
significance, because the theorems of classical mathematics have no sense
regardless of whether classical mathematics is consistent, as it is based on
incorrect methods. Classical mathematics is nothing but a game of manipu-
lating meaningless symbols and only theorems proved in an intuitionist way
have sense.

Gentzen responded to this objection in [Gen74, Gen36] using his inter-
pretation of arithmetical formulas. Gentzen worked to convince intuitionists
that his 1935 and 1936 proofs, which include Gentzen’s interpretation of
arithmetical formulas, not only showed the consistency of first-order classical
arithmetic but also gave a finitist sense to each of its theorems.

The aim of Chapter 2 is to explore this feature of Gentzen’s 1935 proof.
First, we show why Gentzen took the above objection seriously and re-
sponded to it, scrutinizing not only Gentzen’s papers but also Hilbert’s and
Brouwer’s. Next, we prove the main lemma of the 1935 proof, which is cru-
cial to Gentzen’s response, using intuitionist methods, and show that it is
possible for intuitionists to admit a sense that Gentzen gave to each theorem
of first-order classical arithmetic.

Recently, Detlefsen also focused on the above feature of the 1935 proof,
that is, the intention to convince intuitionists that Gentzen’s interpretation
of arithmetical formulas not only showed the consistency of first-order classi-
cal arithmetic but also gave a finitist sense to each of its theorems. Detlefsen
compared Gentzen’s conception of consistency proofs comprehensively with
Hilbert’s ([Det15]). In addition, Tait formulated Gentzen’s interpretation of
arithmetical formulas using intuitionist methods ([Tai15]), which are essen-
tially the same as the intuitionist methods that we have used in Chapter 2.
The key contribution of Chapter 2 consists in our argument showing that it
is possible for intuitionists to admit a sense that Gentzen’s interpretation of
arithmetical formulas gave to each theorem of first-order classical arithmetic.

In Chapter 3, we discuss Gentzen’s interpretation of arithmetical formu-
las in light of the problem of interpreting the implication formulas A ⊃ B.
This problem is a recurrent topic in the foundations of mathematics. For
example, Hilbert and Bernays investigated which implication formulas are
interpretable from the finitary standpoint. They argued that the range of
implication formulas interpretable from the intuitionist viewpoint is wider
than the range of implication formulas interpretable from the finitary stand-
point.14 Gentzen focused on the problem of implications for interpretation as

14Cf. [HB1934, p.43], [Ber83, pp.265-267].
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well. In his papers for the 1935 and 1936 proofs, he showed the circularity of
a certain interpretation of implication, stating that one of the main objectives
of his 1935 and 1936 proofs was to offer an interpretation of implication that
avoids this circularity.15 However, he offered only an indirect interpretation
of implication via the translation of A ⊃ B into ¬(A ∧ ¬B). Moreover, he
did not argue for the claim that this interpretation avoids circularity.

In this chapter, we first formulate a direct Gentzen-style interpretation of
implication by adapting Tait’s formulation of the 1935 proof to the case of
implication.16 Next, we argue that this interpretation avoids the circularity
Gentzen urged against.

Okada, in [Oka88], has proposed a way out from this circularity, but it is
independent of Gentzen’s consistency proofs. The main contribution in this
chapter is that we explain how the 1935 proof avoids this circularity. As a
consequence of this explanation, we will point out the following significance of
the 1935 proof: It gave a non-circular interpretation to implication formulas
of first-order arithmetic from Gentzen’s standpoint.

Finally, in Chapter 4, we discuss Gentzen’s interpretation of arithmeti-
cal formulas in relation to the distinction between contentual correctness
proofs (inhaltliche Richtigkeitsbeweise) and formal correctness proofs (for-
male Richtigkeitsbeweise). As Sieg explained in [Sie12], the terms “formal
correctness proofs” and “contentual correctness proofs” were used by Gentzen
in his unpublished manuscripts about consistency proofs. According to Sieg,
contentual correctness proofs show the consistency of a theory by verifying
that its axioms and theorems are all correct. In contrast, formal correctness
proofs show the consistency of a theory by assigning a normal derivation to
each numeric equation that is derivable in the theory. Its consistency follows
from the fact that no normal derivation for a numeric equation has an incor-
rect conclusion. Sieg observed that Gentzen eventually considered his 1936
proof as intermediate between these two kinds. This observation induces the
following questions: Is the 1936 proof both a contentual correctness proof
and a formal correctness proof? How do the 1936 proof’s contentual as-
pects, especially Gentzen’s interpretation of arithmetical formulas, relate to
its formal aspects?

In Chapter 4, we answer these two questions. First, we argue that the
1935 proof is a contentual correctness proof and that the 1938 proof is a
formal correctness proof. Second, we show that the 1936 proof is both con-
tentual and formal because the main lemma of the 1936 implies both the

15[Gen36, p.530], [Gen69, p.168].
16In contrast, we will not use Tait’s formulation in Chapter 2, but, as we have said, the

intuitionist methods we use in Chapter 2 are essentially the same ones used by Tait.
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main lemmas of the 1935 proof and of the 1938 proof. To show this in a
uniform way, we formulate the 1936 proof in the framework of normalization
trees, which was introduced in [Aki10, AT13] by means of finite notations for
infinitary derivations. Third, we explain how the 1936 proof’s contentual as-
pects relate to its formal aspects. Our argument for the claim that the 1936
proof is both contentual and formal enables us to see the following: The
correctness of a derivable formula of first-order arithmetic is in fact shown
by means of syntactic transformation of a given derivation of the formula. In
other words, Gentzen’s interpretation of arithmetical formulas can be given
by the 1936 proof’s formal aspects.

Our major contribution in Chapter 4 is that we show the 1936 proof to
be both contentual and formal in the sense of Sieg’s explanation. Further-
more, our argument also comprehensively explains the relation between its
contentual aspects and its formal aspects.

The entire argument of this thesis will show a connection between some
aims of Gentzen’s research in 1935 and a result that he reached in 1938, i.e.,
the cut elimination method employed for the 1938 proof. We show it by
examining Gentzen’s research on the consistency of first-order arithmetic in
terms of his three consistency proofs.

Chapter 3 is an English translation of the following paper with minor
modifications: Yuta Takahashi. “A Philosophical Significance of Gentzen’s
1935 Consistency Proof for First-Order Arithmetic: on a Circularity of Impli-
cation.” (in Japanese) Kagaku Tetsugaku (PHILOSOPHY OF SCIENCE ),
49 (2016): 49-66. Chapter 4 is a pre-copyedited version (with minor modifi-
cations) of the following contribution: Ryota Akiyoshi and Yuta Takahashi.
“Contentual and Formal Aspects of Gentzen’s Consistency Proofs.” In Philo-
sophical Logic: Current Trends in Asia – Proceedings of AWPL-TPLC 2016,
edited by Syraya Chin-Mu Yang, Kok Yong Lee and Hiroakira Ono.





Chapter 2

Philosophical Background of
Gentzen’s Interpretation for
Arithmetic

2.1 Introduction to Chapter 2

Gentzen’s three consistency proofs have a common aim that originates from
Hilbert’s Program. In this program, as seen in Chapter 1, Hilbert aimed
to justify the practice of classical mathematics. In other words, he aimed
to justify both the introduction of ideal elements into mathematics and the
application of classical reasoning to these elements, by proving the following
from his finitary standpoint: No contradiction can be derived in formal sys-
tems codifying ideal parts of mathematics.1 Gentzen also had these aims. At
the outset of his attempt to achieve them, Gentzen aimed to justify with these
three consistency proofs the application of classical reasoning to quantified
formulas of first-order arithmetic.

In addition to his three consistency proofs’ common aim, Gentzen gave a
“finitist” interpretation to every first-order arithmetical formula by means of
his first two consistency proofs, i.e., the 1935 and 1936 proofs.2 Even though
Hilbert began to investigate interpretations of mathematical propositions
for foundational purposes after Gödel’s incompleteness theorems,3 Hilbert’s
1920s proof theory included no such interpretation. In this respect, Gentzen’s

1[Hil26, pp.178-179], [Hil28, p.74].
2This reading of the 1935 and 1936 proofs has been adopted by [Kre71], [Neg80],

[Coq95], [Tai05, Tai15], [Sie12] and [AT13]. Especially, in [Tai15, p.215], Tait extracted
from the 1935 and 1936 proofs the same interpretation as the interpretation (GI) that we
state below.

3Cf. [Sie12, §5.5].

11
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proof theory transcended Hilbert’s proof theory of the 1920s.

Several studies have provided some clues to the investigation into the
relationship of Gentzen’s interpretation of arithmetical formulas with intu-
itionism. Bernays remarked in [Ber70] that reduction procedures (Reduzier-
vorschrift), a key concept for that interpretation, “involves universal quan-
tification over free choice sequences.”4 In [Kre71], Kreisel claimed, “In fact,
not the fan theorem, but rather the bar theorem is involved in Gentzen’s
[first] proof; or, to be precise, [. . .] Gentzen uses the corresponding rule.”5

Here, we investigate the relationship of Gentzen’s interpretation of arith-
metical formulas with intuitionism, in terms of the debate between the Hilbert
School and the Brouwer School over consistency proofs’ significance. First,
we argue that this interpretation functioned as a response to a Brouwer-style
objection against consistency proofs’ significance. Brouwer had raised such
an objection on the basis of his claim about the interpretation of math-
ematical propositions; his claim was very close to Hilbert’s claim about
the finitist interpretation of existential propositions. Gentzen had accepted
Hilbert’s claim; hence, Gentzen took this objection seriously and responded
to it. Second, we propose a way to understand the 1935 proof’s response
to the Brouwer-style objection from an intuitionist perspective. We formu-
late Gentzen’s interpretation of arithmetical formulas by means of spreads,
which are infinite trees in intuitionistic mathematics, and then prove the key
lemma to his response by monotone bar induction.6 Note that we do not
claim Gentzen himself used monotone bar induction to prove the lemma.

This chapter is structured as follows. In Section 2.2, we explain both
Hilbert’s claim and the Brouwer-style objection mentioned above. In Section
2.3, we argue that Gentzen’s interpretation of arithmetical formulas served
as a response to the Brouwer-style objection. In Section 2.4, we provide an
intuitionist formulation of reduction procedures–key to this interpretation–
by using the notion of spreads. Section 2.5 gives a proof for the key lemma
of Gentzen’s response, and Section 2.6 concludes the chapter.

4[Ber70, p.417].
5[Kre71, p.262].
6As to monotone bar induction, see [TD88, ch.4, §8]. In [Tai15, p.223], Tait has given

a proof of this key lemma by means of the principle that corresponds to decidable bar
induction.
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2.2 Hilbert and Brouwer on Mathematical Propo-

sitions

In this section, we first explain Hilbert’s claim that set the scene for Gentzen’s
interpretation of arithmetical formulas. Next, we argue that Brouwer raised
an objection to consistency proofs’ significance and that one of its premises
is very close to Hilbert’s claim.

In papers published during the 1920s, Hilbert established the finitary
standpoint to provide a firm foundation for the introduction of ideal ele-
ments into mathematics, such as irrational numbers and complex numbers.
The finitary standpoint admits only facts and concepts about the definite
manipulation of concrete symbols.7 Hilbert aimed to justify the introduction
of ideal elements and the application of classical reasoning to these elements
by proving the following from the finitary standpoint: No contradiction can
be derived in formal systems codifying ideal parts of mathematics.8 This is
the main aim of Hilbert’s Program.

In developing this program, Hilbert made several claims about the finitist
interpretation of quantified propositions. Most important here is the finitist
interpretation of existential propositions. Hilbert wrote,9

In general, from the finitist point of view an existential propo-
sition of the form “There exists a number having this or that
property” has a sense (Sinn) only as a partial proposition (Par-
tialaussage), that is, as part of a proposition that is more precisely
determined but whose exact content is unessential for many ap-
plications. ([Hil26, p.173])

Here, Hilbert claimed that from the finitary standpoint an existential propo-
sition has sense only as a “partial proposition.” He provide an example of
partial propositions in the following passage:

This proposition [“Between p+1 and p!+1 there certainly exists a
new prime number”] itself, moreover, is completely in conformity
with our finitist attitude. For “there exists” here serves merely
to abbreviate the proposition:

Certainly p + 1 or p + 2 or p + 3 or . . . or p! + 1 is a prime
number.

7[Hil26, pp.170-171].
8[Hil26, pp.178-179], [Hil28, p.74].
9The next two translations of [Hil26] are taken from [vHe67, pp.377-378].



14

But let us go on. Obviously, to say

There exists a prime number that (1) is > p and (2) is at
the same time ≤ p! + 1 [(E)]

would amount to the same thing, and this leads us to formulate
a proposition that expresses only a part of Euclid’s assertion,
namely: [(P)] there exists a prime number that is > p. ([Hil26,
p.172], italics added.)

In this passage, the example of partial propositions is the proposition (P),
which is part of the proposition (E), whose content is more exactly deter-
mined.

On the basis of the last quotation, we propose the following characteri-
zation of partial propositions:

A partial proposition is an existential proposition ∃xA(x) such that it
alludes to some effective way of yielding its witness in some definite
and finite totality.

Note that the word “definite” means “not hazy.” If we adopt this charac-
terization, we can ascribe the following claim to Hilbert: From the finitary
standpoint, an existential proposition ∃xA(x) means that one possesses some
effective way of yielding a witness for ∃xA(x) in some definite and finite to-
tality.

This is the content of Hilbert’s claim that an existential proposition has
sense only as a partial proposition. Of course, one can admit that an exis-
tential proposition ∃xA(x) has an ordinary sense, according to which ∃xA(x)
means that there is an object a satisfying A(x) somewhere. Here, one does
not need to possess a way of yielding an object satisfying A(x). Let us
call this interpretation of existential propositions the classical interpretation.
The above quotations’ point is that the classical interpretation of existential
propositions is not admissible from the finitary standpoint. An existential
proposition must be treated as a partial proposition.

According to the reading of Hilbert as an instrumentalist, it is evident
he considered that existential propositions without witnesses have no sense
from any standpoint and that they are merely useful instruments to prove
propositions that have senses.10 In this thesis, we are not committed to
the question of whether Hilbert really held with instrumentalism or not.
As stated in the last paragraph, what we want to emphasize is the following:

10This reading is, for example, presented in [Det90, pp.346-347]. As to the reading of
Hilbert as a non-instrumentalist, see [Hal90] and [AR01, §4].
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Hilbert claimed that existential propositions without witnesses have no sense
from the finitary standpoint.

About the interpretation of existential propositions, Brouwer took a posi-
tion very close to Hilbert’s: The classical interpretation of existential propo-
sitions is not admissible in Brouwer’s intuitionism. We ascribe this position
to Brouwer on the basis of the following two passages from his writings. First,
in his 1933 paper “Willen, Weten, Spreken,” Brouwer wrote,

[. . .]: [S]uppose that human beings with unlimited power of mem-
ory recorded their constructions in shortened form in a suitable
language, surveyed the strings of their affirmations in this lan-
guage and then would be able to see the occurrence of the lin-
guistic figures of logical principles in all their mathematical mod-
ifications. Careful rational reflection would then show that as far
as the principles of identity, contradiction and syllogism are con-
cerned such an occurrence could be expected; as to the linguistic
figure of the principle of the excluded middle, this would only
occur if one restricted oneself to affirmations concerning parts
of a definite, once and for all given, finite mathematical system.
Wider applications of the latter principle would never occur since
such applications to pure-mathematical affirmations usually lead
to verbal complexes devoid of any mathematical sense and there-
fore of any sense. ([vSt90, pp.427-428], italics added.)

For simplicity’s sake, consider an instance ∃xA(x)∨¬∃xA(x) of the Principle
of the Excluded Middle (PEM), where A(x) is a unary predicate. According
to Brouwer, the use of this instance leads to a correct conclusion, namely,
one accompanied by some mental constructions if the variable x runs over
a finite collection and the predicate A(x) is decidable. However, if it runs
over an infinite collection, its use produces a proposition not accompanied
by any construction. For it is not always the case that one possesses a way of
yielding either a witness for ∃xA(x) or a function f such that ¬A(f(a)) holds
for every a in the range of x. That is to say, one does not always have some
mental constructions witnessing either of the disjuncts.11 In his 1922 paper
“Intuitionistische Mengenlehre” ([Bro22]), Brouwer made the same remark
as in the last quotation:

The Principle of the Excluded Middle has only scholastic and
heuristic value, so that theorems that in their proof cannot avoid

11As to Brouwer’s conception of the relationship between the content of a mathematical
proposition and mental constructions, see [Kan06].
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the use of this principle lack all mathematical content (Inhalt).
([Bro22, pp.949-950].)12

If one admits the classical interpretation of existential propositions, it is
inevitable to admit the validity of PEM of the form ∃xA(x)∨¬∃xA(x) such
that the predicate A(x) is not decidable. However, as we have seen, Brouwer
did not admit the validity of such instances, so the classical interpretation of
existential propositions is not admissible by Brouwer’s intuitionism.

In our reading, Brouwer’s position above–that the classical interpretation
of existential propositions is not admissible–is a premise of his objection to
the consistency proofs, for which the Hilbert School asked. Remember that
the Hilbert School aimed to show the consistency of classical mathematics,
in which the use of PEM or a similar principle is not restricted. Brouwer’s
objection can be summarized as follows.

1. The classical interpretation of existential propositions is not admissible.

2. In the intuitionist interpretation, the alternative to the classical inter-
pretation, the existential propositions of classical mathematics proved
with substantial use of PEM are incorrect or at least not proved yet.

3. Thus, classical mathematics is incorrect.

4. Moreover, classical mathematics remains incorrect even if its consis-
tency is proved by using the Hilbert School’s methods, since such a
proof ascribes no sense to those existential propositions.

5. Accordingly, the consistency proofs that the Hilbert School requested
are of no significance.

Let us explain our reading above in detail. First of all, we want to call
attention to the following passage in Brouwer’s 1923 paper “Über die Bedeu-
tung des Satzes vom ausgeschlossenen Dritten in der Mathematik, insbeson-
dere in der Funktionentheorie.”

The contradictions that, as a result, one repeatedly encountered
gave rise to the formalistic critique, a critique which in essence
comes to this: the language accompanying the mathematical men-
tal activity is subjected to a mathematical examination. To such
an examination the laws of theoretical logic present themselves
as operators acting on primitive formulas or axioms, and one sets
himself the goal of transforming these axioms in such a way that

12This English translation is from [Man98, p.23].
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the linguistic effect of the operators mentioned (which are them-
selves retained unchanged) can no longer be disturbed by the
appearance of the linguistic figure of a contradiction. We need
by no means despair of reaching this goal, but nothing of math-
ematical value will thus be gained: an incorrect theory, even if it
cannot be inhibited by any contradiction that would refute it, is
none the less incorrect, just as a criminal policy is none the less
criminal even if it cannot be inhibited by any court that would
curb it. ([Bro23, pp.2-3].)13

Here, Brouwer argued that consistency proofs for “an incorrect theory” are of
no significance because such theories are incorrect regardless of their consis-
tency. The following passage, which occurs just after the previous quotation,
indicates that Brouwer considered classical mathematics an example of such
theories:

The following two fundamental properties, which follow from the
principle of excluded middle, have been of basic significance for
this incorrect “logical” mathematics of infinity (“logical” because
it makes use of the principle of excluded middle), especially for the
theory of real functions (developed mainly by the Paris school):

1. The points of the continuum form an ordered point species;

2. Every mathematical species is either finite or infinite.

([Bro23, p.3].)

Details of the “two fundamental properties” are not relevant to our pur-
pose. Rather, what is important is that Brouwer obviously referred to clas-
sical mathematics by “this incorrect ‘logical’ mathematics of infinity.” In
sum, Brouwer argued in these quotations that consistency proofs for classical
mathematics are of no significance because classical mathematics is incorrect
regardless of its consistency.

Moreover, we can understand Brouwer’s word “incorrect” as follows. For
Brouwer, classical mathematics is incorrect because its existential proposi-
tions proved with substantial use of PEM either are incorrect or are at least
not proved yet. Then, we can read from the passages cited above Brouwer’s
objection to consistency proofs requested by the Hilbert School.

13This and the next translations of [Bro23] are from [vHe67, pp.336-337].



18

2.3 Gentzen’s Response to the Brouwer-style

Objection

In this section, we argue that Gentzen’s interpretation of first-order arith-
metical formulas served as a response to the Brouwer-style objection as ex-
plained in the last section. First of all, we can say that Gentzen clearly
recognized the objection and he took it seriously. In the following passage,
which appeared in both [Gen74] and [Gen36] including the 1935 and 1936
proofs, respectively, Gentzen mentioned the objection and then responded to
it:

On the part of the intuitionists, the following objection is raised
against the significance of consistency proofs∗: even if it had been
demonstrated that the disputable forms of inference cannot lead
to mutually contradictory results, these results would neverthe-
less be propositions without sense (sinnlos) and their investigation
therefore an idle pastime; real knowledge (wirkliche Erkenntnisse)
could be gained only by means of indisputable intuitionist (or fini-
tist, as the case may be) forms of inference.

Let us, for example, consider the existential proposition cited
at 10.6, for which the statement of a number whose existence
is asserted is not possible. According to the intuitionist view,
this proposition is therefore without sense (sinnlos); an existen-
tial proposition can after all be significantly asserted only if a
numerical example is available.

What can we say to this?

[. . .]

[. . .] The major part of my consistency proof, however, con-
sists precisely in ascribing (beilegen) a finitist sense to actualist
propositions (an-sich-Aussagen), viz.: for every arbitrary propo-
sition, as long as it is provable, a reduction procedure according to
13.6 can be stated, and this fact represents the finitist sense of the
proposition concerned and this sense is gained precisely through
the consistency proof. ([Footnote]∗: For example, cf.: L. E. J.
Brouwer, Intuitionistische Betrachtungen über den Formalismus,
Sitzungsber. d. Preuß. Akad. d. Wiss., phys.-math. KI. (1928),
S.48–52.)
([Gen74, pp.117-118], [Gen36, pp.563-564], [Gen69, pp.200-201],
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italics original)14

In this quotation’s latter part, Gentzen claimed that the major part of his
consistency proof consists in ascribing “finitist” senses to all theorems of
first-order classical arithmetic, which include the theorems proved with PEM.
This claim is obviously Gentzen’s response to the Brouwer-style objection.
Moreover, Gentzen said that he responded to the objection with “the ma-
jor part” of his consistency proofs. This indicates that Gentzen took the
objection seriously.

Indeed, Gentzen took the Brouwer-style objection seriously because he
had followed Hilbert’s claim about the finitist interpretation of existential
propositions. Gentzen wrote,

What sense should we concede to a proposition of the form ∃xF(x)?
The actualist interpretation that somewhere in the infinite num-
ber sequence there exists a number with the property F is for us
without sense. If, on the other hand, the proposition F(n) has
been recognized as significant and valid for a definite number n,
we wish to be able to conclude (∃-introduction): ∃xF(x). There
are no objections to this; the proposition ∃xF(x) now constitutes
only a weakening of the proposition F(n) (‘Partialaussage’ for
Hilbert, ‘Urteilsabstrakt’ for Weyl) in that it now attests merely
that we have found a number n with property F, although this
number itself is no longer mentioned. Thus, ∃xF(x) acquires in
this way a finitary sense. ([Gen36, p.527], [Gen69, pp.164-165],
italics original)

Gentzen followed Hilbert’s claim that an existential proposition has sense
only as a partial proposition. Thus, he aimed at responding to the Brouwer-
style objection, since a very close claim to Hilbert’s is used as a premise in
the objection. Gentzen was concerned that the theorems proved with PEM
or a similar principle also have no sense from his standpoint for consistency
proofs. The 1935 and 1936 proofs have dealt with not only the problem of
the consistency of first-order classical arithmetic, but also this concern.

