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Abstract

It is often necessary to categorize automatically multilingual document sets, in which docu-
ments written in a variety of languages are included, into topically homogeneous subsets, such as
when applying an automatic summarization system for multilingual news articles. However, there
have been few studies on multilingual document clustering (MLDC) to date. In particular, it is not
known whether clustering techniques are effective in large-scale multilingual document sets. When
the target multilingual document set is enough small, it is easy to partition it automatically by
using machine translation (MT) software and standard statistical package after text processing. In
contrast, for other situations where large document collections have to be processed, it is necessary
to explore a ‘scalable’ technique of MLDC because computational complexity of executing MT and
DC increases exponentially, not linearly, as size of target data becomes larger. The purpose of this
thesis is to develop a method of large-scale MLDC and to verify its effectiveness experimentally.
The approach of this thesis for solving the large-scale MLDC problem is to combine cross-lingual
information retrieval (CLIR) technique and clustering technique for large-scale document collec-
tions. For it, this thesis reviews CLIR methods and document clustering algorithms exhaustively
to identify useful techniques for large-scale MLDC in terms of efficiency. As a result, the thesis
adopts a combination of dictionary-based translation method in CLIR and leader-follower cluster-
ing (LFC) algorithm for implementing the MLDC system. After the reviews, results from three
experiments for clarifying empirically the effectiveness of the proposed system are reported, more
specifically, (a) effectiveness of scalable techniques for term (translation) disambiguation used in
the dictionary-based translation, (b) effectiveness of the LFC algorithm for monolingual DC in
comparison with theoretically sophisticated techniques, and (c) effectiveness of the LFC algorithm
with dictionary-based translation for large-scale MLDC, by using some test collections. In exper-
iment (a), it was observed that ‘best cohesion’ method for translation disambiguation works well
although its computational complexity is relatively low, and in experiment (b), it was shown that
the LFC algorithm for which the target file is scanned only twice can generate ‘good’ cluster sets,
which are comparable with those obtained by the spherical k-means algorithm and the hierarchi-
cal Dirichlet process (HDP) mixture model. Finally, it was clarified in experiment (c) that the
MLDC system works well for a document collection including over 13,000 news articles written in
English, French, German and Italian. Through the experiments, the effectiveness and efficiency of
the proposed method for MLDC were empirically confirmed.
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Chapter 1

Introduction: Multilingual
Document Clustering

1.1 Document Clustering and Information Resource Orga-
nization

Suppose that there is a heterogeneous set of documents, which is denoted by D = {d1, d2, ..., dN}
where N is the total number of documents. If a topic label is assigned to each document for
indicating its subject, D can be topically organized based on the labels. For example, in libraries,
a classification number is usually allocated to each book by human experts, and a set of various
books hold by each library is well-arranged on its shelf by using the classification numbers. This is
a fundamental device for organizing a collection of information resources. Actually, the classifica-
tion numbers allow library users to find books relevant to their information needs on the shelf, or
traditional information retrieval (IR) systems including OPAC (online public access catalog) sys-
tems have often provided a function of utilizing the classification numbers (or comparable ‘subject
headings’) as access points to the databases.

In contrast, when any topic label by human experts is not available for a heterogeneous set of
documents, it would be convenient to partition automatically the set into topically homogeneous
subsets such that

D = C1 ∪ C2 ∪ ... ∪ CL = {Ck}Lk=1, (1.1)

where Ck denotes a cluster and L is the total number of clusters 1. The operation is generally
called document clustering (DC). More precisely, there are two ways of clustering, namely, exclusive
and nonexclusive clustering. In exclusive clustering, a document belongs to only a single cluster
such Ck ∩ Ch = ∅ where k �= h. Meanwhile, if Ck ∩ Ch �= ∅, then it is nonexclusive clustering.
Inevitably, in a situation that a single document tends to discuss multiple topics, it is better to
adopt a strategy based on nonexclusive clustering.

Examples of DC are as follows:

• By clustering a huge bibliographic database into some parts beforehand and identifying
particular clusters relevant to a given query, more efficient and effective searches of the
database may be feasible (i.e., cluster-based IR or distributed IR).

• When an IR system provides search results, it would be convenient for users if a set of
documents in the output is divided into some homogeneous groups (this strategy is adopted
by some systems, which are often called ‘clustering search engines’).

• For automatic summarization of news articles in a given period, it is necessary to partition
them into subsets reporting individual topics.

1Ck is formally defined as a partial set of documents, but it is sometimes used as a label of the subset in this
thesis.
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• Automatic grouping of electronic documents produced officially in a company may bring
discovery of unexpected (novel) topics on the business.

Such kinds of clustering become increasingly an important tool for text mining after electronic
documents in offices and on the web increment rapidly. Whereas bibliographic control of publica-
tions such as books, journal and so on, can be considered as an essential work of librarians, it is
unrealistic that human experts as librarians make efforts to organize all electronic resources other
than such official publications. So, automatic processing by computers (e.g., automatic grouping
of web documents) is indispensable for organizing electronic information resources in terms of effi-
ciency. For the organizing task, DC plays an essential role, and techniques of it have to be enhanced
more in order to manage a huge collection of electronic documents effectively and efficiently.

Technically, DC can be regarded as a task of classification in which

• objects of classification take a form of text, and

• any answer of classification is not available.

The latter implies that DC is a sort of unsupervised classification for which existence of any
training set (or answer set) is not assumed. In contrast, supervised classification of documents is
often called text categorization, which utilizes intrinsically different techniques from those for DC,
although text categorization and DC have a common factor that the target of analysis is text (i.e.,
a set of words).

In text categorization, some sophisticated theories and techniques of machine learning are
available, but it seems that they can not be applied directly to DC problems other than a few
exceptions 2. Unfortunately, it is not possible to use text categorization techniques in a situation
that there is no answer and no predefined classification scheme. In such cases, DC is a useful tool
for organizing information resources.

1.2 Method of Multilingual Document Clustering

In addition, since multilingual document sets including items written in two or more languages have
become more readily available with the spread of the Internet, special algorithms for multilingual
document clustering (MLDC) are needed. For example, a system of automatically summarizing
multilingual news articles requires effective MLDC for identifying a set of similar news articles
(e.g., Chen & Lin(2000) [60], Leftin(2003) [183], Evans & Klavans(2003) [89]). MLDC would be
also useful for partitioning patent documents written in multiple languages into topical subgroups
for detecting automatically technical trends. Unfortunately, as Wu & Lu(2007) [319] pointed out,
there has been little research on MLDC, and it is not sufficiently known which clustering techniques
are effective for medium- or large-scale multilingual sets of documents. Researchers have to tackle
the problem of large-scale MLDC, which is the main focus of this thesis.

A reason that techniques of large-scale MLDC have not yet been sufficiently explored would
be its difficulty as a research task. Basically, for large-scale MLDC, the following two techniques
would be indispensable:

• cross-lingual information retrieval (CLIR) technique.

• clustering technique for large-scale document collections.

When the target multilingual document set is enough small, it is easy to divide it automatically
by using machine translation (MT) software and standard statistical package after text processing
(Section 2.1.6). Actually, there would be many cases in which the combination of MT and statistical
software sufficiently works. However, it is necessary to explore a ‘scalable’ technique of MLDC for
other situations where large document collections have to be processed because computational
complexity of executing MT and DC increases exponentially, not linearly, as size of target data
becomes larger. In particular, DC is a special clustering in that extraordinarily many attributes of

2For instance, semi-supervised classification tries to learn from both labeled and unlabeled data. The ‘labeled
data’ means a set of documents to which one or more labels (e.g., topic codes) are assigned by human experts as
an answer.
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the target objects have to be processed as discussed in Section 3.1.1. Thus the system consisting
of standard MT and statistical software would not return any result when the document collection
size exceeds its limit.

As reviewed in Chapter 3, special algorithms tailored to the large-scale DC problem have been
developed so far in the filed of IR, and an optimal one can be selected from the algorithms.
Meanwhile, simple and fast conversion of the large document collection from one language to the
other language by which search queries are represented has been sometimes attempted in CLIR
area, and the technique may be available for translating a large set of documents in DC. The
combination of a CLIR technique and a ‘scalable’ DC algorithm is so promising for large-scale
MLDC. This is a main idea of the thesis.

1.3 Purpose and Outline of Thesis

The purpose of this thesis is to develop a method of large-scale MLDC by combining a technique
for document translation in CLIR and a scalable DC algorithm developed in IR field. As mentioned
above, the combination is so promising for implementing a system which enables to cluster large
multilingual document sets, but it has not yet explored in literature. This thesis tries to select
appropriate components of the combination through exhaustive literature review and technical
discussions on CLIR and DC, and to clarify empirically effectiveness and efficiency of MLDC
methods based on the combination by using the Reuters corpora [187]. More specifically, in this
thesis, dictionary-based translation method in CLIR and leader-follower clustering (LFC) algorithm
are employed for implementing the MLDC system. This method is clearly efficient in terms of
computational complexity, and the main purpose of experiments using the Reuters corpora is to
confirm ‘validity’ or ‘quality’ of clusters generated by the proposed method.

The rest of this thesis is organized as follows. In Chapter 2, standard IR theories and techniques
are summarized because DC is largely dependent on IR methods, which will be often used in the
successive chapters. Especially, the vector space model in IR plays an important role in DC,
and text processing in IR is usually applied to DC. After that, CLIR techniques are exhaustively
reviewed in Chapter 2 to identify useful techniques for large-scale MLDC. The CLIR review is an
extension of Kishida(2005) [149] and Kishida(2010b) [153].

Next, DC techniques are thoroughly reviewed in Chapters 3 and 4. The review is split into
two chapters due to fact that so many DC techniques have been proposed so far. Chapter 3 is
an extension of Kishida(2003) [147], which focuses on traditional techniques such as hierarchical
clustering, k-means algorithms, leader-follower clustering and so on. In contrast, probabilistic and
matrix-based clustering techniques developed mainly after publication of Kishida(2003) [147] are
discussed in Chapter 4. After text mining research became active, many novel approaches which
can be applied to DC have been proposed one after another in the fields of statistics, machine
learning, pattern recognition and so on. They are often based on relatively complicated statistics
(e.g., Bayesian model) or matrix algebra, and it is necessary to examine carefully appropriateness
of them to DC problems. So, in Chapters 3 and 4, results from simple experiments of DC for
the main techniques by using a small sample database are also reported in order to obtain deeper
insights on them.

After thorough technical reviews from Chapter 2 to 4, results from three experiments are
reported in Chapter 5 for clarifying empirically,

A. Effectiveness of scalable techniques for term (translation) disambiguation used in the dictionary-
based translation,

B. Effectiveness of the LFC algorithm for monolingual DC in comparison with theoretically
sophisticated techniques, and

C. Effectiveness of the LFC algorithm with dictionary-based translation for large-scale MLDC,

by using some test collections. Experiment A is based on Kishida(2007) [150]. As discussed later,
the dictionary-based translation often generates irrelevant translations because entries of bilingual
dictionaries usually contain many words with different senses. So, selecting appropriate words
from them (i.e., translation disambiguation) is indispensable for CLIR, and many techniques for
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it have been developed so far. Among them, this experiment focuses on some ‘scalable’ methods,
and confirms empirically the effectiveness by using a standard IR test collection (CLEF 2003).

Whereas Experiment A is related to the translation module of MLDC, the target of Experiments
B is clustering algorithm for MLDC, and so, a monolingual (English) test collection produced for
text categorization (Reuters corpora, RCV1) is used in this experiment. Precisely, the experiment
consists of two sub-experiments, first of which is to confirm the effectiveness of the LFC algorithm
in comparison with a spherical k-means algorithm and hierarchical Dirichlet process (HDP) mixture
model which are ‘hot’ clustering algorithms based on iterative computation. It is self-evident that
the LFC algorithm outperforms them in terms of efficiency, and therefore, the effectiveness has
to be checked before proceeding to an attempt of MLDC experiment. In contrast, a purpose
of the second sub-experiment, which is based on Kishida(2010) [152], is to examine additionally
scalability of the LFC algorithm. In the second experiment, larger test collections extracted from
the RCV1 corpus are used for measuring the effectiveness of the algorithm.

Finally, an experiment of the MLDC method using a multilingual test collection (Reuters
corpora, RCV2) is reported, based on Kishida(2011) [154]. In this experiment, some variations of
the MLDC method are examined, and the effectiveness is empirically clarified.
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Chapter 2

Technical Review of Cross-Lingual
Information Retrieval

2.1 Standard Technique for Information Retrieval

This section reviews key concepts and standard techniques for information retrieval (IR). Under-
standing them sufficiently is important for exploring not only cross-lingual information retrieval
(CLIR) but also document clustering (DC) because DC has a close relationship with IR technically.

2.1.1 Boolean searching

In standard IR situations, documents relevant to an ad-hoc query q given from a user has to be
quickly identified from D = {d1, . . . , dN}. Usually, a document d (∈ D) is decomposed into a set
of terms Ω(d) = {t1, . . . , tm} by text processing, and these terms are respectively registered in an
index file enabling to locate each term at very high-speed by a search algorithm such as B-tree,
hashing and so on (see [280]). The simplest search strategy is to extract documents including all
query terms, which formally means that a set of documents to be returned as a search result for q
is determined as

Dq = {d |Ω(q) ⊂ Ω(d)}, (2.1)

where Ω(q) indicates a set of terms in query q. It is easy to identify Dq quickly by using the index
file because a set of documents including term t is recorded in an entry of t in the file. Actually,
Dq in Equation (2.1) is calculated as an intersection of these sets,

Dq =
⋂

t∈Ω(q)

Dt, (2.2)

where Dt is a set of documents including term t [312].
Equation (2.2) indicates that total computational time for finding Dq is approximately propor-

tional to ‘addition’, not ‘multiplication’, of each time taken for identifying respective Dt from an
index file, which guarantees scalability of the IR system. Although syntactic or semantic informa-
tion is inevitably lost by reducing a document into a set of terms, this reduction (often referred to
as ‘bag-of-words architecture’) plays a key role so that IR systems work on a very large document
set.

Similarly, it may be possible to adopt another strategy,

Dq = {d |Ω(q) ∩ Ω(d) �= ∅}, (2.3)

which is operationally computed as

Dq =
⋃

t∈Ω(q)

Dt. (2.4)
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Furthermore, as an natural extension of Equation (2.2) and (2.4), it is feasible to return a search
result for a ‘structured’ query with Boolean operators such as “q = (tOR s)ANDu” where s and
u are also query terms. For this example, Dq is calculated such that

Dq = D(tOR s) ANDu = (Dt ∪Ds) ∩Du. (2.5)

In general, this is called Boolean searching. Also, ‘NOT’ operator is available in addition to
‘AND’ and ‘OR’ operators in Equation (2.5) in most of Boolean searching systems 1. For example,
if “q = tNOT s”, then Dq = DtNOT s = Dt \Ds where \ denotes an operation of a difference set.

2.1.2 Automatic indexing

Tf-idf weighting

In order to enhance search performance, it is crucial to select ‘important’ terms from those included
in each document. For instance, even if a query term appears in a document, the document would
be irrelevant unless a topic or a subject implied by the term is sufficiently discussed in it. A
conventional method for resolving this problem is to count occurrence frequency of the term in the
document, and to assign a weight to the term (i.e., term weight) based on it. If the term frequency
(tf) is higher, then the term is reasonably assumed to be more important in the document 2.

However, it is clearly insufficient to compute the term weight from only the term frequency
because general or ‘non-specific’ terms are often used more frequently in documents and such
terms usually do not have ability to discern relevant documents from irrelevant ones. Historically,
various methods for automatically identifying ‘specific’ (not general) terms to be useful for IR
had been explored as automatic indexing techniques since 1960s (see [172]). Among them, term
weighting based on inverse document frequency (idf) [288] has been generally used from 1970s until
now. For example, it is expected that a term “library” is not useful in a bibliographic database of
‘library science’ because almost every document contains this term. In contrast, “library” would
be able to identify well a specific topic in another database of ‘computer science’ because this
term does not appear ubiquitously in the database. From this example, it is easy to imagine that
document frequency (more precisely, the number of documents including a particular term) plays
a key role for selecting useful index terms. Actually, the effectiveness of idf has been empirically
proven through many IR experiments so far.

In order to compute a weight wij of term tj in document di, tf is usually multiplied by idf. For
instance, it becomes that

wij = fij × log
N

nj
, (2.6)

where fij indicates term frequency of tj in di and nj denotes document frequency of term tj in
D (note that i = 1, . . . , N and j = 1, . . . ,M , i.e., M is the total number of distinct terms in D).
Equation (2.6) is a typical tf-idf weighting, in which a logarithm 3 is used for calculating the idf
factor. The idf factor can be interpreted to measure entropy of the term if nj/N is considered as

1Modern search engines on the Internet would apply ‘document ranking’ to a set specified by Equation (2.2),
basically. When the number of web pages was not so large, there were some engines using the set by Equation (2.4)
in the ranking operation for the target query. It should be noted that many ranking algorithms developed in the
IR field are implicitly assumed to work on the set by Equation (2.4). The strategy was often referred to as partial
match because documents not including all query terms can be listed in the search output. In exact match strategy,
only documents satisfying completely a condition specified by using Boolean operators are included in the output
(often without ranking). Generally, when document ranking is applied to set Dq limited by Boolean operators such
as Equations (2.2), (2.4) or (2.5), it is often called best match strategy.

2This idea can be traced back to Luhn(1958) [199].
3When 2x = y, it is defined that x = log2 y. Also, if ex = y, then x = loge y where e denotes Napier’s

constant (e = 2.718 . . .), which is called ‘natural logarithm of y’. In this thesis, the natural logarithm is basically
assumed and simply written as log y. As to the logarithm, note that log 1 = 0 log(x × y) = log x + log y and
log(x÷ y) = log x− log y. In particular, it follows that

log(x1 × x2 × . . .× xm) = log

m∏
i=1

xi =

m∑
i=1

log xi = log x1 + log x2 + . . .+ log xm,

where
∑m

i=1 yi = y1 + . . . + ym and
∏m

i=1 yi = y1 × . . . × ym. This mathematical conversion will be often used in
successive chapters.
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a probability that the term is contained in a document drawn randomly from D 4. Some other
variations of tf-idf weighting have been proposed in the IR field.

Two-Poisson model

In total, m tokens are supposed to be included in a document 5, and a term is assumed to be
randomly chosen from a vocabulary with probability p as each token here. If the selection is
tried independently each other (i.e., a Bernoulli trial), then the probability P (x) that a particular
term selected with a probability p appears x times in a document can be computed by a binomial
distribution,

P (x) = mCx p
x(1− p)m−x, x = 0, 1, 2, . . . ,m, (2.7)

where mCx = m!/[x!(m − x)!] which is called ‘binomial coefficient’ 6. If m is so large and p is so
small, then the Poisson distribution,

P (x) =
e−λλx

x!
, x = 0, 1, 2, ..., (2.8)

is more appropriate where λ = mp and λ is a mean of the distribution 7.
Although this model is based on a non-realistic assumption on document writing by human,

the Poisson distribution has been often used in the IR or natural language processing (NLP) fields.
For instance, in automatic indexing, whether tj is selected as an index term of di or not can
be decided based on a probability P (x ≥ fij) following a Poisson distribution with a parameter

λ = N−1
∑N

i=1 fij (i.e., an average frequency of this term per document) [73]. If the probability is
so small (e.g., < 0.05), then term tj can be interpreted to appear extraordinarily often in document
di, which leads to selecting it as an index term of this document.

Whereas a single Poisson distribution is possibly enough to describe frequencies of a ‘non-
specific’ term, it may be appropriate for a ‘specific’ term to use two-Poisson model (2P model)
[34, 117],

P (x) = a
e−λλx

x!
+ (1− a)

e−λ′
λ′x

x!
, (2.9)

where λ is an average frequency of the specific term within a set of documents relevant to the
subject implied by the term and λ′ is one among irrelevant documents (a is a mixing parameter,
i.e., 0 < a < 1). If the two distributions are completely separated with a boundary x = b, then
it is enough to take a simple strategy that term tj is teated as an index term for only documents
in which its frequency fij is over b (i.e., fij > b). In contrast, when two distributions are crossing
each other (e.g., see Figure 4.1 in Chapter 4), a conditional probability that document di belongs
to a set of documents relevant to tj ,

P (di ∈ DR|x = fij) =
P (di ∈ DR, x = fij)

P (x = fij)
=

ae−λλfij

ae−λλfij + (1− a)e−λ′λ′fij , (2.10)

is computed based on Equation (2.9) where DR indicates the set of relevant documents 8, and
then, tj is adopted as an index term if its probability is over a threshold [118].

4If nj/N is regarded as a probability that a document drawn randomly from the entire set includes term tj ,
then log(N/nj) could be considered as ‘entropy’ of tj . Basically, entropy is defined as log p−1 = − log p where p is
a probability that an event occurs (in this case, p = nj/N).

5For example, a sentence “This apple is that apple” includes two tokens of word “apple” and m = 5.
6Note that x! = x × (x − 1) × (x − 2) × . . . × 3 × 2 × 1. The binomial coefficient represents the number

of combinations when x objects are selected from m objects (x ≤ m). If m = 5, x = 3 and p = 1/4, then
P (3) = [5!/(3!2!)](1/4)3(3/4)2. Or, when m = 5, x = 5 and p = 1/4, P (5) = [5!/(5!0!)](1/4)5(3/4)0 = 1× (1/4)5×1
because x0 = 1 and 0! = 1 by its definition.

7In general, x−y = 1/xy , and specially, x−1 = 1/x and x−1/2 = 1/
√
x. As to exponential computation, note

that xy × xz = xy+z and xy ÷ xz = xy−z , and (xy)z = xz × yz . The Poisson distribution can be obtained by a
limit of binomial distribution when p → 0 and m → ∞ under a condition that mp = λ = constant.

8Conditional probability P (y|x) is defined such that P (y|x) = P (x, y)/P (x) where P (x, y) denotes a ‘joint
probability’ of random variables x and y. Also, in this case, P (x) is ‘marginal probability’ of P (x, y) and P (x) =∑

y P (x, y) if x and y are discrete variables. Note that
∑

y means the sum of P (x, y) for all possible values of y
here.
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2.1.3 Vector space model

Unlike traditional IR systems such as conventional OPAC systems, prototype systems developed
by IR researchers and search engines on the Internet usually try to rank documents in Dq of
Equations (2.2), (2.4) or (2.5) in decreasing order of relevance to a given query. The ranked output
would reduce information overload of users in checking search results if the degree of relevance is
correctly estimated by IR systems. The degree is often called ‘document score’ or ‘retrieval status
value (RSV)’[33], which is computed based on weights of terms contained in each document. The
document score is denoted by vi where index i indicates document di.

Vector as subject representation

In vector space model [270, 269], which is one of the earliest IR models for ranked output 9,
documents and queries are algebraically expressed as vectors whose elements are term weights
such as Equation (2.6), and each document score for a given query is calculated as cosine of the
angle between vectors of them (see Figure 3.1 in Chapter 3). A vector of document di (i = 1, . . . , N)
can be written as

di = [wi1, wi2, . . . , wiM ]T , (2.11)

and similarly, the query vector is constituted as q = [wq1, . . . , wqM ]T where wqj is a weight of
term tj in the query (j = 1, . . . ,M) 10. The vector is interpreted as a subject representation of
documents or queries, and topical similarity between two representations is measured as a cosine
coefficient. For instance, the similarity of representation between document di and query q, which
is denoted by s(di,q), can be computed as

s(di,q) =
dT
i q

‖di‖ ‖q‖
=

∑M
j=1 wijwqj√∑M

j=1 w
2
ij

√∑M
j=1 w

2
qj

, (2.12)

where 0 ≤ s(di,q) ≤ 1 if all term weights are non-negative. The value of s(di,q) can be reasonably
used as a di’s document score vi for ranked output.

In Equation (2.12), an inner product of two vectors is divided by a product of norms of them,
which means that the length of both vectors is normalized 11. The normalization of vector length
is expected to work for preventing that similarity values of longer documents are overestimated
regardless of their relatedness to the query.

Term weighting in vector space model

The formula of cosine coefficient in Equation (2.12) is basically decomposed into three parts: (a)
term weighting in document, wij , (b) term weighting in query, wqj , and (c) normalization [267].
For instance, a simple strategy is to set the parameters such as

9Vector space model had been constructed by a research group of G. Salton in the process of developing
SMART[266] since 1961, which was an advanced IR system at that time.

10For instance, vector x can be defined by putting two real numbers, x1 and x2, into a column such that

x =

[
x1

x2

]
= [x1, x2]

T ,

where T means transposition of columns and rows (i.e., x is a column vector and xT is a row vector). In particular,
x is a two-dimensional vector because two numbers are placed in the column. Addition and subtraction of two
vectors are computed as[

x1

x2

]
+

[
y1
y2

]
=

[
x1 + y1
x2 + y2

]
,

[
x1

x2

]
−

[
y1
y2

]
=

[
x1 − y1
x2 − y2

]
,

respectively. Also multiplication of two vectors is defined such that

xTy = [x1, x2]

[
y1
y2

]
= x1y1 + x2y2, xyT =

[
x1

x2

]
[y1, y2] =

[
x1y1 x1y2
x2y1 x2y2

]
.

The former xTy is called ‘inner product ’ and its computational result becomes a single number. In contrast, outcome
of xyT is a matrix with two columns and two rows (i.e., a 2 × 2 matrix). If k is a number (which is often called
‘scalar’), then simply kxT = k[x1, x2]T = [kx1, kx2]T .

11Namely, the norm can be interpreted as a length of the vector, which is defined as ‖x‖ =
√
xTx.

8



• wij = fij × logN/nj ,

• wqj = fqj × logN/nj ,

• normalization by
√∑M

j=1 w
2
ij ×

√∑M
j=1 w

2
qj ,

where fqj denotes a frequency of term tj in the query. Otherwise, as a variation, an inner product
of two vectors whose elements are

wij =
(log fij + 1.0)× log(N/nj)√∑M
j=1[log(fij + 1.0)× log(N/nj)]2

, (2.13)

and

wqj =

(
0.5 + 0.5

fqj
maxj=1,...,M fqj

)
× log

N

nj
, (2.14)

respectively, may be used as s(di,q) with no more explicit normalization [43] because normalizing
factors are already included in definitions of wij and wqj (strictly, if fij = 0, then wij is assumed
to be zero in Equation (2.13)). As shown in these instances, many variations for computing the
similarity measure can be explored in the framework of vector space model [267, 113].

Pivoted document length normalization

In a situation that longer documents tend to be more relevant, the normalization by norms would
not work positively, and it may be better to reduce the normalizing factor (i.e., ‖di‖ × ‖q‖) for
longer documents and to increase it for shorter ones. In the pivoted document length normalization
scheme [285], the document score is computed such that

vi = s(di,q) =

∑M
j=1 wqjwij

(1.0− sl)pv + slw̃i
, (2.15)

where w̃i = (
∑M

j=1 w
2
ij)

1/2 × (
∑M

j=1 w
2
qj)

1/2, pv indicates a ‘pivot’ used for changing values of the
normalizing factor between shorter and longer documents (e.g., an average of w̃i is used as pv such

that pv = N−1
∑N

i=1 w̃i), and sl is a constant. If sl < 1.0, then the normalizing factor of longer
document di where w̃i > pv is proportionally decreasing (note that the denominator of Equation
(2.15) is converted into pv + sl(w̃i − pv)), and it is expected to avoid underestimating score of
longer documents to be relevant.

2.1.4 Probabilistic IR model

In probabilistic IR model which is another prevailing model for ranked output, each document scores
is theoretically estimated based on a quantity P (R|di, q), which means a conditional probability of
relevance (denoted by R) when document di and query q are given 12. Since di is usually replaced
by vector representation di in the same manner as vector space model, the probability becomes
P (R|di, q) [256].

Classical binary independent model

According to Bayes’ formula 13,

P (R|di, q) =
P (di|R, q)P (R|q)

P (di|R, q)P (R|q) + P (di|R̄, q)P (R̄|q) , (2.16)

12If x = 1 means an event that term t1 appears in a document and y = 1 indicates another event that term t2
appears in a document, then P (x = 1, y = 1) corresponds to the probability that both terms appear in a document.
Thus, P (x = 1|y = 1) indicates the probability that a document in which t2 appears includes t1.

13Bayes’ formula can be derived from the definition of conditional probability, P (x|y) = P (x, y)/P (y) =
P (y|x)P (x)/P (y), which gives a relation between P (x|y) and P (y|x).
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Table 2.1: Numbers of relevant and irrelevant documents for a query

relevant irrelevant Total
tj appears rj nj − rj nj

tj does not appear R− rj N −R− nj + rj N − nj

Total R N −R N

where R̄ indicates irrelevance, and its logit conversion log[P/(1− P )] becomes

O(R|di, q) = log

[
P (di|R, q)P (R|q)
P (di|R̄, q)P (R̄|q)

]
= log

[
P (di|R, q)

P (di|R̄, q)

]
+ C1 (2.17)

where C1 = log[P (R|q)/P (R̄|q)] (i.e., C1 is constant for all documents).
If binary document vector such that di = [0, 1, 1, . . . , 0]T in which ‘1’ indicates that the cor-

responding term appears in the document and ‘0’ does not is adopted, and term independence in
computing P (di|R, q) is assumed 14, then it becomes

P (di|R, q) =
M∏
j=1

P (tj |R, q)xij [1− P (tj |R, q)]1−xij , (2.18)

where P (tj |R, q) is a probability that tj appears in documents relevant to q, and xij indicates j-th
element in the binary vector of di (i.e., xij = 1 or xij = 0). Similarly, P (di|R̄, q) is also represented
in the same form as Equation (2.18) by replacing P (tj |R, q) with P (tj |R̄, q). Therefore, finally,
Equation (2.17) becomes

O(R|di, q) =

M∑
j=1

xij log
P (tj |R, q)[1− P (tj |R̄, q)]

[1− P (tj |R, q)]P (tj |R̄, q)
+ C1 + C2, (2.19)

where C2 = log
∑M

j=1[1− P (tj |R, q)]/[1− P (tj |R̄, q)] that is also constant for all documents.
It is easy to estimate probabilities in Equation (2.19) by using term occurrence statistics shown

in Table 2.1 such that
P̂ (tj |R, q) = rj/R, (2.20)

P̂ (tj |R̄, q) = (nj − rj)/(N −R), (2.21)

where rj is the number of relevant documents including tj and R is the total number of relevant
documents. By substituting them into Equation (2.19) and neglecting C1 and C2, it becomes

O(R|di, q) � Õ(R|di, q) =

M∑
j=1

xij log
rj(N −R− nj + rj)

(R− rj)(nj − rj)
, (2.22)

which is the classical binary independent model [257]. If statistics in Table 2.1 can be estimated,
then it is possible to use Õ(R|di, q) in Equation (2.22) as document score vi.

If putting that uj = log[rj(N −R−nj + rj)]/[(R− rj)(nj − rj)], then Equation (2.22) is simply

written as
∑M

j=1 xijuj . Table 2.1 is a kind of 2× 2 contingency table, and therefore, 0.5 should be
added in each cell as a correction for a small sample [254], which leads to

uj = log
(rj + 0.5)(N −R− nj + rj + 0.5)

(R− rj + 0.5)(nj − rj + 0.5)
. (2.23)

Equation (2.23) has been often used as a formula for term weighting in IR.

14If x is probabilistically independent of y, then it follows that P (x|y) = P (x). By definition of conditional prob-
ability, a joint probability P (x, y, z) is transformed such that P (x, y, z) = P (x, y|z)P (z) = P (x|y, z)P (y|z)P (z).
Thus if the three variables are independent each other, then P (x, y, z) = P (x)P (y)P (z). More generally,
P (x1, . . . , xm) =

∏m
j=1 P (xj) if all variables are independent.
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Okapi formula

A method for removing the ‘binary assumption’ in Equation (2.22) is to replace binary variable
xij by functions of term frequencies, g(fij) and g(fqj). Thus it becomes

Õ(R|di, q) =

M∑
j=1

g(fij)g(fqj) log
(rj + 0.5)(N −R− nj + rj + 0.5)

(R− rj + 0.5)(nj − rj + 0.5)
(2.24)

(note that Equation (2.23) is used as uj in this equation). For instance, in the Okapi system
[258, 259], it is supposed that

g(fij) = log
P (fij |R, q)/P (fij = 0|R, q)

P (fij |R̄, q)/P (fij = 0|R̄, q)
, (2.25)

and a two-Poisson model which is more complicated than Equation (2.10) is used for describing
P (·) in this equation. Because the resulting function g(fij)×g(fqj) becomes too complicated, some

approximations are introduced for computation of Õ(R|di, q) such that

g(fij) ≈ c1
fij

k1[(1− b) + b(li/l̄)] + fij
, (2.26)

and,

g(fqj) ≈ c3
fqj

k3 + fqj
, (2.27)

where li indicates document length of di (i.e., li =
∑M

j=1 fij), l̄ = N−1
∑N

i=1 li, and b, c1, c3, k1 and
k3 are parameters.

If a set of parameters such that

c1 = k1 + 1, c3 = k3 + 1, k1 = 2.0, k3 = ∞, b = 0.75,

are adopted and it is assumed that R = rj = 0 when any relevance assessment is not made by
users, then Equation (2.24) becomes

Õ(R|di, q) =

M∑
j=1

3.0 fij
0.5 + 1.5(li/l̄) + fij

× fqj × log
N − nj + 0.5

nj + 0.5
, (2.28)

which is called Okapi BM25 formula [259]. In Equation (2.28), it is possible to interpret log(N −
nj + 0.5)/(nj + 0.5) as an idf factor and also 1.5(li/l̄) as a normalizing factor. This implies that
the Okapi formula consists of tf-idf weights and document length normalization in the same way
as vector space model.

Language modeling for IR

Generally, language model means a probabilistic distribution of term occurrence in a language. If a
probability of generating a set of query terms from a language model derived from each document
can be computed, then it is possible to use it as a document score for ranked output in IR [126, 239]
such as vi = P (Ωq|Mi) where Mi denotes a language model estimated from di. Furthermore, an
assumption of term independence enables to write it as P (Ωq|Mi) =

∏
j:tj∈Ωq

P (tj |Mi).
Typically, a formula,

P (tj |Mi) = aP (tj |di) + (1− a)P (tj), (2.29)

is often used where P (tj |di) means an empirical probability that term tj appears in document di,
P (tj) indicates a general probability that term tj is used in documents, and a is a mixing parameter
(0 ≤ a ≤ 1). Note that P (tj) in Equation (2.29) prevents that P (Ωq|Mi) becomes always zero
unless all query terms appear in the document (i.e., so-called ‘zero-frequency problem’).

When P (tj |di) is estimated as fij/li and P (tj) as nj/N , P (Ωq|Mi) can be written as

P (Ωq|Mi) =
∏

j:tj∈Ωq

a
fij
li

+ (1− a)
nj

N
. (2.30)
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By multiplying ε =
∏

j:tj∈Ωq
(anj)

−1 to both the sides of Equation (2.30),

εP (Ωq|Mi) =
∏

j:tj∈Ωq

a

anj

fij
li

+
(1− a)

anj

nj

N
=

∏
j:tj∈Ωq

[
1

nj

fij
li

+
(1− a)

aN

]
, (2.31)

is obtained, which means that this formula contains tf-idf weights and document length normal-
ization like other IR models [126] (note that ε is constant for all documents).

Equation (2.29) is generally called Jelinek-Mercer smoothing. Meanwhile, in the case of Bayesian
smoothing using the Dirichlet distribution as a prior,

P (tj |Mi) =
fij + ηP (tj)∑M

j=1 fij + η
(2.32)

is used where η is a predefined parameter (e.g., η = 2000) [333]. In general, other smoothing
techniques have been developed, and it may be possible to apply them for ranking documents in
IR.

Other probabilistic IR models

In addition, there are many probabilistic IR models such as the logistic regression model [104], the
Bayesian inference network [47], the DFR (divergence from randomness) model [8], and so on.

2.1.5 Query expansion

IR models for ranking documents would not work well in real situations unless information needs
from users are correctly and sufficiently represented as search requests or queries to the IR system.
However, it is not easy for actual users to come up with appropriate terms representing their needs
because usually the users try to search for what they do not know enough. Actually, transaction
log analyses using data from operational search engines have revealed that users enter only around
two words as search terms on average (e.g, see [204] for exact statistics). In order to alleviate the
short query problem, query expansion techniques have been explored for adding relevant terms
automatically or semi-automatically to original short queries from users.

Thesaurus-based expansion

In practical IR services, thesaurus-based expansion has been manually attempted by users or
experts (e.g., librarians). One of the most famous thesauri would be the MeSH (Medical Subject
Headings), which provides a controlled vocabulary including synonyms and related terms (RTs)
of each medical concept as well as its hypernyms (broader terms: BTs) and hyponyms (narrower
terms: NTs). It is possible to enrich original queries by referring to such kind of thesauri (e.g, see
[192] using the WordNet as a thesaurus for query expansion).

When synonymous relationships are formally represented as an M ×M matrix

M = [τjk], j, k = 1, . . . ,M, (2.33)

where τjk = 1 if term tj is a synonym of term tk and otherwise τjk = 0, original query q can be
converted as q′ = Mq [269, 243] 15. If j-th element of q is defined simply as fqj (i.e., wqj = fqj),
then fqj is added to k-th element of new query vector q′ when τjk = 1. In the case that tk is not
included in the original query, this means that synonymous term tk is newly added.

15More specifically, if M = 3 is assumed, then

q′ = Mq =

⎡
⎣ τ11 τ12 τ13

τ21 τ22 τ23
τ31 τ32 τ33

⎤
⎦
⎡
⎣ wq1

wq2

wq3

⎤
⎦ =

⎡
⎣ w′

q1

w′
q2

w′
q3

⎤
⎦ .

An n × m matrix can be constituted by juxtaposing m n-dimensional vectors. Multiplication of two matrices
(including vectors as an n× 1 matrix) such as AB = C is feasible only when the number of columns in A is equal
to the number of rows in B. Namely, if A is an n × m matrix and B is an m × k matrix, then the multiplication
is allowed and the resulting C becomes an n × k matrix. In this case, (i, j)-element of C is computed as an inner
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Otherwise, it is feasible to define τjk as

τjk =

∑N
i=1 wijwik√∑N

i=1 w
2
ij

√∑N
i=1 w

2
ik

, (2.34)

where wij and wik are term weights like that in Equation (2.6) [292]. It should be noted that τjk in
Equation (2.34) is computed as a cosine measure between two N -dimensional term vectors whose
i-th element is a term weight in document di according to the vector space model. The matrix
M = [τjk] based on Equation (2.34) is often called statistical thesaurus or similarity thesaurus,
which can be automatically constructed from a corpus unlike the MeSH and other standard thesauri
16.

Relevance feedback

If some relevant documents are known a priori, then appropriate terms not included in the original
query can be extracted from them. Also, it is possible to get such relevant documents by asking
actual user to select those from a result obtained by searching for the original query. This is
called relevance feedback. A well-known term re-weighting technique based on relevance feedback
is Rocchio’s method [260], in which the original query is modified such as

q′ = αq+
β

|DR|
∑

i:di∈DR

di −
γ

|DR̄|
∑

i:di∈DR̄

di, (2.35)

where DR denotes a set of relevant documents, DR̄ is a set of irrelevant documents, and α, β and
γ are parameters [268] (e.g., α = 16, β = 8 and γ = 4) 17. As shown in Equation (2.35), weights
of terms that tend to be included in relevant documents become larger and vice versa, and in this
framework, not only new terms may be added but also weights of original query terms may be
changed.

Pseudo-relevance feedback (PRF) is a technique of using the relevance feedback with no rele-
vance information by supposing compulsorily that top-ranked documents are relevant. Namely, an
initial search run is executed by using an original query, and then, the second run uses a new query
obtained by a relevance feedback technique under an assumption that top-ranked documents (e.g.,
up to 10th rank) are relevant.

In order to extract useful terms from the top-ranked documents, the term weight in Equation
(2.23) is often used. More specifically, after ranking terms included in DR by weight such that

ωj = rj × uj = rj × log
(rj + 0.5)(N −R− nj + rj + 0.5)

(R− rj + 0.5)(nj − rj + 0.5)
, (2.36)

top-ranked terms (e.g., up to 30th rank) can be considered as new search terms to be added to
the original query (it should be noted that R = 10 if ten top-ranked documents are assumed to be
relevant). When original query terms are included in the list of top-ranked terms, weights of the
terms are usually changed (i.e., re-weighting). An example of heuristic rule for re-weighting is to
change weight wqj into 1.5 × wqj for original query terms and to set wqj = 0.5 for newly added
terms.

From results of many IR experiments, it is empirically known that PRF tends to improve
performance in comparison with its initial searching. Whereas thesaurus-based expansion reflects
a macro trend in a topic area or in a corpus regardless of context of each query, the PRF tries to

product of i-th row of A and j-th column of B. For instance,

AB =

[
a11 a12 a13
a21 a22 a23

]⎡⎣ b11 b12
b21 b22
b31 b32

⎤
⎦ =

[
aT
(1)

aT
(2)

] [
b1 b2

]
=

[
aT
(1)

b1 aT
(1)

b2

aT
(2)

b1 aT
(2)

b2

]
,

where a(i) denotes i-th column vector of matrix AT . Note that [AB]T = BTAT .
16It should be noted that some researchers have suspected effectiveness of applying similarity thesaurus derived

from term co-occurrence statistics [185, 231].
17When A is a set, |A| denotes the number of elements included in A.
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extract new terms from a partial set of documents that are expected to be relevant to it. Because
the result of macro-level analysis is not always appropriate to a given query, the PRF based on
micro-level analysis would be better.

Of course, the PRF is not a perfect tool. For instance, when almost no ‘true’ relevant docu-
ment is included in the set of top-ranked documents, the PRF would inevitably deteriorate the
performance. In general, it is difficult to predict automatically whether PRF has a positive effect
for a given query or not.

2.1.6 Text processing

Word segmentation

In order to decompose each document into a set of terms and to register them into an index file, word
segmentation (or tokenization) has to be executed beforehand as an operation of text processing. It
is relatively easy to automatically identify each word from the target text in the case that a space is
explicitly inserted between words like in English. For example, “Introduction to Database Manage-
ment Systems” is naturally decomposed into “Introduction/to/Database/Management/Systems”
by checking each space.

After a functional word such as “to” was removed as a stopword, remaining words are adopted
as index terms (they are sometimes called ‘content-bearing words’). Usually, before these terms
are sent to the index file, case normalization is applied (e.g., changing “Database” to “database”)
for preventing failure of string matching in the step of searching the index file.

As another normalization for string matching on the index file, IR systems often incorporate
automatic stemming, by which suffix is removed and a stem is extracted from a word. In the above
example, “systems” would be converted to “system” by a stemming algorithm (or stemmer) 18.
Although harmful words are sometimes yielded by over-stemming (e.g., in the case that “factory”
is converted to “factor”), it is expected that the stemming reduces search failure of relevant doc-
uments. Also, for a similar objective, lemmatization for normalizing derivative words (e.g., “are”)
into a primitive form (e.g., “be”) is sometimes used in some languages.

In the case of languages in which there is no explicit word boundary (e.g., Japanese or Chinese),
it is necessary to apply a more complicated algorithm for determining each index term. A basic
technique is to extract a character string identical to an entry term of amachine-readable dictionary
(MRD). Suppose that a text is “abcdefghijk”, and “cde” and “hijk” are registered in an MRD
as entries. By matching the text with each headword of entries in the MRD, it is feasible to
break down the text such as “ab/cde/fg/hijk”, where “ab” and “fg” are not registered in the
MRD (i.e., unknown words) 19. Also, a morphological analyzer developed for natural language
processing (NLP) can be employed, if available. For example, Japanese morphological analyzers
provide usually two functions, word segmentation and part-of-speech (POS) tagging, which enable
to indexing Japanese text for IR systems 20.

Phrase identification

In order to enhance search effectiveness, it is important to identify phrases or compound words in
a text. For example, if a query “hot dog” is simply decomposed into “hot” and “dog”, then the
search becomes equivalent to a simple Boolean formula “hot AND dog” (or “hot OR dog”), which
possibly yields many irrelevant documents.

To solve this problem, it may be necessary to adopt another search algorithm by which a
character string can be located as it is in the text, not based on explicit extraction of index
terms. For example, the phrase search function equipped in a search engine allows to find web
pages including a representation “I have an apple in my hand” as it is. One of the algorithms for
enabling to execute such searches is suffix tree (see [280]).

18In IR, Porter’s stemming algorithm [240] is widely used for some languages. Its source code can be downloaded
from a web site of the Snowball project by Porter (see Chapter 5).

19This technique can be applied to decomposition of compound words in German and other languages (see Sections
5.2 and 5.4).

20Another powerful technique is to extract automatically character-based overlapped n-grams from Japanese or
Chinese text instead of identifying correctly words. In the case of n = 2, they are called bi-grams, and when n = 1,
uni-grams. However, for executing CLIR, it would be necessary to identify words linguistically in most of cases.
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In the case of using conventional index files, phrases or compound words have to be found in
the process of indexing. If a dictionary of phrases or compound words is available, then they can be
detected by matching operation with entry terms of the dictionary. Another simple method with-
out such a dictionary is to extract automatically word-based n-grams from text and to use them
as index terms. For example, word-based bi-grams in a text “database management systems” are
“database management” and “management systems” and its tri-gram becomes “database manage-
ment systems” as it is. Otherwise it may be possible to apply POS tagging for identifying phrases,
namely, ‘noun-noun’ or ‘adjective-noun’ sequences of words would be reasonably assumed to be
phrasal representations.

Proximity operators

If positions at which each word is appearing in a document are recorded in an index file, then
more flexible phrase searching is possible by using the positional information. Suppose that there
are two character strings, (a) “A medical library ...” and (b) “A library of medical science ...”.
In (a), the positions of “medical” and “library” are 2nd and 3rd, respectively, and in (b) 4th and
2nd. A simple calculation 2 − 3 = −1 means that the two words are adjacent in this order and
4 − 2 = +2 indicates that the two words appear in the reverse order with an interval word. This
information may allow users to specify a range and the order of occurrence of search terms so as
to cover some variations of a phrasal representation. Actually, some IR systems have provided
‘proximity operators’ for this purpose (see [142] for details).

2.1.7 Relevance and its assessment

The objective of IR is to find documents relevant to users’ information needs. However, the
relevance is not a simple concept, which has historically led to many different interpretations
[272]. For obtaining an overview of them, it is convenient to consider an IR process as a series of
four elements, (a) problem situation, (b) information need, (c) search request and (d) query. An
information need is derived from a problem situation in which the user has an unsolved question.
For solving it, the information need is translated into a search request, or query that IR systems
can understand, and actual searches are executed based on them. In general, information needs
are assumed to be existing in mind of each user and to be not represented in any verbal form
whereas a search request is verbal manifestation of the information need. Also, a query can be
interpreted as a special search request tailored for a specific IR system. Search requests have to be
produced by end-users to communicate with reference librarians or IR specialists (i.e., searchers)
in IR services.

The degree to which the subject of a document is coincident with the search request or query is
related to a concept of topicality, which can be considered as ‘objective’ relevance because someone
rather than the user having the information need can assess topicality of a document based on the
written (or spoken) statement as a search request or query. In contrast, a relationship between
the information need and the subject of a document is often referred to as pertinence. Since the
information need can be recognized only by the user, the pertinence is considered as ‘subjective’.

In library and information science, ‘situationality’ and dynamic nature of the relevance concept
as well as its subjectivity are often emphasized by the researchers adopting user-oriented approaches
(see [277]). For instance, the degree to which a document is relevant varies as the problem situation
is changed with time even if the same user always judges the degree of relevance.

Furthermore, objectively or subjectively relevant documents sometimes are assessed according
to the following concepts (see [271, 272, 273]):

• Novelty. Whether the information brought by the document is already known for the user
or not.

• Understandability. Whether the document is readable for the user or not.

• Informativeness. The document can be considered as informative when the document has
novelty and understandability.

• Usefulness. Whether the document is actually useful for solving the user’s problem or not.
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2.1.8 Retrieval experiment

Test collection

In attempt to develop a new retrieval technique or model, it is indispensable to verify empirically
its effectiveness through a retrieval experiment. A test collection consisting of (a) a document
set, (b) search requests and (c) lists of documents relevant to the search requests, is usually used
for measuring how well the new technique or model finds relevant documents from the set in the
retrieval experiment. The special search request for the retrieval experiment is often called search
topic.

Various test collections have been constructed and employed in the history of IR research.
Especially, TREC (Text REtrieval Conference) [310] in USA is well-known as a research project
successfully enlarging size of document sets included in the test collection. Before TREC, most of
the document sets was too small because it is necessary for creating the list of relevant documents to
scan manually the entire set of documents, which prevented from adopting a large set of documents
in retrieval experiments 21. In TREC, the experiments have been organized as a collaborative
project in which many research groups participate, and a list of documents relevant to a search
topic has been created typically by checking manually not the entire set but a union of document
sets returned by IR systems of the groups for the topic. This technique is called pooling method.
Although the union of sets does not always include all relevant documents, it is expected that
enough number of relevant documents for evaluating search effectiveness are contained in the set
if each IR system sufficiently picks up relevant documents.

After TREC, the pooling method is widely adopted for creating test collections (e.g., NTCIR,
CLEF and so on), and the document sets in retrieval experiments become sufficiently large. Fur-
thermore, since TREC-type collaborative works enable to compare easily performance between the
IR systems, research and development on IR have been largely prompted, and consequently, rapid
enhancement of IR techniques has been brought by them since mid-1990s.

Performance measure and statistical test

(1) Precision and recall
Traditional indicators for evaluating a search output are precision and recall, which are defined
as vp = r/n and vr = r/R, respectively, where r is the number of relevant documents included
in the search result with size n (i.e., n is the number of documents in the list) and R is the total
number of relevant documents in the target database 22. It is clear from the definitions that the
two indicators measure different aspects of search performance (or search effectiveness). If many
irrelevant documents are included in the search result, then precision becomes low. In contrast,
recall becomes low when many relevant documents fail to appear in the search result. In most of
cases, an inverse relationship between the two indicators is observed [67]. For instance, when a
non-specific term in a query is replaced by a more specific one, precision often increases and recall
decreases. The inverse relationship (or a kind of ‘trade-off’) is only an empirical regulation but
gives important suggestions that it is difficult to obtain optimum search results, both the precision
and recall of which are 1.0, and that it is insufficient in IR evaluation to use only either of the two
indicators.

(2) F-measure
When a single-value indicator is needed for evaluation, ‘harmonic mean’ of the precision and
recall is often computed in retrieval experiments such as vF = 2/(v−1

p + v−1
r ), which is called F-

measure. Unlike standard ‘arithmetic mean’, a large value does not always have significant impact
on the magnitude of harmonic mean. For example, when vp = 0.1 and vr = 0.8, it becomes that
vF = 0.177. Even if vr increases to 0.9, the resulting value of F-measure is 0.18 and there is
almost no change. In contrast, for the case that vp = 0.2 and vr = 0.8, vF amounts to 0.32, which
indicates that the change from 0.1 to 0.2 leads to a substantial increase of F-measure compared to

21The first retrieval experiment was conducted by M. Taube in 1953 [110], which was followed by the Cranfield
test in UK (e.g., [68]). TREC succeeds to a part of methodology used in the Cranfield test. History on retrieval
experiments and test collections was described in [290, 289].

22Such kind of indicators was already used in 1950s [144].
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the change from 0.8 to 0.9. The F-measure has a property of ‘indifference curve’ which plays an
important role in the theory of consumer preference in microeconomics [307], and as this example
shows, a value at lower-level satisfaction has more contribution to the resulting score of F-measure.

When different weights reflecting user satisfaction should be put on precision and recall, weighted
harmonic mean 1/[av−1

p + (1 − a)v−1
r ] is available where a is a parameter (0 ≤ a ≤ 1) indicat-

ing relative importance of precision against recall. In the case that users are assumed to prefer
precision-oriented searching in an retrieval experiment, then a would be set to over 0.5.

(3) Average precision and recall-precision curve
In the case of ranked output based on a best match strategy such as vector space model, the
precision is sometimes computed after extracting a set of top-ranked documents according to a
cutoff level predefined as a parameter in an experimental design. As to the cutoff levels, 10, 30,
50, 100, 500 and 1000 has been conventionally used in retrieval experiments, and for example,
precision of 10 top-ranked documents in a search result is often denoted by ‘P@10’. Otherwise, if
the total number of relevant documents R is used as the cutoff level for computing the precision,
then the score is called R-precision [46]. The value of R is usually given a priori for each search
topic in the test collection.

However, these special variations of precision are not sufficiently sensitive to changes of ranking.
Suppose that there are only two relevant ones included in 10 top-ranked documents. The score of
P@10 for a list in which two relevant documents are ranked 1st and 2nd respectively is identical
to that in which 9th and 10th ranked documents are relevant (i.e., P@10 = 0.2 in both the cases).
Therefore, most of experiments for ranked output has employed other rank-sensitive indicators
such as average precision, which is defined by

va =
1

R

n∑
i=1

Ir(i)vp(i), (2.37)

where vp(i) represents a precision score for the set from first to i-th ranked documents (i.e., ‘P@i’),
n denotes size of ranked output list as before (usually, n = 1000), and Ir(i) is an indicator function
such that

Ir(i) =

{
0 if i-th ranked document is irrelevant
1 if i-th ranked document is relevant

. (2.38)

Namely, va is an average of precision scores computed from the top to each relevant document
respectively [46].

Let Δva(j) be an amount of increment in average precision score with the change of the j-th
document from irrelevant to relevant (where j ≤ n). From Equation (2.37), it is clear that

Δva(j) =
1

R

⎛
⎝vp(j) +

n∑
k=j+1

k−1Ir(k)

⎞
⎠ , (2.39)

if R is unchanged [148]. Under an assumption that the (j+1)-th document is irrelevant at the time
of computing Δva(j), and that the j-th document is also irrelevant when Δva(j+1) is considered,
it becomes that Δva(j) > Δva(j + 1) because always vp(j) > vp(j + 1) and

n∑
k=j+1

k−1Ir(k) =
n∑

k=j+2

k−1Ir(k), (2.40)

according to the assumption. This result indicates rank-dependent nature of va. Namely, higher-
ranked relevant documents contribute more to increment of the average precision score.

In retrieval experiments, the average precision score is computed for each search topic, and these
scores are again averaged over all topics. This average is called mean average precision (MAP),
which is often used for measuring effectiveness of an IR system (or model) in an experiment using
a test collection. For comparing search effectiveness between two IR systems A and B, it is feasible
to use the difference of their MAP scores v̄Aa and v̄Ba ,

v̄Aa − v̄Ba ≡ 1

H

H∑
h=1

vAa [h]−
1

H

H∑
h=1

vBa [h] =
1

H

H∑
h=1

(vAa [h]− vBa [h]), (2.41)
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where vAa [h] and vBa [h] are average precision scores of system A and B, respectively, for h-th topic
(h = 1, . . . , H).