In the rest of this section, we explain how Gentzen responded to the
Brouwer-style objection. Our key claim is as follows: Gentzen aimed to

14As said in Chapter 1, translations of quotations from Gentzen are by Szabo ([Gen69]),
with a few exceptions. The translation of “eine Reduziervorschrift” is one of such excep-
tions: We translate “eine Reduziervorschrift” as “a reduction procedure” (we owe this
translation to [Sie12]), whereas Szabo translates it as “a reduction rule.” For the other
exception, see Footnote 16.
Moreover, note that the version of this passage in [Gen36] also includes the reference to

Heyting’s work ([Hey34]).
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ascribe a finitist sense to each theorem of first-order classical arithmetic by
giving his own interpretation, according to which all theorems of first-order
classical arithmetic are correct.

In papers for the 1935 and 1936 proofs, Gentzen manifestly pointed out
the possibility of a finitist interpretation of arithmetical formulas, after hav-
ing rejected the standard interpretation (“the actualist interpretation,” in
his term) because of its inadmissibility from his standpoint.15 He wrote,

Having rejected the actualist interpretation of transfinite propo-
sitions, we are still left with the possibility of ascribing a ‘fini-
tist ’ sense (ein ‘finiter’ Sinn) to such propositions, i.e., of inter-
preting (zu deuten) them in each case as expressions for definite
finitely (endlich) characterizable states of affairs. ([Gen36, p.525],
[Gen69, pp.162-163], italics original)

In the following passage, Gentzen suggested how to give such an inter-
pretation, although he did not present it explicitly.

The concept of the ‘statability of a reduction procedure’ (die
Angebbarkeit einer Reduziervorschrift) for a sequent, to be de-
fined below, will serve as the formal replacement (formaler Er-
satz) of the contentual concept of correctness (der inhaltliche
Richtigkeitsbegriff); it provides us with a special finitist inter-
pretation (finite Deutung) of propositions and takes the place
of their actualist interpretation [. . .]. ([Gen74, p.100], [Gen36,
p.536], [Gen69, p.173], italics original)16

According to Gentzen, his interpretation of arithmetical formulas is given
by the statability of a reduction procedure. The statability of a reduction
procedure serves as an alternative concept of correctness and gives this in-
terpretation by explaining the correctness of arithmetical formulas.

We extract from the last quotation the following interpretation, which we
saw briefly in Chapter 1. Let Γ → A be a sequent of first-order arithmetic,
where Γ is a finite set of formulas.17 Then,

(GI) Γ → A is correct

if and only if

a reduction procedure is statable for Γ → A.
15[Gen36, p.524], [Gen69, p.162].
16Following [Sie12], we translate “der inhaltliche Richtigkeitsbegriff” as “the contentual

concept of correctness.” In [Gen69] Szabo translates it as “the informal concept of truth.”
17Note that the formal system used in the 1935 and 1936 proofs is a natural deduction

system in sequent-style.
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Definition 2.4.4 in Section 2.4 provides an (equivalent) version of Gentzen’s
notion of a reduction procedure. Moreover, in Section 2.5, we explain when
a reduction procedure is statable. Here, note that the statability of a reduc-
tion procedure requires the availability of not only this procedure but also a
proof for its termination, as Tait pointed out in [Tai15, Footnote 4].18 If we
stipulate that a reduction procedure for a formula A means one for → A, we
obtain the following from (GI):

A is correct

if and only if

a reduction procedure is statable for A.

As stated above, Gentzen’s response to the Brouwer-style objection was
to define the sense of an arithmetical formula, or more generally of a sequent
to be that a reduction procedure is statable for it and to show that classically
derivable sequents are all correct in that sense. The main lemma of the 1935
proof, which was crucial not only to the proof of the consistency of first-order
classical arithmetic Z but also to Gentzen’s response, is as follows:19

Main Lemma. For every sequent Γ → A of Z, if Γ → A is derivable in Z,
then there is a reduction procedure for Γ → A.

In Section 2.5, we see the following: This lemma shows the correctness
of each Z-derivable sequent Γ → A in the sense of (GI) because the proof of
the lemma gives not only a reduction procedure for Γ → A, but also a proof
for its termination. Therefore, all classical theorems of Z are also correct in
the sense of (GI).

Let us summarize our arguments in Section 2.2 and 2.3. First, we have
seen the following claim made by Hilbert: An existential proposition without
witnesses has no sense from the finitary standpoint. Next, we have argued
that Brouwer made a very close claim to Hilbert’s and raised an objection
to the significance of consistency proofs by using his own claim as a premise
of the objection. Finally, we have maintained that Gentzen, who followed

18For Gentzen, the statability of a reduction procedure for Γ → A gives a sense to
Γ → A from his finitist standpoint. It is not easy to estimate the exact strength of
Gentzen’s finitist standpoint. As far as we know, his standpoint should be constructive in
the following sense. First, all infinite totalities must be generated by some finitary rules
([Gen36, pp.524-525], [Gen69, p.162]). For example, the totality of all natural numbers is
generated from 0 by the successor rule. Second, one must avoid the use of the principle
of the excluded middle for non-decidable predicates ([Gen36, pp.527-528], [Gen69, pp.164-
165]).

19[Gen74, p.103], [Gen36, p.539], [Gen69, p.177].
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Hilbert’s claim, responded to the Brouwer-style objection in the following
way: He formulated the interpretation (GI) of arithmetical formulas and
ascribed a sense to every theorem of first-order classical arithmetic by means
of it.20 The interpretation (GI), according to which all theorems of first-order
classical arithmetic are correct, had the role of responding to the Brouwer-
style objection.

2.4 Formulation of Reduction Procedures with

Spreads

In this section, we give our definition of reduction procedures by means of
spreads, which are infinite trees in intuitionistic mathematics.

First, we introduce the proof system Z of first-order classical arithmetic.
The system Z is the same as the proof system of the 1935 proof, except
for the following two minor points. First, the connectives ∃,∨ and ⊃ are
excluded from the language of Z.21 Second, a sequent of Z includes not
finite sequences of formulas but finite sets of them, so the structural rules
are omitted.

We assume a language L of first-order arithmetic with the following vo-
cabulary: the constant 0 (zero), the unary function symbol S (successor),
some predicate symbols for primitive recursive relations and the logical con-
nectives ∧,¬, ∀. Terms and formulas are defined in a usual way. Atomic
formulas are formulas of the form p(t1, . . . , tn), where p is an n-ary predicate
symbol and t1, . . . , tn are terms. We use the following syntactic variables
possibly with suffixes: k,m, n for numerals, A,B,C,D for formulas and Γ,∆
for finite sets of formulas. We denote the union Γ ∪ ∆ of Γ and ∆ by Γ,∆
and the union {A} ∪Γ by A,Γ or Γ, A. Sequents are expressions of the form
Γ → A. We call a formula in Γ an antecedent formula and A the succedent

20One might wonder why Gentzen did not respond to the objection by means of Gödel-
Gentzen’s double-negation translation. He could simply argue that theorems of first-order
classical arithmetic have senses also for intuitionists, because the translation enables them
to interpret these theorems as theorems of first-order Heyting arithmetic. The reason
he did not argue in this manner is that intuitionist implication and negation were not
admissible for him. He thought that there is circularity in intuitionist implication, which
can be found also in intuitionist negation because the latter is a special case of the former.
We discuss this circularity in Chapter 3. As to Gentzen’s argument for “circularity,” see
[Gen36, §11]. A reconstruction of Gentzen’s argument is given in [Oka88, pp.200-201] and
[Oka08, pp.3-4].

21Gentzen did not exclude ∃,∨ and ⊃ from the language of the proof system of the
1935 proof, but he translated ∃xA(x), A ∨B and A ⊃ B as ¬∀x¬A(x), ¬(¬A ∧ ¬B) and
¬(A ∧ ¬B), respectively. See [Gen74, §12].
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formula. Sequents are denoted by S possibly with suffixes. If θ is a term, a
formula, a finite set of formulas or a sequent, then FV (θ) denotes the set of
all free variables in θ and we say θ is closed whenever FV (θ) = ∅.

For readers’ convenience, we define some notions and notations that
are not found in Gentzen’s original presentation. The set T RUE (resp.
FALSE) consists of all closed atomic formulas that are true (resp. false)
in the usual sense. We use ⊥ as a variable for formulas in FALSE . When
FV (S) ⊆ {x0, . . . , xk}, the substitution instance S[x0 := n0, . . . , xk := nk] is
the sequent obtained by substituting ni for xi in S for i = 0, . . . , k and we
abbreviate it as S[x⃗ := n⃗]. The set CSEQ is the set of all closed sequents.

The axioms and inference rules of Z are as follows:

Logical axioms:

Γ, A→ A.

Non-Logical axioms: Let us assume a primitive recursive set AX of
some arithmetical axioms. Here, we do not need to specify this set.22

We require that AX includes the defining axioms for each predicate
symbol p and that every sequent in AX may have an arbitrary set of
formulas as auxiliary antecedent formulas. For example, the following
sequents may be included in AX :

Γ → t = t, Γ, S(s) = S(t) → s = t.

Logical rules:

Γ → A0 Γ → A1

Γ → A0 ∧ A1
(∧I) Γ → A0 ∧ A1

Γ → Ai
(∧E) with i ∈ {0, 1}

Γ → A(y)

Γ → ∀xA(x) (∀I) with y ̸∈ FV (Γ)
Γ → ∀xA(x)
Γ → A(n)

(∀E)

Γ → ¬¬A
Γ → A

(DNE)
A,Γ → B A,Γ → ¬B

Γ → ¬A (RED)

Mathematical Induction:

Γ → A(0) Γ, A(y) → A(S(y))

Γ → A(n)
(IND) with y ̸∈ FV (Γ)

22Gentzen also did not specify which arithmetical axioms are included in the proof
system of the 1935 proof. See [Gen36, §6.2].
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We can show in a standard way that the left weakening rule is admissible in
Z.

Next, we define reduction steps (Reduktionsschritte) of the 1935 proof in
our manner.23 Our definition is an application of the method for representing
infinitary derivations as functions, which is found in [Min78] and [Buc91]. We
use the notation of [Buc91] with some modifications.24 This method enables
us to define reduction procedures by means of spreads. Preliminary to our
definition of reduction steps, the set ST EP of the symbols for reduction steps
is defined as follows:

ST EP := {Ax}
∪ {(∀, A)|A is of the form ∀xB(x)}
∪ {(∀, k, A)|A is of the form ∀xB(x), k ∈ N}
∪ {(∧, A)|A is of the form B0 ∧ B1}
∪ {(∧, i, A)|A is of the form B0 ∧ B1, i ∈ {0, 1}}
∪ {(¬, i, A)|A is of the form ¬B, i ∈ {r, l}}

We use R as a variable for elements of ST EP .

Definition 2.4.1 (Reduction Steps). For every ⟨R,Γ → A⟩ ∈ ST EP ×
CSEQ and every infinite sequence ⟨∆n → Bn⟩n∈N of closed sequents,
RED(⟨R,Γ → A⟩, ⟨∆n → Bn⟩n∈N) holds if and only if all of the following
statements hold:

(i) If R = Ax,

then either A ∈ T RUE holds or both A ∈ FALSE and Γ∩FALSE ̸= ∅
hold,

(ii) if R = (∀, ∀xC(x)),
then A = ∀xC(x) holds and for every n ∈ N, ∆n = Γ and Bn = C(n)
hold,

(iii) if R = (∀, k, ∀xC(x)),
then ∀xC(x) ∈ Γ, ∆0 = Γ ∪ {C(k)} and B0 = A ∈ FALSE hold,

(iv) if R = (∧, C0 ∧ C1),

then A = C0 ∧ C1 holds and for every i ∈ {0, 1}, ∆i = Γ and Bi = Ci

hold,
23For Gentzen’s definition of reduction steps, see [Gen74, pp.100-102], [Gen36, pp.536-

537], [Gen69, pp.173-175].
24[Sun83] also gave a reconstruction of reduction procedures in the 1935 proof by using

the method of [Min78].
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(v) if R = (∧, i, C0 ∧ C1),

then C0 ∧ C1 ∈ Γ, ∆0 = Γ ∪ {Ci} and B0 = A ∈ FALSE hold,

(vi) if R = (¬, r,¬C),
then A = ¬C, ∆0 = Γ ∪ {C} and B0 ∈ FALSE hold,

(vii) if R = (¬, l,¬C),
then ¬C ∈ Γ, A ∈ FALSE , ∆0 = Γ and B0 = C hold.

Example 2.4.1. It holds that RED(⟨(∀, ∀xA(x)),Γ → ∀xA(x)⟩, ⟨Γ →
A(n)⟩n∈N). This corresponds to the following reduction step:25

Γ → ∀xA(x) ▷ Γ → A(n)

for an arbitrarily chosen numeral n.

Let us turn to the definition of spreads. The set N<ω is the primitive
recursive set of (the codes of) all finite sequences of natural numbers. The
elements of N<ω are denoted by u⃗, v⃗ and w⃗. We also denote the code of
the empty sequence by ⟨⟩, infinite sequences of natural number by α and
the concatenation function for u⃗ and v⃗ by u⃗ ∗ v⃗. The ordering ≤ on N<ω is
defined by

u⃗ ≤ v⃗ if and only if u⃗ ∗ w⃗ = v⃗ holds for some w⃗.

u⃗ < v⃗ if and only if u⃗ ≤ v⃗ and u⃗ ̸= v⃗ hold.

For an arbitrary α, the initial segment ᾱ(n) of length n is defined by

ᾱ(n) := ⟨α(0), . . . , α(n− 1)⟩.

Hereafter, we denote effectively calculable total functions from N<ω to {0, 1}
by s. We owe the following definition of spreads to [Dum00, pp.47-48].

Definition 2.4.2 (Spreads). We define speads, correlation laws for spreads
and dressed spreads as follows.

(i) s is a spread if and only if all of the following statements hold:

• s(⟨⟩) = 0,

• for every u⃗,

if s(u⃗) = 0, then s(u⃗ ∗ ⟨k⟩) = 0 for some k ∈ N,
25Cf. [Gen74, §13.21].
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• for every u⃗ and v⃗,

if u⃗ ≤ v⃗ and s(v⃗) = 0, then s(u⃗) = 0.

(ii) Let X be a decidable set and c be an effectively calculable partial
function from N<ω to X, then c is a correlation law for s with respect
to X if and only if for every u⃗,

if s(u⃗) = 0, then c(u⃗) is defined and c(u⃗) ∈ A.

(iii) We call the pair ⟨s, c⟩ of a spread s and a correlation law c for s with
respect to some X a dressed spread.

Let s∗ be the function from N<ω to {0, 1} defined by s∗(u⃗) := 0 for all
u⃗. It is obvious that s∗ is a spread. We call it the universal spread. We
use φ, ψ as variables for effectively calculable total functions from N<ω to
ST EP ×CSEQ. Since each φ is a correlation law for the universal spread s∗

with respect to ST EP × CSEQ, the pair ⟨s∗, φ⟩ is a dressed spread.

Definition 2.4.3. For each φ, we define the following notions:

(i) If φ(u⃗) = ⟨R,Γ → A⟩, we set φ0(u⃗) := R, φ1(u⃗) := Γ → A,

Rule(φ) := φ0(⟨ ⟩) and End(φ) := φ1(⟨ ⟩).

(ii) φ is monotone if and only if for every u⃗ and n,

if φ0(u⃗) = Ax, then φ(u⃗ ∗ ⟨n⟩) = φ(u⃗) holds.

(iii) φ is well -founded if and only if

for every α there exists n such that φ0(ᾱ(n)) = Ax holds.

(iv) φ is locally correct if and only if φ is monotone and for every u⃗,

RED(φ(u⃗), ⟨φ1(u⃗ ∗ ⟨n⟩)⟩n∈N) holds.

Example 2.4.2. There is a function φ such that φ is locally correct but not
well-founded. A typical example of such a function φ can be represented as
the following tree, where A(x) is of the form x = x.

....
⟨(∀, 3, ∀xA(x)), A(0), A(1), A(2), ∀xA(x) → 0 = 1⟩

⟨(∀, 2, ∀xA(x)), A(0), A(1), ∀xA(x) → 0 = 1⟩
⟨(∀, 1, ∀xA(x)), A(0), ∀xA(x) → 0 = 1⟩

⟨(∀, 0, ∀xA(x)), ∀xA(x) → 0 = 1⟩
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Now, we define reduction procedures as a kind of dressed spreads.

Definition 2.4.4 (Reduction Procedures). For every φ and every Γ → A ∈
CSEQ, ⟨s∗, φ⟩ is a reduction procedure for Γ → A if and only if φ0(⟨⟩) = Γ →
A, φ is well-founded and locally correct.

2.5 Proof of Main Lemma with Monotone Bar

Induction

In this section, we prove the main lemma of the 1935 proof. This lemma
is a key for Gentzen’s response to the Brouwer-style objection, as seen in
Section 2.3. The proof below is given from an intuitionist viewpoint: We use
monotone bar induction, which is a induction principle on a well-founded
tree in intuitionistic mathematics.26 Then, we propose a way to understand
Gentzen’s response to the Brouwer-style objection from an intuitionist per-
spective.

The rank rk(A) of a formula A is defined by

rk(A) := 0, if A is an atomic formula,

rk(A ∧ B) := max(rk(A), rk(B)) + 1, rk(¬A) := rk(A) + 1,

rk(∀xA(x)) := rk(A(x)) + 1.

Hereafter, we abbreviate “there is a reduction procedure for Γ → A” as
“Γ → A is reducible.” In addition, for simplicity’s sake, we consider closed
sequents only, unless indicated otherwise.

Lemma 2.5.1. The following statements hold:

1. Γ → A(n) is reducible for every n ∈ N if and only if Γ → ∀xA(x) is
reducible,

2. Γ → A0 and Γ → A1 are reducible if and only if Γ → A0 ∧ A1 is
reducible,

3. If ¬A,Γ → A is reducible, then ¬A,Γ →⊥ is reducible,

4. If A,Γ →⊥ is reducible, then Γ → ¬A is reducible,

5. If A(n), ∀xA(x),Γ → B is reducible, then ∀xA(x),Γ → B is reducible,

26As we have said in the introduction to this chapter, we do not claim that Gentzen
himself used monotone bar induction.
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6. If Ai, A0 ∧A1,Γ → B is reducible (i ∈ {0, 1}), then A0 ∧A1,Γ → B is
reducible.

Proof. It is obvious by the definition of reduction procedures that the state-
ments 1, 2, 3 and 4 hold. The statements 5 and 6 are proved by induction
on rk(B).

Lemma 2.5.2. Γ, A→ A is reducible for every formula A.

Proof. By induction on rk(A). Apply Lemma 2.5.1 in the case of the induc-
tion steps.

Lemma 2.5.3. The following statements hold:

1. If A,Γ → B is reducible, then ¬¬A,Γ → B is reducible,

2. Γ,¬¬A→ A is reducible.

Proof. (1) By induction on rk(B).

(2) The sequent A→ A is reducible by Lemma 2.5.2, then apply (1).

Lemma 2.5.4 (The Soundness of the Weakening Rule). If Γ → A is re-
ducible, then ∆,Γ → A is reducible.

Lemma 2.5.5 (Main Lemma of the 1935 Proof). If Γ → A is derivable in
Z, then Γ → A is reducible.

Proof. By induction on the length of the Z-derivation d of Γ → A. For
simplicity’s sake, we focus on the interesting cases.

(1) d is a logical axiom Γ, B → B: Apply Lemma 2.5.2.

(2) The last rule of d is:
Γ → A(y)

Γ → ∀xA(x) (∀I).

Apply Lemma 2.5.1.(2).

(3) The last rule of d is:
Γ → ¬¬A
Γ → A

(DNE).

By IH, the sequent Γ → ¬¬A is reducible. On the other hand, by Lemma
2.5.3.(2), the sequent Γ,¬¬A→ A is reducible. We assume that the following
lemma is proved:
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(*) For every Γ, A and B,

if Γ → A and A,Γ → B are reducible, then Γ → B is reducible.

Therefore, Γ → A is reducible.

(4) The last rule of d is:

Γ → A(0) Γ, A(y) → A(S(y))

Γ → A(n)
(IND).

Assume that Γ → A(0) and Γ, A(y) → A(S(y)) are reducible (IH). Then,
Γ, A(m) → A(S(m)) is reducible for every m such that m < n. By (*),
Γ → A(n) is reducible.

To finish the proof of Lemma 2.5.5, it suffices to show that (*) holds.
Preliminary to a proof of (*), we formulate monotone bar induction, following
[TD88, ch.4, §8].

Monotone Bar Induction. Let P and Q be predicates on N<ω. If the
following four conditions

1. for every infinite sequence α of natural numbers, there is a natual
number n such that P (ᾱ(n)) holds,

2. for every u⃗ and v⃗, if P (u⃗) holds then P (u⃗ ∗ v⃗) holds,

3. for every u⃗, if P (u⃗) holds then Q(u⃗) holds,

4. for every u⃗, if Q(u⃗ ∗ ⟨n⟩) holds for all n then Q(u⃗) holds and

hold, then Q(⟨⟩) holds.

Lemma 2.5.6 (The Soundness of the Cut Rule). If Γ → A and A,Γ → B
are reducible, then Γ → B is reducible.

Proof. Assume that Γ → A and A,Γ → B are reducible. First, we use the
induction principle on rk(A). For simplicity’s sake, we focus on the case that
A = ∀xC(x). Let ψ be a given reduction procedure for A,Γ → B.

In the induction steps, we apply monotone bar induction (MBI), setting

P (u⃗) if and only if ψ0(u⃗) = Ax,

Q(u⃗) if and only if for every closed ∆0 and B0,
if ψ1(u⃗) = ∀xC(x),∆0 → B0 holds, then Γ,∆0 → B0 is reducible.
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If we show that all premises of MBI hold, then we can conclude that Q(⟨⟩)
holds. Since ψ1(⟨⟩) = ∀xC(x),Γ → B holds, it follows that Γ → B is
reducible.

By the well-foundedness and local correctness of ψ, it is obvious that
Premises 1 and 2 of MBI hold.

First, we show that Premise 3 of MBI holds. Assume that ψ0(u⃗) = Ax
and ψ1(u⃗) = ∀xC(x),∆0 → B0 hold. Then, ψ(u⃗) = ⟨Ax, ∀xC(x),∆0 → B0⟩
holds. By the local correctness of ψ, B0 ∈ T RUE or ∆0∩FALSE ̸= ∅ holds.
Define φ as

φ(u⃗) := ⟨Ax,Γ,∆0 → B0⟩ for every u⃗,
then it is obvious that ⟨s∗, φ⟩ is a reduction procedure for Γ,∆0 → B0, so
Γ,∆0 → B0 is reducible.

Next, we show that Premise 4 of MBI holds. Assume that for every n
and every closed ∆0, B0,

if ψ1(u⃗ ∗ ⟨n⟩) = ∀xC(x),∆0 → B0 holds, then Γ,∆0 → B0 is reducible
(IH of MBI).

To show that Q(u⃗) holds, assume that ψ1(u⃗) = ∀xC(x),∆1 → B1 holds for
arbitrary closed ∆1, B1. We have to distinguish the cases according to the
value of ψ0(u⃗) and consider the most crucial case only.

Suppose that ψ0(u⃗) = (∀, k, ∀xC(x)) and C(k) ∈ ∆1. By the local cor-
rectness of ψ, ψ1(u⃗ ∗ ⟨0⟩) = ∀xC(x),∆1 → B1 holds. Hence, by IH of
MBI, the sequent Γ,∆1 → B1 is reducible. Next, consider the case that
C(k) ̸∈ ∆1 holds. By the local correctness of ψ and IH of MBI, the sequent
C(k),Γ,∆1 → B1 is reducible. From the assumption that Γ → ∀xC(x) is
reducible, it follows that Γ → C(k) is reducible, so Γ,∆1 → C(k) is reducible
by Lemma 2.5.4. Therefore, Γ,∆1 → B1 is reducible by IH of the induction
on rk(A).

As said in Section 2.3, the statability of a reduction procedure requires
the availability of both a reduction procedure ⟨s∗, φ⟩ and a proof for the well-
foundedness of φ: For every reduction procedure ⟨s∗, φ⟩ for a closed sequent
S, ⟨s∗, φ⟩ is statable for S if and only if both ⟨s∗, φ⟩ and a proof for the
well-foundedness of φ are obtained. For every sequent S with FV (S) ̸= ∅,
a reduction procedure is statable for S if and only if for every substitution
instance S ′ of S, a reduction procedure is statable for S ′.

Then, through the above proof of Lemma 2.5.5, we can show that every
Z-derivable sequent S is correct in the sense of (GI). Consider a substitution
instance S ′ of S. Then, the above proof of Lemma 2.5.5 gave a reduction
procedure ⟨s∗, φ⟩ for S ′ with a proof for the well-foundedness of φ. Therefore,
a reduction procedure is statable for S and S is correct in the sense of (GI).
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This means that the main lemma of the 1935 proof provides each theorem
of first-order classical arithmetic with a sense being admissible to intuition-
ists. Remember that reduction procedures were defined as dressed spreads,
which are infinite trees in intuitionistic mathematics. Moreover, in the proof
of the main lemma, we avoided the principle of the excluded middle for
non-decidable predicates and used monotone bar induction as an induction
principle that was needed to complete the proof. We showed that every the-
orem of first-order arithmetic is correct, in a manner being admissible to
intuitionists.

2.6 Conclusion of Chapter 2

The use of spreads and monotone bar induction in consistency proofs, as in
Sections 2.4 and 2.5, results in the use of intuitionistic mathematics in con-
sistency proofs. Brouwer had suggested such use of intuitionistic mathemat-
ics. In the paper “Intuitionistische Betrachtungen über den Formalismus”
([Bro28]), to which Gentzen referred in [Gen74, p.117] and [Gen36, p.563],
Brouwer discussed the relationship between formalism, namely the Hilbert
School, and intuitionism as follows:

First Insight. The distinction in the Formalist practice between
the construction of “a stock of mathematical formulae” (the For-
malist description of mathematics) and the intuitive (contentual)
theory of laws of this construction, as well as the recognition that
for the latter theory the intuitionist mathematics of the set of nat-
ural numbers is indispensable. ([Bro28, p.375], italics added)27

Here, Brouwer claimed that “the intuitionist mathematics of the set (Menge)
of natural numbers,” in the original German text “die intuitionistische Math-
ematik der Menge der natürlichen Zahlen,” is indispensable for Hilbert’s fini-
tary standpoint. Note that Brouwer called spreads Mengen in his German
writings.28 Moreover, monotone bar induction is an induction principle on a
spread being well-founded, so “die intuitionistische Mathematik der Menge
der natürlichen Zahlen” includes this induction principle. Thus, Brouwer ac-
tually stated that the branch of intuitionistic mathematics, in which spreads
and bar induction are used, is indispensable for Hilbert’s finitary standpoint.

In the present chapter, we have argued first that Gentzen’s interpretation
(GI) of arithmetical formulas took the role of responding to the Brouwer-style
objection, which opposes the significance of consistency proofs. Specifically,

27This English translation is from [Man98, p.41].
28For example, see [Bro25, pp.244-245].
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to respond to the objection, Gentzen ascribed a sense to each theorem of first-
order classical arithmetic from his finitist standpoint: Gentzen proved that
such a theorem is still correct in the sense of (GI). Second, we have proposed
a way to understand Gentzen’s response from an intuitionist viewpoint. On
the basis of our definition for reduction procedures by means of spreads, we
have proved the key lemma to Gentzen’s response by using monotone bar
induction. The present chapter’s entire argument showed the following: The
role of responding to the Brouwer-style objection was given to Gentzen’s
interpretation of arithmetical formulas by the dialogue between Gentzen and
intuitionists, and the response is admissible to an intuitionist viewpoint.



Chapter 3

Gentzen’s Interpretation for
Arithmetic and Circularity of
Implication

3.1 Introduction to Chapter 3

As we saw in the previous chapter, in the early period of the foundations
of mathematics, the Hilbert School influenced the Brouwer School and vice
versa. However, this of course does not mean that the two schools held
the same opinions about the foundations of mathematics.1 For example,
intuitionism admitted that if propositions A, B and C are meaningful from
the intuitionist viewpoint, then a nested implication (A ⊃ B) ⊃ C is so as
well. On the other hand, the finitary standpoint did not admit that a nested
implication (A ⊃ B) ⊃ C is meaningful, even if A, B and C are meaningful
from the finitary standpoint. Hilbert and Bernays wrote,

1According to Bernays, it was in the 1930s that the Hilbert School realized some dif-
ferences between itself and the Brouwer School. Bernays wrote,

Arend Heyting, in two papers of 1930, set up a formal system of intuition-
istic number theory. And, as Gödel and Gerhard Gentzen independently
observed, there is a relatively simple method of showing that any contradic-
tion derivable in the formal system of classical number theory would entail
a contradiction in Heyting’s system. [. . .]

In this way it appeared that intuitionistic reasoning is not identical with
finitist reasoning, contrary to the prevailing views at that time. ([Ber67,
p.502], italics added)

Note that Gödel’s result mentioned in this quotation was published in 1933 with the title
“Zur intuitionistischen Arithmetik und Zahlentheorie.”

33
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The methodological standpoint of “intuitionism” underlying Brouwer’s
approach constitutes a certain extension of the finitistic attitude
(Erweiterung der finiten Einstellung) insofar as assumptions on
the existence of derivations or proofs may be introduced even
if their intuitive nature (anschauliche Beschaffenheit) is not de-
termined. For instance, from Brouwer’s standpoint, sentences
of the following form are allowed: “If the sentence B holds un-
der the assumption A, then C holds as well.” And also: “The
assumption that A is refutable leads to a contradiction.” Or in
Brouwer’s way of speaking: “The absurdity of A is absurd.”
([HB1934, p.43], italics original)2

Here, Hilbert and Bernays claimed that intuitionism is an extension of the
finitary standpoint in the respect that the former admits the propositions of
the form (A ⊃ B) ⊃ C. Though Hilbert and Bernays might consider intu-
itionism to be still finitist in an extended sense and the finitary standpoint in
this sense could admit nested implications to be meaningful, they said that
nested implications are not meaningful from the finitary standpoint in the
original sense.

With this background, Gentzen aimed to give an interpretation for all
first-order arithmetical formulas including nested implications, by extending
the finitary standpoint in his way. As a problem in achieving this aim,
Gentzen pointed out a circularity of implication before the main parts of his
papers for the 1935 and 1936 consistency proofs. He said that it was one of
the main objectives of his 1935 and 1936 proofs to formulate an interpretation
that avoids this circularity.3

In spite of his words, Gentzen did not present his interpretation of arith-
metical formulas explicitly and did not give an argument for its non-circularity
at all. In [Oka88], Okada proposed a method to avoid the circularity urged by
Gentzen, which is independent of Gentzen’s interpretation of arithmetical for-
mulas. Recently, this interpretation was made explicit by Akiyoshi-Takahashi
([AT13]) and Tait ([Tai15]). The interpretation assigns a sense to each impli-
cation formula A ⊃ B via the translation into the formula ¬(A ∧ ¬B), so it
is still desirable to give a direct Gentzen-style interpretation for implication.
In [Taka15], such a Gentzen-style interpretation was proposed, but it is not
known whether this interpretation avoids circularity.

This chapter aims to show that the Gentzen-style interpretation of first-
order arithmetical formulas in [Taka15] avoids the circularity of implication
urged by Gentzen himself. In Section 3.2, we recall the circularity in de-

2We owe this English translation to [HB2011, p.43].
3[Gen36, p.530], [Gen69, p.168].
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tail. In Section 3.3, we reformulate this interpretation by means of Tait’s
method ([Tai15]) of defining reduction procedures. Finally, in Section 3.4,
we argue that this interpretation avoids the circularity of implication urged
by Gentzen.

3.2 Circular Reasoning Concerning Implica-

tion

In this section, we first explain our opinion about why Gentzen, who aimed
to prove the consistency of a formal system of first-order arithmetic, was
concerned with an interpretation of arithmetical formulas. Next, we recall
the circularity of implication urged by Gentzen.

Gentzen wrote that it was of no significance for his attempt at proving the
consistency of first-order arithmetic that first-order arithmetic is sound with
respect to the standard interpretation of arithmetical formulas.4 Gentzen
also wrote,

Having rejected the actualist interpretation of transfinite propo-
sitions, we are still left with the possibility of ascribing a ‘finitist’
sense (finiter Sinn) to such propositions, i.e., of interpreting them
in each case as expressions for definite finitely (endlich) charac-
terizable states of affairs.

Once this view has been adopted, the relevant logical forms of
inference must be examined for their compatibility with this in-
terpretation of the propositions. ([Gen36, p.525], [Gen69, pp.162-
163], italics original)

Here, as we said in Section 1.2, “the actualist interpretation” means the in-
terpretation of quantified arithmetical propositions that treats the infinite
sequence of all natural numbers as closed, i.e., finished. From this quota-
tion, we see that Gentzen adopted the following strategy for proving the
consistency of first-order arithmetic. He first aimed to give a “finitist” in-
terpretation for arithmetical formulas, then tried to show that first-order
arithmetic is sound with respect to this interpretation.

In addition, Gentzen said,

Such a [consistency] proof would be of little value, however, since
it itself would have to make use of transfinite propositions and
the same associated forms of inference which it is intended to

4[Gen36, pp.524-525], [Gen69, p.162].
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‘justify ’. Such a proof would therefore not represent an appeal
to more elementary facts (Zurückführung), although it would of
course confirm the finitist character (finiter Charakter) of the
formalized rules of inference. ([Gen36, p.529], [Gen69, p.167],
italics original)

Gentzen said in this quotation that the significance of consistency proofs
in terms of the above strategy consists, not in a justification for the infer-
ence forms of first-order arithmetic, but in a confirmation of their “finitist
character.” According to our reading, such a confirmation is nothing but
to show that the inference rules of first-order arithmetic are understandable
from Gentzen’s finitist standpoint. He tried to give such a confirmation
by explaining that the inference rules in fact preserve correctness from this
standpoint.5 That is why Gentzen was concerned with the interpretation of
implication: He aimed to give an interpretation to implication formulas of
first-order arithmetic, to show that the inference rules of first-order arith-
metic are understandable also from his finitist standpoint.6

Next, we proceed to explain the circularity of implication urged by Gentzen.7

First of all, let us quote a passage from [Gen36]. In the following passage,
Gentzen pointed out the circularity and said that one of the main objectives
of his consistency proof was to give an interpretation of implication avoiding
this circularity.

This proposition [A ⊃ B] is merely intended to express the fact
that a proof is available which permits a proof of the proposition
B from the proposition A, once the proposition A is proved. [. . .]

In interpreting A ⊃ B in this way, I have presupposed that
the available proof of B from the assumption A contains merely
inferences already recognized as permissible. On the other hand,
such a proof may itself contain other ⊃-inferences and then our
interpretation breaks down. For, it is circular to justify the ⊃-
inferences on the basis of a ⊃-interpretation which itself already
involves the presupposition of the admissibility of the same form
of inference. The ⊃-inferences which occur in the proof would in
that case have to be justified beforehand ; but this has its difficul-
ties, [· · · ].

5This reading is adopted by [AT13] as well.
6Of course, this does not mean that Gentzen gave no other significance than the above

one to consistency proofs.
7We owe the following explanation to [Oka88, p.201] and [Oka08, pp.3-4].
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In order to cope with this difficulty, we would really have to for-
mulate a more complicated rule of interpretation. This represents
one of the principal objectives of the consistency proof which fol-
lows in section IV. ([Gen36, p.530], [Gen69, pp.167-168], italics
original)

Here, Gentzen proposed the following interpretation as a candidate for a
finitist interpretation of implication:

(I) A ⊃ B is correct

if and only if

there is a proof d that allows to prove B from any proof of A.

The last quotation appeared in the section titled “The connectives ⊃ and ¬
in transfinite propositions: the intuitionist view (Die Verknüpfungszeichen
⊃ und ¬ in transfiniten Aussagen; die intuitionistische Grenzziehung).” This
suggests that Gentzen considered (I) an intuitionist interpretation.

Gentzen claimed that the argument in the quotation above, which was
for the soundness of the implication elimination rule on (I), included circu-
lar reasoning. This is what we call the circularity of implication urged by
Gentzen.

The argument proceeds as follows. To show that an arbitrary instance
(†)

A A ⊃ B
B

of the implication elimination inference is sound with respect to (I), assume
that A and A ⊃ B are both correct. According to (I), there is a proof d

A.... d
B

that allows us to prove B from any proof of A. Then, the correctness of A is
transmitted to B via the intermediate steps in d. Thus, B is correct.

According to Gentzen, this argument includes circular reasoning because
it has the following presupposition:

(*) all inference rules in d are sound.

In the argument above, it was claimed that the correctness of A is transmitted
to B via the intermediate steps in d. The presupposition (*) is concealed here,
and this means that the soundness of the instance (†) is in fact assumed,
because (†) itself can occur in d. Thus, the argument above includes trivial
circular reasoning of the following form:
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(**) A holds. Therefore A holds.

Note that Gentzen did not claim the argument above includes a logical fal-
lacy. The reasoning (**) is logically valid. Gentzen claimed that the argu-
ment above includes trivial circular reasoning of the form (**). This is the
circularity of implication urged by Gentzen.

As we have seen, Gentzen said that the significance of consistency proofs
consists in not a justification of the inference rules of first-order arithmetic,
but a confirmation of their finitist character, that is, an explanation that they
are understandable from Gentzen’s finitist standpoint. The trivial circular
reasoning above makes even this confirmation impossible. For we need to give
a non-trivial finitist argument for the soundness of the implication elimination
rule to explain their finitist character. That is why Gentzen did not adopt
(I) as a finitist interpretation of implication.

After pointing out the circularity of implication, Gentzen wrote that one
of the main objectives of his 1935 and 1936 proofs was to give a finitist inter-
pretation of implication avoiding this circularity. Let us quote the relevant
passage again.

In order to cope with this difficulty, we would really have to for-
mulate a more complicated rule of interpretation. This represents
one of the principal objectives of the consistency proof which fol-
lows in section IV. ([Gen36, p.530], [Gen69, p.168], italics origi-
nal)

However, Gentzen did not present explicitly the interpretation of arith-
metical formulas given by his consistency proofs. In [AT13, Tai15] and the
previous chapter, this interpretation was made explicit. Consider an arbi-
trary formula A in a first-order arithmetical language, whose logical constants
are only ∧, ∀ and ¬. The interpretation, which we call (F) here, is as follows:

(F) A is correct

if and only if

a reduction procedure is statable for A.

Remember that we defined a reduction procedure for A as one for → A. A
rationale for ascribing (F) to Gentzen is given in the following passage, as
we explained in the previous chapter.

The concept of the ‘statability of a reduction procedure’ (die Angeb-
barkeit einer Reduziervorschrift) for a sequent, to be defined be-
low, will serve as the formal replacement (formaler Ersatz) of the
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contentual concept of correctness (der inhaltliche Richtigkeitsbe-
griff); it provides us with a special finitist interpretation (finite
Deutung) of propositions and takes the place of their actualist in-
terpretation [. . .]. ([Gen74, p.100], [Gen36, p.536], [Gen69, p.173],
italics original)

The interpretation above gives a sense to each implication formula A ⊃ B
indirectly, that is, it gives a sense to the formula ¬(A ∧ ¬B) and A ⊃ B is
translated to this formula. In [Taka15], a direct Gentzen-style interpretation
of implication was proposed.8 Consider arbitrary formulas A and B in a
first-order arithmetical language, whose logical constants are only ∧, ∀ and
⊃. The interpretation is as follows:

(IM) A ⊃ B is correct

if and only if

a reduction procedure is statable for the sequent A→ B.

In what follows, we redefine both reduction procedures and the stata-
bility of a reduction procedure in terms of Tait’s method, in which the no-
tion of pre-reduction procedures is used (Section 3.3). Then, we argue that
this chapter’s version of (IM) avoids the circularity of implication urged by
Gentzen (Section 3.4).

3.3 Gentzen-style Interpretation for Implica-

tion

Let L⊃ be the first-order language obtained by replacing ¬ with ⊃ in the
language L, which was defined in Section 2.4. In addition, consider the formal
system Z⊃ of first-order arithmetic obtained by dropping rules (DNE) and
(RED) from system Z (cf. Section 2.4) and adding the following rules.

Γ, A→ B
Γ → A ⊃ B

(⊃ I) Γ → A Γ → A ⊃ B
Γ → B

(⊃ E)

Definition 3.3.1 (Reduction steps). Reduction steps are the following rules
that rewrite a closed sequent to another one:

(∀) Γ → ∀xA(x) ▷ Γ → A(n),

(∧) Γ → A0 ∧ A1 ▷ Γ → Ai (i = 0, 1),

8[Taka15, p.53].
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(⊃, r) Γ → A ⊃ B ▷ A,Γ → B,

(∀, k) ∀xA(x),Γ →⊥ ▷ A(k), ∀xA(x),Γ →⊥,

(∧, i) A0 ∧ A1,Γ →⊥ ▷ Ai, A0 ∧ A1,Γ →⊥,

(⊃, l) A ⊃ B,Γ →⊥ ▷ A ⊃ B,Γ → A or B,A ⊃ B,Γ →⊥.

Note that rules (∀, k), (∧, i) and (⊃, l) are applied to a sequent Γ → A
only if A is a false sentence and that a choice is included in rules (∀), (∧)
and (⊃, l). For example, a choice from numerals is included in (∀).9

A closed sequent Γ → A is of the end-form if and only if either Γ ∩
FALSE ̸= ∅ or A ∈ T RUE . Below, we define reduction procedures using
pre-reduction procedures, which were introduced by Tait.10

Definition 3.3.2 (Pre-reduction Procedures). Let Γ → A be a closed se-
quent. A pre-reduction procedure R for Γ → A is an effective procedure
that determines, in the following manner, whether a given finite sequence of
sequents is an R-admissible sequence.

1. The sequence ⟨Γ → A⟩ is the only R-admissible sequence of length 1.

2. A sequence of closed sequents of length n+2 is anR-admissible sequence
of length n + 2 if and only if it is a one-element extension of some R-
admissible sequence of length n + 1. A one-element extension of an
R-admissible sequence ⟨Γ → A, . . . , ∆ → B⟩ of length n+1 is defined
as follows:

(a) if ∆ → B is of the end-form, then there is no one-element exten-
sion of ⟨Γ → A, . . . , ∆ → B⟩,

(b) if all members of ∆ belong to T RUE and B ∈ FALSE , then

⟨Γ → A, . . . , ∆ → B, ∆ → B⟩

is the only one-element extension of ⟨Γ → A, . . . , ∆ → B⟩,
(c) otherwise, at least one reduction step is applicable to ∆ → B.

Then, R determines such a reduction step S and

⟨Γ → A, . . . , ∆ → B, ∆0 → B0⟩
9Gentzen did not stipulate the reduction steps for constant ⊃. For the original definition

of the reduction steps given by Gentzen, see [Gen74, pp.101-102], [Gen69, pp.173-175].
10[Tai15, pp.217-218]. Tait called this notion pre-reduction rules. In case 2.(c) of the

following definition, our definition of pre-reduction procedures differs from Tait’s, but this
difference is not essential.
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Γ → A

Γ0 → A0

Γ00 → A00

...

∆ → B

Γ01 → A01

...

∆′ → B′

· · ·

Γ1 → A1

...

· · ·

Figure 3.1: (Here, branching corresponds to choice, and all sequents at the
bottom are of the end-form.)

is a one-element extension of ⟨Γ → A, . . . , ∆ → B⟩ for every
∆0 → B0 that is a result of applying S to ∆ → B.

There is no essential difference between a pre-reduction procedure for
Γ → A and one for Γ → B whenever both A and B belong to FALSE , so we
stipulate that a pre-reduction procedure for Γ → A is also one for Γ → B.

An initial segment of a finite or infinite sequence α of closed sequents is
a finite sequence

⟨Γ1 → A1, . . . ,Γn → An⟩

such that for every k (1 ≤ k ≤ n), Γk → Ak is equal to the k-th element of
α. An initial segment of α is proper if and only if the segment is not equal
to α.

Definition 3.3.3 (Reduction Procedures). Let Γ → A be a closed sequent.
A pre-reduction procedure R for Γ → A is a reduction procedure for Γ → A
if and only if for every infinite sequence α of closed sequents, α includes an
initial segment that is not R-admissible.

Informally, reduction procedures are explained as follows. A reduction
procedure R for a closed sequent Γ → A is an effective procedure for apply-
ing reduction steps to Γ → A repeatedly such that the procedure eventually
rewrites Γ → A to a sequent of the end-form, regardless of which choices are
made in the applications of steps (∀), (∧) and (⊃, l) (Figure 3.1). In the next
section, for the sake of clarity, we often show that there is a reduction pro-
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cedure for some sequent, by giving such an effective procedure for rewriting
it.

Let us reformulate the interpretations (F) and (IM). We define the stata-
bility of a reduction procedure as follows: Let R be an arbitrary reduction
procedure for a closed sequent S, then R is statable for S if and only if both R
and a proof for the fact that R is a reduction procedure for S are obtained.
For every sequent S such that FV (S) ̸= ∅, we stipulate that a reduction
procedure is statable for S if and only if for every substitution instance S ′ of
S, a reduction procedure is statable for S ′.

With the definitions above, we can reformulate the interpretations (F)
and (IM). Let us state them again:

(F) A is correct

if and only if

a reduction procedure is statable for A.

(IM) A ⊃ B is correct

if and only if

a reduction procedure is statable for the sequent A→ B.

Note that, in our setting, (IM) follows from (GI), because the following holds:

A reduction procedure is statable for → A ⊃ B

if and only if

a reduction procedure is statable for A→ B.

3.4 Way Out of Circularity

In this section, we argue that (IM) avoids the circularity of implication urged
by Gentzen; that is, the soundness of the implication elimination inference
on (IM) can be shown without trivial circular reasoning such as deducing A
from A. Consider instance

A A ⊃ B
B

of the inference. We show that the instance above preserves the correctness
of the premises, without presupposing the soundness of the instance itself.11

11Of course, this does not mean that we do not use any instance of the implication
elimination inference in our argument: We have to use the inference in our meta-theory.
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Assume that A and A ⊃ B are correct; then a reduction procedure is stat-
able for → A and A → B by (F) and (IM), respectively. Thus, there are
reduction procedures for → A and A → B. Then, it suffices to explain
that the following lemma, which is key to the 1935 proof as we saw in the
previous chapter, is provable without trivial circular reasoning. Hereafter,
we abbreviate “there is a reduction procedure for Γ → A” to “Γ → A is
reducible.”