Otherwise, it is possible to compare search performance between two lists of ranked output by
using recall-precision curve, which is a plot measuring recall on the x-axis and precision on the
y-axis. For drawing the curve, first, eleven values of precision corresponding to recall levels from
0.0, 0.1, . . ., 1.0 are computed for each topic. The precision value for h-th topic at recall level θk
is denoted by vp[h; θk] (h = 1, . . . , H; k = 1, . . . , 11). It is necessary for determining the values to
apply an interpolation technique because there would not be always an exact value equal to a level
of recall. For instance, when R = 3, recall scores of the search run are inevitably limited to 0.333,
0.666 and 1.0.

In this case, if relevant documents are ranked 1st, 4th and 10th respectively, then pairs of
recall and precision values within a range from the top to each rank can be written as (0.333, 1.0),
(0.666, 0.5) and (1.0, 0.3). An interpolation technique usually adopted in TREC [115] is to select
the maximum value of precision from a set of pairs whose recall value is greater than or equal
to the level θk, and to use it as vp[h; θk]. In this example, vp[h; θk] = 1.0 for θk = 0.0 to 0.3,
vp[h; θk] = 0.5 for θk = 0.4 to 0.6, and vp[h; θk] = 0.3 for θk = 0.7 to 1.0, which determine eleven
precision values such as

1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.3, 0.3, 0.3, 0.3.
After the interpolation, a recall-precision curve can be drawn by taking an average,

H−1
H∑

h=1

vp[h; θk],

as the value on the y-axis for recall level θk on the x-axis (k = 1, . . . , 11).
If the curve of system A is positioned upper than that of system B in a recall-precision graph,

then it is concluded that system A outperforms system B. A merit of using recall-precision curves
is to compare search performance at different levels of recall. For example, in the case that the
curve of system A is crossing that of system B at θk = 0.5 and is upper in the range of θk = 0.0
to 0.4, it is shown that system A outperforms at only low level of recall (i.e., upper position of
its ranked output) and is not relatively effective in the range over the point of recall level such as
θk = 0.5.

(4) Statistical test
Equation (2.41) implies that a statistical test for checking difference of population mean of average
precision between two systems can be executed on paired data {(vAa [1], vBa [1]), . . . , (vAa [H], vBa [H])}
if the set of H topics is regarded as a random sample from the population. The null hypothesis
is H0 : μA

a − μB
a = 0 where μA

a and μB
a indicate population means of average precision for system

A and B, respectively. For confirming whether H0 is rejected or not from experimental data, it is
necessary to compute a statistical quantity η = (v̄Aa − v̄Ba )/(sAB

a /
√
H) where

sAB
a =

√√√√ 1

H − 1

H∑
h=1

[(vAa [h]− vBa [h])− (v̄Aa − v̄Ba )]2, (2.42)

which is an estimate of standard deviation. If the sample is enough large (e.g., H > 25), η can
be assumed to follow a normal distribution, and in the case that |η| > 1.96, the null hypothesis
is rejected at 5% significance level. When the sample is small, η has to be assumed to follow a
t distribution under a presupposition of normal population (i.e., differences of average precision
between two systems are assumed to be normally distributed in the population). For instance, in
the case that H = 25, if |η| > 2.06 then H0 is rejected at 5% significance level. More specifically,
this is a two-sided t test with freedom of 24.

In IR experiments, non-parametric tests are often used on the paired data [255, 316]. Suppose
that there are m topics for which vAa [h] > vBa [h] and H −m topics for which vAa [h] < vBa [h] (when
ties vAa [h] = vBa [h] are included, the value of H is reduced by subtracting the number of ties from
it). If there is no difference of performance between system A and B (which is the null hypothesis),
then it is expected that the number m follows a binomial distribution with parameter p = 1/2
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such that

P (x ≥ m) =
H∑

x=m

(
H
x

)(
1

2

)H

= 1−
m−1∑
x=0

(
H
x

)(
1

2

)H

. (2.43)

Therefore, if the probability is so small, then it would be concluded that system A outperforms B.
For example, when H = 20 and m = 16, P (x ≥ 16) � 0.006, which means that the null hypothesis
is rejected at 5% significance level. This is called sign test 23.

In the case of sign test, whether the difference vAa [h] − vBa [h] is positive or negative is only
considered without any attention to the magnitude of each difference. Meanwhile, Wilcoxon signed-
rank test employs more sample information in that it is based on ranks of each absolute difference
|vAa [h] − vBa [h]|. In this test, first, topics are ranked in descending order of |vAa [h] − vBa [h]|, and
second, topics for which vAa [h] − vBa [h] > 0 are extracted. Finally, the sum of ranks is computed
for the extracted topics. After the computation, whether the null hypothesis (i.e., ‘no difference’)
is rejected or not is determined by using a value of the rank sum.

(5) Indicators based on multi-grade relevance assessment
In general, average precision is computed based on binary judgments as shown in Equation (2.38).
However, it may be more natural to assign a multiple degree of relevance to each document for
a given topic in the process of assessment (e.g., see [298]). For instance, four-point scale such as
‘highly relevant’, ‘relevant’, ‘partially relevant’, and ‘irrelevant’ may be more appropriate rather
than dichotomous judgment determining always whether a document is relevant or not.

A conventional technique for calculating average precision from data obtained by multi-grade
judgments is to reduce the multi-grade point into a dichotomous value. For example, in the CLIR
task of NTCIR project 24 adopting four-scale judgments described above, a binary measure ‘rigid
relevance’ was particularly defined by interpreting two grades of ‘highly relevant’ and ‘relevant’ as
relevant and other grades as irrelevant. Also, in the case of ‘relaxed relevance’, the three categories,
‘highly relevant’, ‘relevant’ and ‘partially relevant’, are considered as relevant.

This kind of conversion allows to compute an average precision score, but some information
contained in the original data is inevitably lost. An alternative strategy is to develop another
indicator directly using multi-grade scores [148]. Among them, normalized (discounted) cumulated
gain (nDCG) [137, 138] has been often used in IR experiments 25.

In order to compute the nDCG, first, a numerical value xk has to be assigned to k-th document
in the ranked list according to a result of multi-grade judgments. For example, if four-scale point
was used, then it is feasible to allocate numerical values such that xk = 3 for ‘highly relevant’,
xk = 2 for ‘relevant’, xk = 1 for ‘partially relevant’, and xk = 0 for ‘irrelevant’. Next, ‘discounted
cumulated gain (DCG)’ is computed as

dc(i) =
∑

1≤k<b

xk +
∑

b≤k≤i

1

logb k
xk, (2.44)

where b is the base of the logarithm (e.g., b = 2). The idea behind the DCG is to reduce weights of
relevant documents as their ranks decrease similarly to average precision. However, the reduction
is not steep because xk is divided by the logarithm of rank.

Also, it is feasible to consider the DCG for yk representing a relevance degree in an ideal
ranking (y1, . . . , yn are sorted in descending order of their degrees). For example, if there are
just four relevant documents whose relevance degrees are 1, 2, 2 and 3 respectively, then these
documents should be ideally ranked such that y1 = 3, y2 = 2, y3 = 2, y4 = 1, y5 = 0, .... The DCG
for yk is similarly computed as

dI(i) =
∑

1≤k<b

yk +
∑

b≤k≤i

1

logb k
yk. (2.45)

Thus an average of nDCG up to the position n is defined as

vD = dc(n)/dI(n). (2.46)
23The sign test was used for an experiment reported in Section 5.2.
24http://research.nii.ac.jp/ntcir/index-en.html
25Other metrics based on multi-grade relevance assessment have been proposed in the IR field, which were exten-

sively reviewed by Kishida(2005) [159]. Statistical nature of them was also discussed by this report.
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(6) Other indicators used in IR experiments
In experiments using a test collection constructed by the pooling method, a ranked list may include
documents not receiving any judgment because they happened to not enter into the pool for
relevance assessment, and these documents are usually treated as irrelevant in the experiment. For
this problem, an indicator bpref [44] has been proposed as a robust metric for the incompleteness
of relevance assessment.

Also, mean reciprocal rank (MRR) is sometimes used for evaluating highly precision-oriented
searches in which it is enough to find just one relevant document. For such searching, it is better
that the relevant document is positioned as higher as possible in the ranked output. Therefore, an
inverse of rank i of the most top-ranked relevant document (i.e., 1/i) can be adopted as a measure.
Exactly, MRR means an average of the inverse rank over all search topics.

2.2 Cross-Lingual Information Retrieval Techniques

This section reviews techniques for cross-lingual information retrieval (CLIR) 26, which would
play an important role for multilingual document clustering in the process of computing similarity
between a pair of documents (or a document and a cluster) written in different languages 27.
Specifically, matching strategies, translation techniques, term disambiguation in the process of
translation, formal CLIR models, and MLIR methods are discussed in this section.

2.2.1 CLIR as research task

CLIR is a special type of information retrieval (IR) that enables a set of documents written in one
language to be searched for queries made in another language. For instance, it would be convenient
for Japanese people to be able to find documents in English by entering a search request in Japanese
into the retrieval system. Especially, as the Internet has spread since the 1990s, the importance of
CLIR for allowing users to access information resources written in various languages on the Internet
has grown. Some search engines actually allow users to use a translation function for finding and
viewing web sites in foreign languages. Another area in which CLIR becomes important is patent
retrieval, by enabling searchers to locate easily related patents registered in foreign countries.

The IR research community has therefore been tackling a wide range of CLIR problems. The
Workshop of Cross-Linguistic Information Retrieval held in August 1996 during the ACM SIGIR
Conference marked a turning point for research on CLIR 28. Since then, many retrieval experiments
have been attempted, and have yielded unexpected enhancements in CLIR techniques. Intuitively,
it would seem that machine translation (MT) could easily solve CLIR problems, because a CLIR
task can be reduced to the execution of standard monolingual IR if search queries or the target
documents are automatically translated into the other language. However, as yet there is no perfect
MT system that always returns the correct results of translation, and it is suspected that such
a system will be developed in the near future. Thus in the IR field, various unique methods of
language processing or document ranking have been explored for improving CLIR performance 29.
Such research has also yielded deeper insights on some previously unconsidered aspects of IR.

More specifically, CLIR includes two types of retrieval:

1. bilingual information retrieval (BLIR)

26It is also called ‘cross-language information retrieval’.
27This section is an extension of Kishida(2005) [149] and Kishida(2010) [153]. Literature review of this section

dose not cover completely all techniques developed in the area because there are so many publications on CLIR,
and particularly, studies focusing on only a particular language (e.g., Chinese, Japanese, etc.) are excluded. Other
review articles [226, 234, 149] provide further information on CLIR research efforts.

28As widely recognized, research of developing CLIR techniques can be traced back to G. Salton’s paper in 1970
[265].

29The rapid development of CLIR techniques since the mid-1990s is largely due to CLIR experiment workshops
such as TREC [114], CLEF [39], and NTCIR [155], in which research programs of CLIR have been incorporated
and many researchers worldwide have participated. Furthermore, test collections for CLIR constructed in these
projects allow a wider range of researchers including those not participating in the projects to test new ideas on
CLIR techniques.
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2. multilingual information retrieval (MLIR)

In the case of BLIR, the documents are written in a single language different from the query
language as in the above example (i.e., a Japanese-English bilingual search). Meanwhile, the target
in MLIR is a heterogeneous set of documents written in two or more languages. For example, when
Japanese, French and English documents are concurrently searched for a Japanese query, it is MLIR
(see Figure 2.1). In general, MLIR is more complicated than BLIR as discussed later.

BLIR
query: Japanese document collection

English

MLIR
query: Japanese document collection

English
Japanese

French

 

Figure 2.1: BLIR and MLIR
Source: Kishida(2010b)[153]

2.2.2 Matching strategies

Matching operation in CLIR

The most basic operation in IR is to compare the subject representation of a given search request
(i.e., ‘query’) with that of each target document, and to measure topical similarity between them.
If the degree of similarity (or relatedness) vi between the query q and a document di (i = 1, ..., N)
were calculated by a method, then value vi would enable to generate a search output in which
documents are ranked in descending order of their similarity with the given query. As described
above, this similarity is operationally defined in a retrieval model such as the vector space model,
the probabilistic model and so on.

For instance, in the framework of language modeling (LM) (Section 2.1.4), vi is computed as the
probability that a set of query terms is generated from a given document di such as vi = P (Ωq|di)
where Ωq is a set of terms included in q. Several formulas for computing this probability have been
proposed, and a simple one of which is based on Equation (2.29) as follows [126].

vi = P (Ωq|di) =
∏
t∈Ωq

aP (t|di) + (1− a)P (t), (2.47)

where t is a term in the query and a is a mixing parameter again (0 ≤ a ≤ 1). Actually, P (t|di) in
the formula is easily estimated as the relative frequency of term occurrence in the document di and
P (t) as the proportion of documents in which the term t appears as discussed before. Inevitably,
when the query and documents are written in different languages, it is not possible to estimate
P (t|di) without relating a query term t with the corresponding term s in each document. Such
kind of matching operation is important for CLIR.

There are four types of strategies for matching a query with a set of documents in the context
of CLIR [225]:

• Translation

1. Query translation

2. Document translation
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3. Interlingual technique

• No translation

– Cognate matching

Query translation and document translation

Query translation is the most widely used matching strategy for CLIR due to its tractability, for
which the retrieval system does not have to change inherent components (e.g., index files) at all
in response to queries in any language if an external translation module that can convert the text
of the query into the document language is incorporated. This is a remarkable advantage of query
translation in practice.

However, it is difficult to resolve term ambiguity arising in the process of query translation
because “queries are often short and short queries provide little context for disambiguation” [225].
Suppose that a given query is “post service”. The word “post” has some different senses related
to “mail”, “position” and so on, and this short query does not provide sufficient information for
selecting a correct translation. Many empirical analyses of transaction log data in search engines
on the Internet have shown that actual queries usually consist of about two terms [204] as described
above. In such a situation, the effectiveness of query translation is often limited.

Therefore, a few researchers have attempted to translate target documents into the query
language (i.e., document translation) due to the fact that sentences included in documents tend to
be more complete and to be translated correctly [226, 94, 41]. In fact, an experiment [226] showed
that document translation using commercial MT software outperforms query translation in BLIR
from German to English. This result suggests the potential of document translation while the
short query problem remains unsolved even if documents were perfectly translated.

Furthermore, it is possible to combine the results from query translation and document trans-
lation to form a hybrid approach (see Figure 2.2). For instance, the average (or weighted average)
of two document scores which were computed from query translation and document translation
respectively can be used to rank documents for final output [279, 38, 140, 158]. An advantage of
the hybrid approach is that it increases the possibility of correctly identifying documents having
the same subject content with the query. Suppose that a term t is included in a given query
and its corresponding term in the language of documents is s. If a tool for translating from the
query language to the document language can not translate t into s correctly, then the system will
fail to find documents containing term s by this query translation. However, when another tool
for translation in the reverse direction (i.e., the document language into the query language) can
identify term t from term s, matching between the query and documents including term s becomes
successful.

Japanese query Japanese docs

query
translation

document
translation

search

search

doc list

doc list

merge

English query English docs

final list

 

Figure 2.2: Hybrid of query and document translation
Source: Kishida(2010b)[153]

For implementing document translation or the hybrid approach, it is important to solve the
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problem that document translation is a very cost-intensive task. Namely, it would take too long
to translate all documents by commercial MT software. One possible solution is to employ a high-
speed algorithm with low complexity at the cost of translation quality such as a ‘fast document
translation’ algorithm [94], which is based on a statistical approach developed by IBM research
group [42]. Also, simple replacement of each term in documents with its translation using a
bilingual dictionary is often used as a convenient technique for document translation 30. Of course,
such dictionary-based method is also used for query translation when appropriate MT software is
not available as discussed later.

Interlingual technique

In interlingual technique, an intermediate space of subject representation into which both the query
and the documents are converted is used to compare them. There are two main categories of this
technique [225]:

1. Matching within a space generated by latent semantic indexing (LSI)

2. Matching via multilingual thesauri

(1) LSI-based technique
Suppose that there is a document-aligned parallel corpus in which N documents are included and
each document has a pair of equivalent texts in two different languages. If the two languages
correspond to the query and document languages respectively, then this corpus can be used to
produce an intermediate space for BLIR. An M1 × N term-by-document frequency matrix in a
language is denoted by X1, where M1 is the number of distinct terms of this language contained
in the corpus and each element xji of this matrix (j = 1, ...,M1; i = 1, ..., N) is the frequency (or
normalized frequency) of j-th term tj within the text of document di (i.e., xji = fij). Similarly,
X2 is assumed to be an M2 ×N term-by-document frequency matrix for another language. Then
it is feasible to constitute an M ×N matrix such that

X =

[
X1

X2

]
, (2.48)

where M = M1 +M2.
According to the theory of linear algebra, matrix X can be broken down such that X = UQVT

where U is an M × r orthogonal matrix, Q is an r× r diagonal matrix, V is an N × r orthogonal
matrix and r is rank of X 31. This decomposition is called singular value decomposition (SVD)
(see Section 4.2.1). Latent semantic indexing (LSI) theory [79, 174] extracts b principal diagonal
elements fromQ (b < r) and interprets that they represent ‘latent’ meanings included in the original
X. As a result, a new indexing space UbQbV

T
b is constructed for ‘conceptual retrieval’ where Ub

and Vb are matrices in which only b columns are extracted from original ones, respectively, and
Qb is a diagonal matrix including only b principal elements.

SinceX is derived from a parallel corpus, UbQbV
T
b can be interpreted as a multilingual indexing

space in which each meaning is represented independent of its language expressions. Therefore,
if a query and a document in different languages can be projected into this indexing space, then
it is possible to compare them within the space. One of the methods is to compute Q−1

b UT
b di

and Q−1
b UT

b q where di and q are subject representations (e.g., term frequency vectors) of di and
q, respectively [249, 175]. Note that di is an M -dimensional vector and its (M1 + 1)-th to M -th
elements are zero if di is written in the first language. Similarly, the first to M1-th elements are
zero in the vector of q in the second language. Therefore, an inner product of the two vectors
dT
i q is always zero, but (Q−1

b UT
b di)

TQ−1
b UT

b q > 0 if di has semantic similarity with q in the
multilingual indexing space. This means that it is feasible to use a similarity measure based on
the inner product (Q−1

b UT
b di)

TQ−1
b UT

b q as vi for ranking documents. Similar approaches were
employed by some researchers (e.g, see [23, 85, 191]).

30This method will be adopted in MLDC system of this thesis.
31In diagonal matrix, all non-diagonal elements are zero. Also, when U is an orthogonal matrix, UTU = UUT = I

where I is a diagonal matrix whose all diagonal elements are one. See Section 4.2.1 for details. Note that definition
of U and V is slightly different here.
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(2)Thesaurus-based techniques
Another type of interlingual approach is to map a term in a language into the corresponding term
in another language via linguistically neutral labels of concepts registered in bilingual thesauri such
as WordNet [82, 27], ULMS (Unified Medical Language System) [88] and so on. For example, it
may be possible to use sense labels of ‘synsets’ (sets of synonymous words) provided in WordNet.
The English word “train” has the sense label “train/1” implicating a line of railway cars, and it
is mapped to an Italian synset including “convoglio” and “treno” in MultiWordNet32. The label
“train/1” can be employed as an interlingua for English to Italian BLIR in the case that “train”
implicating a line of railway cars is included in an English query (logically, the matching operation
with this interlingua is equivalent to using directly such translations as “convoglio” and “treno”
listed in the multilingual thesaurus).

It is not so easy, however, to find interlingual concepts relevant to a given query in such a
multilingual thesaurus. One possibility is to search interlingual concepts (i.e., labels) for the
given query by using their descriptions given in the thesaurus, and to rank interlingual concepts
according to a retrieval model. For example, it may be possible to identify correctly the relevant
concept “train/1” for the query “trains on a railroad” if English text in the multilingual thesaurus
is searched for the query and the label “train/1” has the highest score for ranking (see [88] for
details).

Cognate matching

(1)Fuzzy matching
For BLIR between two similar languages (e.g., English and French), it is possible to identify
document terms equivalent to a given query term by using a fuzzy matching technique without any
MT. This method is sometimes called cognate matching, and in the most näıve case, untranslatable
terms such as proper nouns or technical terminology are left unchanged in the stage of translation.
The unchanged terms are expected to match successfully a corresponding term in another language
if the two languages have a close linguistic relationship.

A useful device for effectively matching cognates of two different languages is edit distance,
which measures similarity between two character strings [75]. For example, Levenshtein distance
is defined as the minimum number of deletions, insertions, or substitutions required to transform
one string into another string [98]. Actually, since the English word “family” can be converted
into the French word “famille” by inserting “l” and substituting “e” for “y”, the distance between
them is 2. If a pair of two terms whose distance is less than a threshold are heuristically regarded
as identical terms, then term matching in BLIR can be operated with no translation. Interestingly,
Buckley et al.(1998) pointed out that “English query words are treated as potentially misspelled
French words”, and attempted to treat English words as variations of French words according to
lexicographical rules [45]. Furthermore, a kind of rule for transformation, for instance, if a Spanish
term starts with “es”, then “es” should be replaced by “e” for converting it into an English word,
would be helpful for fuzzy matching with edit distance. Such rules may be automatically generated
from statistical analysis of language resources (e.g., see [238] for details).

An alternative approach to fuzzy matching is to decompose each word in both the query and
documents into n-grams (more specifically, character-based overlapping n-grams), and to perform
matching operations between the two sets of n-grams [125, 211, 212]. For example, when n = 2
(i.e., bi-gram), “family” and “famille” are decomposed into { fa, am, mi, il, ly } and { fa, am,
mi, il, ll, le }, respectively, and the similarity between them is computed. Since they have four
common bi-grams, the Dice coefficient is calculated as (2× 4)/(5 + 6) = 0.727, which can be used
as a metric to identify corresponding terms. It is also possible to extract and compare tri-grams
(n = 3), quad-grams (n = 4) and so on. In order to enhance matching possibilities, it may be
effective to transform the term beforehand according to a heuristic rule such as the Spanish-English
example described above (see [304]).

(2)Machine transliteration
When two languages are very different (e.g., English and Japanese), techniques based on edit
distance or n-gram inevitably will not work well. However, in such cases, phonetic transliteration

32http://multiwordnet.itc.it/english/home.php
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from English words may be effective for cognate matching. Gey(2001) stated that “...we can often
find that many words, particularly in technology areas, have been borrowed phonetically from
English and are pronounced similarly, yet with phonetic customization in the borrowing language”
[105].

Accordingly, it is feasible to use machine transliteration [161] for the operation of matching
terms in very different languages. There are two methods of machine transliteration, namely,
modeling of transliteration and extracting transliterations from a parallel corpus [170]. In a typical
transliteration modeling, phonetic coincidence between two terms is examined. For example, the
English word “America” corresponds to a Japanese word consisting of four Katakana characters
pronounced “a”, “me”, “ri” and “ka”, respectively (see Figure 2.3). This means that the English
term “America” can be identified from the combination of four sound representations “a-me-ri-ka”
in Japanese if a heuristic rule for converting “ka” to “ca” is introduced (see [97, 244] for details).

 

Japanese word: � � � � 

phonetic elements: a me ri ka 

English word: A me ri ca 

Figure 2.3: Example of machine transliteration
Source: Kishida(2010b)[153]

Also, it is possible to estimate a conditional probability P (t|s) from parallel corpora as discussed
later, where s is a transliteration and t indicates an original term. Such kinds of probabilities
or alternative statistics indicating the relationship between t and s enable to produce a list of
transliterations [170]. A combination of the rule-based method using phonetic elements and corpus-
based method would be a promising strategy for correctly detecting transliterations in CLIR.

2.2.3 Translation methods

It is widely recognized that there are three main approaches to translation in CLIR:

• Machine translation

• Translation by bilingual machine-readable dictionary

• Parallel or comparative corpora-based methods

In addition, some researchers have recently attempted to use Internet resources for obtaining
translation equivalents.

MT and dictionary-based methods

(1) Machine translation system
As already mentioned, intuitively, the MT system seems to be a fine tool for CLIR, and if good MT
software is available, then the CLIR task would become easier. However, in query translation, the
MT approach has not always shown better performance than simpler dictionary-based translation.
For example, an experiment [16] indicated the dominance of dictionary-based techniques over a
popular commercial MT system (of course, which method is dominant depends highly on the
quality of the dictionary and MT system used for each experiment).

One of the reasons is that queries are often short and do not provide sufficient contextual
information for translation. In particular, a query is often represented as only a set of terms, and
it may be difficult to expect MT systems to work well with such poor representation. Also, MT
systems usually try to select only one translation from many candidates that each source word
may have, which may lead to removing synonyms or related terms from the set of translations,
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and to missing relevant documents [222].

(2) Dictionary-based methods
Simple replacement of source terms by using a bilingual machine-readable dictionary (MRD) is a
general approach for CLIR when no MT system with an established reputation is available. In the
world, numerous languages are spoken, and there are many pairs of languages for which effective
MT software has not yet been developed. Therefore, it is still important to explore CLIR methods
based on bilingual MRD because such dictionaries are easier to prepare than MT software.

Most retrieval systems are still based on the so-called ‘bag-of-words’ architecture, in which both
the query and document texts are decomposed into a set of words (or phrases) through a process
of indexing (see Section 2.1.1). Thus a query can be easily translated by replacing each query term
with its translation equivalents appearing in a bilingual dictionary or a bilingual term list. Due
to its convenience, the dictionary-based method is also used in document translation as described
above.

Unlike standard MT systems, it is not difficult in dictionary-based methods to remain multiple
translations for each source term. If they contain synonyms or effective related terms relevant to
the given query, then search performance may be improved by entering them into the IR system
(of course, this strategy does not always have positive effects).

However, there are some difficulties when executing this method as follows [15]:

• Specialized vocabulary not contained in the dictionary will not be translated.

• Dictionary-based translation is inherently ambiguous and may add extraneous information.

• Failure to translate multi term concepts such as phrases reduces effectiveness.

These defects are the main reasons for degradation of CLIR performance in comparison with
that of monolingual retrieval. Hull & Grefenstette(1996) stated that “...we learn that translation
ambiguity and missing terminology are the two primary sources of error...” [133]. Also, they
reported that manual translation of multi word noun phrases improves retrieval performance. This
suggests the importance of translation of multi term concepts. For example, a combination of
independent translations from “hot” and “dog” would produce highly inappropriate translations
of “hot dog” in many cases. Various methods have been developed for solving problems of out-of-
vocabulary, term disambiguation and phrasal translation, as will be discussed later.

Practically, it is necessary for executing dictionary-based translation to compare a string of
each source term with that of headwords in the dictionary. A stemming algorithm that removes a
suffix from each string (see Section 2.1.6) is often employed before the matching operation in order
to find successfully the corresponding term in the dictionary. For enhancing the performance of
this process, it may be effective to apply backoff translation in which both the surface form and
its stem are taken into account [227, 186]. For example, in four-stage backoff translation, four
different matching operations are performed: (a) matching of the surface form of a source term
to the surface form of headwords in the dictionary, (b) matching of the stem of a source term to
the surface form of headwords, (c) matching of the surface form of a source term to the stems of
headwords and (d) matching of the stem of a source term to the stems of headwords. Since there
is no completely perfect stemmer, it is important to use a technique such as backoff translation to
increase the possibility of finding the corresponding term in the dictionary.

Parallel corpora-based method

Parallel or comparable corpora are useful resources enabling to extract beneficial information for
CLIR. As described already, the cross-lingual LSI approach uses this kind of corpus to construct a
multidimensional indexing space. Otherwise, translation equivalents can be directly obtained from
a parallel or comparable corpus by the following methods:

• Use of search results from parallel corpus

• Construction of bilingual term lists
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(1) PRF-based method using parallel corpus
Suppose that English to French bilingual searches were executed by using a document-aligned
parallel corpus of English and French languages. The first approach [76, 327] tries to extract French
terms appearing frequently in French documents obtained from the parallel corpus by searching
for the given English query (see Figure 2.4). Namely, since each French document is aligned with
an English document in the corpus, it is feasible to identify French documents corresponding to
English documents searched for the given English query. Naturally, such French documents are
expected to include search terms relevant to the query.

 

English query 
English-French  
parallel corpus 

Search results 

French terms 

search 

search 

Final results 
French document  
collection (target) 

Figure 2.4: Example of BLIR using parallel corpus
Source: Kishida(2010b)[153]

This approach can be regarded as a kind of pseudo-relevance feedback (PRF), which is often
used for query expansion (Section 2.1.5) in IR experiments. Its basic assumption is that top-ranked
documents searched for a given query tend to be relevant and contain effective terms other than
those included in the original query. According to a standard PRF technique, such effective terms
can be identified from a list of terms ranked by scores computed for each term tj as weight ωj in
Equation (2.36). By using this weight, it is possible to select some top-ranked French terms from
the result of searching the parallel corpus.

(2) Estimation of association between terms
In the second approach, a bilingual term list is generated from parallel or comparable corpora
based on empirical term association computed from co-occurrence statistics as shown in Table 2.2.
The generated list can be used as a bilingual MRD. Suppose that t indicates a French word and s
an English word. In this case, nts is the number of alignments including both t and s in a parallel
corpus. From the data in Table 2.2, it is possible to calculate association τts between t and s as
the Jaccard’s coefficient τts = nts/(nt + ns − nts) [2] or mutual information (MI) [210],

τts = log
P (t, s)

P (t)P (s)
= log

Snts

ntns
, (2.49)

in which it is assumed that P (t, s) = nts/S, P (t) = nt/S and P (s) = ns/S where S denotes the
total number of alignments (e.g., sentences) in the corpus. Also the logarithm of a likelihood ratio
−2 log λ [87] such that

−2 log λ = 2 log
ζ(p1, nts, ns)ζ(p2, nt − nts, S − ns)

ζ(p, nts, ns)ζ(p, nt − nts, S − ns)
, (2.50)

can be used as association τts where ζ(x, y, z) ≡ xy(1−x)y−z p1 = nts/ns p2 = (nt−nts)/(S−ns)
and p = nt/S. Furthermore, it is possible to employ other metrics such as the Dice coefficient, χ2

statistics and so on, which are computed from a contingency table like Table 2.2.

27



Table 2.2: Term co-occurrence frequency in parallel corpus

t appears t does not appear Total
s appears nts ns − nts ns

s does not appear nt − nts S − ns − nt + nts S − ns

Total nt S − nt S

Otherwise, a method for constructing a similarity thesaurus (Section 2.1.5) can be used to
compute term association between t and s if a concatenation of two aligned documents in different
languages is assumed to be a single document [282, 40]. According to the standard vector space
model (Section 2.1.3), it is possible to define an N -dimensional term vector whose i-th element is
the weight of the term in di (e.g., wij = fij × logN/nj for given tj). If term similarity is computed
as a cosine measure between the two vectors of t and s like in Equation (2.34), then query terms in
the target language can be selected for each source term s according to their cosine values. Also,
as another method for constructing a bilingual term list from a parallel or comparable corpus, a
more complicated technique based on cognate matching and morpho-semantic analysis has been
proposed (see [205]).

(3) Estimation of translation probability
Some researchers in the CLIR field (e.g., [222]) have attempted to estimate translation probability
P (t|s) from parallel corpora according to a well-known algorithm developed by a research group
at IBM [42]. By executing the algorithm for a set of sentence alignments included in a parallel
corpus, a bilingual term list with a set of probabilities that a term is translated into equivalents in
another language is automatically generated. The algorithm includes five models, Model 1 through
Model 5, Model 1 of which is the most basic and is often used for CLIR. In particular, researchers
employing the language modeling approach for CLIR (see below) have used the IBM Model 1 for
computing translation probabilities (e.g., [321, 167]).

The fundamental idea of Model 1 is to estimate each translation probability so that the prob-
ability defined as

P (t|s) = ε

(l + 1)m

m∏
j=1

l∑
k=0

P (tj |sk), (2.51)

is maximized, where t is a sequence (usually a sentence) of terms t1t2 . . . tm, s is the corresponding
sequence of terms s1s2 . . . sl and ε is a parameter (s0 indicates an empty in s). Namely, the
translation probability P (tj |sk) in Equation (2.51) is determined so that P (t|s), which is the
probability that sequence s is translated into t, takes a maximum value. Actually, each P (tj |sk)
is estimated by iterative computation as an EM algorithm 33. The algorithm based on the IBM
Model has become widely available with the release of a software package, the GIZA++ toolkit
[228], incorporating it as a component.

Translation probability in the model of Equation (2.51) was extended by Kishida & Ishita(2009)
[156] so as to take context terms into account such that

Ps(tj |sk) =
∑

h:sh∈s,h �=k

P (tj , sh|sk), (2.52)

where sh indicates a context term co-occurring with source term sk in sequence s (h �= k). Suppose
that English text “post office in Japan” is translated into other language, in which the meaning
of the term “post” needs to be disambiguated, and that two translations of “post” in a bilingual
dictionary are assumed to be t1 and t2, which are related to ‘mail’ and ‘position’, respectively. For
obtaining ‘correct’ translation t1, the context-based translation probability, P (t1, “office”|“post”),
would work positively 34.

33Section 4.1.1 will give a general explanation on EM algorithms.
34The context-based translation probability P (tj , sh|sk) can be also estimated by an EM algorithm (see [156] for

details).
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Other models for statistical machine translation have also been developed. For instance, another
statistical translation model by Melamed(2000) [213] was used for generating Japanese-English
bilingual thesauri from bilingual corpora by [305]. In addition, estimation techniques based on EM
algorithms have been proposed by some researchers (e.g., [127, 163, 55]).

(4) Availability of parallel corpus
Terms used in current affairs and people’s names are often not registered in MRDs or dictionaries
incorporated into MT systems. In this case, the correct translation can not be acquired. If a
parallel corpus consisting of current news articles is available, then it may be possible to construct
a bilingual term list including current terminology. This is a remarkable advantage of parallel
corpus-based methods.

However, it would not always be possible to obtain such parallel corpus relevant to each CLIR
situation, which prevents parallel corpus-based methods from being applied widely. Even if a
parallel corpus in two languages corresponding to a BLIR task is available, the search performance
will inevitably decrease when the subject domains covered by the parallel corpus do not match the
BLIR situation [261].

One method for overcoming this problem may be to generate automatically parallel corpora
from Internet resources. For instance, official web sites of organizations or institutions often have
English and non-English pages with almost the same contents, from which parallel or comparable
corpora could be produced (see [222, 250, 220] for details).

Also, automatic construction of document alignments from independent collections in two differ-
ent languages has been explored by [297]. The fundamental operation for detecting such alignments
is BLIR using an MT system or MRD. Namely, it is necessary to identify corresponding documents
in one collection by searching for translations of key terms extracted from a document in another
collection. If appropriate pairs of documents are detected by the BLIR, then it may be possible to
find useful target terms other than translations of the key terms used as a query from the aligned
documents.

Out-of-vocabulary problem

(1) Detecting unknown translations from web documents
In the case that the dictionary used for translation does not include the target entries (i.e., the
out-of-vocabulary (OOV) situation), a special device is needed if cognate matching or machine
transliteration can not be applied. Suppose that entries of a Japanese-English dictionary do not
contain a particular Japanese term represented by Kanji characters, for which machine transliter-
ation does not work. A promising method for resolving the OOV problem is to extract translations
from Japanese web documents, in which English equivalents in parentheses are often provided for
proper nouns or technical terms [57].

It may be possible to identify such English equivalents by examining frequencies of co-occurrence
with the untranslated term in top-ranked documents fetched automatically from a search engine
(e.g., Google) via its application programming interface (API) by searching for the untranslated
term [336]. A simple heuristic rule is to select the English term co-occurring most frequently in
a presupposed range of word sequence (i.e., text window) with the untranslated term. Of course,
it is feasible to measure the association between two terms by using a metric such as χ2 statistics
and so on, and select translations based on its values [62].

Another approach for measuring the term association is to compare context vectors of two terms
[62]. The context vector of term t is denoted by wt, j-th element of which represents the weight of
the j-th term appearing in the top-ranked web documents. For example, the j-th element can be
defined as x(t, tj)× logN/nj where x(t, tj) means the number of times that term tj appears with
t in a text window of fixed size. Since the untranslated term and its translation possibly share
common contextual terms in the top-ranked web documents, the similarity of their context vectors
is expected to be relatively higher. The similarity can be measured by a cosine coefficient of two
vectors wt and ws according to the vector space model.

(2) Combining multiple language resources
A method for reducing the possibility of the OOV problem occurring in the translation process is
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to combine multiple translation resources. For instance, it is possible to merge translation results
from distinct types of resources such as MRD, MT system and parallel corpus (e.g., [321]).

For merging the results, techniques of ‘data fusion’ or ‘query combination’ may be useful [139].
Suppose that there are results from two distinct MT systems. In the case of data fusion, two
document scores computed from output by the two MT systems are summed for each document.
Meanwhile, in query combination, before the estimation of document scores, a single query is
formed by mering terms in the two translating results.

Pivot language approach

As already mentioned, it is not always possible to obtain bilingual resources for a particular pair of
languages in a BLIR task. A promising technique to circumvent the problem of limited availability
of linguistic resources would be the pivot language approach, in which an intermediate language
acts as a mediator between two languages for which no bilingual resources are available. Suppose
that a BLIR task between Japanese and Dutch is requested by a user. Even if any language
resource between Japanese and Dutch is not available, it would be easier to find Japanese-English
and English-Dutch resources since English is widely used as an international language. Thus BLIR
between Japanese and Dutch can be performed via English as an intermediary without direct
bilingual resources between Japanese and Dutch.

The pivot language approach would also alleviate the problem of explosive combinations of
languages. For instance, if BLIR tasks have to be executed between each pair of n languages, then
O(n2) resources are needed 35. However, the pivot language approach enables us to handle the
complex job with only O(n) resources [105].

A basic pivot language approach is transitive translation of a query using two bilingual dictio-
naries [17]. In the case of searches from Japanese to Dutch via English, if Japanese-English and
English-Dutch MRDs are available, then CLIR can be performed by replacing Japanese query terms
with the corresponding English equivalents and successively substituting the English equivalents
with the Dutch equivalents. Of course, when Japanese-English and English-Dutch MT systems
can be used, a similar transitive translation is also feasible.

In dictionary-based transitive translation, translation ambiguity becomes a more serious prob-
lem. Suppose that a Japanese source query consists of three terms, and every term has three
English equivalents. If every English equivalent has also three Dutch equivalents, simple replace-
ments will produce 27 (= 33) search terms in total from only three source terms, and the final set
of search terms will inevitably contain some irrelevant translations [157] (see Figure 2.5). There-
fore, it is important to apply a translation disambiguation technique (discussed later) to the set
of intermediary or target terms obtained from the bilingual dictionaries. Actually, an experiment
[159] reported that translation disambiguation for intermediary terms did not have a remarkable
effect in German-Italian bilingual searches via English and that it was enough to disambiguate
only final Italian terms.

Retrieval experiments on the dictionary-based query translation via a pivot language have
been conducted for various combinations of languages such as English → French → German [93],
French → English → German [106], German → English → Italian [128], Japanese → English →
Chinese [188], Chinese → English → Japanese [57], and so on (these are only a portion of many
experiments). In particular, Franz et al.(1999) proposed some interesting techniques for searching
German documents with English queries [93] as follows (the intermediary is French):

• Convolution of translation probability. Estimating translation probability from an English
term s to a German term t through French terms f such that P (t|s) =∑

f P (t|f)P (f |s).

• Automatic query generation from the intermediate language corpus. Generating French
queries automatically by simply merging all non-stopwords in the top-ranked French docu-
ments searched by the English-French BLIR system, and entering the French query into the
French-German BLIR system.

35Exactly, there are n(n−1)/2 pairs for n languages. O(·) is big-O notation. Roughly speaking, if f(x) = O(g(x)),
then there exits numbers K > 0 and δ > 0 such that |x| < δ and |f(x)|/|g(x)| ≤ K (see p.72 in [63]).
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Japanese query terms (source)
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Dutch query terms (target)

irrelevant 
translation
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: English query term (intermediary)

relevant 
translation
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translation

Figure 2.5: Example of dictionary-based query translation via pivot language
Source: Kishida(2010b)[153]

Translation quality

The quality or correctness of the translation largely affects CLIR performance. For example,
experiments by [210, 320] have shown that the size or lexical coverage of MRD has an influence on
the effectiveness of CLIR. Namely, as the number of entry terms in the dictionary is reduced and
as its translation quality becomes lower, search performance gradually deteriorates.

According to Kishida(2008) [151], the CLIR performance can be represented as a regression
model with two independent variables, translation quality z1 and ‘ease of searching for query’ z2,

y = a+ b1z1 + b2z2, (2.53)

where y denotes CLIR performance, and a, b1 and b2 are parameters. The ‘ease of searching for
query’ is an inherent nature of a given query, which is independent of the translation process.
For instance, if the query does not contain any specific concept that explicitly designates its
content, then it will be difficult to find relevant documents even if the translation is perfectly
correct. Therefore, it is necessary to take the ‘ease of searching for query’ into consideration in the
regression model [151].

In retrieval experiments in the laboratory, the ‘ease of searching for query’ z2 can be measured by
evaluation indicators (e.g., average precision) representing the performance of monolingual searches
for which correct translations of queries are given by human experts. Similarly, it is possible to
gage translation quality z1 by a metric for assessing automatically translation results such as
well-known BLEU [230] based on the correct translations. In particular, a metric called WAMU
(weighted average for matching uni-grams) that is specifically designed to evaluate translations in
CLIR situations was developed by Kishida(2008) [151]. A simpler formula of WAMU is

WAMU =

⎛
⎝ m∑

j=1

ωj

⎞
⎠

−1
m∑
j=1

ωj
min(cj , c̃j)

cj
, (2.54)

where cj is the total number of the j-th uni-gram (i.e., a word) in the translation, c̃j is the total
number of the j-th uni-gram in an answer given by a human expert (i.e., a correct translation),
ωj is the weight of the j-th uni-gram, and m is the number of uni-grams in the translation. The
weight ωj is calculated such that ωj = log(N/nj) (in CLIR situations, nj can be obtained from
the target document collection).

Suppose that two translations are obtained with an answer as follows:

- Translation 1: Database management system issue
- Translation 2: Database administration system problem
- Answer: Database management system problem
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Table 2.3: Sample data for calculating WAMU

j Terms tj min(cj , c̃j) nj log(N/nj)
Translation 1

1 database 1 5 5.30
2 management 1 50 3.00
3 system 1 50 3.00
4 issue 0 100 2.30

Total - - 13.59
Translation 2

1 database 1 5 5.30
2 administration 0 50 3.00
3 system 1 50 3.00
4 problem 1 100 2.30

Total - - 13.59

In either of the translations, only one term is different from the corresponding term in the answer
(i.e., “issue” in Translation 1 and “administration” in Translation 2). If these translations are to be
used as a query, then Translation 1 is clearly better because it represents “database management
system” correctly. When the numbers of documents including each term are as shown in Table 2.3
and N = 1000, the WAMU scores for Translations 1 and 2 are computed as follows:

- Translation 1: (5.30 + 3.00 + 3.00)/13.59 = 0.83
- Translation 2: (5.30 + 3.00 + 2.30)/13.59 = 0.78

As this example indicates, WAMU differentiates adequacy of translation between specific and non-
specific terms. Namely, mistranslation of a specific term reduces its WAMU score more largely
than non-specific terms due to idf factor log(N/nj).

An experiment in Kishida(2008) [151] showed that the regression model containing two inde-
pendent variables, ‘ease of searching for query’ and translation quality, can explain approximately
60% of the variation in CLIR performance. In this result, translation quality has a statistically
significant effect, which means that translation quality is crucial for enhancing CLIR effectiveness,
as would be expected.

2.2.4 Term disambiguation techniques

Translation ambiguity

For improving translation quality, it is indispensable to select a correct translation from a set of
candidates by disambiguating the sense of a given source term. In general, word sense disam-
biguation (WSD) is a key element in various applications such as machine translation, information
retrieval and hypertext navigation systems, content and thematic analysis, grammatical analysis,
speech processing, and so on [134]. For CLIR, it is often necessary to disambiguate translations
enumerated under each headword in a bilingual MRD or a term list generated from a parallel
corpus.

If all translations listed in bilingual resources are straightforwardly adopted as search terms,
then extraneous or superfluous terms irrelevant to the original query usually diminish the effec-
tiveness of the search. Thus it is desirable that only relevant terms will be automatically or
semi-automatically selected from a set of translation candidates.

A simple method is to take only translations corresponding to the first sense listed in the
dictionary. Alternatively, it may be possible to investigate frequency of each translation within a
corpus and use only the most frequent translation. However, such heuristic strategies would be
insufficient to resolve the ambiguity of words that are highly homonymous.

Several more sophisticated methods have been explored in the field of CLIR as follows:

1. Use of part-of-speech (POS) tags
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2. Use of parallel corpora

3. Use of co-occurrence statistics in the target corpus

4. Use of query expansion technique

It should be noted that the term ‘corpus-based disambiguation’ is often used in literature for
collectively referring to techniques 2 through 4.

As another solution, the ‘structured query model’ has also been investigated for improving
search performance in cases where multiple translations are obtained from a bilingual dictionary.
This model will be discussed in another section.

Use of part-of-speech tags

The basic idea of using part-of-speech (POS) tags for translation disambiguation is to select only
translations having the same POS tag as that of the source query term [75, 78, 16]. For instance,
in the case of applying it to the BLIR task from English to Spanish, the translation is selected as
a search term only if the POS tag of a Spanish equivalent listed in an English-Spanish dictionary
coincides with that of the English query term. This technique requires POS tagging tools for both
languages.

Parallel corpus-based methods

It is possible to determine the best translations among the candidates according to the result of
searching a parallel corpus for the original query [75, 77, 36]. Specifically, a typical procedure is as
follows (see also Figure 2.6):

1. Identify a set of translations for each term in a given source query by using a bilingual MRD.

2. Search a part of the parallel corpus written in the target language for each translation re-
spectively, and save each set of documents in the target language.

3. Search the other part of the parallel corpus written in the source language for the source
query.

4. Select a translation whose set of documents is the closest to the set of documents searched
by the source query (e.g., choose a translation whose documents are mostly included in the
set of search results by the source term).

This procedure is repeated for each query term until a final set of the best translations is obtained.

 

A source query term 

translation 

A parallel corpus 
Search results 

comparison 

: source language : target language 

Figure 2.6: Outline of parallel corpus-based disambiguation
Source: Kishida(2010b)[153]
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Disambiguation based on term co-occurrence statistics

A basic assumption underlying disambiguation techniques based on term co-occurrence is that
“the correct translations of query terms should co-occur in target language documents and in-
correct translations should tend not to co-occur” [16]. For example, in the case of a French to
English search, when the source query includes a concept of “database management system”, the
combination of translations, “database”, “management” and “system” is reasonably expected to
appear more frequently in the target document collection than that of “database”, “administra-
tion” and “system”. Thus if statistics on co-occurrence frequencies are appropriately employed,
then “management” would be able to be identified as a correct translation in the context 36.

This kind of methods based on term co-occurrences does not need any extra corpus because
the statistics can be obtained from the target documents for searching. This is a remarkable merit
in practice.

(1) Best pairs selection
When a given query includes many terms, the frequency of their combination may become very low
or zero. Thus the query is usually decomposed into a set of term pairs, and co-occurrence frequen-
cies of the corresponding two translations are used for determining final query terms {t̃1, ..., t̃m} in
the target language. For instance, it is feasible to select them such that

t̃j = argmax
t∈Tj

sim(t, t′), t′ ∈
⋃
k �=j

Tk; j = 1, ...,m, (2.55)

where Tj indicates a set of translations in the target language for j-th source term sj (j = 1, ...,m)
and sim(t, t′) is a measure of term association or similarity between the t and t′ computed from
term co-occurrences 37. Equation (2.55) simply means that a pair of translations with the highest
similarity is repeatedly chosen from those excluding pairs that have already been selected [26].
Namely, if a pair with the highest similarity includes a translation of the source term for which
a translation was previously determined, then this translation is ignored. As a variation of this
method, it may be possible to consider only similarities with the translations selected in the
previous step [136].

The term similarity sim(t, t′) can be measured as MI, the Dice coefficient and so on, which are
computed from term occurrence and co-occurrence statistics in the target document collection. For
instance, if MI in Equation (2.49) is employed, then its probabilities are operationally defined such
that P (t, s) = c(t, s)/S, P (t) = c(t)/S and P (s) = c(t)/S where c(t) and c(s) are the numbers of
sentences including terms t and s, respectively, c(t, s) is the number of sentences containing both
terms, and S is the total number of sentences included in the target collection. While the number
of observations is normalized by the size of the corpus according to [64] in these formulas, other
definitions can be also adopted (e.g., see [101]). The term co-occurrence statistics required for
computing the similarity can be compiled in a process of constructing index files for searching the
target collection, or obtained from a search engine on the Internet via API [201].

Fortunately, the computational complexity of selecting the best pairs based on Equation (2.49)
is not so high. If the similarity measure used in this process is symmetric such as MI, then the
number of pairs to be measured for the selection, Mp, amounts to

Mp =
m−1∑
k=1

m∑
h=k+1

|Tk| × |Th| (2.56)

(see Kishida(2007) [150]). It should be noted that Mp does not exceed b2m(m − 1)/2 where
m(m − 1)/2 corresponds to the number of all combinations of two source terms and b indicates
the maximum number of translations for a source term (i.e., b = maxj=1,...,m |Tj |). For example,
if there are five source query terms and every set of translations includes five words respectively,

36Moreover, it is possible to incorporate term co-occurrence statistics into the process of estimating translation
probabilities (see [194] for details).

37In the equation, ‘argmax’ means ‘argument of the maximum’. For instance, argmaxx f(x) indicates a particular
value of variable x providing the maximum of function f .
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it becomes that Mp = (5× 5)× (5× 4/2) = 250.

(2) Best sequence selection
However, the best pair selection algorithm may yield erroneous translations because it checks only
a local relationship between just two translations at each step for selecting a pair. Suppose that, in
the above example, the pair of “administration” and “system” has the highest degree of similarity
in the target document collection even though the collection contains some documents on “database
management system”. In this case, the correct translation, “management”, is never obtained by
the algorithm based on Equation (2.55). Since this algorithm looks at only a very limited range
(i.e., a span of just two terms) in the query, a few pairs having strong relationships out of the
context of the query may have impact excessively on the result.

A straightforward solution to this problem is to focus on all relationships between the query
terms [281]. A sequence of translations is denoted by τ̃ = {t1, ..., tj , ..., tm} where tj ∈ Tj in this
case. Namely, τ̃ is constituted by taking arbitrarily a term from each translation set, respectively
(see Figure 2.7). If the sum of degrees of similarity between all translations included in such a
sequence,

U(τ̃) =

m−1∑
k=1

m∑
h=k+1

sim(tk, th), tk, th ∈ τ̃ , (2.57)

can be computed, then the sequence with the highest value of the sum should be selected as the
final set of translations (similar strategies were adopted by [201, 245]). Since Equation (2.57)
contains all relationships between possible pairs of translations in each sequence, it is feasible to
avoid errors caused by the locality of range in Equation (2.55). For example, the possibility that
“management” is correctly selected remains even if the pair of “administration” and “system” has
the highest similarity.

Source terms

Sequence

Pair

Trans-
lations

 

Figure 2.7: Sequences and pairs of translations
Source: Kishida(2010b)[153]

However, computational complexity of processing the algorithm based on Equation (2.57) is
very high. The total number of sequences to be processed is given by

Mτ = |T1| × ...× |Tm| =
m∏
j=1

|Tj |, (2.58)

and the upper limit of Mτ amounts to bm. In addition, each sequence includes m(m− 1)/2 pairs
as expressed in Equation (2.57), and therefore, in total, it is necessary to deal with bmm(m− 1)/2
pairs at most in the process of disambiguation (note that a single pair is repeatedly counted). If
there are five source query terms and every set of this translation includes five words respectively,
then the number of pairs amounts to 31,250 (= 55 × 5 × 4/2). As this example shows, it takes
much longer to select translations when using Equation (2.57).

(3)Approximation for best sequence selection
One way to reduce the computational difficulty of the best sequence method is to apply the
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maximum value of similarity between a given translation and those of another source query term,

C(t, Tk) = max
t′∈Tk

sim(t, t′), t �∈ Tk, (2.59)

which was employed in some experiments (e.g., [1, 101]). C(t, Tk) is often called ‘cohesion’. In
order to solve ambiguity of translations for each term t by using this quantity, the sum of C(t, Tk)
has to be computed over all sets Tk except the set that includes the term t itself, and then to select
the term with the highest score from each set of translations respectively [1, 101], which means
that

t̃j = argmax
t∈Tj

∑
k �=j

C(t, Tk), j = 1, ...,m. (2.60)

The number of translation pairs to be processed in this algorithm for determining the translation
of the j-th source term is |Tj | ×

∑
k �=j |Tk|, and therefore, the total number amounts to

Mp =

m∑
j=1

⎛
⎝|Tj | ×

∑
k �=j

|Tk|

⎞
⎠ , (2.61)

which does not exceed m×b×(m−1)b = b2m(m−1). If there are five source query terms and every
set of translations includes five words respectively, then it becomes that Mp = 5× 5× 4× 5 = 500.

Although its degree of computational complexity is almost the same as that of the method
in Equation (2.55), the algorithm using C(t, Tk) avoids making local judgments in the selection
of translations to some degree unlike Equation (2.55). Namely, a translation of a given source
term sj is chosen by using information on relationships with all other source terms through the
C(t, Tk) in Equation (2.59), not with only a single source term. In the above example, even if
the similarity score between “administration” and “system” is the highest one, it may be possible
that “management” is correctly selected as a translation. Actually, the final sum of C(t, Tk)
for “management” may become greater than that for “administration” due to the contribution
of a high degree of similarity between “management” and “database”. Search performance of
the disambiguation techniques will be discussed in Section 5.2 based on an experimental result
provided by Kishida(2007) [150].

PRF-based techniques for disambiguation

PRF techniques discussed in Section 2.1.5 can be applied to translation disambiguation [15, 16].
In CLIR situations, two kinds of PRF are feasible:

• Pre-translation feedback

• Post-translation feedback

Suppose that there is a corpus in the source language which is independent of the target document
collection. First, this corpus is searched for a given source query, and resulting documents are
analyzed prior to translation for CLIR in order to add a set of new terms to the source query
(pre-translation feedback). The new terms can be selected based on term weights ωj in Equation
(2.36). Second, after translation, standard PRF can be applied by using the target document
collection (post-translation feedback). Inevitably, for executing the pre-translation feedback, an
extra corpus in the source language is needed unlike the post-translation feedback working on the
target collection.

The pre-translation feedback may improve the precision (see [15]), because PRF is basically
executed using the entire query, not each source term respectively. Namely, synonyms or related
terms corresponding to the correct meaning of each source term within the context of the query are
expected to be automatically added through the PRF process. An experiment [210] has suggested
that the pre-translation query expansion is useful when lexical coverage of translation resources
is poor. In contrast, the post-translation feedback is just standard PRF, and therefore, the recall
would increase by applying it as many IR experiments have shown.