Lemma 3.4.1 (The Soundness of the Cut Rule). If Γ → A and A,Γ → B
are reducible, then Γ → B is reducible.

If this lemma is proved, we obtain both a reduction procedure R for → B
and a proof for the fact that R is a reduction procedure for → B. This means
that a reduction procedure is statable for → B.

Below, we explain that the soundness of the cut rule is provable without
trivial circular reasoning, especially, without presupposing the soundness of
the very instance of the cut rule we are targeting. That is to say, we show
that there is a reduction procedure for the conclusion of an instance I of the
cut rule, appealing to its premises’ reduction procedures and the soundness
of the instances of lower “complexity” than I. This is provable by means of
the following two induction principles.

1. The induction principle on the length of a formula.

2. The induction principle on a reduction procedure for Γ → A.

First of all, let us formulate the second induction principle. Consider an
arbitrary pre-reduction procedure R. We say a finite sequence S⃗ = ⟨∆1 →
B1, . . . ,∆n → Bn⟩ of closed sequents is a maximal R-admissible sequence

if and only if there is no R-admissible sequence that includes S⃗ as a proper
initial segment.12 Note that for every maximal R-admissible sequence ⟨∆1 →
B1, . . . ,∆n → Bn⟩, either ∆n ∩ FALSE ̸= ∅ or Bn ∈ T RUE . The second
induction principle is an instance of the following induction principle.

Definition 3.4.1 (Induction on a Reduction Procedure). Let P be a prop-
erty of a finite sequence of closed sequents. If a reduction procedure R for
a sequent Γ → A satisfies the following two conditions, then the sequence
⟨Γ → A⟩ has P :

• every maximal R-admissible sequence has P ,

12We owe the notion of maximal R-admissible sequences to Tait ([Tai15, p.223]).
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• for every n and every R-admissible sequence ⟨∆1 → B1, . . . ,∆n →
Bn⟩ of length n, the following holds: If all R-admissible sequences of
length n+1 including ⟨∆1 → B1, . . . ,∆n → Bn⟩ as an initial segment
have P , then ⟨∆1 → B1, . . . ,∆n → Bn⟩ has P .

Informally, this induction principle says that if every maximal R-admissible
sequence has P and P is inherited from each R-admissible sequence to its
immediate proper initial segment, then the R-admissible sequence of length
1 has P . This principle can be considered an instance of the principle of
decidable bar induction in intuitionistic mathematics.13

Now we proceed to our argument that the soundness of the cut rule is
provable without circular reasoning.14 Assume that Γ → A and A,Γ → B
are reducible. We show that Γ → B is so as well. For the sake of simplicity,
we consider only the case that both Γ → A and A,Γ → B are closed. If
A ∈ Γ, then {A} ∪ Γ = Γ, so the assertion already holds. Let A be not in Γ.
First, we use induction on the length of the cut formula A.

(i) Base Case

(ia) Consider the case that A ∈ T RUE . Then, A is irrelevant to a given
reduction procedure R for A,Γ → B. A reduction procedure for Γ → B is
obtained from an effective procedure for rewriting Γ → B in the same way
as R rewrites A,Γ → B.

(ib) Consider the case that A ∈ FALSE . We stipulate the following
procedure for rewriting Γ → B. First, apply (∀), (∧) and (⊃, r) repeatedly
until the formula in the right hand of the sequent is decomposed to an atomic
formula C. If C ∈ T RUE , then the resulting sequent is of the end-form,
so stop rewriting. If C ∈ FALSE , the resulting sequent is of the form
Γ,∆ → C. Next, we use the following lemma:

Lemma 3.4.2. For every formula A and every finite set Γ,∆ of formulas,
if Γ → A is reducible then ∆,Γ → A is reducible.

This lemma immediately follows from the definition of reduction pro-
cedures. By this lemma and the assumption that Γ → A is reducible, a

13For the principle of decidable bar induction, see [TD88, p.229].
14The proof for the soundness of the cut rule in this section differs from the one given by

Gentzen in that the former uses the induction principle on a reduction procedure explicitly.
For the original proof given by Gentzen, see [Gen74, pp.108-112], [Gen69, pp.207-210]. The
proof in this section is essentially the same as the one given by Tait in [Tai15, pp.221-222].
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reduction procedure R is given for Γ,∆ → A. Both A and C belong to
FALSE , so R is also a reduction procedure for Γ,∆ → C by the convention
in the previous section. Finally, rewrite the sequent Γ,∆ → C in the same
way as R rewrites it, then we always reach to a sequent of the end-form.

Let us summarize the explanation for case (i). In this case, we can show
that Γ → B is reducible, by using Lemma 3.4.2 and the given reduction
procedures for Γ → A and A,Γ → B only.

(ii) Induction Step The induction hypothesis is as follows: For every
formula A0 such that the length n0 of A0 is smaller than the length n of A,

for every finite set Γ0 of formulas and every formula B0, if Γ0 → A0

and A0,Γ0 → B0 are reducible, then Γ0 → B0 is reducible.

On the assumption that that Γ → A and A,Γ → B are reducible, we show
that Γ → B is so. In the case that A ∈ Γ, the assertion obviously holds,
so let A be not in Γ again. For the sake of simplicity, we consider only the
case that A is of the form ∀xC(x). Hereafter, we use the induction principle
on a reduction procedure R1 for ∀xC(x),Γ → B. Define the property P on
R1-admissible sequences as follows:

The R1-admissible sequence ⟨∆1 → C1, . . . , ∆n → Cn⟩ has P
if and only if

the sequent Γ,∆n \ {∀xC(x)} → Cn is reducible.

If we show that the two conditions in the induction principle on R1 hold,
then it follows that the R1-admissible sequence ⟨∀xC(x),Γ → B⟩ of length
1 has P ; that is, Γ → B is reducible. This means that the assertion holds in
case (ii) as well. Thus, it suffices to show that those two conditions hold.

(iia) Base Case of the Second Induction Consider an arbitrary
maximal R1-admissible sequence ⟨∆1 → C1, . . . , ∆n → Cn⟩. Then, ei-
ther ∆n \ {∀xC(x)} ∩ FALSE ̸= ∅ or Cn ∈ T RUE , because either ∆n ∩
FALSE ̸= ∅ or Cn ∈ T RUE by the definition of maximal R1-admissible
sequences. Thus, if we set that ⟨Γ,∆n \ {∀xC(x)} → Cn⟩ is the only
R2-admissible sequence, R2 is a reduction procedure for this sequent, so
⟨∆1 → C1, . . . , ∆n → Cn⟩ has P .

(iib) Induction Step of the Second Induction Assume that for ev-

ery R1-admissible sequence S⃗ of length n+1 including ⟨∆1 → C1, . . . , ∆n →
Cn⟩ as an initial segment, S⃗ has P . We show that ⟨∆1 → C1, . . . , ∆n → Cn⟩
has P as well. We discuss one of the key cases only, that is, the case that



46

• ∆n = ∆′ ∪ {∀xC(x)} for some ∆′ with ∀xC(x) ̸∈ ∆′ and

• the one-element extension of ⟨∆1 → C1, . . . , ∆n → Cn⟩ is

⟨∆1 → C1, . . . , ∆
′ ∪ {∀xC(x)} → Cn, ∆

′ ∪ {∀xC(x), C(k)} → Cn⟩.

By the induction hypothesis of the second induction, the sequent Γ,∆′, C(k) →
Cn is reducible. If C(k) ∈ Γ ∪ ∆′ then we are done, so let C(k) be not in
Γ ∪ ∆′. From the assumption that the sequent Γ → ∀xC(x) is reducible,
it can be easily shown that Γ → C(k) is reducible. Thus, Γ,∆′ → C(k) is
reducible by Lemma 3.4.2. The length m of the formula C(k) is smaller than
the one of ∀xC(x), so Γ,∆′ → Cn is reducible by the induction hypothesis
of the first induction. This means that ⟨∆1 → C1, . . . , ∆n → Cn⟩ has P .

Let us summarize our explanation. First, we saw that no trivial circular
reasoning is included in Base Case (i). This enables us to assume in In-
duction Step (ii) that the soundness of more “simpler” instances of the cut
rule than the instance we were targeting is proved without trivial circular
reasoning. Then, we show the soundness of this instance by appealing to the
soundness of more “simpler” instances. This step-by-step explanation leads
to the conclusion that no trivial circular reasoning is included in the whole
proof of the soundness of the cut rule.

3.5 Conclusion of Chapter 3

In this chapter, we have argued that the Gentzen-style interpretation (IM)
of implication avoids the circularity of implication urged by Gentzen himself.
It was the lemma for the soundness of the cut rule in the 1935 proof that was
crucial to avoid circularity: It sufficed to confirm that the lemma is proved
without trivial circular reasoning. We have confirmed this in the following
way. We emphasized two induction principles and explained that due to these
principles, the soundness of the cut rule can be shown step-by-step from the
base cases of two inductions.

Our whole argument sheds light on the role of the proof-theoretic methods
of the Hilbert School. Although there is a gap in Gentzen’s own proof for
the soundness of the cut rule, Gentzen’s interpretation took not only the
role of showing the consistency of first-order arithmetic, but also the role
of interpreting implication formulas of first-order arithmetic, avoiding the
circularity of implication he was concerned with.



Chapter 4

Contentual and Formal Aspects
of Gentzen’s Interpretation for
Arithmetic

4.1 Introduction to Chapter 4

In Chapters 2 and 3, we were mainly concerned with the 1935 proof, i.e.,
Gentzen’s first consistency proof for first-order arithmetic. Those chapters
explained Gentzen’s two aims that were found in the proof. In this chapter,
we examine his second consistency proof for first-order arithmetic, i.e., the
1936 proof. This proof, located between the 1935 and 1938 proofs, was a
work during his “transition period 1936-1938.”1 On the one hand, the 1936
proof inherited from the 1935 proof the method of “finitist” interpretation
of first-order arithmetical formulas, which we have discussed in Chapters 2
and 3. On the other hand, the 1936 proof was a precursor of the 1938 proof
given by the cut elimination method with an ordinal notation system below
ε0.

Because of this intermediate or patchwork feature of the 1936 proof, sev-
eral researchers have published investigations of its structure. For example,
Yasugi ([Yas80]) reformulated the 1936 proof within the framework of the
1938 proof and presented some applications of her reformulation. More re-
cently, Buchholz ([Buc15]) analyzed the structure of the 1936 proof, using
the method of finite notations for infinitary derivations.2 While Yasugi and

1[Ara02, p.438]. By examining the 1936 proof, we can see a connection between
Gentzen’s two aims above and the 1938 proof. We will see this connection in the con-
cluding remarks of this thesis.

2The method of finite notations for infinitary derivations originates from the work
by Mints ([Min78]) and has been developed further in subsequent papers by Buchholz

47
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Buchholz have focused on the mathematical side of the 1936 proof, we focus
not only on its mathematical side, but also on its conceptual side.3

Sieg, in [Sie12], explained some background of Gentzen’s 1936 proof that
enables us to understand the intermediate feature of this 1936 proof from
another approach. Sieg claimed, “Hilbert’s considerations in [“Beweis des
tertium non datur” [Hil31]] were a crucial germ for Gentzen’s work on con-
sistency.”4 That is to say, Sieg has claimed that Hilbert’s 1931 paper “Be-
weis des Tertium non datur” had great influence on Gentzen’s investigation
into the consistency of first-order arithmetic, especially on Gentzen’s 1936
proof. In the main argument of [Hil31], Hilbert used a concept of correctness
(Richtigkeit) of formulas to prove the consistency of a first-order arithmetical
theory without any induction axiom schema.5 He formulated a concept of
correctness of formulas and then attempted to show, in this sense, that every
derivation of the theory has a correct formula as its conclusion.

According to Sieg, Gentzen scrutinized this argument before complet-
ing the 1936 proof. By citing some passages from Gentzen’s unpublished
manuscripts, Sieg explained background of the 1936 proof as follows.6 Gentzen
called a kind of a consistency proof like Hilbert’s argument above a con-
tentual correctness proof (inhaltlicher Richtigkeitsbeweis) and contrasted this
kind with another kind that he called a formal correctness proof (formaler
Richtigkeitsbeweis). Formal correctness proofs show a theory’s consistency
by assigning a normal derivation to every derivation of a numeric equation
in the theory. A consistency proof by means of Hilbert’s epsilon substitution
method and Gentzen’s 1938 proof are typical examples of such correctness
proofs.7 Then, Gentzen finished the 1936 proof and considered it intermedi-
ate between these two kinds of consistency proofs.

([Buc91, Buc97, Buc01]).
3The content of this chapter differs from our previous work ([AT13]) written in Japanese

with respect to the three main points. First, while the aim of [AT13] was to give only
a uniform interpretation of Gentzen’s proofs, this chapter considered questions naturally
arising from Sieg’s paper [Sie12]. Secondly, we use another version of normalization trees,
namely, a version of normalization trees reformulated with (possibly) non-well-founded
trees. This notion makes it easier to see a connection between the 1936 proof and some
notions of intuitionism like spreads and choice sequences. Finally, Section 4.5 of the
present chapter gives another proof of Kreisel’s no-counterexample interpretation, using
normalization trees.

4[Sie12, p.123].
5The theory includes the principle of tertium non datur. Hilbert’s aim in this paper

was to justify the use of this principle by means of a consistency proof.
6In fact, Sieg has explained background of not only the 1936 proof but also the 1935

proof. In the present chapter, we concentrate on an analysis of the 1936 proof in the light
of Sieg’s explanation.

7As to Hilbert’s exposition of the epsilon substitution method, see [Hil28].
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This explanation by Sieg induces the question whether Gentzen’s 1936
proof is both a contentual correctness proof and a formal correctness proof
in the sense above, since one might wonder if a consistency proof in general
can be so. Contentual correctness proofs and formal correctness proofs corre-
spond to semantic consistency proofs and proof-theoretic consistency proofs,
respectively, and semantic consistency proofs are usually distinguished from
proof-theoretic consistency proofs. (Below we often abbreviate “P is a con-
tentual correctness proof” as “P is contentual.” The same abbreviation is
used also for formal correctness proofs.) Furthermore, one could ask an-
other question: If the 1936 proof is both contentual and formal, how do its
contentual and formal aspects relate to each other?

This chapter aims to answer the two questions above. First, we argue
that the 1935 proof is a contentual correctness proof and that the 1938 proof
is a formal correctness proof. As seen in Chapters 2 and 3, Gentzen gave the
following interpretation for every sequent of first-order arithmetic: Let Γ be
a sequent as a finite set of formulas of first-order arithmetic, then

(GI) Γ is correct

if and only if

a reduction procedure is statable for Γ.8

The main lemma of the 1935 proof shows that every derivation of first-order
arithmetic has the correct endsequent in the sense of (GI); thus the 1935
proof is a contentual correctness proof. After arguing so, we briefly see
that the 1938 proof is a formal correctness proof because its main lemma
assigns a normal derivation to every derivable numeric equation of first-order
arithmetic.

Second, we show that the 1936 proof is both contentual and formal be-
cause its main lemma implies both the main lemma of the 1935 proof and the
main lemma of the 1938 proof. To show this in a uniform way, we formulate
the 1936 proof in the framework of normalization trees, which were intro-
duced in [Aki10, AT13] through finite notations for infinitary derivations.
Here we use a version of normalization trees reformulated in terms of (possi-
bly) non-well-founded trees, to analyze contentual aspects of the 1936 proof
more closely. Then, we derive the main lemma of the 1935 proof from the
main lemma of the 1936 proof. Next, to analyze formal aspects of the 1936
proof, we utilize not only normalization trees, but also analyses in Buchholz’s
two papers [Buc97, Buc15]. We show that the main lemma of the 1938 proof

8The reason why we formulate (GI) with one-sided sequents is that we use the one-sided
sequent calculus in the arguments of Sections 4.3, 4.4 and 4.5.
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is a special case of the main lemma of the 1936 proof. This means that the
main lemma of the 1936 proof assigns a normal derivation to every derivable
numeric equation as the main lemma of the 1938 proof does.

Third, we explain how contentual and formal aspects of the 1936 proof
relate to each other. Our argument for the claim that the 1936 proof is both
contentual and formal enables us to see the following: The correctness of a
derivable formula of first-order arithmetic in the sense of (GI) is in fact shown
by means of syntactic transformation of a given derivation of the formula.
This means that contentual aspects of the 1936 proof are formed by its formal
aspects.

Finally, we note the following consequence of our arguments: Kreisel’s
no-counterexample interpretation ([Kre51]) is obtained from our formulation
of the 1936 proof.9

This chapter is structured as follows. In Section 4.2, we briefly recall Sieg’s
argument above and then explain that the 1935 proof is a contentual cor-
rectness proof and that the 1938 proof is a formal correctness proof. Section
4.3 gives a formulation of finite notations for infinitary derivations in first-
order arithmetic, following Buchholz’s paper [Buc97]. In Section 4.4, we first
define the notion of normalization trees and then answer the foregoing two
questions. Finally, in Section 4.5, we show that Kreisel’s no-counterexample
interpretation is obtained from our formulation of the 1936 proof.

4.2 Contentual and Formal Correctness Proofs

In this section, we first explain the argument by Sieg for the claim that
Hilbert’s considerations in “Beweis des Tertium non datur” had great influ-
ence on Gentzen’s 1936 proof. Sieg’s argument provides background for the
present chapter’s contents. Next, preliminarily to our argument after this
section, we see that the 1935 proof is a contentual correctness proof and that
the 1938 proof is a formal correctness proof.

The following passage from Gentzen’s unpublished manuscript Urdisser-
tation is key to Sieg’s argument.

The consistency of arithmetic will be proved; in the process, the
concept of an infinite sequence of natural numbers will be used,
furthermore in one place the principle of the excluded middle.

9Several studies have already pointed out the relationship between Gentzen’s 1935
and 1936 proofs and the no-counterexample interpretation. Cf. [Kre71, SP95, Tai05].
Furthermore, according to [SP95, Tai01], the idea of the no-counterexample interpretation
is found in Gödel’s notes for his lecture in 1938.
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The proof is thus not intuitionist. Perhaps the tertium non datur
can be eliminated. ([Sie12, p.88])

Here, Gentzen made several comments about his tentative proof for the con-
sistency of first-order arithmetic in Urdissertation: The concept of an infinite
sequence of natural numbers and the principle of tertium non datur were used
in that proof. According to Sieg, a connection between Gentzen’s investiga-
tion into the consistency of first-order arithmetic and Hilbert’s considerations
in [Hil31] is found here. It was a central feature of the main argument in
[Hil31] that both the concept of an infinite number-sequence and the principle
of tertium non datur were used in metamathematical investigations.

Hilbert, in [Hil31], formulated a fragment of arithmetic that lacks an in-
duction axiom schema and the axiom (TND) ∀xA(x) ∨ ∃x¬A(x); then he
claimed that the theory can be expanded by means of (TND) without de-
riving contradiction.10 An outline of Hilbert’s main argument is as follows.11

First, Hilbert stipulated when a formula of the theory is correct (richtig).
Next, he tried to prove that every correct formula does not imply contra-
diction. Finally, he argued that every derivation in the expanded theory by
means of (TND) can be transformed into a derivation such that the axioms
and inference-rules in it are all correct. As seen from this outline, a notion of
correctness is crucial to Hilbert’s argument. Later in this section, we will see
that a notion of correctness played a crucial role in Gentzen’s considerations
as well.

Let us see briefly how Sieg explained that the concept of an infinite
number-sequence was included in Hilbert’s considerations. Hilbert stipulated
when a universally quantified formula is correct as follows:

If the statement A(z) is correct as soon as z is a numeral, then
the statement (x)A(x) holds [· · · ]. ([Hil31, p.121])12

Sieg claimed that this stipulation gave the following rule (HR∗): If A(z) is
correct for an arbitrary numeral z, then the universally quantified formula
(x)A(x) may be introduced as an axiom of theory.13 Note that the rule (HR∗)
differs from standard inference-rules, since standard rules allow us to deduce a
conclusion from some premises within a formal theory. The rule (HR∗) is for
introducing an axiom by means of metatheoretical considerations. According
to Sieg, the concept of an infinite sequence of natural numbers is included in

10In the notation of [Hil31], (TND) is (x)A(x) ∨ (Ex)Ā(x).
11We owe this outline to Sieg. Cf. [Sie12, pp.102-105].
12This English translation is by Sieg.
13[Sie12, p.92, p.103].
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this rule. We omit further details of Sieg’s explanation.14

In addition to this feature of Hilbert’s considerations, Sieg argued that
Hilbert made metamathematical use of the principle of tertium non datur to
show that his notion of correctness actually works:

This metamathematical statement [any statement either does or
does not lead to a contradiction] is an instance of tnd, and Hilbert
views it as “necessary” for the founding of mathematics. He then
uses tnd to show that correctness, falsity, and the generalized
negation of statements (see Note 29) harmonize in the appropriate
way. ([Sie12, p.105])

Of course, “tnd” denotes the principle of the excluded middle, so Sieg has
claimed here that a metamathematical statement used in Hilbert’s argument
is an instance of the principle of the excluded middle. After quoting the
remark from Gentzen’s Urdissertation (at the beginning of this section), Sieg
wrote,

The connection to Hilbert’s considerations in Beweis des tertium
non datur seems unmistakable, as [Gentzen’s] these remarks point
exactly to the central features of Hilbert’s argument, i.e., the
metamathematical use of the rule (HR∗) and tnd. ([Sie12, p.107])

This connection between Gentzen’s Urdissertation and Hilbert’s argument in
[Hil31] is a rationale for Sieg’s claim that Hilbert’s consideration in [Hil31]
had great influence on Gentzen’s 1936 proof.

Let us explain the next rationale. After explaining the connection above
between Gentzen’s Urdissertation and Hilbert’s argument in [Hil31], Sieg
has described other background of Gentzen’s 1936 proof as follows. The
manuscript INH, written from October 1932 to October 1934 and titled
“Die formale Erfassung des Begriffs der inhaltlichen Richtigkeit in der reinen
Zahlentheorie, Beziehungen zum Widerspruchsfreiheitsbeweis,” starts with a
reflection by Gentzen: how a notion of correctness is defined in a given formal
theory.15 Then, Gentzen contrasted a kind of consistency proof he called a
formal correctness proof with another kind called a contentual correctness
proof. The following is a quotation by Sieg from INH, p.2:

14Cf. [Sie12, p.107]. Sieg’s explanation can be paraphrased as follows: To apply the
rule (HR∗), one needs to show that A(z) is correct for an arbitrary numeral z. Because of
Hilbert’s finitist attitude, this must be shown by giving an effective method to verify the
correctness of A(0), A(1), A(2) and so on. The concept of an infinite sequence of natural
numbers is used here.

15[Sie12, p.114].
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I seek to clarify the questions: what distinguishes a formal cor-
rectness or consistency proof from a contentual one, why is the
former for certain inferences not even possible by these same in-
ferences (according to Gödel), is a bridge inference involved then,
how secure is that [bridge inference, WS], what are the connec-
tions with Gödel’s proof, what role do the mathematical axioms
play? ([Sie12, p.114])

In the present chapter, what is relevant is the first question, that is, the
question of what distinguishes a formal correctness proof from a contentual
one.