It is also possible to determine explicitly a final translation t̃j for each source term (j =
1, ...,m) based on frequencies of term occurrence in output from the initial search of post-translation
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feedback according to Kishida & Kando(2004)[157]. In the first stage of this process, the target
document collection is searched for a set of all translation candidates, and the number of documents
including each translation candidate in the list of top-ranked documents by this search is counted.
Finally,

t̃j = argmax
t∈Tj

rt, j = 1, ...,m, (2.62)

is selected as a final translation for the j-th source term where rt indicates the number of documents
including a translation candidate t within the top-ranked documents.

As Yamabana et al.(1998) [325] pointed out, unexpected false combinations of translations may
be generated by disambiguation techniques based on term co-occurrences because it is possible that
two translations having no relation within the context of a given source query tend to co-occur
frequently in the whole document collection. Namely, suggestions from macro-statistics compiled
by using the entire collection are not always valid in the sense implied by a particular query. A
similar problem occurs when applying query expansion techniques to general IR situations. It is
widely known that query expansion techniques using similarity thesauri generated through term
co-occurrence statistics (see Section 2.1.5) cannot achieve better performance than PRF in which
new search terms are locally identified from a restricted set of top-ranked documents searched for
the given query. Similarly, in the context of translation disambiguation for CLIR, local analysis
of the target document collection such as Equation (2.62) may yield better results than global
analysis.

In addition, it should be noted that the technique based on Equation (2.62) is easier to im-
plement in IR systems having a standard PRF function. This is a practical advantage of this
technique.

Disambiguation for phrasal translation

As Ballesteros & Croft(1997) [15] pointed out that “...failure to translate multi term concepts
as phrases reduces effectiveness”, phrasal translation is certainly significant for CLIR (see also
Section 2.2.3). A basic technique is to search a bilingual dictionary or a term list including phrases
or compound words as its headwords. Namely, they can be automatically identified in the source
query by simple matching operations against headwords of such a language resource. Also, if a
POS tagger is available in this process, then a word combination of ‘noun-noun’ or ‘adjective-noun’
would be reasonably assumed to be a compound word or multi-word (see also Section 2.1.6).

Inevitably, the coverage of lexical resources to be used will not always be sufficient. Namely,
all phrases or compound words are not always found in the resources as headwords. When an
untranslatable phrase is included in a given source query, there is no way other than to attempt
word-by-word translation, which may cause a term ambiguity problem [15, 16]. Therefore, one of
the disambiguation techniques discussed above is required in the word-by-word translation process.

However, it should be noted that there are two kinds of compound words as follows [237]:

• Compositional compounds. The meaning can be derived from meanings of the component
words (e.g., “database management system”).

• Non-compositional compounds. The meaning cannot be derived from meanings of the com-
ponent words (e.g., “hot dog”).

In many cases, disambiguation methods based on term co-occurrences may have limitation for de-
tecting correctly translations of non-compositional compounds. It is thus indispensable to augment
the coverage of bilingual dictionaries in order to enhance the quality of phrasal translations. This
could be done by some techniques for detecting translations of OOV from the web (see the above
section), for extracting phrasal representations from parallel or comparable corpora (see [197]), or
for disambiguating directly noun phrases not at the level of distinct words (see [100]).

Other disambiguation techniques

In a technique called bi-directional translation, backward translations in which translation results
are automatically re-translated into the original language are used for ranking translation candi-
dates [36]. For instance, when French terms are translated into English ones, first a set of English
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equivalents for each French term is extracted from a French-English bilingual dictionary. Next,
by using an English-French dictionary, each English equivalent is reversely translated into a set of
French terms. Basically, if the set includes the original source term, then the English translation
equivalent is chosen as a preferred translation.

When a pivot language approach to translation is used, lexical triangulation can be applied to
translation disambiguation [108, 184]. In this technique, two pivot languages are used indepen-
dently, and an attempt is made to remove erroneous translations by taking only translations in
common obtained from both ways of transitive translation using the two pivot languages respec-
tively.

Also, a disambiguation technique via dynamic clustering of search results has been explored
by [181]. In the first stage of this method, all translation candidates are used as the search
query without any disambiguation like the PRF-based method, and in the next stage, top-ranked
documents searched for the original query are divided into some clusters by a clustering algorithm.
Finally, the degree of similarity between the query and a cluster to which each document belongs
is reflected in its document score for ranking, and documents are re-ranked according to the new
scores. If each cluster correctly corresponds to one of the multiple senses and appropriate clusters
for the given query can be identified, then search performance may be enhanced by the re-ranking.

2.2.5 Formal models for CLIR

If representations in two different languages of a given query and documents become comparable
after the translation process, then the BLIR problem reduces to that of standard monolingual IR.
Namely, after the translation is completed, the remaining task is how to compute document scores
for ranked output, in which a retrieval model such as Equation (2.12), (2.28) or (2.47) is applied
in a standard manner of monolingual IR. In contrast, some researchers have tried to incorporate
directly the translation process into a retrieval model.

Language modeling for CLIR

It is relatively easy to incorporate translation probabilities P (t|s) into Equation (2.47) of language
modeling (LM). Figure 2.8 shows the basic idea of the incorporation, in which it is assumed that

P (t|di) =
∑
k

P (t|sk)P (sk|di), (2.63)

where sk indicates a term included in document di. Note that t is a query term in a different
language from that of documents in this case. Equation (2.63) means that P (t|di), which is the
probability that query term t is generated from document di, is decomposed into term occurrence
probabilities P (sk|di) and translation probabilities P (t|sk), and that its value is computed by
summing the products of them for all sk. By directly substituting Equation (2.63) into Equation
(2.47),

P (Ωq|di) =
∏
t∈Ωq

a
∑
k

P (t|sk)P (sk|di) + (1− a)P (t), (2.64)

is finally obtained according to [215, 321, 320].
In Equation (2.47), for preventing P (Ωq|di) from automatically becoming zero when P (t|di) =

0 for term t, a general probability P (t) is added to P (t|di) with a mixing parameter a (i.e.,
Jelinek-Mercer smoothing) where the term aP (t|di)+(1−a)P (t) can be considered to be the ‘true
probability’ that t appears in di. If translation probabilities are applied to the true probability
that term sk appears in di, then another formula,

P (Ωq|di) =
∏
t∈Ωq

∑
k

P (t|sk)[aP (sk|di) + (1− a)P (sk)], (2.65)

can be derived for language modeling in BLIR [128]. Whereas P (t) in Equation (2.64) needs to
be estimated using an extra corpus in the query language (e.g., P̂ (t) = nt/N where nt means
the number of documents containing term t), an estimation of P (sk) in Equation (2.65) can be
obtained from the target document collection itself.
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Figure 2.8: Language modeling with translation probabilities
Source: Kishida(2010b)[153]

As discussed above, translation probability P (t|sk) can be estimated by the IBM model if an
appropriate parallel corpus is available. Fortunately, the GIZA++ toolkit including a module for
the IBM model has been developed.

If no parallel corpus is available, then other methods have to be employed. A simple one is to
count the number of translations for each source term in a bilingual dictionary. For example, if
a source term s has ms translations t1, ..., tms , then the translation probabilities can be assumed
such that P (tj |s) = 1/ms (j = 1, ...,ms) uniformly [321]. As a more sophisticated method, an EM
algorithm computing iteratively the translation probabilities based on term co-occurrence statistics
has been proposed by [217] (the initial values of translation probabilities are estimated as the above
P (tj |s) = 1/ms from a bilingual dictionary). Since term co-occurrence statistics can be compiled
from the target document collection, this algorithm allows to estimate translation probabilities
without any parallel corpus.

Relevance model

Relevance model (RM) developed by [179] can be theoretically applied to CLIR situations [178, 176]
since essentially the RM is a variation of LM. In RM, the document score is often calculated as
relative entropy E(R ‖ di) between P (t|di) in Equation (2.47) and P (t|R), which is the average
probability that t is included in a relevant document, such that

E(R ‖ di) =
∑
t∈ΩD

P (t|R) log
P (t|R)

P (t|di)
, (2.66)

where ΩD indicates a set of all terms appearing in the database D. If a set of relevant documents
is unknown, then P (t|R) can be approximately estimated by P (t|Ωq) = P (t,Ωq)/P (Ωq), and it is
feasible to write that

P (t,Ωq) =
∑

i:di∈D

P (di)P (t|di)
∏

t′∈Ωq

P (t′|di), (2.67)

under an assumption [179] 38. Also, it becomes

P (Ωq) =
∑
t∈ΩD

P (t,Ωq). (2.68)

In order to apply RM to CLIR, it is necessary to distinguish terms in documents from those in
queries by denoting a document term by sk in Equations (2.66) and (2.67) (i.e., sk ∈ ΩD). Actually,
Equation (2.67) is re-written as

P (sk,Ωq) =
∑

i:di∈D

P (di)P (sk|di)
∏
t∈Ωq

P (t|di), (2.69)

38First, P (t,Ωq) =
∑

i:di∈D P (di)P (t,Ωq |di). If it is assumed that all terms are sampled independently and

identically from di, then P (t,Ωq |di) = P (t|di)
∏

t′∈Ωq
P (t′|di). By substituting it into the first equation, Equation

(2.67) is obtained.
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in which
∏

P (t|di) can be estimated by using Equation (2.64) and usually P (di) = 1/N .
While only query terms appearing in the document contribute to computation of the document

score in standard IR models, RM takes all terms in the database D into consideration as suggested
by Equation (2.66). This means that much more information on term occurrences is used in RM
than other IR models, which may enhance search performance. However, more computational time
is required for calculating document scores based on RM.

Hidden Markov model for CLIR

Suppose that s is a sequence of terms included in a source query and t is its translation, and that
the number of source terms is equal to that of translations (e.g., m = l in Equation (2.51)). From
the definition of conditional probability, P (t, s) can be written as

P (t, s) = P (t1, ..., tm, s1, ..., sm) = P (s1, ..., sm|t1, ..., tm)P (t1, ..., tm), (2.70)

where P (t1, ..., tm) = P (tm|tm−1, ..., t1)× ...×P (t3|t2, t1)×P (t2|t1)×P (t1), and if the translation
process is interpreted as a Markov model in which occurrence probability of th is dependent on
only previous term th−1, then it becomes that

P (t1, ..., tm) = P (tm|tm−1)...P (t3|t2)P (t2|t1)P (t1). (2.71)

Similarly, P (s1, ..., sm|t1, ..., tm) = P (sm|tm)× ...× P (s2|t2)× P (s1|t1), and therefore,

P (t, s) = P (t1)P (s1|t1)
m∏
j=2

P (sj |tj)P (tj |tj−1). (2.72)

This is a query translation model based on hidden Markov model (HMM) proposed by [91, 24], in
which ‘reverse’ translation probability P (sj |tj) and transitive probability P (tj |tj−1) of translations
(target terms) are included. The transitive probability in this model may work as a device for
translation disambiguation. For example,

P (“management”|“database”)× P (s2|“management”)
is expected to be greater than

P (“administration”|“database”)× P (s2|“administration”)
where s2 is the second term of a query representing “database management system” in a language
other than English.

Structured query model

INQUERY system developed by a research group at Massachusetts University [47, 306] provides
an important function for CLIR. In principle, the INQUERY is a retrieval model based on a
probabilistic Bayesian network, in which a ‘belief score’ B(q|di) measuring the degree to which
document di is relevant to a given query q is estimated. Although some variations can be derived
dependently on assumptions to be selected, B(q|di) is basically computed from B(tj |di) of each
search term included in q such that

B(tj |di) = 0.4 + 0.6

{
fij

fij + 0.5 + 1.5li/l̄
× log[(N + 0.5)/nj ]

log(N + 1)

}
, (2.73)

where li is the length of di, l̄ is the average of li in the database and fij is the frequency of tj in
document di, as before. For example, when ‘#sum( )’ operator is used such as #sum(t1, t2, ..., tm),
B(q|di) is calculated as

∑m
j=1 B(tj |di).

The INQUERY system has several operators like #sum( ), which clearly distinguish this system
from other retrieval models. Among the operators, the #syn( ) operator for dealing with synonyms
is often used in CLIR tasks. Suppose that there are three source terms s1, s2, s3, and translations
of these terms are obtained from a bilingual dictionary such that T1 = {t11, t12, t13}, T2 = {t21, t22}
and T3 = {t31, t32}. It is feasible to enter a structured query,

#sum ( #syn (t11 t12 t13) #syn (t21 t22) #syn (t31 t32)),
into the INQUERY system without any translation disambiguation [236]. This is often called
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Pirkola’s method, in which the belief score of a set of translations Tk for the source term sk is
computed based on the #syn operator such that

B(Tk|di) = 0.4 + 0.6

{
x′
i(Tk)

x′
i(Tk) + 0.5 + 1.5li/l̄

× log[(N + 0.5)/n′(Tk)]

log(N + 1)

}
, (2.74)

where x′
i(Tk) =

∑
j:tj∈Tk

fij and n′(Tk) indicates the number of documents including at least

one translation in Tk [143, 291, 184, 124]. Pirkola’s method has been slightly modified by some
studies [74, 311]. For instance, in an experiment [74], translation probabilities are incorporated
into the computation of x′

i(Tk) and n′(Tk) such as x′
i(Tk) =

∑
j:tj∈Tk

P (tj |sk) × fij and n′(Tk) =∑
j:tj∈Tk

P (tj |sk)×nj in order to increase influence of probable target terms with higher translation
probabilities.

2.2.6 Method for multilingual information retrieval

Approach to MLIR

Suppose that there is a multilingual document collection in which two or more languages are mixed
(not a parallel corpus), and that a user wishes to search the collection for a query expressed in a
single language (see Figure 2.1). This MLIR task is more complicated than simple BLIR. Basically,
there are two strategies for MLIR as follows [188]:

• Distributed architecture in which the document collection is separated by language, and each
part is indexed and retrieved independently.

• Centralized architecture in which the document collection in various languages is viewed as
a single document collection and is indexed in one huge index file.

 

multilingual collection index translation
query

searchindexing

result merge

final list

Figure 2.9: Distributed architecture for MLIR
Source: Kishida(2010b)[153]

Merging technique

In the distributed architecture, a standard bilingual search is repeatedly performed for each sepa-
rate language sub-collection respectively, and several ranked document lists are generated by each
run (see Figure 2.9). Then the problem becomes how to merge the results of each run into a
single ranked list so that all relevant documents in any language are successfully located on upper
ranks. Essentially, the merging strategy is a general research topic of IR when searching distributed
resources (i.e., distributed IR), in which it is necessary to merge ranked lists obtained from each
resource. In CLIR, the following merging strategies have been investigated 39:

• Raw score. Using straightforwardly document scores estimated in each run.

39Experimental comparison of the search performance between these methods has been attempted by [276].
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• Round robin. Interleaving each document list in a round robin fashion by assuming that the
distribution of relevant documents is identical among the lists.

• Normalized score. Normalizing document scores of each run in order to remove the effects of
collection-dependent statistics used for estimating the scores.

• Rank-based score. Converting mathematically ranks in each run into scores by assuming a
relationship between probabilities of relevance and the ranks.

• Modified score. Modifying raw scores in each run so as to reduce the effects of collection-size
dependency, translation ambiguity, and so on.

If the retrieval model employed for each run can estimate the relevance probability of each
document correctly, then it would be reasonable to re-rank all documents together according to
values of the probability (i.e., raw score strategy). For instance, the logistic regression model for
IR can be used as a retrieval model for it (see [57] for details).

However, in most cases, it would be too difficult to interpret each document score as a pure
probability of relevance even though a probabilistic retrieval model was actually used because the
probability is often approximately estimated for convenience of calculation in the model. In such
cases, if it can be assumed that relevant documents are distributed in the same way within every
separate language sub-collection, then it is possible to employ round robin-based merging in which
only the rank of each document is taken into account. Otherwise, an alternative method is to use
normalized document scores such that

v′i = (vi − vmin)/(vmax − vmin), (2.75)

where vi is the raw score of document di, and vmin and vmax are the minimum and maximum in
each search run respectively [242].

One widely-known method for normalization in distributed IR is CORI (collection retrieval
inference) algorithm [48]. In this algorithm, first, the score of a sub-collection for the given query
is computed based on Equation (2.73) by considering each sub-collection Dk (k = 1, ...,K) as
a single huge document where K is the number of sub-collections included in the multilingual
collection (i.e., the number of languages). The score is denoted by B(q|Dk). Second, the score vi
(= B(q|di)) of a document di in a sub-collection Dk (i.e., di ∈ Dk) is converted such that

v′i = vi ×
(
1 +K × B(q|Dk)− B̄(q)

B̄(q)

)
, (2.76)

where B̄(q) = K−1
∑K

k=1 B(q|Dk). For more details on applying the CORI algorithm to MLIR,
see [274] or [218].

Another possibility is to predict the relevance probability of a document ranked in a position
by using training data sets [93, 168, 275]. For instance, it is possible to calculate this probability
such that

P̂ (R|di) = a+ b log(ρi), (2.77)

where P (R|di) indicates the relevance probability of document di, ρi denotes its rank in the output
list, and a and b are parameters to be estimated from training data (a more complicated regression
model was used in [275]). Meanwhile, researchers have explored other techniques of modifying raw
scores so as to remove the effect of collection-size dependency (e.g., [129]), or of reducing them
based on the degree of translation ambiguity according to the assumption that a good translation
may give much more relevant documents (e.g., [188]).

Searching heterogeneous collection

In the centralized architecture, the set of multilingual documents is not divided into sub-collections
for each language. For searching such a heterogeneous collection, it is necessary either

1. to translate a given source query into all languages included in the document collection and
to merge all translations into a single query, or
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2. to translate all documents in a single language used in the query.

In general, the first method has been adopted (e.g., [106, 221]). Since documents in a lan-
guage having fewer documents may take advantage of weighting by document frequency, it may
be necessary in this method to adjust the idf factor [188]. For example, in Equation (2.73),
{log[(N + 0.5)/nj ]}/ log(N + 1) is an idf factor, and its value becomes larger as nj is smaller.

Meanwhile, in the second method, it is not necessary to add such adjustment of parameters
because a single index file registering query language words is created even though the document
translation is a very time-consuming task. This method was attempted by [58], and the search
performance of various MLIR techniques discussed in this section was experimentally compared.
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Chapter 3

Hierarchical and Non-Hierarchical
Document Clustering

3.1 Introduction to Document Clustering Technique

In this section, basic elements and procedures of document clustering (DC) are introduced as
fundamentals for discussing various DC techniques in the following sections.

3.1.1 Document representation and similarity

Document vector

As similarly to information retrieval (IR), in DC or text categorization, a document is usually
represented by a vector whose elements are term weights such as di = [wi1, wi2, ..., wiM ]T where
wij indicates a weight of term tj in di (i = 1, . . . , N ; j = 1, . . . ,M) and M is the total number
of distinct terms in D as before. Note that ‘term’ means an index term extracted by an indexing
process from the original text of each document (see Section 2.1.6). The simplest weighting scheme
is that wij = 1 if tj appears in di, and if not, wij = 0, by which a binary vector is constructed for
each document. If term frequencies are straightforwardly used, then wij = fij where fij is the times
that tj appears in di. Otherwise, various methods of tf-idf weighting can be applied for defining
wij (see Section 2.1.3).

Suppose that there is a sample document database shown in Table 3.1 (for convenience, Table
3.1 is called ‘sample DB’ in this thesis) where nj indicates document frequency of term tj (i.e.,
the number of documents including term tj), and li means document length of document di (i.e.,

li =
∑M

j=1 fij), as before. A document vector of d1 in the sample DB can be computed as follows:

• Binary vector. d1 = [1, 1, 0, 0, 0, 0]T .

• Term frequency (tf) vector. d1 = [4, 1, 0, 0, 0, 0]T .

Table 3.1: Sample document database (‘sample DB’)

term frequency fij
tj nj d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
t1 3 4 1 1 0 0 0 0 0 0 0
t2 6 1 3 6 0 2 1 1 0 0 0
t3 4 0 0 0 4 2 1 5 0 0 0
t4 4 0 0 0 3 0 0 0 2 1 3
t5 6 0 0 0 0 1 5 1 3 5 1
t6 2 0 0 0 0 0 0 1 0 0 4
li - 5 4 7 7 5 7 8 5 6 8
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Table 3.2: Values of idf: logN/nj

nj/N 0.01 0.02 0.05 0.10 0.20 0.50 0.80 1.00
loge N/nj 4.61 3.91 3.00 2.30 1.61 0.69 0.22 0.00
log2 N/nj 6.64 5.64 4.32 3.32 2.32 1.00 0.32 0.00
% for log(0.01)−1 100% 85% 65% 50% 35% 15% 5% 0%

Also, tf vectors are often normalized explicitly such that wij = fij/li, namely,

• Normalized tf vector: d1 = [4/5, 1/5, 0, 0, 0, 0]T ,

because l1 = 4 + 1 = 5.
Furthermore, an example of vector based on tf-idf weighting is

• Vector by tf-idf weighting, fij × log(N/nj): d1 = [4.8, 0.5, 0.0, 0.0, 0.0, 0.0]T .

Table 3.2 may help us understand influence of the idf factor on term weighting. In the case of a
simple formula that fij × log(N/nj), each counted tf is changed by multiplying an idf value like
those in the table. As a result, weights of terms appearing in a smaller part of the entire set increase
in comparison with those included in many more documents (note that nj/N indicates a portion
of documents including term tj in the set). Thus by incorporating the idf factor, importance of
specific terms intensively discussed in a particular set of documents (e.g., “clustering”) is expected
to augment more than that of general terms widely used in various documents (e.g., “research”),
and actually, the idf factor is indispensable for document ranking in IR. For computing document
similarities in DC, the tf-idf weighting would be effective in some situations.

Generally in DC, the number of terms in a document collection, M , is so large and the vectors
have high-dimensionality 1. Also, many zero elements appear in the vectors because only a limited
part of M terms is actually included in each document. Consequently, the term-by-document ma-
trix such as Table 3.1 becomes very sparse, which often prevents standard classification techniques
from being simply applied to DC or text categorization problems.

Similarity measure

In DC, it is usually necessary to compute the degree of a topical similarity between two document
vectors or between a document vector and a cluster vector that is a subject representation of each
cluster. The similarity between di and dh can be measured as

• Cosine coefficient:
∑M

j=1 wijwhj

/√∑M
j=1 w

2
ij

∑M
j=1 w

2
hj , or

• Euclidean distance:
√∑M

j=1(wij − whj)2.

For instance, if tf vectors are adopted, then the cosine coefficient between d1 and d2 in Table 3.1
is computed as

4× 1 + 1× 3√
42 + 12 ×

√
12 + 32

=
7

4.123× 3.162
= 0.537.

Also its Euclidean distance becomes
√

(4− 1)2 + (1− 3)2 =
√
9 + 4 = 3.606. Note that a larger

cosine value means higher similarity between two documents whereas a larger distance indicates
lower similarity between them, inversely.

According to the vector space model (Section 2.1.3), DC techniques are usually based on the
cosine coefficient, rather than the Euclidean distance that is widely used in other fields. Like
Equation (2.12), the cosine coefficient between two document vectors is geometrically written as

cos θ =
dT
i dh

‖di‖ ‖dh‖
(3.1)

1Actually, M can be reduced by selecting a subset from all terms appearing in the set D as features for clas-
sification, as discussed later. The feature means generally an attribute or a characteristic of target objects to be
classified.
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where θ is an angle between two vectors and ‖ · ‖ represents a vector norm (e.g., ‖di‖ =
√
dT
i di).

When all weights in document vectors are non-negative, 0 ≤ cos θ ≤ 1 (if θ = 0◦ then cos θ = 1
whereas if θ = 90◦ then cos θ = 0). By using normalized vectors whose is 1 (it is generally called
unit vector) such as

d̃i = di/‖di‖, (3.2)

the cosine coefficient in Equation (3.1) can be written simply as d̃T
i d̃h where ‖d̃i‖ = ‖d̃h‖ = 1.

This means that document length has no effect on the degree of cosine measure unlike the Euclidean
distance.

For example, in Figure 3.1, three tf vectors of documents dA, dB and dC are plotted in a space
with two dimensions corresponding to terms t1 and t2. Since tf vector of dA is longer, the Euclidean
distance between dA and dB is larger than that between dB and dC , which means lower similarity
between dA and dB . In contrast, values of the cosine coefficient lead to a reverse conclusion since
cos θ > cosφ.

 

t1

t2 dA

dB

dC

�

�

Euclidean distance 

Figure 3.1: Document vectors in two-dimensional space

Modification of term weights by the idf factor is straightforwardly reflected on values of the
cosine coefficient. For example, its value between d2 and d3 in the sample DB (Table 3.1) reduces
slightly to 0.96 from 0.99 by changing term weights from simple tf to wij× logN/nj partly because
t2 appearing frequently in both the documents is also included in many documents (i.e., n2 = 6),
and its weight becomes relatively lower 2.

Use of unit vector

A unit vector other than Equation (3.2) can be obtained as

d̃i = [
√
fi1/li, . . . ,

√
fiM/li]

T , (3.3)

based on the normalized tf vector. For example, vectors of document d1 in Table 3.1 becomes as
follows:

• Equation (3.2). d1 = [0.970, . . . , 0.242, . . . , 0.0, 0.0, 0.0, 0.0]T .

• Equation (3.3). d1 = [0.941, . . . , 0.058, . . . , 0.0, 0.0, 0.0, 0.0]T .

2For the cosine measure, loge and log2 in the idf factor bring the same value because loge x = log2 x/ log2 e where
log2 e is common among all terms and canceled finally.
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In the case of using these unit vectors, since

‖d̃i − d̃h‖2 =
∑
j

(wij − whj)
2 =

∑
j

w2
ij − 2

∑
j

wijwhj +
∑
j

w2
hj

= 1− 2
∑
j

wijwhj + 1 = 2− 2d̃T
i d̃h, (3.4)

the square of the Euclidean distance brings the same clustering result with that by the cosine
coefficient [278]. Unit vectors of d1, d2 and d3 in Table 3.1 can be plotted on a unit circle shown
as Figure 3.2. Such kind of observations on a circle or a sphere can be treated by the theory of
directional statistics [203], which is discussed in Section 4.1.1.

(1,0)

(0,1)

(-1,0) O

(0,-1)

t1

t2

d1

d2
d3

 

Figure 3.2: Unit vectors on circle

3.1.2 Types of document clustering

Hierarchical and non-hierarchical clustering

Clustering can be generally grouped into two types based on their forms of clustering results,
namely, hierarchical and non-hierarchical clustering (see Figure 3.3). In hierarchical clustering, a
set of nested clusters is generated. For example, cluster {3, 4} and cluster {5, 6} are merged into a
nested cluster {{3, 4}, {5, 6}} in Figure 3.3. Consequently, it is feasible to obtain a tree structure
of nested clusters, which is usually called dendrogram. Therefore, for producing a set of clusters
defined in Equation (1.1), the dendrogram has to be cut at a level. In Figure 3.3, three clusters,
{1, 2}, {3, 4, 5, 6} and {7, 8}, are created by a cut of dendrogram.

 

 

 

 

 

cut 

  1  2  3  4   5  6   7  8 

(a) Hierarchical  (b) Non-hierarchical  

   (nonexclusive) 

Figure 3.3: Document vectors in two-dimensional space

By non-hierarchical clustering which is often called flat partitioning, a non-nested structure as
shown in Figure 3.3 is obtained, which leads to directly a set of clusters in Equation (1.1). Because
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Table 3.3: Similarity matrix of sample DB

d1 d2 d3 d4 d5 d6 d7 d8 d9
d2 .54
d3 .40 .99
d4 .00 .00 .00
d5 .16 .63 .66 .53
d6 .05 .18 .19 .15 .58
d7 .05 .18 .19 .76 .82 .40
d8 .00 .00 .00 .33 .28 .80 .16
d9 .00 .00 .00 .12 .33 .94 .19 .92
d10 .00 .00 .00 .35 .07 .19 .19 .49 .31

computational complexity of hierarchical clustering is fairly high as discussed later, it is hard to
apply the algorithm to a large-scale document set. In the IR field, for solving the problem, a
single-pass algorithm creating a flat partition has been often employed for DC where ‘single-pass’
means that clusters can be generated by only a single scan of the document file, and as a result,
computational complexity decreases largely.

Outline of hierarchical clustering

In the case of agglomerative hierarchical clustering, it is necessary to compute a similarity matrix
S = [sih] (i, h = 1, . . . , N) where sih denotes the degree of similarity between di and dh. Table
3.3 is an example of the similarity matrix in which each element is a value of the cosine coefficient
calculated from tf vectors in the sample DB. Because S is symmetric (i.e., sih = shi) and always
sii = 1.0 in the case of using the cosine coefficient, Table 3.3 displays S as a lower triangle matrix
removing diagonal elements.

Based on the set of sih, it is possible to define the degree of similarity between clusters s̃km
(k,m = 1, . . . , L; k �= m) such that

• single linkage: s̃km = max{sih|di ∈ Ck, dh ∈ Cm},

• complete linkage: s̃km = min{sih|di ∈ Ck, dh ∈ Cm},

• group average linkage (UPGMA): s̃km = (ñk × ñm)−1
∑

i:di∈Ck

∑
h:dh∈Cm

sih,

where ñk and ñm are the number of documents belonging to Ck and Cm, respectively (e.g., ñk =
|Ck|). Also, min{·} and max{·} represent minimum and maximum of elements in the set {·},
respectively. While the three definitions have been often used for DC, there are other types of
similarity (distance) between clusters generally 3.

Figure 3.4 shows an image of single linkage, complete linkage and group average linkage for
defining similarities between clusters (exactly, representation of the figure is based on distance,
not similarity). Whereas the similarity between the nearest pair is used as cluster similarity in
the single linkage method, the complete linkage method adopts the similarity between the farthest
pair. In group average linkage, an average of similarities between all pairs is employed for avoiding
a singular effect from a particular nearest or farthest pair.

A dendrogram can be constructed by merging repeatedly two clusters whose similarity is the
highest in the current stage. In the process, a single document has to be considered as a pseudo
cluster, which is usually called singleton, unless the document enters into any cluster. For example,
when the single linkage method is applied to data of Table 3.3, document d6 is combined with d9 into
a cluster (its similarity is 0.94), and next, singleton d8 is merged with cluster {d6, d9} (its similarity
is 0.92 because 0.92 between d8 and d9 is larger than 0.80 between d6 and d8). Furthermore, the
cluster {d6, d8, d9} is merged with {d2, d3, d4, d5, d7} (its similarity is 0.40 between d6 and d7).
Note that the similarity of d8 and {d6, d9} is 0.80, not 0.92, in the case of complete linkage.

3For instance, a textbook on clustering [322] introduces also ‘weighted average linkage (WPGMA)’, ‘median
linkage (WPGMC)’, ‘centroid linkage (UPGMC)’ and Ward’s method.
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Average Group average linkage

 

 

 

Figure 3.4: Distance between clusters

Actually, Figure 3.5 shows dendrograms created by the single linkage and complete linkage
methods from data in Table 3.3. The dendrograms were obtained by hclust() function of a statistical
language R [246] and the degrees of similarity was converted into distance measures as 1−sih before
input of data to R (see scale indicators of the left-hand side in each dendrogram). Interestingly,
it seems that dendrogram by the complete linkage is more valid than that by the single linkage.
For example, even though d1 shares terms with only d2 and d3, d1 is located far from the cluster
including d2 and d3 in the dendrogram by the single linkage. Such kind of unsuccessful result
by the single linkage is often pointed out in literature, and in particular, it is well-known that
the single linkage method may generate an unbalanced tree such that in Figure 3.6 by so-called
‘chain-effect’.

 

(a) single linkage                      (b) complete linkage 
 

 

 

Figure 3.5: Clustering results for sample DB by R-2.12.0

When the tree by the complete linkage is cut at the level of 0.7 (i.e., 0.3 of the cosine coefficient),
four clusters can be obtained (i.e., C1 = {d1, d2, d3}, C2 = {d4, d5, d7}, C3 = {d6, d8, d9} and
C4 = {d10}). If the level is changed to 0.85 (i.e., 0.15 of the cosine coefficient), then d10 is merged
into cluster C3.

By adopting unit vectors, other clustering methods specialized to the Euclidean distance can
be also used for DC. For instance, a result from applying the Ward’s method to the sample DB
based on the Euclidean distance between unit vectors computed from tf vectors by Equation (3.2)
is shown as Figure 3.7, which also contains a dendrogram obtained by using original tf vectors.
It seems that the dendrogram by the Ward’s method based on unit vectors is very similar with
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(a) Unbalanced tree (b) Balanced tree

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Unbalanced and balanced trees

that by the complete linkage, whereas the original tf vectors would create an inappropriate tree in
which d5 is combined with d2 in the earlier stage. The Ward’s method tries to find two clusters
to be merged in each stage based on sum of squared error or residual sum of squares (RSS) of a
cluster,

Jk =
∑

i:di∈Ck

‖di −mk‖2, (3.5)

where

mk =
1

ñk

∑
i:di∈Ck

di, (3.6)

which is called centroid vector in the cluster [9]. If a new cluster Cp is created by merging Ck

with Cm, then increment of the sum of squared error caused by creating Cp can be computed as
�Jkm = Jp − Jk − Jm. In the Ward’s method, �Jkm is used as distance measure between Ck and
Cm, and the nearest two clusters are merged in each stage 4.

 

(a) Unit vectors                        (b) Original tf vectors 

 

 

 

Figure 3.7: Clustering results by Ward’s method using R-2.12.0 (left:di/‖di‖, right: di)

Tree structure obtained by hierarchical clustering such as shown in Figures 3.5 and 3.7 is often
useful for IR applications. For instance, when a search engine tries to divide a result for a given
query into topically homogeneous subsets, it would be convenient for the user to adjust the number
of documents by moving up and down in the tree. Unfortunately, in order to execute agglomerative
hierarchical clustering, similarity scores between O(N2) pairs have to be computed, which often
prevents us from applying hierarchical methods to a large set of documents. For example, whereas
Table 3.3 includes only 45 values of the cosine coefficient, when N = 10000, the number of pairs
amounts to 49,995,000 5. In addition, a pair of clusters to be merged in each stage has to be
found, in which numerous checks of values in the matrix are needed (see Section 3.2). Thus flat
partitioning techniques in which computation of the similarity matrix is not required have been
often used in the IR field as mentioned above.

4The distance is computed such that �Jkm = ñkñm/(ñk + ñm)× ‖mk −mm‖2 [9].
5The number of pairs can be calculated as (N × (N − 1))/2.
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Outline of non-hierarchical clustering

The most typical non-hierarchical clustering method is possibly k-means algorithm where ‘k’ indi-
cates the number of clusters, which has to be determined a priori before executing the algorithm.
In this thesis, the number of clusters ‘k’ is denoted by L for keeping consistency of notations. A
basic procedure of k-means algorithm is shown in Figure 3.8.

‡ Basic k-means algorithm (batch mode)

Set: The number of clusters L, and initial cluster vectors, c1, ..., cL.

1) Allocate document di to the nearest cluster (i = 1, . . . , N).

2) Update cluster vectors ck based on the allocation in step 1) (k = 1, . . . , L).

3) Terminate the algorithm if each ck becomes stable. Otherwise, return to step 1).

Out: Clusters C1, . . . , CL and final vectors c1, ..., cL.

Figure 3.8: Basic k-means algorithm

Cluster vectors are defined as

ck = [w̃k1, w̃k2, . . . , w̃kM ]T , k = 1, . . . , L, (3.7)

where w̃kj means a weight of term tj in Ck. Typically, the centroid vector in Equation (3.6) is
adopted as the cluster vector (i.e., ck = mk) in k-means algorithms. One of the methods for setting
the initial cluster vector is to select randomly a document, which is generally called seed, for Ck

(k = 1, . . . , L). When the random selection is applied, it is enough to specify only the number of
clusters L before executing the algorithm.

After the seeds are determined, each document vector is sequentially checked and allocated
to the nearest cluster, whose distance to the document is the shortest. Next, each cluster vector
is updated based on the result of allocations. In the case that ck = mk, each centroid vector
is simply recomputed for documents allocated to each cluster at the stage. When all cluster
vectors are updated together after allocations of all documents as in Figure 3.8, it is usually called
batch mode k-means clustering. Meanwhile, in the case of ‘incremental’ or ‘online mode’ k-means
clustering, after a single document is allocated to a cluster, the related cluster vectors (i.e., those
of the old and new clusters for the document) are immediately updated.

The allocating and updating processes are usually repeated until cluster vectors are not changed
(see Figure 3.9). Otherwise, the algorithm can be stopped by checking RSS for the entire set of
clusters, which is defined as

J =

L∑
k=1

Jk =

L∑
k=1

∑
i:di∈Ck

∥∥∥∥∥di −
1

ñk

∑
i:di∈Ck

di

∥∥∥∥∥
2

(3.8)

(see Equations (3.5) and (3.6)). Namely, when the RSS becomes lower than a threshold or the
amount of decrease in the RSS falls under a threshold, the algorithm may be terminated [202].

Table 3.4 shows a result of the basic k-means clustering for the sample DB when the number of
clusters are given as L = 2, 3, 4, respectively. Note that unit vector di/‖di‖ computed from tf vector
was used in the input data and that sets of documents, {d5, d6}, {d5, d6, d7} and {d5, d6, d7, d8},
were particularly selected as seeds for each execution 6. In the case that L = 3, this algorithm

6From theoretical point of view, it may be better to normalize centroid vectors such that m̃k = mk/‖mk‖
when measuring distance between document and cluster representations in DC. Another strategy is to consider the
unit vectors of documents as representations from which influence of document length is removed, and to treat
them simply as data entering into a clustering algorithm without any consideration of normalizing centroid vectors.
This chapter adopts basically the latter strategy, which enables to straightforwardly employ standard techniques or
software packages for k-means clustering, whereas in Section 4.1.1, an algorithm based on normalized cluster vectors
will be also discussed.
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Doc1: Term1, Term2,…
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Cluster vectors
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…

Allocating of documents
or Updating of cluster vectors

 

Figure 3.9: Outline of k-means clustering algorithm

Table 3.4: Clusters and their vectors generated by basic k-means algorithm

Cluster vectors
Clusters Documents t1 t2 t3 t4 t5 t6
L = 2 (seeds: d5, d6)
C1 d1, d2, d3, d4, d5, d7 .242 .506 .402 .100 .087 .031
C2 d6, d8, d9, d10 .000 .048 .048 .335 .743 .196
L = 3 (seeds: d5, d6, d7)
C1 d1, d2, d3 .484 .726 .000 .000 .000 .000
C2 d4, d5, d7 .000 .285 .804 .200 .174 .063
C3 d6, d8, d9, d10 .000 .048 .048 .335 .743 .196
L = 4 (seeds: d5, d6, d7, d8)
C1 d1, d2, d3 .484 .726 .000 .000 .000 .000
C2 d4, d5, d7 .000 .285 .804 .200 .174 .063
C3 d6, d8, d9 .000 .064 .064 .250 .925 .000
C4 d10 .000 .000 .000 .588 .196 .784

generated C1 = {d1, d2, d3}, C2 = {d4, d5, d7} and C3 = {d6, d8, d9, d10}, which are explicitly
consistent with results by the complete linkage and the Ward’s methods (see Figures 3.5 and 3.7).
Similarly, it is easy to grasp that the sets of clusters obtained for L = 2 and L = 4 in Table 3.4
can be correctly extracted from dendrograms of Figures 3.5 and 3.7 by setting appropriate levels
of tree cut.

Unfortunately, inappropriate clusters may be generated by other seeds. For example, the basic
k-means algorithm with the seeds {d1, d2, d5} provides three clusters

C1 = {d1}, C2 = {d2, d3}, C3 = {d4, d5, d6, d7, d8, d9, d10}.

Thus when seeds are randomly selected, it is possible that invalid clustering results are caused by
the selected seeds 7. More sophisticated k-means algorithms reducing possibility that inappropriate
clusters are created will be explained in Section 3.3.1.

If the total number of iterations is denoted by r, then computational complexity of the k-
means clustering can be represented by O(NLMr) because N × L matching operations between
M -dimensional vectors are required in each iteration. Thus the k-means algorithm is expected
to be sufficiently faster than agglomerative hierarchical methods if L and r are enough small. In

7It should be noted that clustering result of the basic k-means algorithm is affected by the order of documents
to be processed as well as the selected seeds. The sets of clusters shown in Table 3.4 were obtained by processing
documents from d1 to d10 in turn. If the other order is used, then different clusters from those in Table 3.4 may be
generated.
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an extreme case where r = 1, a clustering result can be obtained by only a single scan of the
target document file (i.e., single-pass clustering) although its quality may not be high. So-called
‘leader-follower clustering algorithm’ is another method often used for single-pass clustering of large
document sets (see Section 3.3.2). Unfortunately, when L × r � N , it becomes that O(NLr) �
O(N2), which means that the computational complexity of k-means clustering approaches to that
of agglomerative hierarchical methods even though k-means clustering does not require calculation
of a similarity matrix.

Other than the k-means and leader-follower algorithms, probabilistic clustering, matrix-based
clustering, graph-based clustering (see Chapter 4) and so on can be categorized into the type of
non-hierarchical clustering (i.e., flat partitioning).

Remarks on link-based clustering

Similarity between two documents can be also measured based on citation links or web links. For
instance, bibliometric studies often use co-citation measure for visualizing relationships between
scientific papers in a research field. Suppose that there are 10 papers referring concurrently to
both d1 and d2. In this case, the co-citation counts of d1 and d2 amount to 10, which is denoted
by c12 = 10 here (i.e., these 10 papers are citing documents, and d1 and d2 are cited documents).
If the total numbers of documents citing d1 and d2 are written as c1 and c2, respectively, then
the cosine coefficient is computed by c12/

√
c1c2, from which a similarity matrix like Table 3.3 can

be constructed. Also, other coefficients such as the Dice coefficient 2c12/(c1 + c2), the Jaccard
coefficient c12/(c1 + c2 − c12), the overlap coefficient c12/min(c1, c2) and so on, can be employed.

Recently, link-based clustering [214] becomes more important after the web is prevalent because
hyperlinks embedded into the web pages can be used like citation links. The hyperlink information
allows for grouping web sites into clusters within which a close relationship is maintained. A
specific network structure existed in a set of web sites may be uncovered by the clustering (e.g., see
[303]). Such clustering methods using link relationship between documents should be technically
discerned from text-based clustering 8 which is executed by using text information included in
documents.

Another technique of link-based document clustering would be to improve results of text-based
clustering by using information contained in ‘neighbors’ linked with each document. For instance,
the cluster to which the target document was assigned by a unsupervised manner can be changed
into another cluster based on assignments of its neighbors 9. However, this thesis focuses on only
text-based clustering that utilizes term information contained in documents, and the link-base
clustering by bibliographic links or hyperlinks on the web is out of the scope.

3.1.3 Feature selection

Heaps’ law and Zipf’s law

As mentioned repeatedly, document sets are often very large, which may prevent us from executing
DC in real situations. The difficulty of DC is accelerated by another fact that dimension of cluster
vectors becomes higher as the document set is larger (i.e., the value of M is often so big). Also,
a set of terms appearing in a document is usually so different from that of another one 10, which
leads to a very sparse term-by-document matrix as pointed out in Chapter 1.

A well-known Heaps’ law [122, 202] allows to predict the vocabulary size of a document set
such as

M = aCb (3.9)

where C indicates ‘collection size’ (or collection length), which is usually measured by the total

number of tokens in the document set (i.e., C =
∑N

i=1

∑M
j=1 fij), and a and b are constants here

8Also, it is sometimes called ‘content-based’ clustering.
9A method based on Markov random field (MRF) for labeling clusters has been used to change the clusters in

some studies [13, 335].
10Note that this makes it difficult to apply k-medoids algorithm to DC problems. In the case of the k-medoids

algorithm, a single data point (i.e., a document) is selected as a cluster representation, which would not work well
if intersections of term sets between a medoid and other documents are small.
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(0 < b < 1). According to an estimation by Manning et al.(2008) [202] using RCV1 (Reuters

Corpus Volume 1) data [187], it amounts that â = 44 and b̂ = 0.49 (see Figure 3.10).
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Figure 3.10: Heaps’ law

As Figure 3.10 shows, when the document set becomes larger, increasing rate that a new term
emerges is slightly reducing. However, the size of vocabulary does not converge to a constant, which
means that novel features (i.e., terms) appear usually when a new document is added. Namely, M
would not be constant in many cases of DC.

Of course, it may not be necessary to use all terms included in the document set D as features
for DC. For instance, terms appearing in only a single document (i.e., nj = 1) have almost no
contribution to measurement of similarities between documents (such terms have effect only on
calculation of document norm, not on inner product, in the cosine coefficient). Usually, in a
document set (or database), there are many terms whose document frequency is only one or a few.

For instance, Figure 3.11 shows an actual distribution of index terms by document frequency,
which was compiled from a subset of RCV1 [187] (only about 23,000 news articles published in
August 1996). In the distribution, about 43% of all index terms obtained by removing stopwords
and applying the Porter’s stemming algorithm (Section 2.1.6) is appearing in just one document
(where M is about 74,000). These terms may be deleted in the process of computing the similarity
degree between document pairs.

The skew distribution in Figure 3.11 has a close relationship with well-known Zipf’s law [343],

x(r) =
A

rα
, r = 1, 2, . . . ,M, (3.10)

where r indicates rank of a term in descending order of occurrence frequency within a document
(note that r does not indicate the total number of iterations here) and x(r) denotes the occurrence
frequency of r-th term (A and α are constants). By transforming rank distribution in Equation
(3.10) into a standard frequency distribution f(x) of terms by the number of occurrences x like
that in Figure 3.11, it follows that

f(x) =
B

xβ+1
, x = 1, 2, . . . (3.11)

where β = 1/α and B = βAβ . Equation (3.11) also mathematically represents the Zipf’s law 11.
11Rank of a term with x document frequencies can be easily computed from the frequency distribution f(x) such

that r(x) = M + 1−∑x
x′=1 f(x

′). Thus if the summation is approximated by an integral, then

r(x) � 1 +M −
∫ x

1
f(x′)dx′.

By differentiating both the sides of this equation, it becomes that f(x) � −dr(x)/dx. Because r = (A/x)1/α from
Equation (3.10), dr(x)/dx = −βAβx−β−1 where β = 1/α, from which Equation (3.11) is derived [145]. Note that
when f(x) = xc, df(x)/dx = cxc−1 and that df(kx)/dx = k × df(x)/dx where c and k are constant.
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Figure 3.11: Distribution of index terms by document frequency: RCV1 data (August in 1996)
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Figure 3.12: Log-log plot of term distribution in Figure 3.11
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Figure 3.12 shows a log-log plot of distribution in Figure 3.11, namely, log f(x) = logB − (β +
1) log x. The straight line in the figure is Equation (3.11) with β = −0.5 and B = e10 = 22026.4.
Note that x-axis of the distribution in Figure 3.11 is measured by document frequency, not term
occurrence frequency in a document which is the original target of Zipf’s law, and that the data
are not of natural English words but index terms obtained from an indexing process.

Even if terms appearing in only a single document are discarded from a set of features for
DC, many terms would still remain, which leads to high-dimensional document vectors again. For
example, in the case of Figure 3.11, against about 23,000 document, there are over 40,000 terms
whose document frequency is more then one (i.e., M > N). For alleviating this problem, it may
be better to select a smaller subset of terms as features for classification by identifying usefulness
terms for DC.

Feature selection

In text categorization, which is automatic classification of documents in supervised manner, a
subset of terms used for the classification can be selected by using the training set, which is called
feature selection. When documents are classified into two classes (e.g., Classes 1 and 2), the
feature selection is not difficult by compiling a contingency table like Figure 2.1 (i.e., ‘relevant’
and ‘irrelevant’ are replaced by ‘Class 1’ and ‘Class 2’, respectively) from the training dataset.
Typically, mutual information or χ2 statistics have been employed for measuring the usefulness of
each term in text categorization (e.g., see [202]).

Meanwhile, for DC in unsupervised manner, such information on the usefulness of terms is not
available, and therefore, it would be not easy to apply feature selection to DC problems. One
solution may be to rank terms in a document according to their tf-idf weights (Section 2.1.3), and
to select some top-ranked terms as features. Of course, the total number of distinct terms M
does not always decrease drastically by this method because it is executed for respective document
independently (i.e., M can not be controlled directly).

In order to control size of M , it is necessary to find out M ′ ×M matrix B such that

d̄i = Bdi, i = 1, . . . , N, (3.12)

where di is an original M -dimensional vector and M ′ < M . As a result, the original document
vector can be converted into d̄i whose dimension is lower. For computing matrix B, it may be
possible to apply LSI-based technique (see Section 2.2.2). Otherwise, as a more efficient method for
large-scale document set, matrix B was randomly generated in experiments of WEBSOM (Section
4.2.1) [141, 166].

3.1.4 Evaluation of clustering results

Types of evaluation

Methods for evaluating clustering results (in other words, for checking ‘cluster validity’) can be
categorized as follows:

1. Direct evaluation

(a) External evaluation using an ‘answer’

(b) Internal evaluation

2. Indirect evaluation

In the case of indirect evaluation, performance of the application system in which DC is included
as a component is assessed. For instance, if a distributed IR system uses a DC module for dividing
the target document set into topically homogeneous parts in its process, then effectiveness of the
clustering result can be indirectly grasped from search performance of the IR system. However,
because usually various factors affect overall performance of such application system, it is often
difficult to separate contribution of DC from those of other components.

If an ‘answer’ given by human experts for clustering results is available, then output from
clustering algorithms can be evaluated more clearly. Actually, test collections developed mainly
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for studying text categorization (e.g, RCV1 [187]) can be also used in DC experiments for the
purpose of evaluation. In contrast, when such answer is unavailable, it is necessary to employ an
internal criteria for measuring quality of generated clusters.

External evaluation

Suppose that a human expert provides an ‘answer’, by which a set of ‘true’ clusters can be con-
structed in an experiment. The set is denoted by A = {A1, A2, . . . , AH} here. Clusters generated
by an algorithm, C = {C1, C2, . . . , CL}, can be evaluated by using the ‘answer’ set A. In the case
of exclusive text categorization in supervised manner, a topic class of each document in a test
set is selected directly from {A1, A2, . . . , AH}, and therefore, it is enough to examine whether the

assigned class equals to ‘true’ one or not, and to calculate vc = N−1
∑N

i=1 Iai where

Iai =

{
1 if the class assigned to di equals to its ‘true’ class
0 otherwise

. (3.13)

Usually, vc is called accuracy (0 ≤ vc ≤ 1), which is often used for evaluation of supervised exclusive
classification 12.

When results of nonexclusive classification are assessed, recall and precision, or F-measure
(Section 2.1.8) are used as evaluation metrics [328], for which it is necessary to count the following
numbers of class assignments,

• c11: the number of class assignments to ‘true’ one

• c10: the total number of class assignments by human experts (i.e., the total number of
elements of sets included in A where a document may belong to two or more sets in A)

• c01: the total number of class assignments by a classification system

and to compute vr = c11/c10 (recall) and vp = c11/c01 (precision). Note that vc = vr = vp in the
case of exclusive classification.

Because each document is not directly allocated to a particular answer cluster Am in usual
unsupervised classification, it is necessary for DC to measure the degree of ‘closeness’ between set
C and set A (note that it is not always guaranteed that L = H). One of the measures is entropy,

Ek = −
H∑

m=1

P (Am|Ck) logP (Am|Ck), (3.14)

where conditional probability P (Am|Ck) can be estimated such as

P̂ (Am|Ck) =
ñmk

ñk
, (3.15)

based on ñmk that means the number of documents belonging to both Am and Ck [293] 13. When
documents in Ck are distributed into many more ‘true’ clusters, the entropy increases. Thus smaller
entropy indicates more successful clustering. In order to evaluate overall a clustering result, it is
necessary to compute a weighted average of Ek (k = 1, . . . , L) such as

E(A|C) =
L∑

k=1

ñk

N
Ek. (3.16)

When Ek is replaced by maxm(ñmk/ñk) in Equation (3.16), the indicator is called purity.

12Actually, class assignments to documents in test collections are checked by cross validation approach in the
case of supervised classification. If executing ‘five-fold’ cross validation, then all documents in the test collection are
divided into five parts, and the job of class assignments is repeated five times with changing roles of the training
set and test set among the five parts (see [84]). Usually, four parts are employed as the training set, and the other
part plays a role of the test set in a run.

13Equation (3.14) is an ‘expectation’ of log[1/P (Am|Ck)] by probability P (Am|Ck). See Section 4.1.1 for definition
of expectation.

57



Another well-known measure for gaging closeness between two sets is mutual information (MI),

MI(C,A) =

H∑
m=1

L∑
k=1

P (Am, Ck) log
P (Am, Ck)

P (Am)P (Ck)
, (3.17)

where P (Am) and P (Ck) are estimated by ñm/N and ñk/N , respectively, and P (Am, Ck) is ñmk/N .
If C is completely independent of A, then mutual information MI(C,A) amounts to zero, which is
the minimum 14. In contrast, the maximum of MI is max[E(C), E(A)] where E(C) is entropy of
the set C such that E(C) = −∑k P (Ck) logP (Ck), and E(A) is defined similarly. Thus normalized
mutual information (nMI) can be obtained as

M̃I(C,A) =
MI(C,A)

max[E(C), E(A)]
, (3.18)

where 0 ≤ M̃I(C,A) ≤ 1 [193]. Another formula for nMI,

M̆I(C,A) =
MI(C,A)√
E(C)E(A)

. (3.19)

is also used in literature.
Recall, precision and F-measure can be also considered as a candidate of evaluation metric in

unsupervised classification. In the context of DC, when Ck and Am are given, recall and precision
can be defined by P̂ (Ck|Am) = ñmk/ñm and P̂ (Am|Ck) = ñmk/ñk, respectively. Thus F-measure
becomes

Fm(Am, Ck) =
2× P̂ (Ck|Am)× P̂ (Am|Ck)

P̂ (Ck|Am) + P̂ (Am|Ck)
, (3.20)

which leads to an indicator for evaluating the entire set such as

Fs(A, C) =
H∑

m=1

ñm

N
max

k=1,...,L
Fm(Am, Ck), (3.21)

which is called FScore or overall F-measure [177].
Suppose that a human expert gives an answer of clustering for the sample DB in Table 3.1 such

that A1 = {d1, d2, d3}, A2 = {d4, d5, d6, d7} and A3 = {d8, d9, d10} (i.e., H = 3). Thus the result
by k-means clustering when L = 4 (see Table 3.4) can be represented as a matrix in Table 3.5,
which indicates that members of A2 and A3 were divided into two separated clusters, respectively,
in the output from the k-means algorithm. Cross tabulation like Table 3.5 is often called confusion
matrix. For the data, the above indicators are computed as follows:

• Entropy. Since E3 = 0.636 and E1 = E2 = E4 = 0.0, E(A|C) = 0.636× (3/10) = 0.190.