Citing Gentzen’s words from INH, Sieg characterized notions of con-
tentual correctness proofs and formal correctness proofs as follows:

Calling a proof of a numeric statement a Normalbeweis if it con-
tains only numeric statements, Gentzen can now express the dif-
ference between (purely) formal and (semi-) contentual correct-
ness proofs by formulating carefully the claim each is to establish.
The claim for a purely formal correctness proof is, “for every proof
of a numeric statement there is a Normalbeweis of that state-
ment”, and the corresponding claim for the (semi-) contentual
correctness proof is, “every proof has a correct result” [where
result means endformula, WS]. ([Sie12, p.115])

In sum, a consistency proof is a formal correctness proof if and only if it shows
the consistency of a theory by assigning a normal derivation (Normalbeweis)
to each derivable numeric equation in the theory. Since no normal derivation
of 0 = 1 exists, the consistency follows. The meaning of “normal derivations”
and of “numeric equations” may vary according to which theory is considered.
For the former notion, it suffices to require that the truth of the conclusion
of a normal derivation is verified in a primitive recursive way. On the other
hand, a consistency proof is a contentual correctness proof if and only if it
shows the consistency of a theory by verifying that every derivation of the
theory has a correct conclusion.16 Then, it follows that no contradiction is
derivable in the theory because no contradiction can be correct. Note that
Hilbert’s argument in [Hil31] is an example of contentual correctness proofs.
Gentzen made a further remark about differences between these two kinds
of correctness proofs, but we do not enter into its details. The remark was
quoted by Sieg from INH, p.8:

16The distinction of purely formal correctness proofs from formal correctness proofs
does not matter to our present concern; neither does the distinction of semi -contentual
correctness proofs from contentual correctness proofs. Thus we do not consider these
distinctions. In the both cases, the former is subsumed into the latter.
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The semi-contentual proof uses complete induction for a rather
complicated statement. This contains Ri erg x [the result of proof
x is correct, WS], and this predicate becomes ever more compli-
cated in complicated cases. The formal proof uses complete in-
duction for [the statement] Ey. No y & erg x = erg y [there is a
Normalbeweis y having the same result as the given proof x, WS];
this is also a statement containing logical signs; it is however of
a simple nature, also in more complicated cases. ([Sie12, p.115])

As the last two passages from INH show, Gentzen examined the method of
Hilbert’s argument in [Hil31], namely, the method of contentual correctness
proofs before completing the 1936 consistency proof. This is the second
rationale for Sieg’s claim that Hilbert’s consideration in [Hil31] had great
influence on Gentzen’s 1936 proof. As we said in the introduction, Sieg
eventually concluded that Gentzen gave the 1936 proof in an intermediate
way between contentual correctness proofs and formal correctness proofs.17

In the rest of this section, we argue that Gentzen’s 1935 proof is contentual
and that his 1938 proof is formal, preliminarily to our argument in Section
4.4.

As explained in Chapters 2 and 3, Gentzen, in the 1935 proof, gave a
notion of correctness called the statability of a reduction procedure, and then
remarked that it gives a “finitist” interpretation of arithmetical formulas. He
wrote,

The concept of the ‘statability of a reduction procedure’ (die
Angebbarkeit einer Reduziervorschrift) for a sequent, to be de-
fined below, will serve as the formal replacement (formaler Er-
satz) of the contentual concept of correctness (der inhaltliche
Richtigkeitsbegriff); it provides us with a special finitist inter-
pretation (finite Deutung) of propositions and takes the place
of their actualist interpretation [. . .]. ([Gen74, p.100], [Gen36,
p.536], [Gen69, p.173], italics original)

From the quotation above, we can extract the following interpretation of
every sequent Γ, i.e., every finite set Γ of formulas of first-order arithmetic:

(GI) Γ is correct

if and only if

a reduction procedure is statable for Γ.

17[Sie12, p.117].
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Later, we will redefine both reduction procedures and the statability of a
reduction procedure by the method of this chapter (Section 4.4). But now, it
is sufficient to recall that the statability of a reduction procedure is a notion
of correctness: A sequent Γ is correct when a reduction procedure is statable
for Γ. If we stipulate that a reduction procedure for a formula A as one for
{A}, then we obtain from (GI) the following interpretation of arithmetical
formulas:

A is correct

if and only if

a reduction procedure is statable for A.

The main lemma of the 1935 proof shows that every derivation of a proof-
system Z of first-order arithmetic has the correct endsequent in the sense of
(GI). The statement of the lemma is as follows.18

Main Lemma of the 1935 Proof. For every sequent Γ of Z,

if Γ is derivable in Z, then there is a reduction procedure for Γ.

Note that, as seen in Chapter 2, this lemma shows the correctness of each Z-
derivable sequent Γ in the sense of (GI) because the proof of the lemma gives
not only a reduction procedure for Γ, but also a proof for its termination. The
1935 proof shows the consistency of first-order arithmetic in this way. Thus,
according to Sieg’s characterization above, the 1935 proof is a contentual
correctness proof.

On the other hand, the 1938 proof is a formal correctness proof. As
we have said previously, Sieg’s characterization of formal correctness proofs
is not restricted to a particular theory, so the range of numeric equations
and normal derivations could vary according to which theory is considered.
To see that Gentzen’s 1938 proof is a formal correctness proof, consider the
proof-system Z of first-order arithmetic that Gentzen formulated in [Gen38b],
whose language includes 0 (zero) and S (the successor function) as its all
function symbols. Then, the numeric equations we consider are formed by
means of these two function symbols and the equality =. In addition, we
recall Takeuti’s formulation of the 1938 proof ([Take87, §12]). A derivation
of Z is called simple if and only if it includes no free variable and consists
only of mathematical initial sequents and structural inferences except cut-
inferences with the non-atomic cut formula.19 Note that a simple derivation

18[Gen74, p.103], [Gen36, p.549].
19Cf. [Take87, Definition 12.2.].
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does not include any logical inference and the induction-rule. Below, by
“normal derivation” we mean a simple derivation.

Now, the 1938 proof can be outlined as follows. First, it can be verified in
a primitive recursive way that there is no normal derivation of a false numeric
equation. Next, the following lemma is proved:

Main Lemma of the 1938 Proof. Let h be a derivation of Z for a nu-
meric equation, then there is a reduction sequence of h that terminates
with a normal derivation for the equation.

There is no derivation of Z for 0 = 1 by the main lemma and the above fact
about normal derivations, so Z is consistent. As this outline shows, the 1938
proof is a formal correctness proof. The main lemma of this proof assigns a
normal derivation to every derivable numeric equation.

In Section 4.4, we argue that the 1936 proof is both contentual and formal,
by showing that the main lemma of the 1936 proof implies the main lemmas
of the 1935 and 1938 proofs. In the next section, we explain the method of
finite notations of infinitary derivations.

4.3 Finite Notations for Infinitary Derivations

In this section, we introduce the finitary system Z∗ of first-order arithmetic
and the corresponding infinitary system Z∞, then recall some basic properties
of finite notations for infinitary derivations. We define these systems in the
style of Tait’s calculus. First, a sequent is a finite set of formulas rather than
a finite multi-set of them. Second, the contraction, exchange and weakening
rules are implicitly assumed. Although we follow Buchholz’ paper [Buc97]
with some minor modifications, we repeat and explain important definitions
and theorems in it for readers’ convenience.

We define the basic language L, on which the systems Z∗ and Z∞ are
defined. The vocabulary consists of the following symbols:

• Predicate Symbols: p for every primitive recursive relation P,

• Function Symbols: 0, S (successor),

• Variables for natural numbers: x0, x1, x2, . . .,

• Logical connectives: ∀, ∃,∧,∨,¬,

• Auxiliary Symbols: (, ).
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Terms of L are defined in the standard way: 0 and variables are terms. if
t is a term, then S(t) is also a term, and denoted by t, s. The closed terms
are called the numerals. Atomic formulas are formulas of the form pt1 · · · tn,
where p is a predicate symbol and t1, . . . , tn are terms. We say an expression
is a literal if it is an atomic formula or of the form ¬pt1 · · · tn. Formulas of
L are defined from literals by means of ∀, ∃,∧,∨. For every formula A, the
negation ¬A of A is defined via de Morgan’s laws. From this definition, it
follows that the negation symbol ¬ is put only before an atomic formula. For
example, ¬(0 = 0 ∧ 1 = 1) denotes the formula ¬(0 = 0) ∨ ¬(1 = 1). Finite
sets of formulas are called sequents.

When θ is a term, a formula or a sequent, we denote the set of the free
variables in θ by FV (θ) and say θ is closed if FV (θ) = ∅. The expression
θ(x/t) is the result of substituting t for every free occurrence of x in θ after
renaming some bound variables in θ if necessary. The set of all closed true
literals is denoted by TRUE0. For example, 0 = 0 belongs to this set. We
use syntactic variables x, y, z for variables, n,m, k, l for terms, A,B,C,D for
formulas and Γ,∆ for sequents, possibly with suffixes. We often abbreviate
Γ ∪∆ (resp. Γ ∪ {A}) as Γ,∆ (resp. Γ, A or A,Γ).

A proof system S is defined by a set of inference symbols. We denote
inference symbols by I, the indices of I by |I|, the principle formulas of I
by ∆(I) and the premises of I by (∆i(I))i∈|I|. By writing

(I)
. . .∆i . . . (i ∈ I)

∆
,

we mean that I is an inference symbol such that |I| = I, ∆(I) = ∆ and
∆i(I) = ∆i. When |I| = {0, 1, . . . , n− 1}, we write simply

(I)
∆0 ∆1 . . . ∆n−1

∆
.

For example, in the case of conjunction rule, we write as follows.

(
∧

A0∧A1
)
A0 A1

A0 ∧ A1

Then, I =
∧

A0∧A1
, ∆(I) = {A0 ∧ A1}, and ∆i(I) = {Ai} for ∈ {0, 1}.

Definition 4.3.1 (The Inference Symbols of the Finitary Proof System Z∗).
We assume the existence of a primitive recursive set Ax of sequents satisfying
the following conditions:

• for all ∆ ∈ Ax, ∆ is a set of literals,
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• if there is a substitution instance ∆0 of ∆, then ∆0 ∈ Ax,

• if ∆ ∈ Ax and ∆ is closed, then ∆ ∩ TRUE0 ̸= ∅.

The inference symbols of Z∗ are as follows.

(Ax∆) ∆
with ∆ ∈ Ax

(
∧

A0∧A1
)
A0 A1

A0 ∧ A1
(
∨k

A0∨A1
)

Ak

A0 ∨ A1
with k ∈ {0, 1}

(
∧y

∀xA)
A(x/y)

∀xA (
∨t

∃xA)
A(x/t)

∃xA

(Indy,tF )
¬F, F (y/S(y))
¬F (y/0), F (y/t) (RC)

C ¬C
∅ (E)

∅
∅

A typical example of Ax∆ is obtained by taking ∆ = {0 = 0} or {x =
x}. At a first glance, the E-rule is redundant, but this rule is needed for
“expressing” the cut-elimination for the corresponding infinitary system Z∞

inside Z∗ (cf. Theorem 4.3.2). Similarly, the R-rule corresponds to one-step
reduction for Z∞ (cf. Theorem 4.3.1).

Definition 4.3.2 (Z∗-quasi-derivations). If I is an inference symbol of Z∗

with |I| = {0, . . . , n − 1} and h0, . . . , hn−1 are Z∗-quasi-derivations, then
h := Ih0 · · · hn−1 is a Z∗-quasi-derivation with

Γ(h) :=
∪

0≤i≤n−1

(Γ(hi) \∆i(I)) ∪∆(I).

Definition 4.3.3 (Z∗-derivations). If I is an inference symbol of Z∗ with
|I| = {0, . . . , n − 1} and h := Ih0 · · · hn−1 such that h0, . . . , hn−1 are Z∗-
derivations and the following conditions are satidfied:

1. if I =
∧y

∀xA then y ̸∈ FV(Γ(h)),

2. if I = Indy,tF then y ̸∈ FV(Γ(h)),

3. if I =
∨t

∃xA then FV(t) ⊆ FV(Γ(h)),

4. if I = RC then FV(C) ⊆ FV(Γ(h)),

then h is a Z∗-derivation.
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We denote Z∗-derivations by h possibly with suffixes. A Z∗-derivation h is
closed if and only if Γ(h) is closed. The conditions (1) and (2) of the definition
above impose the standard proviso of eigenvariables. By the conditions (3)
and (4), it holds that if h is closed and has the form Ih0 · · · hn−1 such that
I is neither

∧y
∀xA(x) nor Indy,tF , then h0, . . . , hn−1 are closed as well. If h is

closed and has the form
∧y

∀xA(x) h0 or Indy,tF h0, then FV (Γ(h0)) ⊆ {y}.
We assign ordinals up to ε0 to Z∗-derivations. This assignment is moti-

vated by the corresponding ordinal in the infinitary system Z∞. For a more
detailed informal idea behind this, see Remark 4.3.1. If α, β are ordinals,
then α♯β means the natural sum of them.

Definition 4.3.4 (Ordinal Assignment of Z∗-derivations).

o(h) :=


o(h0)♯o(h1) if I = RC ,

o(h0)× ω if I = Indy,tF ,

ωo(h0) if I = E,

(supi∈|I| o(hi)) + 1 otherwise.

deg(h) :=


max{rk(C), deg(h0), deg(h1)} if I = RC ,

max{rk(F ), deg(h0)} if I = Indy,tF ,

deg(h0)− 1 if I = E,

supi∈|I| deg(hi) otherwise.

Define the result h(x/n) of substituting a numeral n for a free variable x
in a Z∗-derivation h as follows.

• If h = Ax∆, then h(x/n) := Ax∆(x/n).

• If h =
∧

C h0h1, then h(x/n) :=
∧

C(x/n) h0(x/n)h1(x/n).

• If h =
∧y

C h0 and

– x = y, then h(x/n) := h,

– x ̸= y, then h(x/n) :=
∧y

C(x/n) h0(x/n).

• If h =
∨t

C h0, then h(x/n) :=
∨t(x/n)

C(x/n) h0(x/n).

• If h = Indy,tF h0 and

– x = y, then h(x/n) := h,

– x ̸= y, then h(x/n) := Ind
y,t(x/n)
F (x/n) h0(x/n).
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• If h = RCh0h1, then h(x/n) := RC(x/n)h0(x/n)h1(x/n).

• If h = Eh0, then h(x/n) := Eh0(x/n).

We define the system Z as the subsystem of Z∗ obtained by omitting the
rule E.

Next, we introduce the infinitary proof system Z∞. Since this system con-
tains Schütte’s ω-rule (denoted by

∧
∀xA), it suffices to consider only closed

terms and formulas. After proving the cut-elimination theorem for it (The-
orems 4.3.1 and 4.3.2), we recall the canonical embedding from Z∗ to Z∞ by
Schütte.

Definition 4.3.5 (The Inference Symbols of the Infinitary Proof System
Z∞). The inference symbols of Z∞ are as follows:

(AxA) A
with A ∈ TRUE0 (

∧
∀xA)

. . . A(x/n) . . . (n ∈ N)
∀xA

(CutC)
C ¬C

∅ (Rep)
∅
∅

and
∧

A0∧A1
,
∨k

A0∨A1
,
∨t

∃xA as in Z∗.

The Rep-rule is needed for defining finite notations for infinitary deriva-
tions in a primitive recursive way (cf. Remark 4.3.2).

Below, we define the notion of Z∞-derivations in a precise way. Note that
the ordinal o(d) and the degree deg(d) of a given Z∞-derivation d mean the
size of d as a tree and the cut-rank of d, respectively.

The figure
. . .Γi . . . (i ∈ I)

Γ
I

is a correct S-inference if and only if I ∈ S, |I| = I, ∆(I) ⊆ Γ and
Γi ⊆ Γ ∪∆i(I) for every i ∈ |I|.

Definition 4.3.6 (Z∞-derivations). If I is an inference symbol of Z∞, (di)i∈I
is a family of Z∞-derivations, Γ is a sequent and α is an ordinal such that

. . .Γ(di) . . . (i ∈ I)

Γ
I

is a correct Z∞-inference and o(di) ≺ α for every i ∈ I, then the tree d

. . . di . . . (i ∈ I)

I : Γ : α
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is a Z∞-derivation and

Γ(d) := Γ, last(d) := I, o(d) := α, d(i) := di,

deg(d) :=

{
max{rk(C) + 1, deg(d0), deg(d1)} if I = CutC ,

supi∈I deg(di) else.

We write d ⊢α
m Γ if Γ(d) ⊆ Γ, o(d) = α and deg(d) ≤ m. In what follows,

we may assume Γ(d) = Γ unless otherwise stated.
The point of the following theorem is that we can derive Γ from Γ, C

and Γ,¬C without increasing the degree of the derivation, under a certain
condition.

Theorem 4.3.1. For every formula C, there is an operator RC such that if
d0 ⊢α

m Γ, C, d1 ⊢β
m Γ,¬C and rk(C) ≤ m, then RC(d0, d1) ⊢α♯β

m Γ.

Proof. By double induction on d0 and d1. Let I0, I1 be the last inference
rules of d0, d1 respectively. Then dk = Ik(dki)i∈|Ik|.

If C ̸∈ ∆(I0), we set

RC(d0, d1) := I0(RC(d0i, d1))i∈|I0| ⊢α♯β
m Γ.

The case ¬C ̸∈ ∆(I1) is treated in the same way.
Hence, we consider the case C ∈ ∆(I0) and ¬C ∈ ∆(I1). Although all

cases according to the shape of C must be considered, we treat the only case
when C = ∀xA(x). In this case, d0 =

∧
∀xA(x)(d0n)n∈ω and d1 =

∨k
∃¬A(x)(d10)

for some k. By IH, we have RC(d0k, d1) ⊢αk♯β
m Γ, A(k) with αk♯β < α♯β.

Moreover, again by IH, we have RC(d0, d10) ⊢α♯β0
m Γ,¬A(k) with α♯β0 < α♯β.

By inserting a cut over A(k), we get the desired derivation:

RC(d0, d1) := CutA(k)(RC(d0k, d1),RC(d0, d10)) ⊢α♯β
m Γ.

We remark that rk(C) = rk(∀xA(x)) > rk(A(k)) so that deg(RC(d0, d1)) ≤
m holds.

Theorem 4.3.2. There is an operator E such that if d ⊢α
m+1 Γ, then

E(d) ⊢ωα

m Γ.

Proof. By induction on d. Let I be its last inference symbol.
First we consider the crucial case I = CutC so that d = CutC(d0, d1).

By IH, we have E(d0) ⊢ωα0

m Γ, C and E(d1) ⊢ωα1

m Γ,¬C with α0, α1 < α. By
applying Theorem 4.3.1, we getRC(E(d0), E(d1)) ⊢ωα0 ♯ωα1

m Γ. Since ωα0♯ωα1 <
ωα, we may define

E(d) := Rep(RC(E(d0), E(d1))) ⊢ωα

m Γ.
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In other cases, we define (using IH)

E(d) := I(E(di))i∈|I| ⊢ωα

m Γ.

For example, if I =
∧

∀xA(x), then E(di) ⊢ωα0

m Γ, A(i) with α0 < α for each

i < ω. From this, applying
∧

∀xA(x), we get I(E(di))i∈|I| ⊢ωα

m Γ.

We set dA as a fixed cut-free Z∞-derivation with Γ(dA) = {A,¬A},
deg(dA) = 0 and o(dA) = 2 · rk(A). Such a dA may be defined by induc-
tion on A.

Next, we define the canonical embedding from Z∗-derivations into Z∞-
derivations.

Definition 4.3.7 (Translation of Z∗-derivations into Z∞-derivations). We
define the Z∞-derivation h∞ for every closed Z∗-derivation h. Let Γ be Γ(h)
and α be o(h).

1. (Ax∆)
∞ := AxA : Γ : α, where A is the arbitrarily fixed element of ∆ ∩

TRUE0.

2. (
∧y

∀xA h)
∞ :=

. . . h(y/i)∞ . . . (i ∈ N)∧
∀xA : Γ : α .

3. (RCh0h1)
∞ := RC(h

∞
0 , h

∞
1 ).

4. (Eh)∞ := E(h∞).

5. (Indy,nF h)∞ :=
en

Rep : Γ : α where

e0 := dF (x/0), e1 := h(y/0)∞, ei+1 := RF (x/i)(ei, h(y/i)
∞).

6. Otherwise: Ih0 · · · h∞n−1 :=

h∞0 . . . h∞n−1

I : Γ : α .

We insert Rep in Clause 5 for making our definition of finite notations for
infinitary derivations primitive recursive. For details, see Remark 4.3.2.(4)
after Definition 4.3.8.

Remark 4.3.1. We see that the ordinal assignment for Z∗-derivations (cf.
Definition 4.3.4) comes from the corresponding theorems for Z∞-derivations.
For example, the clause that o(RC(h0, h1)) = o(h0)♯o(h1) in Definition 4.3.4
is motivated by Theorem 4.3.1. Following this, we defined (RCh0h1)

∞ :=
RC(h

∞
0 , h

∞
1 ) as in Clause 3 of Definition 4.3.7.
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In what follows, we use the following notations. For every k ∈ N, we set

C[k] :=

 A(x/k), if C = QxA with Q ∈ {∀, ∃},
Ak, if C = A0 ◦ A1 with ◦ ∈ {∧,∨} and k ∈ {0, 1},
undefined, if C = A0 ◦ A1 with ◦ ∈ {∧,∨} and k ̸∈ {0, 1}.

In addition, we define hA by induction on the length of A as a Z-derivation
such that

Γ(hA) = {A,¬A}, deg(hA) = 0, o(hA) = 1 + 2 · rk(A).

Next, we define finite notations for infinitary derivations, i.e., the two
functions tp(h) and h[i] with i ∈ |tp(h)| for a Z∗-derivation h. To give a
simple and short definition, we first define the expression h+ and then obtain
tp(h) and h[i] from h+. A definition of tp(h) and h[i] in this manner can be
found in [Buc10].

Definition 4.3.8. For an arbitrary closed Z∗-derivation h, tp(h) and h[i]
with i ∈ |tp(h)| are defined as follows.

1. For every closed Z∗-derivation h of the form Ax∆, define

h+ := tp(h) := AxA,

where A is the arbitrarily fixed element of ∆ ∩ TRUE0.

2. Let h be a closed Z∗-derivation with h ̸= Ax∆. By induction on the
built-up of h, we define h+ as the expression I(hi)i∈|I| for some inference
symbol I of Z∞ and some sequence (hi)i∈|I| of closed Z∗-derivations.
Then, set

tp(h) := I, h[i] := hi for every i ∈ |I|.

(a) (
∧

C h0h1)
+ :=

∧
C(hi)i∈{0,1}.

(b) (
∧y

C h0)
+ :=

∧
C(h0(y/i))i∈N.

(c) (
∨k

C h0)
+ :=

∨k
C h0.

(d) (Indy,nF h0)
+ := Repen, where e0 := hF (x/0), e1 := h0(y/0) and

ei+1 := RF (x/i)eih0(y/i).

(e) Let h be Eh′ and h′+ be I((hi)i∈|I|), then

(Eh′)+ :=

{
Rep(RCEh0Eh1), if I = CutC ,

I((Ehi)i∈|I|) else.
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(f) Let h be RCh0h1 and h+l be Il((hli)i∈|Il|) for l ∈ {0, 1}, then

(RCh0h1)
+ :=


I0((RCh0ih1)i∈|I0|), if C ̸∈ ∆(I0),
I1((RCh0h1i)i∈|I1|), if ¬C ̸∈ ∆(I1),
CutC[k](RCh0kh1RCh0h10), if C ∈ ∆(I0),¬C ∈ ∆(I1) and I1 =

∨k
¬C ,

CutC[k](RCh00h1RCh0h1k), if C ∈ ∆(I0),¬C ∈ ∆(I1) and I0 =
∨k

C .