• Mutual information. Since MI(C,A) = 0.897, E(A) = 1.088 and E(C) = 1.313, M̃I(C,A) =
0.683 and M̆I(C,A) = 0.750.

• FScore. Since maxk Fm(A1, Ck) = 1, maxk Fm(A2, Ck) = 0.857 and maxk Fm(A3, Ck) =
0.666, Fs(A, C) = 0.842.

If a very poor clustering result was obtained as Table 3.6, then values of these indicators change
to E(A|C) = 0.936, M̃I(C,A) = 0.111, M̆I(C,A) = 0.125 and Fs(A, C) = 0.373.

In a special case that each cluster set obtained from an exclusive DC algorithm can be assigned
to an answer set by using a method, it is possible to compute accuracy vc. Similarly, recall,
precision and F-measure based on c11, c10 and c01 can be employed for nonexclusive DC in such
special cases.

14If ñmk = 0, then it is assumed that P (Am, Ck) = P (Am)P (Ck).
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Table 3.5: Example of confusion matrix (1)

C1 C2 C3 C4 Total
A1 3 0 0 0 3
A2 0 3 1 0 4
A3 0 0 2 1 3
Total 3 3 3 1 10

Table 3.6: Example of confusion matrix (2)

C1 C2 C3 C4 Total
A1 1 1 1 0 3
A2 1 1 1 1 4
A3 0 1 1 1 3
Total 2 3 3 2 10

Internal evaluation

When any external criterion such as ‘true’ clusters is not available, cluster density is often used as
a landmark of success in clustering, and in the case of distance, RSS J in Equation (3.8) can be
applied for evaluation of clustering results. For the set of clusters shown in Table 3.4 (i.e., results
of k-means clustering), it becomes that J = 3.035 + 1.172 = 4.207 when L = 2, which is about

34% of total sum of squared errors
∑N

i=1 ‖di −m‖2 where m = N−1
∑N

i=1 di (a centroid vector of
the entire set D).

When similarity measure is adopted, an indicator corresponding to the cluster density can be
defined as

JS =

L∑
k=1

ñk

[
1

ñ2
k

∑
i:di∈Ck

∑
h:dh∈Ck

s(di,dh)

]
, (3.22)

where s(di,dh) means similarity between two vectors (i.e., sih = s(di,dh)). Note that JS is a
weighted sum of the means of similarities between all document pairs within each cluster. Other-
wise, it is possible to consider the sum of similarities between each document vector and a centroid
vector of its cluster,

JS′ =
L∑

k=1

∑
i:di∈Ck

s(di,mk). (3.23)

Because mk = ñ−1
k

∑
h dh for dh ∈ Ck (see Equation (3.6)), it becomes that

∑
i:di∈Ck

s(di,mk) =
∑

i:di∈Ck

dT
i (ñ

−1
k

∑
h dh)

‖di‖ · ‖ñ−1
k

∑
h dh‖

=
1

ñk

1

‖ñ−1
k

∑
h dh‖

∑
i:di∈Ck

∑
h:dh∈Ck

dT
i dh

‖di‖
(3.24)

by using Equations (3.1). Thus JS′ is slightly different from JS .
For example, if dendrogram by complete linkage in Figure 3.5 is cut at the similarity level of 0.8

(distance level is 0.2), then a set of clusters, {d1}, {d2, d3}, {d4}, {d5, d7}, {d6, d8, d9} and {d10},
are obtained, and its values of JS and JS′ amount to 9.585 and 9.778, respectively.
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3.2 Hierarchical Document Clustering

This section reviews DC based on hierarchical clustering techniques 15. As mentioned above,
dendrogram generated by hierarchical method is useful for IR situations, but unfortunately, its
computational complexity is so high. Thus research efforts have been exerted so far for executing
hierarchical clustering algorithm on a large set of documents.

3.2.1 Basic algorithm for creating dendrogram

A main reason for high computational complexity of agglomerative hierarchical clustering is that
similarities between O(N2) pairs of documents have to be calculated. If all data to be required for
the processing are simply stored into arrays on main memory of a computer, then it is necessary
for cosine-based (or unit vector-based) clustering to keep three arrays: (a) array A whose size is
N×M for storing document vectors, (b) array B whose size is N for keeping document norms, and
(c) array C whose size is N(N−1)/2 for recording values of cosine coefficient (or distance measure).
Namely, the size of computer memory for hierarchical DC amounts to N × (M +1)+N(N − 1)/2
at least when all data are simply stored in arrays.

Suppose that tf (or tf-idf weight) values and document norms have already been calculated
after an indexing process (Section 2.1.6) and stored into arrays A and B. In order to create a
dendrogram from the data, the following process is needed:

1. First stage. By checking arrays A and B repeatedly, cosine coefficients are computed and
recorded in array C.

2. Second stage. By searching C array repeatedly, clusters or singletons to be sequentially
merged are detected.

In the first stage, array A receives N(N − 1) × M accesses in total because fetch of two vectors
containing M elements is repeated for N(N−1)/2 pairs in computing inner products 16, and array
B is checked two times for each of N(N − 1)/2 pairs in order to know the norms. Therefore, in
the first stage, the number of times that values are read out from the arrays, which is denoted by
TA, amounts to

TA = 2×M × N(N − 1)

2
+ 2× N(N − 1)

2
= N(N − 1)(M + 1) (3.25)

(see Figure 3.13). Of course, other than TA accesses, arithmetic operations and storage of the
results are needed in the first stage.

An example of search algorithm in the second stage was given by Anderberg(1973) [9], which
is shown as Figure 3.14 17. Similarity matrix calculated in the first stage is stored in array C as
a lower triangular matrix like Table 3.3 or Figure 3.15, which is denoted by C = [x(i, h)] where
i = 2, . . . , N and h = 1, . . . , N−1, and x(i, h) is defined only for i > h. Note that x(i, h) = sih = shi
where S = [sih] is the original similarity matrix 18. Figure 3.14 is an algorithm of single linkage
clustering, but complete linkage clustering can be executed by defining as h′(i) = argminh x(i, h)
in step 1) and by replacing ‘max’ by ‘min’ in step 3-1).

An illustrative description of the Anderberg’s algorithm is shown as Figure 3.15, in which d3 and
d5 are first merged since i′ = 5 and, h′(i′) = 3 (i.e., x(5, 3) = 0.50, which is the maximum value).
According to a rule in step 3-1) in Figure 3.14, data of the merged cluster will be recorded into
i′-th position, and therefore, the value of x(3, 2) in 3rd row is moved to x(5, 2) because s32 > s52.
In the case that s34 > s54, the value of x(4, 3) in 4th row (not 3rd row) has to be copied into x(5, 4)
because C is a lower triangle matrix, which makes actual source code slightly complicated.

Computational complexity of the Anderberg’s algorithm can be analyzed as follows [9]:

15The review is partly based on Kishida(2003) [147]. There are other review articles covering contents of this
section, next section and next chapter (e.g., Berkhin(2002) [22], Andrew & Fox(2007) [12], Jain(2010) [135] and
Aggarwal & Zhai(2012) [4]).

16Actually, it is not necessary to keep M values straightforwardly in the array since real document vectors are
very sparse. More efficient way for DC will be discussed later.

17In other parts of this thesis, s is used for indicating number of a step in iterative computation, not b.
18In the case of distance-based single linkage, ‘min’ operator is used instead of ‘max’.
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Figure 3.13: Naive computation of similarity matrix

‡ Anderberg’s algorithm for detecting clusters to be merged (single linkage)

Set: C = [x(i, h)] and b = 1, where C is a lower triangular matrix of similarities S = [sih]
(i, h = 1, . . . , N), namely, x(i, h) = sih = shi and i > h, and b indicates number of
a step in iteration.

1) Initially, find the maximum score maxh x(i, h) by each row (i = 2, . . . , N), and
store h′(i) = argmaxh x(i, h).

2) Find i′ = argmaxi x(i, h
′(i)) where i = 2, . . . , N − b+ 1.

3) Merge i′-th data and h′-th data (h′ ≡ h′(i′)) and update the matrix.

3-1) Update scores of i′-th row such that x(i′, k) = max(si′k, sh′k) (when i′ > k)
or x(k, i′) = max(si′k, sh′k) (when i′ < k), where k = 1, . . . , N − b + 1 and
k �= i′, h′. In this process, h′-th object is added to the cluster corresponding
to i′-th row as its member.

3-2) Remove h′-th row and column from the matrix, and re-assign index i to re-
maining N − b − 1 rows and columns for keeping a lower triangular matrix.
Also, h′(i′) is updated because h′-th data are removed.

4) Update b such that b ← b + 1. If b < N , then return to step 2). Otherwise, the
procedure is terminated.

Out: A dendrogram.

Figure 3.14: Anderberg’s single linkage algorithm

61



 

 

Figure 3.15: Outline of Anderberg’s single linkage algorithm

• Step 1) At i-th row, i − 2 comparisons are needed for detecting its maximum value, and

therefore, it is necessary to compare values
∑N

i=3(i− 2) = 2−1(N − 1)(N − 2) times in total
from third to N -th rows 19.

• Step 2) In each iteration, N − b rows remain in the matrix and N − b − 1 comparisons has
to be done for detecting i′ (= argmaxi x(i, h

′(i))). Thus because Step 2) is repeated N − 1

times, the total number of comparisons amounts to
∑N−1

b=1 (N − b− 1) = 2−1(N − 1)(N − 2).

• Step 3-1) Since there are N − b + 1 clusters in b-th iteration (note that a singleton is also
counted as a cluster), N − b − 1 (= (N − b + 1) − 2) elements of i′-th cluster have to be
compared with those of h′-th cluster. Thus the total number of comparisons amounts to∑N−1

b=1 (N − b− 1) = 2−1(N − 1)(N − 2).

• Step 3-2) Because the number of elements in a new i′-th cluster is N − b − 1, its elements
have to be compared N − b − 2 times for detecting new h′(i′). Thus the total number of

comparisons amounts to
∑N−2

b=1 (N − b− 2) = 2−1(N − 2)(N − 3).

Therefore, the total number of comparisons in Anderberg’s algorithm can be obtained such that

TC = 3× 1

2
(N − 1)(N − 2) +

1

2
(N − 2)(N − 3) = 2N2 − 7N + 6 (3.26)

by summing up those in Step 1) to 3) 20. Note that Equation (3.25) indicates the number of
‘accesses’ for reading out values from main memory whereas Equation (3.26) provides the number
of ‘comparisons’ for which values have to be extracted from the memory. Therefore, TC can not
be compared directly with TA.

Although it is generally difficult to assess exactly computational complexity, it turns out that
basic algorithm of creating a dendrogram needs at least memory size of N× (M+1)+N(N−1)/2,
N(N−1)(M+1) checks of the memory for creating similarity matrix, and 2N2−7N+6 comparisons
for finding clusters to be merged (of course, other additional areas or operations are needed). Table
3.7 shows actual values of them in three cases that N = 1000, N = 10000 and N = 100000 under
an assumption that N = M . Even though M can be reduced by feature selection (Section 3.1.3),
it would be easy to understand difficulty of processing a large number of documents containing
many terms in agglomerative hierarchical clustering from Table 3.7.

3.2.2 Hierarchical clustering for large-scale document set

Use of index file

As mentioned above, a term-by-document matrix like that in Figure 3.13 is generally sparse, and it
is possible that there are many document pairs sharing no term. Because the cosine coefficient of

19The sum of an arithmetic sequence a1, . . . , an is calculated as (1/2)[n(a1+an)]. In this case, a1 = 1, n = N −2
and an = N − 2.

20The number is not equivalent to that by Anderberg(1973) [9] because different operations in Step 3) are assumed
in Figure 3.14.
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Table 3.7: Example of computational complexity (when N = M)

N N(M + 1) N(N − 1)/2 N(N − 1)(M + 1) 2N2 − 7N + 6
103 1,001,000 499,500 999,999,000 1,993,006
104 100,010,000 49,995,000 999,999,990,000 199,930,006
105 10,000,100,000 4,999,950,000 999,999,999,900,000 19,999,300,006

such pairs becomes automatically zero, they can be skipped in the process of computing a similarity
matrix, and if so, the number of pairs to be processed becomes smaller than N(N − 1)/2.

When an index file was created in an indexing process, it is easy to limit computation of the
cosine coefficient to only document pairs sharing one or more terms by using the index file [318].
For example, Figure 3.16 shows an index file of the sample DB in Table 3.1. An entry of the file
includes an index term, document frequency nj and document identifiers (IDs) containing the term
with frequencies fij . The file is implemented so that each entry term can be accessed very quickly
by using a search algorithm such as hashing, binary search, B-tree and so on (When the document
set is large, the B-tree would be appropriate as discussed later).

 

Figure 3.16: Example of index file (for the sample DB)

By checking the index file from its top position sequentially, it is feasible to know that document
d1 shares terms with only d2, d3, d5, d6 and d7, and that the cosine coefficient with the other
documents becomes automatically zero. Thus it is expected that complexity of computing the
cosine coefficient reduces by using the index file.

Another efficient hierarchical DC technique is to repeat hierarchical clustering M times by each
index term, which creates M dendrograms [70]. For example, for t1 in Figure 3.16, a dendrogram
including d1, d2, and d3 is constructed, and by repeating it for t2, . . . , t6, six dendrograms are
obtained from the index file. Since document pairs not sharing any term are automatically removed
in the process of computing similarity, its complexity would decrease if the numbers of documents
recorded for each index term are enough small (otherwise, it is possible to increase computational
complexity [112]). Of course, this technique is applicable to only a special purpose such as cluster-
based IR (Chapter 1) because it produces separate M dendrograms, and it would be hard to regard
them as a partition of the entire set C1, . . . , CL.

Implementation of single linkage method for large document set

In this section, suppose that a document set is very large, and that areas of N × (M + 1) (Figure
3.13) and of N(N − 1)/2 (Figure 3.15) can not be allocated in main memory. Also, for such
document set, it is usually impossible to place its index file straightforwardly on the memory.
When all data for clustering can not be stored in main memory, a larger device such as hard disk
(HDD) has to be employed [9] even though access to this sort of devices is very slow than to main
memory.

First, suppose that document vectors obtained by an indexing process are stored in a file on a
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HDD shown as Figure 3.17, which is called ‘document vector file’ for convenience. In the document
vector file, records consisting of document ID, index terms and term frequencies are stored and
accessible sequentially.

 

Figure 3.17: Framework of hierarchical document clustering using HDD files

By reading out the record in the document vector file and checking the index file repeatedly for
each term included in the record, it is feasible to compute a) inner products with other documents
sharing one or more terms and b) norm of the document. For example, the first record of the
document file is “Doc1,Term1:4,Term2:1”, and information on Term1 and Term2,

• Term1: n1 = 3, f11 = 4, f21 = 1 and f31 = 1,

• Term2: n2 = 6, f12 = 1, f22 = 3, f32 = 6 f52 = 2, f62 = 1 and f72 = 1,

can be obtained by searching the index file (see Figure 3.16). Thus each inner product between
d1 and other documents can be computed because the above list includes all terms whose tf is not
zero in d1, and terms not contained in the list have no contribution to the degree of similarity with
d1. Actually, in the case of adopting tf vector, inner products are computed such that

M∑
j=1

w1jw2j = 4× 1 + 1× 3 = 7,

∑
j w1jw3j = 10,

∑
j w1jw5j = 2,

∑
j w1jw6j = 1 and

∑
j w1jw7j = 1. Of course, tf-idf weights

can be calculated because document frequencies (n1 = 3 and n2 = 6) are known from the index
file concurrently 21.

Unfortunately, because vector norm of documents other than that of d1 are unknown, the cosine
coefficient can not be computed when the record of d1 was checked. Therefore, values of the inner
product have to be temporarily stored into a file on HDD, which is called ‘inner product file’ for
convenience (see Figure 3.17). Since only the norm of d1 can be computed in this time, its value
is concurrently stored into another file on HDD, which is called ‘norm file’ here (see Figure 3.17).
Otherwise, it may be possible to keep norm information in main memory since size of the norm
file is just O(N).

By using the inner product file and norm file, a ‘similarity file’ recording values of the cosine
coefficient between all pairs can be created afterward (see Figure 3.17). More specifically, a record
of the inner product file is first read out, and then the norm file is searched to extract norm values of
the two documents, which allows to compute the cosine coefficient between them. In the case that
the norm information is stored on the main memory, this operation would be very easy. When the
norm file is on HDD, the B-tree may be appropriate as an algorithm for the searches (see below).

21An experiment on the algorithm based on tf-idf weighting was attempted by Kishida(2002) [146].
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In order to construct a dendrogram from the similarity file, records in it have to be sorted in
descending order of similarity scores [9]. For example, in the case of the sample DB, top-ranked
pairs in the similarity file are as follows:

Doc2, Doc3, 0.987763
Doc6, Doc9, 0.943564
Doc8, Doc9, 0.924678
.............

In the case of single linkage clustering, it is easy to find the first cluster {d2, d3} and the second
cluster {d6, d9} by reading the file from its top position. Furthermore, by recoding a unique number
of current cluster to which each document belongs, document d8 can be marged into the second
cluster when examining the third record “Doc8, Doc9, 0.924678” 22. In the procedure, records of
two documents which have been already allocated to an identical cluster are skipped. After all
records in the similarity file are processed, a complete dendrogram by the single linkage will be
obtained.

A practical advantage of the single linkage method is that clusters to be merged in the process
of creating a dendrogram can be identified only by ‘linearly’ checking the similarity file from the
top to the bottom if records in the file are sorted by their similarity scores. Therefore, the similarity
file can be on a HDD, which allows to execute the algorithm for a large document set not stored in
main memory. In such situation, it is necessary to use HDD files for implementation of the index
file and for execution of sorting the similarity file, which will be described next.

B-tree and merge-sort

Figure 3.18 shows an illustrative description of the B-tree [280]. Whereas all data of an index file
indicated in Figure 3.16 are stored in a file on HDD at right-hand side of Figure 3.18, main memory
has only a subset of index terms. Thus a huge index file can be implemented even if size of the
memory is small (the number of index terms registered on the memory can be reduced arbitrarily
at the cost of access speed). The subset of terms is stored into a balanced tree on the memory as
shown in Figure 3.18.
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Figure 3.18: Example of B-tree

Suppose that each index term is represented by a unique number (“1” ∼ “125”) after string

22It is feasible to detect quickly information that d9 ∈ C2 if an array whose size is O(N) can be allocated in the
main memory for storing a cluster number to which each document is belonging. Of course, this array has to be
frequently rewritten when two clusters are merged in the process of creating a dendrogram.
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sorting as in Figure 3.18, and that the tree is searched for number “8”. First, cells of “Node A”,
“1”, “26”, “51”, “76” and “101”, are checked sequentially. Since “1” < “8”, “26” in next cell is
again compared with the search key “8”. As a result, it turns out that the value “26” is bigger
than “8”. In this case, the process moves back to the previous cell “1” and goes to next node “B”
by using a pointer incorporated in the cell “1”. By repeating the same procedure on node “B”,
cell “6” is identified. After moving to the position of “6” in a file on HDD due to the fact that
node “B” is located at the bottom level of the tree, data of “8” can be found by reading records
on HDD sequentially from that of index term “6”. Note that any information of “8” does not exist
on the main memory.

When a B-tree is constructed, a) size of the subset of terms registered in the tree and b) the
number of terms placed on each node, can be adjusted depending on the situation. In this example,
five terms are stored in each node, and terms in the nodes are selected every five ones (i.e., 1st,
6th, 11th, ...) from the set of all index terms. If the number of terms stored in each node increases,
then hierarchical levels of the tree on memory reduces (which may lead to accelerating the process)
but more processing time on each node may be required. Also, when the number of terms selected
for the nodes decreases (e.g., every ten index terms), size of the memory storing the nodes becomes
smaller but more processing time on HDD would be needed.

It may be not easy to construct a large-scale index file because all data for it can not enter into
main memory. In this case, after dividing appropriately the target document file into some subfiles
so as to allow a single subfile to be processed on the memory, data for index terms, document
frequencies and term frequencies have to be generated by each subfile, respectively. Final index
file can be created by merging the data from the subfiles, which is feasible by using a merge-sort
algorithm (e.g., see [280] for details). Although more processing time is inevitably needed in the
case of dividing the target file into small subfiles, a large-scale index file can be created by not
sizable memory. The combination of merge-sort and B-tree is a very useful tool for clustering large
document sets on relatively small memory 23.

3.2.3 Voorhees’ algorithm

Single linkage algorithm by Voorhees

Algorithms proposed by Voorhees(1986) [309] try to execute hierarchical clustering by using only
O(N) space of main memory, not O(N2) as Figure 3.15. For instance, in the case of single linkage
clustering, four arrays with size N , nn[ ], sim[ ], InHier[ ] and sim2[ ], are mainly employed in
the process of constructing a dendrogram. When this algorithm is applied to the sample DB in
Table 3.1, d1 is first selected, and similarity measures between d1 and other N − 1 documents
are computed using an index file [308]. The result is recorded in sim2[ ] (i.e., sim2[2] ← 0.54,
sim2[3] ← 0.40, ..., sim2[10] ← 0.00). In i-th cell of nn[ ], an index number of the document
having the maximum similarity with di is kept (e.g., nn[2] = 1, which means that d1 is the most
similar with d2 in the current stage). Concurrently, its similarity score is stored in i-th cell of
sim[ ] (e.g., sim[2] = 0.54). The fact that nn[2] = 1 and sim[2] = 0.54 can be found by checking
sequentially from sim2[2] to sim2[N ]. As a result, d1 and d2 are incorporated into the dendrogram,
which is recorded in InHier[ ] such as InHier[2] ← 1 (since a document selected first, i.e., d1, is
always added into the dendrogram, it is not necessary to record it).

In next stage, d2 becomes the target document instead of d1, which is recorded in variable
CurrId such as CurrId ← 2. By searching again the index file, similarity measures between d2
and other documents are computed and recorded in sim2[ ], from which nn[ ] and sim[ ] keeping
information on nearest neighbors of each document may be updated. Since d3 has the maximum
score of similarity in sim[ ] (with d2) among documents not yet entering into the dendrogram, d3
and its nearest neighbor d2 are inserted into the dendrogram and InHier[3] ← 1. This procedure
is repeated until all documents are in the dendrogram.

More specifically, the detail of Voorhees’ algorithm for single linkage is described in Figure 3.19,
and Table 3.8 shows states of nn[ ] and sim[ ] in each step when the algorithm is applied to the
sample DB. After updating nn[ ] and sim[ ] in step 2-1), the algorithm tries to find the maximum
score from cells in sim[ ] under a condition that InHier[i] = 0 in step 2-2). In step 3), a tuple of

23In experiments reported in Chapter 5, this system was used.
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a) the document having the maximum similarity (NextID), b) its nearest neighbor (nn[NextID])
and c) its similarity score (MaxSim), is inserted into the dendrogram. For example, in Table 3.8,
when CurrID = 3, it turns out that NextID = 5 and nn[NextID] = 3 (its similarity score is
0.66) before moving to step 3). Therefore, a tuple of 5, 3 and 0.66 is added to the dendrogram,
which is used for developing the dendrogram.

‡ Voorhees’ algorthm of single linkage clustering

Set: For i = 2, . . . , N , nn[i] ← 0, InHier[i] ← 0 and sim[i] ← 0.0. CurrID ← 1.

1) InHier[CurrID] ← 1 and similarity scores between the document of CurrID and
other documents are computed and recorded in sim2[ ] (from sim2[2] to sim2[N ]).

2) MaxSim ← 0.0 NextId ← 0 and i ← 2.

2-1) In the case that InHier[i] = 0, if sim2[i] > sim[i] then sim[i] ← sim2[i] and
nn[i] ← CurrId.

2-2) In the case that InHier[i] = 0, if sim[i] > MaxSim then MaxSim ← sim[i]
and NextId ← i.

2-3) i ← i+ 1. If i > N then go to next step 3). Otherwise, return to step 2).

3) If NextId = 0 then terminate the procedure. Otherwise, insert NextID,
nn[NextID] and MaxSim into the dendrogram, and CurrID ← NextID and
return to step 1).

Out: A dendrogram

Figure 3.19: Voorhees’ single linkage algorithm
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Figure 3.20: Development of dendrogram in Voorhees’ algorithm

The most-right column of Table 3.8 indicates all information to be inserted into the dendrogram,
from which a hierarchy can be constructed as shown in Figure 3.20. If development of the hierarchy
is continued, then a dendrogram shown in Figure 3.5 (a) is finally obtained. Since creating a new
cluster does not affect similarities between other clusters in single linkage clustering, it is possible
to detect straightforwardly a pair of documents defining a similarity between clusters. For example,
when CurrID = 4 in Table 3.8, a pair of d5 and d6 connecting two large clusters {d2, d3, d4, d5, d7}
and {d6, d8, d9} is extracted smoothly by keeping the nearest neighbor of d6.

In step 1) of the algorithm, similarity scores between a document recorded in CurrID and
other documents have to be computed, and therefore, it is not possible to avoid computations for
O(N2) pairs in total. Practically, document vector file, index file, norm file shown in Figure 3.17
can be used for the computation.

Complete linkage algorithm by Voorhees

In the case of complete linkage clustering, the algorithm has to find a ‘maximum’ link between
clusters, which is defined as a ‘minimum’ similarity between a document of the one cluster and
a document of the other cluster. Because the ‘maximum’ and ‘minimum’ are mixed in it, the
algorithm is more complicated than that of single linkage clustering. In the algorithm of Voorhees
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Table 3.8: Execution of Voorhees’ single linkage algorithm

nn[ ] (top) and sim[ ] (bottom)
CurrID 2 3 4 5 6 7 8 9 10 Insert

1 1 1 0 1 1 1 0 0 0 2,1
.54 .40 .00 .16 .05 .05 .00 .00 .00 .54

2 * 2 0 2 2 2 0 0 0 3,2
- .99 .00 .63 .18 .18 .00 .00 .00 .99

3 * * 0 3 3 3 0 0 0 5,3
- - .00 .66 .19 .19 .00 .00 .00 .66

5 * * 5 * 5 5 5 5 5 7,5
- - .53 - .58 .82 .28 .33 .07 .82

7 * * 7 * 5 * 5 5 7 4,7
- - .76 - .58 - .28 .33 .19 .76

4 * * * * 5 * 4 5 4 6,5
- - - - .58 - .33 .33 .35 .58

6 * * * * * * 6 6 4 9,6
- - - - - - .80 .94 .35 .94

9 * * * * * * 9 * 4 8,9
- - - - - - .92 - .35 .92

8 * * * * * * * * 8 10,8
- - - - - - - - .49 .49

Note: * means that InHier[i] = 1.

(1986) [309], all document pairs are first sorted in descending order of similarities, and checked from
the top to the bottom for finding the ‘maximum’ similarly to single linkage clustering. However,
unlike single linkage clustering, the number of document pairs between specific two clusters is
concurrently counted during the checking.

For example, suppose that there are four documents dA, dB , dC and dD, and that a sorted list
in descending order of similarity such as “1.(dA, dB), 2.(dC , dD), 3.(dA, dC), 4.(dA, dD), 5.(dB , dC)
and 6.(dB , dD)” can be obtained. Since (dA, dB) and (dC , dD) appear in top of the list, clusters
{dA, dB} and {dC , dD} are generated at first and second checks of the list, respectively. The
number of document pairs between the two clusters is 2× 2 = 4. Thus when ‘fourth’ pair (dB , dD)
among four document pairs between the two clusters is checked lastly, it turns out that similarity
of (dB , dD) is the minimum among the four pairs. This means that the pair corresponds to the
complete linkage between {dA, dB} and {dC , dD} and that the two clusters are merged into a
cluster at the level of similarity between pair (dB , dD). As this example shows, in order to find
complete linkage between clusters, it is necessary to record link information containing IDs of the
linked cluster and the number of document pairs already checked in the sorted list. In the case of
large-scale DC, it is expected that large space is needed for keeping the information.