Remark 4.3.2. For readers’ convenience, let us make several remarks about
Definition 4.3.8.

1. If h = Ax∆, then h[i] is not defined since tp(h) = AxA and |AxA| = ∅
for some A.

2. Clauses (a),(b),(c),(d) are motivated by the definition of (·)∞ (Cf. Def-
inition 4.3.7).

3. In Clause (f), we may suppose that if both C ̸∈ ∆(I0) and ¬C ̸∈ ∆(I1)
hold, then (RCh0h1)

+ is defined according to the first case:

(RCh0h1)
+ := I0((RCh0ih1)i∈|I0|).

Moreover, note that if C ∈ ∆(I0), ¬C ∈ ∆(I1) and I1 =
∨k

¬C hold,
then I0 must be

∧
C because C and ¬C are principal formulas of I0

and I1, respectively.

4. Now, we can explain the reason why we inserted Rep in Definition 4.3.7
when h = Indy,nF h0. If we do not insert Rep, then we might define
tp(h) := tp(CutF (x/i)(en, h(y/i)

∞))). However, this is not even recur-
sive because rk(CutF (x/i)(en, h(y/i)

∞)) might be bigger than that of
h.

5. In Clause (e), we insert Rep for making our definition primitive recur-
sive. The reason is very similar to the last remark.

The next theorem says that the definition of tp(h) and h[i] satisfies the
desired properties: We can recover some useful information of a finitary
derivation from the corresponding infinitary one primitive recursively.

Theorem 4.3.3 (Cf. Buchholz 1997, Theorem 3). For each closed Z∗-
derivation h, the following holds:

1.

. . .Γ(h[i]) . . . (i ∈ |tp(h)|)
Γ(h)

tp(h)
is a correct Z∞-inference.

2. If tp(h) = CutC, then rk(C) < deg(h).
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3. deg(h[i]) ≤ deg(h) for all i ∈ |tp(h)|.

4. o(h[i]) ≺ o(h) for all i ∈ |tp(h)|.

Proof. By induction on the length of h. To explain how the definitions of
tp(h), h[i] work, we focus on the following cases. Other cases are treated in
a similar way.

First, let h =
∧y

∀xA(x) h0. In this case, tp(h) =
∧

∀xA(x) and h[i] = h0(y/i).

The clause (1) holds because Γ(h[i]) = Γ, ∀xA(x), A(i) for every i ∈ N and
Γ(h) = Γ, ∀xA(x). Other clauses are proved easily.

Next, suppose that h = RCh0h1 with C ∈ ∆(tp(h0)) and ¬C ∈ ∆(tp(h1))
and C = ∀xA(x). From this it follows that tp(h0) =

∧
∀xA(x), tp(h1) =∨k

∃x¬A(x) and tp(h) = CutC[k]. This is one of the crucial cases of the cut-
elimination in Z∞. We show that

Γ(RCh0[k]h1) Γ(RCh0h1[0])

Γ(RCh0h1)
CutC[k]

is a correct Z∞-inference. By IH,

. . .Γ(h0[i]) . . . (i ∈ N)
Γ(h0)

∧
∀xA(x)

Γ(h1[0])

Γ(h1)

∨k
∃x¬A(x)

are correct Z∞-inferences. Then, ∀xA(x) ∈ Γ(h0), ∃x¬A(x) ∈ Γ(h1), Γ(h0[i]) ⊆
Γ(h0) ∪ {A(x/i)} and Γ(h1[0]) ⊆ Γ(h1) ∪ {¬A(x/k)}. Therefore, it follows
that

Γ(RCh0[k]h1) ⊆ Γ(RCh0h1)∪{C[k]}, Γ(RCh0h1[0]) ⊆ Γ(RCh0h1)∪{(¬C)[k]}.

The clause (2) holds since rk(C[k]) < rk(C) ≤ deg(h). It is easy to see
that the clauses (3) hold.

Finally, let us see why the clause (4) holds. By Definition 4.3.4,

o(h) = o(h0)♯o(h1).

On the other hand,

o(h[0]) = o(RC(h0[k], h1)) = o(h0[k])♯o(h1).

Then, o(h[0]) ≺ o(h) holds since we have o(h0[k]) ≺ o(h0) by IH. In the same
way, we see o(h[1]) ≺ o(h) holds.

As the last example, let h = Eh0 with tp(h0) = CutC . In this case,
tp(h) = Rep and h[0] = RC(Eh0[0],Eh0[1]). Now, Γ(h[0]) = Γ(h). Note that
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Γ(h0[0]) = Γ(h), C and Γ(h0[1]) = Γ(h),¬C. This proves the clause (1). The
clause (2) and (3) are trivial. As to the clause (4), we compute

o(h) = ωo(h0),

and

o(h[0]) = ωo(h0[0])♯ωo(h0[1]).

Then, o(h[0]) ≺ o(h) holds since o(h0) ≺ o(h0[i]) holds for i ∈ {0, 1} by
IH.

4.4 Contentual and Formal Aspects of Gentzen’s

1936 Proof

The aim of this section is to show that the 1936 proof is not only contentual
but also formal and that contentual aspects of the 1936 proofs are formed
by its formal aspects. First, we formulate and prove the main lemma of the
1936 proof, using normalization trees. Next, we argue that the 1936 proof
is both contentual and formal, by showing that the main lemma of the 1936
proof implies both the main lemma of the 1935 proof and the main lemma of
the 1938 proof. Finally, we explain that the 1936 proof’s contentual aspects
are formed by its formal aspects.

For every Z∗-derivation h, we use the function ϕ(h) in the same sense in
[Buc97], i.e., ϕ(h) denote the Z-derivation obtained by deleting all E’s in h.
In addition, define

Z∗
0 := {h | h is a Z∗-derivation with deg(h) = 0}.

In this section, we often consider only the derivation in Z∗
0, but this is not sub-

stantial restriction: We obtain from an arbitrary Z∗-derivation h a derivation
h′ ∈ Z∗

0 with the same endsequent as h’s by taking h′ as

h′ := Emh := E . . .E︸ ︷︷ ︸
m times

h

with deg(h) = m.
The following is our formulation of reduction steps of the 1936 proof.

Definition 4.4.1 (Reduction Steps of the 1936 Proof). For every closed Z∗
0-

derivation h and every infinite sequence ⟨hn⟩n∈N of closed Z∗
0-derivations, the

predicate RED(h, ⟨hn⟩n∈N) holds if and only if either
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• tp(h) ̸= AxA for any A, and for all i ∈ N,
if i ∈ |tp(h)| then hi = h[i], otherwise tp(hi) = AxA′ for some A′,

or

• tp(h) = AxA for some A and hi = h for all i.

As suggested implicitly in [Ara02] and observed in [Buc15, Aki10], an
application of the function h[i] corresponds to an application of a reduction
step of the 1936 proof. More precisely, for a closed Z∗

0-derivation h, the step
ϕ(h) 7→ ϕ(h[i]) is a 1936 reduction step to ϕ(h).20 This motivates the above
definition: If RED(h, ⟨hn⟩n∈N) holds, then each of ϕ(hi)’s with i ∈ |tp(h)| is
obtained by an application of a 1936 reduction step to ϕ(h). The cases of
i ̸∈ |tp(h)| are inessential.

For example, RED(h, ⟨hn⟩n∈N) holds if h is a closed Z∗
0-derivation

∧y
∀xA(x) h

′

described diagrammatically as

.... h
′

Γ, A(y)

Γ, ∀xA(x)
∧y

∀xA(x)

and hi is h
′(y/i) described as

.... h
′(y/i)

Γ, A(i)

for all i ∈ N. Here, each ϕ(hi) is obtained from ϕ(h) with an applica-
tion of a reduction step defined in [Gen36, §14.23]. Another example is
the following one: RED(h, ⟨hn⟩n∈N) holds if h is a closed Z∗

0-derivation
E(R∀xA(x)(

∧y
∀xA(x) h

′,
∨k

∃x¬A(x) h
′′)) described as

.... h
′

Γ, ∀xA(x), A(y)
Γ, ∀xA(x)

∧y
∀xA(x)

.... h
′′

Γ, ∃x¬A(x),¬A(k)
Γ, ∃x¬A(x)

∨k
∃x¬A(x)

Γ
R∀xA(x)

Γ
E

and h0 is

20To formulate reduction steps of the 1936 proof by means of finite notations for infini-
tary derivations, we need to insert sufficiently many E-rules into a given Z-derivation h.
Moreover, we also need the function ϕ to delete the inserted E-rules, since, of course, the
proof system Gentzen used to provide the 1936 proof does not include the E-rule.
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RA(k){E(R∀xA(x)((
∧y

∀xA(x) h
′)[k],

∨k
∃x¬A(x) h

′′)),

E(R∀xA(x)(
∧y

∀xA(x) h
′, (

∨k
∃x¬A(x) h

′′)[0]))}

described as

.... h
′(y/k)

Γ, ∀xA(x), A(k)

....
Γ, ∃x¬A(x)

Γ, A(k)
R∀xA(x)

Γ, A(k)
E

....
Γ, ∀xA(x)

.... h
′′

Γ, ∃x¬A(x),¬A(k)
Γ,¬A(k)

R∀xA(x)

Γ,¬A(k) E

Γ
RA(k)

and hi = Ax{0=0} for all i ∈ N\{0}. In this case, ϕ(h0) is obtained from ϕ(h)
with an application of the reduction step defined in [Gen36, §14.25].21

Let N<ω be the set of all finite sequences of natural numbers, and u⃗, v⃗, w⃗
be variables for elements of N<ω. As is known, a primitive recursive coding
of elements of N<ω as natural numbers can be given, so we treat functions
of the domain (N<ω)n with n > 0 (resp. of the range (N<ω)n) as functions
of the domain Nn (resp. of the range Nn). Let u⃗ ∗ v⃗ be a primitive recursive
concatenation function from (N<ω)2 to N<ω. Infinite sequences of natural
numbers are denoted by α. For an infinite sequence α of natural numbers,
the initial segment ᾱ(n) of length n is defined as

ᾱ(n) := ⟨α(0), . . . , α(n− 1)⟩.

We denote by T a function from N<ω to the set of all closed Z∗
0-derivations,

and abbreviate the value T (u⃗) of T for u⃗ as Tu⃗.

Definition 4.4.2 (Local Correctness and Well-Foundedness on T ). For every
T ,

• T is locally correct if and only if for every u⃗ ∈ N<ω, RED(Tu⃗, ⟨Tu⃗∗⟨n⟩⟩n∈N)
holds,

• T is well-founded if and only if

for every infinite sequence α of natural numbers, there is a natural
number n such that for some A, tp(Tᾱ(n)) = AxA holds.

21Strictly speaking, the above step is a special case of the reduction step that Gentzen
formulated in [Gen36, §14.25], since he used not the cut-rule such as RC but the “chain-
rule (Kettenschluss),” one of whose instances is the cut-rule. Recently, Buchholz analyzed
the chain-rule by means of finite notations for infinitary derivations ([Buc15]).



69

Roughly speaking, when T is locally correct, T is a tree growing up along
reduction steps of the 1936 proof. If T is well-founded, then every branch of
T always has a node Tu⃗ such that tp(Tu⃗) = AxA holds for some A. Informally,
this means that every branch of a well-founded T has a leaf node. Note that
if a locally correct T has a node Tu⃗ such that tp(Tu⃗) = AxA for some A, then
tp(Tu⃗∗v⃗) = AxA for every v⃗. In other words, if a branch of a locally correct
T has a leaf node, then each of the nodes above this leaf node is also a leaf
node.

Now we define the main notion of this section.

Definition 4.4.3 (Normalization Trees). For every T and every closed Z∗
0-

derivation h, T is a normalization tree of h if and only if T is locally correct
and T⟨⟩ = h.

A typical example T of a normalization tree can be described as follows, if
we omit the irrelevant nodes of T , i.e., the nodes Tu⃗∗⟨i⟩ such that i ̸∈ |tp(Tu⃗)|.

....
h[0][0]

....
h[0][1]

....
h[1][0]

....
h[1][1]

h[0]

``BBBBBBBBBB

>>||||||||||
h[1]

``BBBBBBBBBB

>>||||||||||
· · ·

h

iiSSSSSSSSSSSSSSSSSSS

55kkkkkkkkkkkkkkkkkkk

Lemma 4.4.1. For every T , every u⃗ ∈ N<ω and every formula C, tp(Tu⃗) ̸=
CutC holds.

Proof. Suppose that tp(Tu⃗) = CutC . By Theorem 4.3.3, rk(C) < deg(Tu⃗)
holds, but this is impossible because deg(Tu⃗) = 0 by definition.

The main lemma of the 1936 proof says that every reduction sequence
formed by reduction steps of the 1936 proof terminates with a normal deriva-
tion. In our setting, the lemma says that for every closed Z∗

0-derivation h,
there is a well-founded normalization tree of h. Note that the truth of the
endsequent of a closed Z∗

0-derivation h with tp(h) = AxA is verified in a prim-
itive recursive way because Γ(h)∩TRUE0 ̸= ∅ by Theorem 4.3.3.(1), which is
proved by structural induction on h. For the purpose of Section 4.5, we also
see that every well-founded normalization tree defined in the proof below is
a < ε0-recursive function. For the definition of < ε0-recursive functionals of
level ≤ 2, see [Sch77, §4.1].
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Proposition 4.4.1 (Main Lemma of the 1936 Proof). For every closed Z∗
0-

derivation h, there is a well-founded normalization tree T of h such that T
is a < ε0-recursive function.

Proof. If tp(h) = AxA for some A, then define Tu⃗ := h for every u⃗. It is
obvious that T is both a well-founded normalization tree of h and a primitive
recursive function.

Consider the case that tp(h) ̸= AxA for any A. We use transfinite induc-
tion up to ε0. Assume that a well-founded normalization tree of h′ is defined
for every closed Z∗

0-derivation h
′ with o(h′) ≺ o(h) ≺ ε0. By Theorem 4.3.3,

there is a well-founded normalization tree T h[i] of h[i] for every i ∈ |tp(h)|.
Set the tree TAx as

TAx(u⃗) := Ax{0=0} for every u⃗.

Define T as follows:

T (u⃗) :=


h, if u⃗ = ⟨⟩,
T h[i](v⃗), if u⃗ = ⟨i⟩ ∗ v⃗ and i ∈ |tp(h)|,
TAx(v⃗), if u⃗ = ⟨i⟩ ∗ v⃗ and i ̸∈ |tp(h)|.

Then, T is a well-founded normalization tree of h. Moreover, it can be shown
that T is a < ε0-recursive function, because tp(h) and h[i] are primitive
recursive.

Next, we show that Proposition 4.4.1 implies both the main lemma of
the 1935 proof and the main lemma of the 1938 proof. Let us start with our
definition for reduction steps of the 1935 proof.

Definition 4.4.4 (Reduction Steps of the 1935 Proof). For every closed se-
quent Γ and every infinite sequence ⟨Γn⟩n∈N of closed sequents, the predicate
REDsq(Γ, ⟨Γn⟩n∈N) holds if and only if there is a formula C ∈ Γ such that

1. C ∈ TRUE0 and Γn = Γ for every n ∈ N, or

2. C is of the form ∀xA(x) and Γn ⊆ Γ ∪ {A(n)} for every n ∈ N, or

3. C is of the form A0 ∧ A1 and Γi ⊆ Γ ∪ {Ai} for every i ∈ {0, 1}, or

4. C is of the form ∃xA(x) and Γ0 ⊆ Γ ∪ {A(k)} for some k ∈ N, or

5. C is of the form A0 ∨ A1 and Γ0 ⊆ Γ ∪ {Ai} for some i ∈ {0, 1}.
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As Definition 4.4.1, if REDsq(Γ, ⟨Γn⟩n∈N) holds, then each of Γi’s is ob-
tained from Γ with an application of a reduction step of the 1935 proof.
A typical example is as follows: REDsq(Γ, ⟨Γn⟩n∈N) holds whenever Γ =
{∀x(x = x)} and Γn = {∀x(x = x), n = n} hold. Here each of Γi’s is
obtained from Γ with an application of the reduction step being defined in
[Gen74, §13.21]. This example can be described as follows.

∀x(x = x), 0 = 0 ∀x(x = x), 1 = 1 ∀x(x = x), 2 = 2 ∀x(x = x), 3 = 3 · · ·

∀x(x = x)

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

iiRRRRRRRRRRRRRR
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We denote by T a function from N<ω to the set of all closed sequents,
and often abbreviate T (u⃗) as Tu⃗. As the case of the 1936 proof, we define
the local correctness and well-foundedness on T .

Definition 4.4.5 (Local Correctness andWell-Foundedness on T ). For every
T ,

• T is locally correct if and only if for every u⃗ ∈ N<ω, REDsq(Tu⃗, ⟨Tu⃗∗⟨n⟩⟩n∈N)
holds.

• T is well-founded if and only if for every infinite sequence α of natural
numbers, there is a natural number n such that Tᾱ(n) ∩ TRUE0 ̸= ∅.

The main notion of the 1935 proof is the notion of reduction procedures,
as we have seen in Section 4.2. The following is its definition in our setting.

Definition 4.4.6 (Reduction Procedures). We say T is a reduction procedure
for Γ if and only if

• T⟨⟩ = Γ,

• T is locally correct and well-founded.

A reduction procedure is a tree growing up along reduction steps of the
1935 proof, every branch of which always has a node Tu⃗ that contains at least
one element of TRUE0.

We derive the main lemma of the 1935 proof from Proposition 4.4.1 by
means of monotone bar induction, which we used in Section 2.5.

Monotone Bar Induction. Let B and P be predicates on N<ω. If the
following four conditions hold:

1. for every infinite sequence α of natural numbers, there is a natual
number n such that B(ᾱ(n)) holds,
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2. for every u⃗ and v⃗, if B(u⃗) holds then B(u⃗ ∗ v⃗) holds,
3. for every u⃗, if B(u⃗) holds then P (u⃗) holds,

4. for every u⃗, if P (u⃗ ∗ ⟨n⟩) holds for all n then P (u⃗) holds,

then P (⟨⟩) holds.

The idea of our proof for the main lemma of the 1935 proof is as follows.22

Given a closed Z∗
0-derivation h, a reduction procedure for Γ(h) is obtained

from a normalization tree T of h by extracting the endsequent of Tu⃗ from Tu⃗
for every u⃗.

Lemma 4.4.2. For every closed Z∗
0-derivation h, if there is a well-founded

normalization tree of h, then there is also a reduction procedure for Γ(h).

Proof. By monotone bar induction (MBI). Assume that there is a well-
founded normalization tree T of h, and define the predicates B and P as
follows:

B(u⃗) if and only if tp(Tu⃗) = AxA for some A,

P (u⃗) if and only if there is a reduction procedure for Γ(Tu⃗).

Then, Premise 1 of MBI holds by the well-foundedness of T , and Premise 2
of MBI holds by the local correctness of T .

Next, we show that Premise 3 of MBI holds. If B(u⃗) holds, i.e., tp(Tu⃗) =
AxA for some A, then

Γ(Tu⃗)
AxA

is a correct Z∞-inference by Theorem 4.3.3, so Γ(Tu⃗)∩TRUE0 ̸= ∅. Thus, the
tree T being defined as T (v⃗) := Γ(Tu⃗) for every v⃗ is a reduction procedure
for Γ(Tu⃗).

Finally, we show that Premise 4 of MBI holds. Assume that P (u⃗ ∗ ⟨n⟩)
holds for every n, i.e., there is a reduction procedure T n for each Γ(Tu⃗∗⟨n⟩).

Consider the case that tp(Tu⃗) = Rep. Then, by Theorem 4.3.3,

Γ(Tu⃗∗⟨0⟩)

Γ(Tu⃗)
Rep

is a correct Z∞-inference, so T 0 is also a reduction procedure for Γ(Tu⃗).

22One can read off this idea in Gentzen’s explanation for reduction steps of the 1936
steps. See [Gen36, §14.2].



73

Consider in turn the case that tp(Tu⃗) =
∧

A0∧A1
. Again, by Theorem

4.3.3,
Γ(Tu⃗∗⟨0⟩) Γ(Tu⃗∗⟨1⟩)

Γ(Tu⃗)

∧
A0∧A1

is a correct Z∞-inference. Set the tree T Ax as

T Ax(v⃗) := {0 = 0} for every v⃗.

Then, define T as follows:

T (v⃗) :=


Γ(Tu⃗), if v⃗ = ⟨⟩,
T i(w⃗), if v⃗ = ⟨i⟩ ∗ w⃗ and i ∈ {0, 1},
T Ax(w⃗), if v⃗ = ⟨i⟩ ∗ w⃗ and i ̸∈ {0, 1}.

It is obvious that T is a reduction procedure for Γ(Tu⃗). The remaining cases
are similar to this case. Note that tp(Tu⃗) ̸= CutC for any C by Lemma 4.4.1.

Therefore, P (⟨⟩) holds by MBI, so there is a reduction procedure for
Γ(T⟨⟩) = Γ(h).

Proposition 4.4.2 (Main Lemma of the 1935 Proof). For every closed Z∗
0-

derivation h, there is a reduction procedure for Γ(h).

Proof. By Proposition 4.4.1 and Lemma 4.4.2.

The above proof of Proposition 4.4.2 shows that the 1936 proof is a con-
tentual correctness proof. Let h be an arbitrary Z-derivation. For the sake
of simplicity, we assume that h is closed. A Z∗

0-derivation h
′ with the same

endsequent as h’s is obtained from h by inserting sufficiently many E-rules
into the bottom of h. By Proposition 4.4.1, namely, the main lemma of the
1936 proof, there is a well-founded normalization tree T of h′. Then, by
Lemma 4.4.2, we can extract a reduction procedure T for Γ(h′) = Γ(h) from
T with a proof for the well-foundedness of T .

We define the statability of a reduction procedure as follows: For every
reduction procedure T ′ for Γ, T ′ is statable for Γ if and only if both T ′ and
a proof for its well-foundedness are obtained. Therefore, by the argument
above, a reduction procedure is statable for Γ(h). In other words, Γ(h) is
correct in the sense of (GI). Note that we avoided the use of the principle of
the excluded middle for non-decidable predicates in our arguments.23 In this
way, the main lemma of the 1936 proof verifies that every Z-derivation has
the correct endsequent, so this proof is contentual.

23In the future works, we will investigate the exact strength of Gentzen’s finitist stand-
point and examine whether our argument can be formalized in this standpoint.
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For our claim that the main lemma of the 1936 proof implies the main
lemma of the 1938 proof, the following observation by Buchholz ([Buc97])
is crucial: Let h be a closed Z∗

0-derivation for a numeric equation n = m,
then the step ϕ(h) 7→ ϕ(h[0]) is a main reduction step of the 1938 proof.24

For example, the following step, which is called a “operational reduction
(Verknüpfungs-Reduktion),” is one of the main reduction steps of the 1938
proof.25

.... h
′

∆0, ∀xA(x), A(y)
∆0, ∀xA(x)

∧y
∀xA(x)

....
Γ′, ∀xA(x)

.... h
′′

∆1, ∃x¬A(x),¬A(k)
∆1, ∃x¬A(x)

∨k
∃x¬A(x)

....
Γ′, ∃x¬A(x)

Γ′ R∀xA(x)
....
Γ....

n = m ▷

.... h′(y/k)

∆0, A(k), ∀xA(x)
....

Γ′, A(k), ∀xA(x)

.... h′′

∆1, ∃x¬A(x),¬A(k)

∆1, ∃x¬A(x)

∨k
∃x¬A(x)

....
Γ′, ∃x¬A(x)

Γ′, A(k)
R∀xA(x)

....
Γ, A(k)

.... h′

∆0, ∀xA(x), A(y)

∆0, ∀xA(x)

∧y
∀xA(x)

....
Γ′, ∀xA(x)

.... h′′

∆1,¬A(k), ∃x¬A(x)
....

Γ′,¬A(k), ∃x¬A(x)

Γ′,¬A(k)
R∀xA(x)

....
Γ,¬A(k)

Γ
RA(k)

....
n = m

Note that all 1938 reduction steps have no branching, in contrast to reduction
steps of the 1935 proof and the 1936 proof. In addition, Gentzen introduced
the notion of an end-piece (Endstück) of a derivation to formulate reduction
steps of the 1938 proof.26 For our purpose, it suffices to explain the notion
of an end-piece informally: The end-piece of a Z∗-derivation h consists of
the sequents that we encounter when we ascend from the endsequent of h
and stop as soon as we arrive at the lower sequent of an inference symbol
I of the form

∧
A,

∧y
A or

∨k
A. For example, the end-pieces of the following

24Here, we slightly changed Buchholz’s actual observation. The actual observation is
that for a supposed Z∗

0-derivation h of the empty sequent ∅, the step ϕ(h) 7→ ϕ(h[0]) is a
main reduction step of the 1938 proof.

25For the operational reductions, see [Gen38b, §3.5].
26Cf. [Gen38b, §3.2]. In [Gen69], Szabo translated “Endstück” as “ending”.
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Z∗-derivations

...

.
Γ, A(y), ∀xA(x)

Γ, ∀xA(x)

∧y
∀xA(x)

...

.
Γ,¬A(k), ∃x¬A(x)

Γ, ∃x¬A(x)

∨k
∃x¬A(x)

Γ
R∀xA(x)

Γ
E

∆, 0 = 0
Ax{∆,0=0}

∆, 0 ̸= 0
Ax{∆,0̸=0}

∆
R0=0

are

Γ, ∀xA(x) Γ, ∃x¬A(x)
Γ

R∀xA(x)

Γ
E

∆, 0 = 0
Ax{∆,0=0}

∆, 0 ̸= 0
Ax{∆,0̸=0}

∆
R0=0

respectively.
As seen above, a step ϕ(h) 7→ ϕ(h[i]) for an arbitrary closed Z∗

0-derivation
h is a reduction step of the 1936 proof. Thus, one can consider reduction
steps of the 1938 proof to be special cases of reduction steps of the 1936
proof. That is to say, each of reduction step of the 1938 proof is nothing but
a 1936 reduction step to some closed Z-derivation of a numeric equation. On
the basis of this fact, one can see that the main lemma of the 1938 proof is
also a special case of the main lemma of the 1936 proof. This means that the
1936 proof assigns a normal derivation to every derivable numeric equation
in first-order arithmetic as the 1938 proof does. In our setting, the main
lemma of the 1938 proof is formulated as the following proposition, which
is a special case of Proposition 4.4.1, namely, the main lemma of the 1936
proof.

Proposition 4.4.3 (Main Lemma of the 1938 Proof). For every closed Z∗
0-

derivation h with the endsequent of the form n = m, there is a well-founded
normalization tree T of h.

In the remaining part of this section, we aim to justify the claim that
the main lemma of the 1938 proof can be formulated as above. To achieve
this aim, we explain the relationship between normalization trees and reduc-
tion steps of the 1938 proof in detail: We explain that each well-founded
normalization tree for some closed Z∗

0-derivation with a numeric conclusion
corresponds to consecutive applications of 1938 reduction steps.

Let us begin with the definition for the notion of nominal forms, which
Buchholz introduced to verify his observation we have seen before.27

27Cf. [Buc97]. Buchholz defined also the function hgt∗(a) of a nominal form a, to
describe the ordinal assignment in the 1938 proof by means of finite notations for infinitary
derivations. Here, we do not need to describe it, so we omit the definition of this function.
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Definition 4.4.7 (Nominal Forms). Nominal forms are defined as follows:

1. ∗ is a nominal form and Cut(∗) := ∅,

2. if a is a nominal form and h is a Z∗-derivation, then EmRCah and
EmRCha are nominal forms, and

Cut(EmRCah) := Cut(a) ∪ {C}, Cut(EmRCha) := Cut(a) ∪ {¬C}.

We denote a nominal form by a, b, c. When q is a nominal form or a
Z∗-derivation, a{q} is the result of substituting q for ∗ in a. For example,
the nominal form

a = Em(RC0(E
n(RC1(∗, h1)), h0))

is of the following figure:

∗

.... h1
¬C1,Γ, C0

Γ, C0
RC1

Γ, C0
E

Γ, C0
E

....
Γ, C0

.... h0
¬C0,Γ

Γ
RC0

Γ
E

Γ
E

....
Γ

It is easily observed that for every nominal form a and every Z∗-derivation
h, the endsequent of h is included in the end-piece of a{h}. This observation
is crucial for our argument below.

For readers’ convenience, we carry out the details of the proofs of Lemma
4.4.3, Proposition 4.4.4 and Proposition 4.4.5. We suggest a reader being
familiar with [Buc97] or not being interested in the details to skip them.

Lemma 4.4.3 (cf. Buchholz 1997, Lemma 3). Let h be a closed Z∗-derivation.

1. If tp(h) = Rep, then there are a, h0, h1 such that h = a{h0}, h[0] =
a{h0[0]} and

either h0 = EmIndy,tF h1 or

h0 = Em+1h1 and tp(h1) = CutB for some B.
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2. If tp(h) = CutB, then there are a, C, h0, h1 such that h = a{RCh0h1},
h[i] = a{(RCh0h1)[i]} and either

(a) tp(h0) =
∧

C & tp(h1) =
∨k

¬C & B = C[k] or

(b) tp(h0) =
∨k

C & tp(h1) =
∧

¬C & B = C[k].

3. If tp(h) =
∧

∀xA(x), then there are a, h0 such that ∀xA(x) ̸∈ Cut(a),

h = a{
∧y

∀xA(x) h0} and h[i] = a{h0(y/i)}.

4. If tp(h) =
∧

A0∧A1
, then there are a, h0, h1 such that A0 ∧A1 ̸∈ Cut(a),

h = a{
∧

C h0h1} and h[i] = a{hi}.

5. If tp(h) =
∨k

C, then there are a, h0 such that C ̸∈ Cut(a), h = a{
∨k

C h0}
and

h[0] = a{h0}.

6. If tp(h) = AxA, then there is a nominal form a such that A ̸∈ Cut(a)
and h = a{Ax∆} with A ∈ ∆.

Proof. By induction on the length of h.

(1) Since tp(h) = Rep, h is of either the form EmIndy,tF h
′ or Enh′′ with

last(h′′) ̸= E, Ind. If h = EmIndy,tF h
′, then take a as ∗, h as h0 and h′ as

h1.
Consider the case that h = Enh′′ with last(h′′) ̸= E, Ind. If tp(h′′) = CutB

for some B, then n > 0 holds, so take ∗ as a, h as h0 and h′′ as h1. If
tp(h′′) ̸= CutB for any B, then h′′ = RCh

′
0h

′
1 and tp(h′′) = tp(h′i) = Rep for

some i ∈ {0, 1} by the definition of tp. We consider only the case that i = 0,
since the other case is similar. By IH, there are b, h′′0, h

′′
1 such that h′0 = b{h′′0},

h′0[0] = b{h′′0[0]} and either h′′0 = EmIndy,tF h
′′
1 or (h′′0 = Em+1h′′1 & tp(h′′1) =

CutB for some B). Take EnRCbh
′
1 as a, h′′0 as h0 and h′′1 as h1. Then,

h = EnRC(h
′
0, h

′
1) = EnRC(b{h′′0}, h′1) = a{h′′0}

and

h[0] = (EnRC(h
′
0, h

′
1))[0] = EnRC(h

′
0[0], h

′
1) = EnRC(b{h′′0[0]}, h′1) = a{h′′0[0]}.

(2) Assume that tp(h) = CutB. Then, h = RCh
′
0h

′
1 and either

tp(h′0) =
∧

C , tp(h
′
1) =

∨k
¬C , B = C[k], or
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tp(h′0) =
∨k

C , tp(h
′
1) =

∧
¬C , B = C[k], or

tp(h′0) = CutB, h[i] = RC(h
′
0[i], h

′
1), or

tp(h′1) = CutB, h[i] = RC(h
′
0, h

′
1[i]).

In the first two cases, take ∗ as a, h′0 as h0 and h′1 as h1. Below we consider
the third case and omit the fourth case, since the latter is similar to the
former.

Assume that tp(h′0) = CutB, h[i] = RC(h
′
0[i], h

′
1). Then, by IH, there are

b, D, h′′0, h
′′
1 such that h′0 = b{RDh

′′
0h

′′
1}, h′0[i] = b{(RDh

′′
0h

′′
1)[i]} and either

(a) tp(h′′0) =
∧

D & tp(h′′1) =
∨k

¬D & B = D[k] or

(b) tp(h′′0) =
∨k

D & tp(h′′1) =
∧

¬D & B = D[k].

Take RCbh1 as a, h′′0 as h0 and h′′1 as h1. Then,

h = RCh
′
0h

′
1 = RC(b{RDh

′′
0h

′′
1}, h′1) = a{RDh

′′
0h

′′
1}

and

h[i] = RC(h
′
0[i], h

′
1) = RC(b{(RDh

′′
0h

′′
1)[i]}, h′1) = a{(RDh

′′
0h

′′
1)[i]}.

(3) By the definition of tp(h), either h =
∧y

∀xA(x) h
′ or h = EnRDh

′
0h

′
1 with

tp(h′i) =
∧

∀xA(x) for some i ∈ {0, 1}. In the former case, take ∗ as a and h′0
as h0.

In the latter case, we may assume without the loss of generality that
i = 0, then D ̸= ∀xA(x) by the definition of tp(h′i). By IH, there are b, h′′0
such that ∀xA(x) ̸∈ Cut(b), h′0 = b{

∧y
∀xA(x) h

′′
0} and h′0[i] = b{h′′0(y/i)}. Take

EnRDbh
′
1 as a and h′′0 as h0, then ∀xA(x) ̸∈ Cut(a) and h = EnRD(h

′
0, h

′
1) =

EnRD(b{
∧y

∀xA(x) h
′′
0}, h′1) = a{

∧y
∀xA(x) h

′′
0}. Moreover,

h[i] = EnRD(h
′
0[i], h

′
1) = EnRD(b{h′′0(y/i)}, h′1) = a{h′′0(y/i)}.

In the cases of (4), (5) and (6), we can prove the assertion in the similar
way to the case of (3).

We set

0n :=


⟨0, 0, . . . , 0︸ ︷︷ ︸

n times

⟩, if n > 0,

⟨⟩, else.

Note that T0k denotes the node of T labeled by 0k.
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Proposition 4.4.4 (cf. Buchholz 1997, Theorem 5). Let T be a normaliza-
tion tree of some closed h ∈ Z∗

0 with the endsequent of the form n = m. For
every k ∈ N, it holds that tp(T0k) = Axn=m or Rep, and

1. if tp(T0k) = Axn=m, then there is a nominal form a such that n = m ̸∈
Cut(a) and T0k = a{Ax∆} with n = m ∈ ∆, and

2. if tp(T0k) = Rep, then one of the following statements holds for some
nominal forms a, b, c0, c1. (The symmetric cases are suppressed.)

(a) T0k = a{EmIndy,tF h0} and T0k+1 = a{Em((Indy,tF h0)[0])}.

(b) T0k = a{Em+1b{RC(c0{h′0}, c1{h′1})}} and

T0k+1 = a{EmRC[n](Eb{RC(c0{h0(y/n)}, c1{h′1})},Eb{RC(c0{h′0}, c1{h1})})},
where C = ∀xA(x), C ̸∈ Cut(c0), ¬C ̸∈ Cut(c1), h

′
0 =

∧y
C h0 and

h′1 =
∨n

¬C h1.

(c) T0k = a{Em+1b{RC(c0{h0}, c1{h1})}} and

T0k+1 = a{EmRC[i](Eb{RC(c0{h0i}, c1{h1})},Eb{RC(c0{h0}, c1{h10})})},
where C = A0 ∧ A1, C ̸∈ Cut(c0), ¬C ̸∈ Cut(c1), h0 =

∧
C h00h01 and

h1 =
∨i

¬C h10.

Proof. By Theorem 4.3.3.(1) and Lemma 4.4.1, it follows that for all u⃗ ∈
N<ω, if Γ(Tu⃗) = {n = m}, then tp(Tu⃗) = Rep or Axn=m. We show that
Γ(T0k) = {n = m} for every k ∈ N, by induction on k. When 0k = ⟨⟩, we
have Γ(T⟨⟩) = Γ(h) = {n = m}. Assume that Γ(T0k) = {n = m}. Then,
tp(T0k) = Rep or Axn=m. In each case, we can show that Γ(T0k+1) = {n = m}
by the definition of normalization trees and Theorem 4.3.3.(1).

Below we set u⃗ := 0k for an arbitrary k ∈ N.

(1) Assume that tp(Tu⃗) = Axn=m. By Lemma 4.4.3.(6), there is a nominal
form a such that n = m ̸∈ Cut(a) and Tu⃗ = a{Ax∆} with n = m ∈ ∆.

(2) Assume that tp(Tu⃗) = Rep. By Lemma 4.4.3.(1), there are c, h′′0, h
′′
1 such

that Tu⃗ = c{h′′0}, Tu⃗[0] = Tu⃗∗⟨0⟩ = c{h′′0[0]} and either h′′0 = EmIndy,tF h
′′
1 or

(h′′0 = Em+1h′′1 & tp(h′′1) = CutB for some B). If h′′0 = EmIndy,tF h
′′
1, then

the statement (a) holds by taking c as a and h′′0 as h0. Assume that h′′0 =
Em+1h′′1 and tp(h′′1) = CutB for some B. Then, by Lemma 4.4.3.(2), there are
b0, C, h

′′
10, h

′′
11 such that h′′1 = b0{RCh

′′
10h

′′
11}, h′′1[i] = b0{(RCh

′′
10h

′′
11)[i]} and

either

(†) tp(h′′10) =
∧

C & tp(h′′11) =
∨n

¬C & B = C[n] or
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(††) tp(h′′10) =
∨n

C & tp(h′′11) =
∧

¬C & B = C[n].

We consider only the case that (†) holds and C = ∀xA(x). Each of the other
cases can be dealt with in a similar way. By Lemma 4.4.3.(3) and (5), there
are a0, a1, h

∗
10 and h∗11 such that

C ̸∈ Cut(a0), h
′′
10 = a0{

∧y
C h

∗
10}, h′′10[n] = a0{h∗10(y/n)} and

¬C ̸∈ Cut(a1), h
′′
11 = a1{

∨n
¬C h

∗
11}, h′′11[0] = a1{h∗11}.

Thus,

Tu⃗ = c{h′′0} = c{Em+1h′′1} = c{Em+1b0{RCh
′′
10h

′′
11}} =

c{Em+1b0{RC(a0{
∧y

C h
∗
10}, a1{

∨n
¬C h

∗
11})}}

and

Tu⃗∗⟨0⟩ = c{(Em+1h′′1)[0]} = c{Em((Eh′′1)[0])} = c{Em(RC[n](Eh
′′
1[0],Eh

′′
1[1]))}.

Then,

c{Em(RC[n](Eh
′′
1[0],Eh

′′
1[1]))} =

c{Em(RC[n](Eb0{(RCh
′′
10h

′′
11)[0]},Eb0{(RCh

′′
10h

′′
11)[1]}))} =

c{Em(RC[n](Eb0{RC(h
′′
10[n], h

′′
11)},Eb0{RC(h

′′
10, h

′′
11[0])}))} =

c{Em(RC[n](Eb0{RC(a0{h∗10(y/n)}, a1{
∨n

¬C h∗11})},Eb0{RC(a0{
∧y

C h∗10}, a1{h∗11})}))}.

Set

a := c, b := b0, ci := ai for i ∈ {0, 1}, h0 := h∗10 and h1 := h∗11.

Then, the statement (b) holds.

Before we proceed, let us make the following remark. As observed in
[AT13], reduction steps of the 1936 proof can be reformulated by slightly
generalizing Proposition 4.4.4. Let FO be the set of all Z∞-inference symbols
of the form

∧
C or

∨k
C , and FFO be the set of all Z∗-inference symbols of

the form
∧y

C ,
∧

C or
∨k

C .

Proposition 4.4.5 (cf. Akiyoshi and Takahashi 2013, Theorem 8). Let T be
a normalization tree of some closed h ∈ Z∗

0. For every u⃗, one of the following
statements holds:

1. if tp(Tu⃗) = AxA for some A, then there is a nominal form a such that
A ̸∈ Cut(a) and Tu⃗ = a{Ax∆} with A ∈ ∆, and

2. if tp(Tu⃗) = Rep, then one of the following statements holds for some
nominal forms a, b, c0, c1. (The symmetric cases are suppressed.)
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(a) Tu⃗ = a{EmIndy,tF h0} and Tu⃗∗⟨0⟩ = a{Em((Indy,tF h0)[0])}.

(b) Tu⃗ = a{Em+1b{RC(c0{h′0}, c1{h′1})}} and

Tu⃗∗⟨0⟩ = a{EmRC[k](Eb{RC(c0{h0(y/k)}, c1{h′1})},Eb{RC(c0{h′0}, c1{h1})})},
where C = ∀xA(x), C ̸∈ Cut(c0), ¬C ̸∈ Cut(c1), h

′
0 =

∧y
C h0 and

h′1 =
∨k

¬C h1.

(c) Tu⃗ = a{Em+1b{RC(c0{h0}, c1{h1})}} and

Tu⃗∗⟨0⟩ = a{EmRC[i](Eb{RC(c0{h0i}, c1{h1})},Eb{RC(c0{h0}, c1{h10})})},
where C = A0 ∧ A1, C ̸∈ Cut(c0), ¬C ̸∈ Cut(c1), h0 =

∧
C h00h01 and

h1 =
∨i

¬C h10.

3. if tp(Tu⃗) ∈ FO, then there is a nominal form a such that Tu⃗ = a{I(hj)j∈|I|},
I ∈ FFO, ∆(I) ∩ Cut(a) = ∅ and for every i ∈ |tp(Tu⃗)|,

Tu⃗∗⟨i⟩ =

{
a{h0(y/i)}, if I =

∧y
C ,

a{hi}, else.

Proof. (1) Similar to the proof of Proposition 4.4.4.(1).

(2) This case is the same as Proposition 4.4.4.(2).

(3) We consider only the case that tp(Tu⃗) =
∧

∀xA(x). By Lemma 4.4.3.(3),

there are b, h∗ such that Tu⃗ = b{
∧y

∀xA(x) h
∗}, ∆(

∧y
∀xA(x)) ∩ Cut(b) = ∅, and

Tu⃗∗⟨k⟩ = (Tu⃗)[k] = b{h∗(y/k)} for all k ∈ N. We are done.

Let T be a well-founded normalization tree of some closed h ∈ Z∗
0 with

the endsequent of the form n = m. Now we argue that T corresponds
to consecutive applications of 1938 reduction steps. First, since tp(T0k) =
Axn=m or Rep for every k ∈ N, T essentially has no branching: If we omit its
irrelevant nodes, then T is described as follows.

T⟨⟩ // T⟨0⟩ // T⟨0,0⟩ // · · ·

This accords with the fact that reduction steps of the 1938 proof has no
branching.

Second, each transition from ϕ(T0k) to ϕ(T0k+1) corresponds to a reduction
step of the 1938 proof, which is formulated with end-pieces. Consider the
case (2a) of Proposition 4.4.4. There ϕ(T0k) and ϕ(T0k+1) are as follows.

.... h0
¬F (y), F (S(y))
¬F (0), F (k) Indy,kF = ϕ(T0k) ▷

.... a
n = m
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....
Γ,¬F (0), F (0)

.... h0(y/0)
Γ,¬F (0), F (1)

Γ,¬F (0), F (1)
RF (0)

.... h0(y/1)
Γ,¬F (1), F (2)

Γ,¬F (0), F (2)
RF (1) = ϕ(T0k+1)

....
Γ,¬F (0), F (k)

.... a
n = m

This transition is done exactly in the end-pieces of ϕ(T0k) and ϕ(T0k+1).
Thus, it is the same as the “CJ-reduction” of the 1938 proof formulated in
[Gen38b, §3.3]. Furthermore, in the case (2b) of Proposition 4.4.4, ϕ(T0k)
and ϕ(T0k+1) are of the following forms, respectively. Let C be ∀xA(x).

.... h0
∆0, A(y), ∀xA(x)

∆0, ∀xA(x)
∧y

C

.... c0
Γ′, ∀xA(x)

.... h1
∆1,¬A(k), ∃x¬A(x)

∆1, ∃x¬A(x)
∨k

¬C
.... c1

Γ′, ∃x¬A(x)
Γ′ RC = ϕ(T0k) ▷
.... b
Γ.... a

n = m

.... h0(y/k)

∆0, A(k), ∀xA(x)
..
.. c0

Γ′, A(k), ∀xA(x)

.... h1

∆1,¬A(k), ∃x¬A(x)

∆1, ∃x¬A(x)

∨k
¬C

.... c1

Γ′, ∃x¬A(x)

Γ′, A(k)
RC

.... b

Γ, A(k)

.... h0

∆0, A(y), ∀xA(x)

∆0, ∀xA(x)

∧y
C

.... c0

Γ′, ∀xA(x)

.... h1

∆1,¬A(k), ∃x¬A(x)
.... c1

Γ′,¬A(k), ∃x¬A(x)

Γ′,¬A(k)
RC = ϕ(T0k+1 )

.... b

Γ,¬A(k)

Γ
RC[k]

...

.
a

n = m

with ∀xA(x) ̸∈ Cut(c0), ∃x¬A(x) ̸∈ Cut(c1). This is one of the operational
reductions formulated in [Gen38b, §3.5]. The case (2c) corresponds to an-
other operational reduction.

Third, T gives a normal derivation of n = m. By the definition of well-
foundedness, T has a node T0l such that tp(T0l) = AxA for some A. By
Proposition 4.4.4.(1), A is of the form n = m and T0l is of the form a{Ax∆}
with n = m ∈ ∆. Since n = m ̸∈ Cut(a), Γ(T0l) includes n = m. In fact,
Γ(T0l) = {n = m} holds as we have seen in the proof of Proposition 4.4.4.
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Thus, T0l is a Z∗
0-derivation of n = m. Moreover, we can consider T0l a

normal derivation, because the endsequent of T0l is shown to be true in a
primitive recursive way.

From these arguments, we conclude that T corresponds to consecutive
applications of reduction steps of the 1938 proof and that the formulation
of its main lemma as Proposition 4.4.3 is justified. Proposition 4.4.3 assigns
a normal derivation to every derivable numeric equation of first-order arith-
metic, and the main lemma of the 1936 does so as well, because the 1938
proof is a special case of the 1936 proof.

Then, we can explain how contentual and formal aspects of the 1936 proof
relate to each other. The foregoing argument indicated that a normalization
tree of closed Z∗

0-derivation h is a generalization of syntactic transformation
in the 1938 proof: Normalization trees transform not only a derivation of a
numeric equation but also a derivation with an arbitrary conclusion, whereas
the 1938 proof’s procedure transforms the former kind of a derivation only. In
other words, a normalization tree is a generalization of the cut elimination
procedure in the 1938 proof. This constitutes formal aspects of the 1936
proof.

Remember that for every closed Z∗
0-derivation h, we can extract both a re-

duction procedure T for the sequent Γ(h) and a proof for the well-foundedness
of T from a normalization tree of h. This means that the correctness of Γ(h)
in the sense of (GI) is shown by the normalization tree. Therefore, we can say
that the correctness of Γ(h) is in fact shown in terms of a procedure obtained
by generalizing the cut elimination procedure in the 1938 proof. That is to
say, the 1936 proof’s contentual aspects are formed by its formal aspects.

Let us summarize the argument in this section. First, we have argued
that the 1936 proof is a contentual correctness proof, by verifying that the
main lemma of the 1936 proof (Proposition 4.4.1) with an additional lemma
(Lemma 4.4.2) implies the main lemma of the 1935 proof (Proposition 4.4.2).
This consequence from the main lemma of the 1936 proof means that the
proof shows all axioms and theorems of first-order arithmetic to be correct
in the sense of (GI), as the 1935 proof does. Next, we have argued that
the 1936 proof is also a formal correctness proof. By utilizing Buchholz’s
observation in [Buc97], we showed that reduction steps of the 1936 proof
for derivations of numeric equations have the same structures as the ones
of reductions steps of the 1938 proof. This enabled us to see that the main
lemma of the 1938 proof (Proposition 4.4.3) is a special case of the main
lemma of the 1936 proof. Accordingly, the 1936 proof assigns a normal
derivation to every derivable numeric equation in first-order arithmetic as
the 1938 proof does. Finally, we have explained the relation between the
1936 proof’s contentual aspects and its formal aspects: the former are given
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by the latter.

4.5 No-counterexample Interpretation

In this section, we indicate a consequence of our arguments in the previous
section: We prove the theorem called the no-counterexample interpretation,
following Schwichtenberg’s proof [Sch77, §4] in our setting.28

Theorem 4.5.1 (No-Counterexample Interpretation). If a closed formula

∃x1∀y1 . . . ∃xn∀ynp(x1, y1, . . . , xn, yn)

is derivable in Z, then there are < ε0-recursive functionals G1, . . . ,Gn such
that for every k-ary function Fk on natural numbers (1 ≤ k ≤ n),

P(G1F⃗,F1(G1F⃗),G2F⃗,F2(G1F⃗,G2F⃗), . . . ,GnF⃗,Fn(G1F⃗, . . . ,GnF⃗))

holds, where GkF⃗ := Gk(F1, . . . ,Fn) for all k (1 ≤ k ≤ n).

For the sake of simplicity, we concentrate on the case that n = 2 in the
theorem above. Let an arbitrary unary function F1 and an arbitrary binary
function F2 on natural numbers be given.

First, we extend the language L. Let L(f1, f2) be the language obtained
by extending L with a unary function-variable f1 and a binary function-
variable f2. We denote the set of all free number-variables in an expression θ
in L(f1, f2) by FV (θ). An expression θ is closed if FV (θ) = ∅. Let TRUEF1,F2

0

be the set of all true literals of L(f1, f2) under the assignment fi 7→ Fi for
i ∈ {1, 2}. For every closed term t of L(f1, f2), we denote the numeral n such
that t = n ∈ TRUEF1,F2

0 by [[t]].

On the basis of the language L(f1, f2), we define the finitary proof system
Z∗(F1,F2). We assume the existence of a set AxF1,F2 of sequents satisfying
the following conditions:

• for all ∆ ∈ AxF1,F2 , ∆ is a set of literals,

• if there is a substitution instance ∆0 of ∆, then ∆0 ∈ AxF1,F2 ,

• if ∆ ∈ AxF1,F2 and FV (∆) = ∅, then ∆ ∩ TRUEF1,F2

0 ̸= ∅.
28The difference is our use of finite notations for infinitary derivations instead of heavy

coding.
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Define the inference symbol Ax∆ of Z∗(F1,F2) as

(Ax∆) ∆

with ∆ ∈ AxF1,F2 . Furthermore, we add the following inference symbol:

(St
s)
A(x/t)

A(x/s)

with [[t]] = [[s]]. The remaining inference symbols
∧

A0∧A1
,
∧y

∀xA,
∨i

A0∨A1
,∨t

∃xA, Ind
y,t
F , RC and E of Z∗(F1,F2) are defined in the same manner as Z∗.

Hereafter, a Z∗(F1,F2)-derivation is denoted by h possibly with suffixes.
Again, we suppose that every Z∗(F1,F2)-derivation satisfies Free Variables-
Conditions. We define the ordinal assignment o(h) and the degree deg(h)
of a Z∗(F1,F2)-derivation h with h = St

sh0 as follows: o(h) := o(h0) and
deg(h) := deg(h0). The other cases are treated in the same manner as Z∗.

Note that if a closed formula of the form

∃x1∀y1∃x2∀y2p(x1, y1, x2, y2)

is derivable in Z, then we can verify only by first-order logic that the formula

∃x1∃x2p(x1, f1(x1), x2, f2(x1, x2))

is derivable in Z∗(F1,F2). In particular, we have no need of the Z∗(F1,F2)-
axioms about F1 and F2 in deriving the formula above.

The infinitary proof system Z∞(F1,F2) with the language L(f1, f2) is de-
fined in the same way as Z∞ except the inference symbols AxA. The inference
symbol AxA of Z∞(F1,F2) is defined as

(AxA) A

with A ∈ TRUEF1,F2

0 . We denote a Z∞(F1,F2)-derivation by d possibly with
suffixes.

By the following lemma, we define an operator for substitution in Z∞(F1,F2)-
derivations that corresponds to the inference symbol St

s of Z
∗(F1,F2).

Lemma 4.5.1. For all terms t and s with [[t]] = [[s]], there is an operator St
s

such that if d ⊢α
m Γ, A(x/t), then St

s(d) ⊢α
m Γ, A(x/s).

Proof. By induction on α.

The following two theorems can be shown for Z∞(F1,F2) in a similar way
to the case of Z∞. To prove the first theorem, we use the previous lemma.
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Theorem 4.5.2. For every formula C, there is an operator RC such that if
d0 ⊢α

m Γ, C, d1 ⊢β
m Γ,¬C and rk(C) ≤ m, then RC(d0, d1) ⊢α#β

m Γ.

Theorem 4.5.3. There is an operator E such that if d ⊢α
m+1 Γ then E(d) ⊢ωα

m

Γ.

We define the translation of Z∗(F1,F2) into Z
∞(F1,F2). Let h be a closed

Z∗(F1,F2)-derivation, Γ be Γ(h) and α be o(h).

1. If h = Ax∆, then (Ax∆)
∞ := AxA : Γ : α, where A is the arbitrarily

fixed element of ∆ ∩ TRUEF1,F2

0 .

2. If h = St
sh0, then (St

sh0)
∞ := St

s(h
∞
0 ) with Γ(St

s(h
∞
0 )) = Γ.

3. If h = Indy,tF h0 and [[t]] = n, then (Indy,tF h0)
∞ :=

Sn
t (en)

Rep : Γ : α, where

e0 := dF (x/0), e1 := h0(y/0)
∞, ei+1 := RF (x/i)(ei, h0(y/i)

∞)

and Γ(en) = {∆,¬F (0), F (n)}, Γ(Sn
t (en)) = {∆,¬F (0), F (t)} = Γ.

4. Otherwise, define h∞ in the same manner as the translation of Z∗ into
Z∞.

In addition, we define the two functionals tpF1,F2(h) and h(F1,F2)[i] of
level ≤ 2 for closed Z∗(F1,F2)-derivations. Note that these are primitive
recursive functional with F1 and F2 as function-arguments. For closed terms
t and s, the expression θ(t 7→ s) is the result of replacing some occurrences
of t in θ with s.

Let h be a closed Z∗(F1,F2)-derivation.

1. If h = Ax∆, then h+ := AxA and tpF1,F2(h) := AxA, where A is the
arbitrarily fixed element of ∆ ∩ TRUEF1,F2

0 .

2. If h = St
sh

′ and h′+ = I((hi)i∈|I|), then (St
sh

′)+ := I(t 7→ s)((St
shi)i∈|I(t/s)|).

3. If h = Indy,tF h0 and [[t]] = n, then (Indy,tF h0)
+ := Rep(Sn

t en),

where e0 := hF (x/0), e1 := h0(y/0) and ei+1 := RF (x/i)eih0(y/i).

4. If h = RCh0h1 and h+l = Il((hli)i∈|Il|) for l ∈ {0, 1}, then
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(RCh0h1)
+ :=



I0((RCh0ih1)i∈|I0|), if C ̸∈ ∆(I0),

I1((RCh0h1i)i∈|I1|), if ¬C ̸∈ ∆(I1),

CutC[i](RCh0ih1RCh0h10), if C ∈ ∆(I0),¬C ∈ ∆(I1)

and I1 =
∨i

C0∨C1
,

CutC[i](RCh00h1RCh0h1i), if C ∈ ∆(I0),¬C ∈ ∆(I1)

and I0 =
∨i

C0∨C1
,

CutC[k](RCh0kh1RCh0S
t
kh10), if C ∈ ∆(I0),¬C ∈ ∆(I1),

I1 =
∨t

∃xC0(x)
and [[t]] = k,

CutC[k](RCS
t
kh00h1RCh0h1k), if C ∈ ∆(I0),¬C ∈ ∆(I1),

I0 =
∨t

∃xC0(x)
and [[t]] = k.

5. Otherwise, define h+ in the same manner as tp(h) and h[i].

By induction on the build-up of a given closed Z∗(F1,F2)-derivation h,
we have the following theorem.

Theorem 4.5.4 (Cf. Theorem 4.3.3). Let h be a closed Z∗(F1,F2)-derivation.

1.

. . .Γ(h(F1,F2)[i]) . . . (i ∈ |tpF1,F2(h)|)
Γ(h)

tpF1,F2(h)
is a correct Z∞(F1,F2)-

inference.

2. If tpF1,F2(h) = CutC, then rk(C) < deg(h).

3. deg(h(F1,F2)[i]) ≤ deg(h) for all i ∈ |tpF1,F2(h)|.

4. o(h(F1,F2)[i]) ≺ o(h) for all i ∈ |tpF1,F2(h)|.

Define the set Z∗
0(F1,F2) as

Z∗
0(F1,F2) := {h | h is a Z∗(F1,F2)-derivation with deg(h) = 0}.

Hereafter, we denote by T a functional of level ≤ 2 such that it takes F1,F2, u⃗
as arguments and outputs a closed Z∗

0(F1,F2)-derivation. The local correct-
ness, the well-foundedness and normalization trees are defined in a similar
manner to Section 4.4. Then, we have the following lemma and proposition.

Lemma 4.5.2 (Cf. Lemma 4.4.1). For every T , every u⃗ ∈ N<ω and every
formula C, tpF1,F2(Tu⃗) ̸= CutC holds.

Proposition 4.5.1 (Cf. Proposition 4.4.1). For every closed Z∗
0(F1,F2)-

derivation h, there is a well-founded normalization tree T of h such that T
is a < ε0-recursive functional with F1 and F2 as function-arguments.
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In what follows, our proofs for Lemma 4.5.3 and 4.5.4 are inspired by
Buchholz’ proofs for [Buc91, Lemma 4.4 and Theorem 4.5]. We use the
following notions:

• INSp := {∃x1∃x2p(x1, f1(x1), x2, f2(x1, x2))}∪
{∃x2p(t1, f1(t1), x2, f2(t1, x2)) | t1 is a closed term}∪
{p(t1, f1(t1), t2, f2(t1, t2)) | t1, t2 are closed terms}.

• For every inference symbol I of Z∞(F1,F2),

WITp(I) :=

{
⟨t1, t2⟩, if I is of the form Axp(t1,f1(t1),t2,f2(t1,t2)),

⟨⟩, else.

• wp := {⟨t1, t2⟩ | p(t1, f1(t1), t2, f2(t1, t2)) ∈ TRUEF1,F2

0 }.

Lemma 4.5.3. Let h be a closed Z∗
0(F1,F2)-derivation with

Γ(h) = {∃x1∃x2p(x1, f1(x1), x2, f2(x1, x2))}.

If T is a normalization tree of h and o(T0k+1) ⊀ o(T0k), then

tpF1,F2(T0k) = Axp(t1,f1(t1),t2,f2(t1,t2))

for some closed terms t1, t2.

Proof. By Lemma 4.5.2 and Theorem 4.5.4.(1), it holds that if Γ(T0k) ⊆ INSp,
then

(†) tpF1,F2(T0k) ∈ {Rep}∪{AxA | A is of the form p(t1, f1(t1), t2, f2(t1, t2))}∪
{
∨t1

∃x1∃x2p(x1,f1(x1),x2,f2(x1,x2))
| t1 is a closed term}∪

{
∨t2

∃x2p(t,f1(t1),x2,f2(t1,x2))
| t1, t2 are closed terms}

for all k ∈ N. We show that Γ(T0k) ⊆ INSp by induction on k. The base case
is obvious. Assume as IH that Γ(T0k) ⊆ INSp, then (†) holds for T0k . By
Theorem 4.5.4.(1) again, it holds that Γ(T0k+1) ⊆ INSp.

Assume that o(T0k+1) ⊀ o(T0k). Then, tpF1,F2(T0k) = AxA for some
A ∈ TRUEF1,F2

0 by Theorem 4.5.4.(4). Since Γ(T0k) ⊆ INSp, A is of the form
p(t1, f1(t1), t2, f2(t1, t2)).

Lemma 4.5.4. Let h be a closed Z∗
0(F1,F2)-derivation with

Γ(h) = {∃x1∃x2p(x1, f1(x1), x2, f2(x1, x2))}.

Then, there is a well-founded normalization tree T of h such that the following
three statements hold:
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1. For every k ∈ N, o(T0k) ⪯ o(h) holds,

2. WITp(tp
F1,F2(T0m)) ∈ wp, where m = min{k | o(T0k+1) ⊀ o(T0k)},

3. let GF1,F2 be the functional of level ≤ 2 with F1 and F2 as function-
arguments, which is defined as

GF1,F2(T0n) :=

{
GF1,F2(T0n+1), if o(T0n+1) ≺ o(T0n) ⪯ o(h) ≺ ε0

WITp(tp
F1,F2(T0n)), else,

then GF1,F2 is a < ε0-recursive functional and GF1,F2(T00) ∈ wp holds.

Proof. By Proposition 4.5.1, there is a normalization tree T of h such that
T is a < ε0-recursive functional with F1 and F2 as function-arguments.

(1) By Theorem 4.5.4.(4), o(T0k) ⪯ o(h) ≺ ε0 holds for every k ∈ N.

(2) By the well-foundedness of T , there is a k ∈ N such that o(T0k+1) ⊀ o(T0k)
holds. The assertion holds by Lemma 4.5.3.

(3) By (1), (2) and the definition of GF1,F2(T0n), we can see that GF1,F2(T00) ∈
wp and that GF1,F2 is a < ε0-recursive functional. Note that tpF1,F2(h) and
h(F1,F2)[i] are primitive recursive functional and T is a < ε0-recursive func-
tional.

Now we prove Theorem 4.5.1.

Proof. Let GF1,F2 be the functional defined in Lemma 4.5.4.(3) and p0, p1

be primitive recursive projection functions for pairs. Define

G0(F1,F2) := p0(GF1,F2(T00)), G1(F1,F2) := p1(GF1,F2(T00)).

Then,

P(G0(F1,F2),F1(G0(F1,F2)),G1(F1,F2),F2(G0(F1,F2),G1(F1,F2)))

holds by Lemma 4.5.4.(3).

4.6 Conclusion of Chapter 4

First in this chapter, we have answered the following question induced by
Sieg’s paper [Sie12]: Is Gentzen’s 1936 proof both a contentual correctness
proof and a formal correctness proof? We have argued that the 1936 proof
is both contentual and formal because the main lemma of the 1936 proof
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implies both the main lemma of the 1935 proof and the main lemma of the
1938 proof. In other words, the main lemma of the 1936 proof not only
verifies the correctness of axioms and theorems of first-order arithmetic, but
also assigns a normal derivation to each derivable numeric equation of first-
order arithmetic. (Here, according to Gentzen, A is correct if and only if a
reduction procedure is statable for it.)

Next, we have answered the question of how contentual and formal as-
pects of the 1936 proof relate to each other: Contentual aspects of the 1936
proof are formed by its formal aspects. In other words, the correctness of
a derivable formula A of first-order arithmetic is in fact shown by means of
syntactic transformation of a given derivation of the formula.

Finally, we have noted a consequence of our argument for the answers
above. Our argument has given another proof of Kreisel’s no-counterexample
interpretation.

As mentioned in the introduction of this chapter, we have focused not
only on the mathematical side of Gentzen’s consistency proofs, but also on
their conceptual side. Our whole argument indicates that contentual and
formal aspects of Gentzen’s consistency proofs are fruitful products of an
interaction between philosophical ideas and mathematical proof-theoretical
methods.



Concluding Remarks

We have discussed Gentzen’s interpretation of first-order arithmetical for-
mulas, which he formulated in his consistency proofs. In our concluding
remarks, we note that the following question underlies the entire discussion
in this thesis: What significance do Gentzen’s consistency proofs hold? Let
us recall the arguments of each chapter in the perspective of this question.

In Chapter 2, we examined Gentzen’s response to the Brouwer-style ob-
jection against the significance of consistency proofs. The objection claimed
that consistency proofs hold no significance because such proofs do not en-
able us to interpret classical mathematics as correct: Consistency proofs do
not provide each theorem of classical mathematics with a sense such that the
theorem is correct according to it. Gentzen’s 1935 and 1936 proofs not only
proved the consistency of first-order arithmetic, but also responded to this
objection. Gentzen’s interpretation of arithmetical formulas provided each
theorem of first-order classical arithmetic with a sense from Gentzen’s finitist
standpoint such that the theorem is correct according to this sense.

We noted the following significance of the 1935 proof: This proof provided
each theorem of first-order classical arithmetic with a sense that is admissi-
ble to intuitionists. We formulated Gentzen’s interpretation of arithmetical
formulas with the notion of spreads, which are infinite trees in intuitionis-
tic mathematics, and proved the main lemma of the 1935 proof by means
of monotone bar induction. Remember that monotone bar induction is an
induction principle of intuitionistic mathematics. As we have emphasized
in Section 2.1, Hilbert’s 1920s proof theory did not include the significance
above. Thus, Gentzen’s proof theory is distinguished from Hilbert’s proof
theory in this period here.

In Chapter 3, we discussed a Gentzen-style interpretation of implication.
Several authors in the early 20th century remarked on how to interpret im-
plication in mathematics. For example, Hilbert, Bernays and Brouwer were
concerned with the problem of interpreting implication. Gentzen also dealt
with this problem and pointed out certain circularity concerning implication:
He proposed an interpretation of implication and then showed that an ar-
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gument for the soundness of modus ponens on this interpretation includes
trivial circular reasoning. Gentzen said that it was one of the main objectives
of his 1935 and 1936 proofs to avoid this circularity, but he did not explicitly
present his interpretation of implication. Moreover, he did not argue that
his interpretation avoids circularity.

According to our arguments in Chapter 3, the 1935 proof has the follow-
ing significance: This proof gives a Gentzen-style solution to the problem of
interpreting implication. We formulated the Gentzen-style interpretation of
implication in [Taka15], using Tait’s definition of reduction procedures, and
argued that this interpretation avoids the circularity Gentzen urged against.
To avoid this circularity, it sufficed to show that there is a reduction pro-
cedure for the conclusion of an instance I of the cut rule, appealing to the
soundness of the instances of lower “complexity” than I. We demonstrated
that the step-by-step argument with the two induction principles shows this.
Although Gentzen’s arguments themselves included a gap, his methods, to-
gether with contemporary devices, provided an interpretation of implication
that avoids circularity.

In Chapter 4, we have discussed the contentual and formal aspects of
Gentzen’s 1936 consistency proof. Sieg, in his recent paper [Sie12], clarified
the distinction between contentual correctness proofs and formal correctness
proofs that was made in Gentzen’s unpublished manuscripts. Moreover, Sieg
observed that Gentzen’s 1936 proof is intermediate between contentual cor-
rectness proofs and formal correctness proofs. We posed the following two
questions and answered them: Is the 1936 proof both contentual and for-
mal in Gentzen’s sense? If so, how do the contentual and formal aspects of
the 1936 proof relate to each other? We answered the first question affir-
matively, by showing that the main lemma of the 1936 proof implies both
of the main lemmas of the 1935 proof and the 1938 proof, which are con-
tentual and formal, respectively. For the second question, we claimed that
contentual aspects of the 1936 proof are formed by its formal aspects: In the
1936 proof, the correctness of theorems of first-order arithmetic is shown by
normalization trees, which constitute the 1936 proof’s formal aspects.

Our arguments noted the following significance of the 1936 proof: This
proof shows that one can assign a finitist sense to each theorem of first-order
arithmetic not only by the 1935 proof’s method, but also by a generaliza-
tion of the cut elimination procedure in the 1938 proof. We saw that one can
assign such a sense to each theorem of first-order arithmetic by means of nor-
malization trees and that normalization trees were obtained by generalizing
the cut elimination procedure in the 1938 proof.

Then, we can formulate both Gentzen’s response to the Brouwer-style
objection and the Gentzen-style interpretation of implication, which we dis-
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cussed in Chapters 2 and 3, by using normalization trees. This provides us
with a connection between these two conceptual roles of Gentzen’s interpre-
tation of arithmetical formulas and the cut elimination method employed for
the 1938 proof. In other words, we obtain a connection between the two aims
above of Gentzen’s research in 1935 and a result that he reached in 1938.

In this thesis, we investigated Gentzen’s interpretation of arithmetical
formulas in the perspective of the foundations of mathematics. Our argu-
ments indicated Gentzen’s intense interest in foundational issues. He wrote
much about the significance of consistency proofs29 and realized his founda-
tional ideas through ingenious proof-theoretic methods. As seen in Chapter
4, Gentzen left unpublished manuscripts, in which we can find his attempt
to deal with foundational issues. It remains an important work for the future
to evaluate Gentzen’s unpublished manuscripts, and we hope that this thesis
provides a clue to the new conception of Gentzen’s consistency proofs that
his manuscripts might give.

29For example, see [Gen36, §§9-10].





Bibliography

[Aki10] R. Akiyoshi. “Gentzen’s First Consistency Proof Revisited.” In
CARLS Series of Advanced Study of Logic and Sensibility Vol.4, 315-
24. Tokyo: Keio University, 2010.

[AT13] R. Akiyoshi and Y. Takahashi. “Reading Gentzen’s Three Consis-
tency Proofs Uniformly.” (in Japanese) Kagaku kisoron kenkyū (Journal
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[Tai01] W. W. Tait. “Gödel’s Unpublished Papers on Foundations of Math-
ematics.” Philosophia Mathematica 9 (2001): 87-126.

[Tai02] W. W. Tait. “Remarks on finitism.” In Reflections on the Founda-
tions of Mathematics: Essays in honor of Solomon Feferman, edited by
W. Sieg, R. Sommer and C. Talcott., 407-16. Vol. 15 of Lecture Notes
in Logic, 407-16. Urbana: Association for Symbolic Logic, 2002.
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