Actually, when a new cluster is created or a singleton is appearing, it is necessary to update
carefully link information related to the new cluster. Suppose that there is another sorted list such
as

1.(dA, dB), 2.(dA, dC), 3.(dC , dE), 4.(dC , dD), 5.(dA, dD), 6.(dB , dE),
7.(dB , dC), 8.(dB , dD), 9.(dC , dE), 10.(dD, dE)

including five documents. First cluster generated by reading “1.(dA, dB)” is denoted by “C1[A,B]”
for convenience where “1” in “C1” indicates that the cluster ID is 1. When “2.(dA, dC)” is checked,
a singleton “C2[C]” has to be created, and link information is recorded as “C1[A,B]-L[2,1]” and
“C2[C]-L[1,1]” where the first argument of L[ ] is ID of a linked cluster and the second indicates
the cumulative number of document pairs to be checked. The cumulative number tells us whether
the checked document pair is corresponding to a complete linkage or not. In this example, a
dendrogram is developed as follows:

1.(dA, dB) → C1[A,B]
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2.(dA, dC) → C1[A,B]-L[2,1], C2[C]-L[1,1]
3.(dA, dE) → C1[A,B]-L[2,1]-L[3,1], C2[C]-L[1,1], C3[E]-L[1,1]
4.(dC , dD) → C1[A,B]-L[2,1]-L[3,1], C2[C,D]-L[1,1], C3[E]-L[1,1]
5.(dA, dD) → C1[A,B]-L[2,2]-L[3,1], C2[C,D]-L[1,2], C3[E]-L[1,1]
6.(dB , dE) → C1[A,B,E]-L[2,2], C2[C,D]-L[1,2]
7.(dB , dC) → C1[A,B,E]-L[2,3], C2[C,D]-L[1,3]
8.(dB , dD) → C1[A,B,E]-L[2,4], C2[C,D]-L[1,4]
9.(dC , dE) → C1[A,B,E]-L[2,5], C2[C,D]-L[1,5]
10.(dD, dE) → C1[A,B,C,D,E]

When “6.(dB , dE)” is checked, L[3,1] of C1[A,B] becomes L[3,2], which leads to merging of C1[A,B]
and C3[E] because the total number of pairs between the two clusters is 2×1 = 2. Similar operation
is repeated when reading lastly “10.(dD, dE)”.

As this example shows, for executing complete linkage clustering, enough space on main memory
is needed for storing information of created clusters (e.g., C1[A,B]) and of links between clusters
(e.g., L[2,1]) 24. In the case that linkage between clusters spreads widely, large space may be
required. Needless to say, similarity computation and sorting operation are also indispensable.

3.2.4 Binary divisive clustering

Bisecting k-means clustering

Agglomerative hierarchical clustering of documents discussed so far can be characterized as a
bottom-up approach starting with amalgamations of individual documents, in which inevitably
similarities of O(N2) pairs has to be computed. In contrast, divisive hierarchical clustering, which
is a top-down approach, can construct a hierarchy with no similarity (or distance) matrix. Namely,
the entire document set D is first divided into two nonempty parts, and each part is recursively
partitioned in the same way, by which a hierarchy is finally obtained.

The algorithm is also computationally expensive because it is necessary to consider 2N−1 − 1
possible divisions of the target data in the first stage [322]. However, if the data in each stage
is approximately divided in two parts without precisely considering all possible divisions, then its
computational complexity may reduce. For instance, in bisecting k-means clustering [293, 337], the
entire document set D is first partitioned into two parts by a k-means algorithm (e.g., Figure 3.8).
Figure 3.21 shows a hierarchy of the sample DB, which was obtained based on the bisecting k-
means algorithm by using results from kmeans( ) function of R 25 (note that the k-means clustering
is based on distance between unit vectors). Namely, in Figure 3.21, k-means clustering with L = 2
and r′ = 10 is repeated six times (where L indicates the number of clusters as before and r′

denotes the maximum number of iterations), first partitioning operation of which divided D into
{d1, d2, d3, d5, d6, d8, d9} and {d4, d7, d10}. In next k-means clustering, the former cluster was
split into {d1, d2, d3, d5} and {d6, d8, d9}. Since clusters consisting of only two documents are
automatically divided without any effort, the total times of executing the k-means algorithm (i.e.,
kmeans( )) amounts to six. In this example, the resulting hierarchy is almost same with those by
complete linkage clustering in Figure 3.5(b) and the Ward’s method in Figure 3.7(a) except for the
location of d5.

Suppose that the resulting hierarchy becomes a completely ‘balanced’ tree. For example, it is
assumed that a set including 16 documents (N = 16) was divided into two subsets of equal size
with 8 documents, and similarly, each subset was partitioned into two subsets with 4 documents.
If they were finally decomposed into subsets with 2 documents, respectively, then the total number
of documents scanned for all executions of k-means clustering amounts to 16 + (8× 2) + (4× 4) =
16× 3 = 48 under an assumption that r′ = 1. In general, this number can be computed such that

log2 N−2∑
h=0

2h × N

2h
=

1

2
(log2 N − 2 + 1)(N +N) = N(log2 N − 1), (3.27)

24See Voorhees(1986) [309] for more specific implementation of the algorithm for complete linkage clustering. This
paper also discussed an algorithm for group average linkage.

25Actually, the Hartigan-Wong algorithm [119] (see Section 3.3.1) was used as a method of k-means clustering.
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Figure 3.21: Example of bisecting k-means clustering (based on results by R-2.12.0)

Table 3.9: Number of comparisons 2N(log2 N − 1)r′ in bisecting k-means

Maximum iterations r′

N N(N − 1)/2 1 5 10
210=1,024 523,776 18,432 92,160 184,320

100% 3.52% 17.60% 35.19%
214=16,384 134,209,536 425,984 2,129,920 4,259,840

100% 0.32% 1.59% 3.17%
218= 262,144 34,359,607,296 8,912,896 44,564,480 89,128,960

100% 0.03% 0.13% 0.26%
220= 1,048,576 549,755,289,600 39,845,888 199,229,440 398,458,880

100% 0.01% 0.04% 0.07%
Note: A completely balanced tree is assumed.

which means that T (N) = 2 × N(log2 N − 1) × r′ comparisons between documents and cluster
centroids has to be required at the maximum for execution of the bisecting k-means clustering
(note that always L = 2). Table 3.9 shows examples of the number of comparisons in the bisecting
k-means algorithm with percentages of 2N(log2 N − 1)r′ for N(N − 1)/2, which can be computed
as

PB(N) =
2N(log2 N − 1)r′

N(N − 1)/2
=

4(log2 N − 1)r′

N − 1
(3.28)

(note that cluster generation process is also needed after computing N(N − 1)/2 similarities in
agglomerative hierarchical clustering).

As Table 3.9 and Equation (3.28) indicate, it is expected that advantage of the bisecting k-means
clustering on computational complexity rapidly increases as the document set becomes larger, in
comparison with agglomerative hierarchical clustering, under an assumption that a balanced tree
is obtained by the bisecting k-means clustering. If this assumption is not valid, then the situation
becomes worse. For example, the number of comparisons in Figure 3.21 is actually 600 at maximum,
which is greater than 2× 10× (log2 10− 1)× 10 � 464.3. In an unbalanced tree shown in Figure
3.6(a), the total number of comparisons between documents and clusters becomes

T (N) = 2×
N−3∑
h=0

N − h = (N − 2)(N + 3) = N(N + 1)− 6, (3.29)

which is greater than N(N − 1)/2 26. Therefore, whether the bisecting k-means clustering is
actually efficient or not is dependent on the degree of balance in the resulting hierarchy.

Although the partitioning operation of a document subset was repeated until all the subsets
reduce to a single document in Figure 3.21, it may not be necessary to split a subset any more

26When D = {dA, dB , dC , dD, dE} (i.e., N = 5), an unbalanced tree is generated such as {dA, dB , dC , dD, dE} →
{dA} ∪ {dB , dC , dD, dE}, {dB , dC , dD, dE} → {dB} ∪ {dC , dD, dE}, and {dC , dD, dE} → {dC} ∪ {dD, dE}. Thus
the total number of comparisons amounts to 10 + 8 + 6 = 24 = 5× 6− 6 if r′ = 1.
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if the subset is enough homogeneous. Namely, a subset to which the k-means algorithm is again
applied can be selected at each stage according to a criterion such as RSS in Equation(3.5). For
instance, it is feasible to divide a given subset only if the criterion is improved by the division [337].

Also, the PDDP algorithm [31, 32, 164] which splits repeatedly document sets into two separate
parts based on results of principal component analysis can be also categorized into the divisive
hierarchal clustering. This method will be discussed in Section 4.2.

Combination of divisive and agglomerative methods

It is possible to combine divisive and agglomerative approaches. For instance, in constrained
agglomerative clustering [337, 339], k-means clustering is executed for the entire set D at first
stage, and at second stage, dendrograms are generated from each resulting subset, respectively
(see Figure 3.22). Suppose that D is partitioned into L groups by a k-means algorithm at first
stage and the groups contain ñ1, ..., ñL documents, respectively. Thus it is expected that

O(N2) >
L∑

k=1

O(ñ2
k), (3.30)

about the number of document pairs. Also, if the k-means algorithm identifies homogeneous
groups successfully, then quality of dendrograms created at second stage may be higher than that
in applying a hierarchical clustering algorithm directly to the entire set D. If needed, the k-means
algorithm can be repeatedly applied at first stage in a manner of the binary divisive clustering, or
it is feasible to use another clustering method at first stage (e.g., [287]).

 

Figure 3.22: Outline of constrained agglomerative clustering

For simplifying mathematical analysis, it is assumed that all groups created at first stage of the
constrained agglomerative clustering include an equal number of documents ñ (i.e, ñ = N/L). In
this case, the number of comparisons between documents and clusters or between document pairs
becomes that

T (N) = NLr′ + L× ñ(ñ− 1)/2 = NLr′ + L(N/L)(N/L− 1)/2

= NLr′ +
N2

2L
− N

2
. (3.31)

Since dT (N)/dL = Nr′ −N2/(2L2) 27, by solving an equation dT /dL = 0, an optimum number
of L providing the smallest number of comparisons can be obtained such that L̃ =

√
N/(2r′).

Figure 3.23 shows the number of comparisons T (N) in Equation (3.31) when N = 5000,
N = 8000, N = 10000 and r′ = 1. In the case that N = 5000, the optimum L̃ is 50 when r′ = 1.
If r′ = 10, then L̃ becomes 16 (�

√
5000/20) due to increase of comparisons at first stage.

By substituting L̃ into Equation (3.31), it becomes

T (N) =
N
√
Nr′√
2

+
N
√
Nr′√
2

− N

2
=

N(2
√
2Nr′ − 1)

2
, (3.32)

which means that O(N
√
N) comparisons are needed for the constrained agglomerative clustering.

Since the number of comparisons in the bisecting k-means clustering amounts to O(N log2 N) (see

27If y = f(x) + g(x), then dy/dx = df(x)/dx+ dg(x)/dx.
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Figure 3.23: Complexity of constrained agglomerative clustering (r′ = 1)

Equation (3.27)), computational complexity of the constrained agglomerative clustering increases
faster than the bisecting k-means as N becomes larger, but slower than standard agglomera-
tive hierarchical clustering with O(N2) comparisons between documents. For example, the ratio
(N

√
N)/(N log2 N) is around 3.17 when N = 1000, but it becomes around 7.52 when N = 10000

and 19.04 when N = 100000 (note again that cluster generation is also needed for the agglomerative
hierarchical clustering).

3.2.5 Other hierarchical document clustering

In suffix tree clustering (STC) [329, 330], a suffix tree constructed for the target document set is
used for clustering. Namely, since each node of the tree is related with documents containing a
string designated by the node, it is possible to consider a set of documents clinging to each node as
a cluster, which is called ‘base cluster’. A dendrogram can be constructed by merging iteratively
the base clusters based on a similarity measure.

Agglomerative hierarchical clustering algorithm based on ‘information bottleneck method’ [286]
tries to merge documents based on mutual information (MI) between document clusters and terms
such that

MI(C,Ω) =
∑

k:Ck∈C

∑
j:tj∈Ω

P (Ck)P (tj |Ck)× log
P (tj |Ck)

P (tj)
, (3.33)

where C is a set of clusters and Ω denotes a set of terms, as before. More specifically, when decrease
of MI(C,Ω) caused by merging two clusters is smaller than by merging any other pairs, they are
actually merged into a single cluster at the current stage (i.e., information lost by merging is the
smallest), which allows to construct a dendrogram 28. In addition, by exchanging roles of terms
and documents in MI(C,Ω), term clusters T̃ = {T̃1, . . . , T̃L′} (where T̃k indicates a set of terms and
k = 1, . . . , L′) can be obtained by using di ∈ D as classification features. After that, documents
can be clustered by computing MI(C, T̃ ) [286], which may be interpreted as a clustering technique
based on more compact representations of documents.

28For instance, probabilities in the definition of MI(C,Ω) can be estimated such that P (tj |Ck) =
P (Ck)

−1
∑

i:di∈Ck
P (di)P (tj |di), P (tj |di) = fij/li, P (Ck) =

∑
i:di∈Ck

P (di), P (di) = N−1 and P (tj) = M−1

(see [286]).
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3.3 Flat Partitioning

This section reviews techniques of flat partitioning, by which a cluster set {C1, . . . , CL} is directly
driven. In general, the number of possible patterns in such partitioning amounts to

1

L!

L∑
k=1

(−1)L−k

(
L
k

)
kN , (3.34)

which increases rapidly as N becomes larger (Webb(2002) [313], p.377). Therefore, it is important
to develop clustering methods providing approximately an ‘optimum’ partition in real time. It
should be noted that probabilistic and matrix-based clustering algorithms described in next chapter
generate also a flat partition. In this section, traditional techniques for it are mainly focused on.

3.3.1 K-means algorithms for document clustering

The most typical method of flat partitioning is k-means algorithm, which allows to group docu-
ments in less computational complexity as already mentioned. Due to this advantage, the k-means
algorithms have been often applied to DC problems.

Standard k-means algorithm

Figure 3.8 shows the basic k-means algorithm in batch mode, which is the simplest version of k-
means methods. Unfortunately, an inappropriate set of initial seeds may generate ‘bad’ clusters as
explained in Section 3.1.2. Table 3.10 indicates an experimental result of the basic k-means algo-
rithm for the sample DB in Table 3.1 when L = 3. Because N = 10 and L = 3, there are different
120 patterns (= 10C3) of seed sets in total from {d1, d2, d3} to {d8, d9, d10}, and Table 3.10 summa-
rizes clustering results from 120 runs in which each seed set was used, respectively. For example,
29 seed sets (24.2%) generated a good result, C = {{d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}}, with
the smallest RSS J in Equation (3.8) (i.e., RSS is about 2.485). However, in other words, only
24.2% of total 120 patterns can bring the result with the minimum RSS, and other seed sets failed
to generate it. This is a serious problem in using the basic k-means algorithm because often the
initial seed set is randomly selected under the assumption that there is no knowledge on a ‘good’
seed set.
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Figure 3.24: Example of k-means algorithm

One of the solutions would be to consider the RSS as a criterion of ‘good’ clustering, and to
try to find computationally a partition that provides the minimum RSS. Namely, if the RSS of
a particular partition C = {C1, . . . , CL} is denoted by J(C), then the purpose of flat partitioning
of a document set is formulated as detecting C′ such as C′ = argminC J(C). In general, J(C)
corresponds to an ‘objective function’ in the minimization problem. As mentioned above, there
are a tremendously large number of ways of partitioning a set of N elements if N is not so small,
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Table 3.10: Result of basic k-means algorithm: L = 3

RSS J # % Resultant set of clusters
2.485 29 24.2% {d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}
2.583 1 0.8% {d1, d2, d3}, {d4, d5, d7, d10}, {d6, d8, d9}
2.670 9 7.5% {d1, d2, d3, d5}, {d4, d7, d10}, {d6, d8, d9}
2.729 14 11.7% {d1, d2, d3, d5}, {d4, d7}, {d6, d8, d9, d10}
2.930 6 5.0% {d1, d2, d3}, {d4, d7, d10}, {d5, d6, d8, d9}
3.026 9 7.5% {d1, d2, d3, d7}, {d4, d10}, {d5, d6, d8, d9}
3.200 1 0.8% {d1, d2, d3}, {d4, d10}, {d5, d6, d7, d8, d9}
3.256 12 10.0% {d1, d2, d3, d4, d5, d7}, {d6, d8, d9}, {d10}
3.257 3 2.5% {d1, d2, d3}, {d4, d8, d9, d10}, {d5, d6, d7}
3.272 4 3.3% {d1}, {d2, d3, d4, d5, d7}, {d6, d8, d9, d10}
3.308 7 5.8% {d1, d2, d3}, {d4, d8, d10}, {d5, d6, d7, d9}
3.383 7 5.8% {d1}, {d2, d3, d5}, {d4, d6, d7, d8, d9, d10}
3.424 5 4.2% {d1}, {d2, d3, d5, d7}, {d4, d6, d8, d9, d10}
3.471 6 5.0% {d1}, {d2, d3}, {d4, d5, d6, d7, d8, d9, d10}
3.510 3 2.5% {d1, d2, d3, d5}, {d4, d8, d10}, {d6, d7, d9}
3.924 1 0.8% {d1, d2, d3, d6, d8, d9}, {d4, d5, d7}, {d10}
3.970 1 0.8% {d1}, {d2, d3, d5, d6, d8, d9}, {d4, d7, d10}
4.060 1 0.8% {d1, d2, d3, d5, d6, d8, d9}, {d4, d7}, {d10}
4.158 1 0.8% {d1, d2, d3, d6, d8, d9}, {d4, d10}, {d5, d7}
Total 120 100%

Note: # means the number of seed sets.

and it is usually impossible to compute values of J(C) for all possible patterns of the partition. To
solve the problem, an ‘iterative optimization’ is usually used for the partition.

Suppose that there are three documents whose vectors are dA = [1, 1]T , dB = [3, 2]T and
dC = [6, 3]T (M = 2). If unit vectors are computed as d̃i = di/‖di‖, then it becomes that
d̃A = [0.707, 0.707]T , d̃B = [0.832, 0.555]T and d̃C = [0.894, 0.447]T . The RSS of each partition can
be computed as J({{dA, dB}, dC}) = 0.019, J({dA, {dB , dC}}) = 0.008, and J({{dA, dC}, dB}) =
0.051, which means that {dA, {dB , dC}} is the best partition based on the criterion J in the case
that L = 2. If the basic k-means algorithm is applied to them with two seeds dB and dC and
it works in order of dA → dB → dC , then at first iteration, C1 = {dA, dB} and C2 = {dC} are
generated since dA is near to seed dB (see Figure 3.24). Unfortunately, since ‖d̃B −m1‖ = 0.099
and ‖d̃B − m2‖ = 0.124, document dB does not move to C2 in next iteration, and therefore,
the best partition can not be obtained by the basic k-means algorithm. However, in such case,
by ‘explicitly’ computing J after tentatively transferring dB from C1 to C2, the best partition
{dA, {dB , dC}} can be automatically detected. If di moves tentatively from Ck′ to Ck, then mk

changes to

m∗
k =

ñkmk + d̃i

ñk + 1
=

(
1− 1

ñk + 1

)
mk +

d̃i

ñk + 1
= mk +

d̃i −mk

ñk + 1
(3.35)

and Jk in Equation (3.5) increases to

J∗
k =

∑
i′:di′∈Ck

‖d̃i′ −m∗
k‖2 + ‖d̃i −m∗

k‖2

=
∑

i′:di′∈Ck

∥∥∥∥∥d̃i′ −mk − d̃i −mk

ñk + 1

∥∥∥∥∥
2

+

∥∥∥∥ ñk

ñk + 1
(d̃i −mk)

∥∥∥∥
2

=
∑

i′:di′∈Ck

‖d̃i′ −mk‖2 + ñk

∥∥∥∥∥ d̃i −mk

ñk + 1

∥∥∥∥∥
2

+

∥∥∥∥ ñk

ñk + 1
(d̃i −mk)

∥∥∥∥
2

= Jk +
ñk + ñ2

k

(ñk + 1)2
‖d̃i −mk‖2 = Jk +

ñk

ñk + 1
‖d̃i −mk‖2. (3.36)
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Table 3.11: Result of Hartigan-Wong algorithm (L = 3)

RSS J # % Set of clusters
2.485 106 88.3% {d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}
3.383 14 11.7% {d1}, {d2, d3, d5}, {d4, d6, d7, d8, d9, d10}
Total 120 100%

Note: # denotes the number of seed sets.

Similarly, if nk′ > 2, then Jk′ decreases to

J∗
k′ = Jk′ − ñk′

ñk′ − 1
‖d̃i −mk′‖2, (3.37)

by the transfer. Therefore, the transfer of di from Ck′ to Ck is effective for finding C′ = argminC J(C)
if |J∗

k′ − Jk′ | > |J∗
k − Jk|.

For convenience, the amount of decrease or increase by the transfer is written such that

ρk′(k) =

{
ñk

ñk+1‖d̃i −mk‖2 k �= k′
ñk′

ñk′−1‖d̃i −mk′‖2 k = k′
. (3.38)

Thus document di in Ck′ can be reassigned to CK where K = argmink ρk′(k) in the reallocation
(or transfer) stage after the basic k-means clustering. If K = k′, then any reallocation does not
occur. When a document is reallocated to another cluster, mk′ and mK have to be updated. The
reallocation is iteratively continued until the resulting clusters become stable 29.

An efficient algorithm based on the reallocation (or transfer) that decreases iteratively the RSS
has been proposed by Hartigan & Wong(1979) [119], which is widely well-known as an effective
k-means algorithm 30. The iterative reallocation procedure works better than the basic k-means
algorithm, which is clear from the above example. However, it should be noted that such kind of
iterative optimization may find ‘local’ minimum of the objective function (i.e., RSS), not ‘global’
one (see Figure 3.25). Actually, like the basic k-means algorithm, there would be initial seed sets
reaching to the local minimum. For example, Table 3.11 shows clustering results of the Hartigan-
Wong algorithm under the same experimental setting with Table 3.10, which indicates about 12%
of seed sets falls into a local minimum (RSS=3.383) although over 88% reaches successfully to the
global minimum (RSS=2.485) for the sample DB.
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Figure 3.25: Local and global mimimums

The search of documents to be transfered in the reallocation stage may increase slightly its
computational steps. However, in the case of Hartigan-Wong algorithm, the computational com-
plexity remains to be O(NLMr) (see also Section 3.1.2). Actually, in the experiments using the

29The reallocation-based clustering may sometimes be called ‘iterative minimum-squared-error’ clustering [84].
30Actually, the default algorithm of the kmeans( ) function in R [246] is the Hartigan-Wong algorithm.
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sample DB, results of which are shown in Table 3.11, an average of the total number of checked
documents for each run amounts to 53.37, which means that r = 5.337 on average over 120 runs
for the sample DB. Since r = 2.475 on average in the basic k-means algorithm, computational
complexity of the Hartigan-Wong algorithm was about 2.16 times of that of the basic k-means
algorithm for the sample DB.

Online k-means algorithm

For executing efficiently iterative computation of the k-means algorithm, it is desirable to store
all document vectors in main memory. Unfortunately, if memory size is not sufficiently large
and the vectors can not be placed on it, then the file on HDD has to be repeatedly accessed
for reading out each document in the iterative computation, which would make the processing
very insufficient. A simple way for avoiding inefficiently repeated access to HDD is to execute
the k-means algorithm without any iteration, which can be considered as a single-pass clustering
operation. Although quality of the clustering result may be deteriorated, processing time would
be drastically improved.

Similarly, the ‘single-pass’ operation is also relevant to online document clustering in which each
document arriving successively has to be sequentially assigned to a cluster under an assumption
that detailed information on vectors of past documents previously processed is unavailable for
some reasons 31. In this situation, only cluster representatives (e.g., centroids) before the target
document arrives can be used, and therefore, iterative computation is usually impossible. Figure
3.26 shows a basic procedure of the online k-means clustering. If centroid vector mk is adopted
as cluster representative ck, then the initial cluster vector is set as mk = d̃k (k = 1, . . . , L) at the
step 1) in Figure 3.26 and the cluster vector can be updated using di (i = L+1, . . . , N) such that

mk ← 1

ñk + 1
(ñkmk + d̃i) (3.39)

(and after that, ñk ← ñk + 1 at the step 2)).

‡ Online k-means algorithm for DC

Set: The number of clusters L

1) For i = 1, . . . , L, allocate automatically document di to cluster Ci and set cluster
vector ci based on d̃i.

2) For i = L + 1, . . . , N , allocate document di to the nearest cluster Ck and concur-
rently update cluster vectors ck based on d̃i.

Out: Clusters C1, . . . , CL and final vectors c1, ..., cL.

Figure 3.26: Online k-means algorithm for document clustering

Whereas in the basic k-means algorithm that is a ‘batch mode’ clustering, updating of cluster
vectors is done all together after N documents are allocated, in online k-means algorithm, cluster
vectors have to be updated immediately after each document is allocated to a cluster, which is often
called ‘incremental’. Thus in the online or incremental clustering, it is possible that each assignment
of a document influences directly that of next documents, which means that the processing order
of documents has a critical effect on clustering result.

Also, quality of online k-means clustering is largely dependent on the initial L documents used
as seeds for clustering. Suppose that documents in the sample DB will arrive in turn from d1 to
d10. If L = 3, then d1, d2 and d3 are selected as seeds, which clearly leads to a poor result because
they intrinsically constitute a single cluster separated from other seven documents (see Table 3.11).

31For example, in order to find a ‘novel’ topic among news stories arriving successively, a stream of news stories
has to be effectively clustered. This is a kind of ‘text stream clustering’, which is discussed in Section 3.3.7.
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Actually, the online k-means clustering for the data provides an invalid grouping,

C = {{d1, d4, d7, d10}, {d2}, {d3, d5, d6, d8, d9}}

with RSS=4.451. If the order of processing documents was changed to a sequence of d8, d5, d1,
d9, d4, d6, d2, d7, d3 and d10 (i.e., d8, d5 and d1 are seeds), then the best clustering result,

C = {{d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}}

with RSS=2.485, was obtained by the online k-means method. Figure 3.27 shows an experimental
result of executing repeatedly 100000 times the online k-means clustering with changing the order
of documents to be processed, in which the order for each run was determined randomly by using
Math.random() method of Java language. As shown in Figure 3.27, about 18.4% of 100000 runs
produced the above best result, which is lower than 24.2% by the basic k-means algorithm (see
Table 3.10). Also, the RSS of the worst case in the online k-means clustering was 5.061, which
is larger than 4.158 in the basic k-means algorithm. Although the online k-means clustering is
an efficient single-pass method with r = 1, its effectiveness becomes inevitably lower than that of
batch mode algorithms with multiple iterations.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

RSS

N
o.

 o
f r

un
s

small large

Best result: RSS=2.485 (18.4%)

RSS=3.256 (7.1%)

RSS=2.729 (6.3%)

RSS=3.471 (6.5%)

Worst result: RSS=5.061 (0.1%)

 

Figure 3.27: Experimental results of online k-means clustering (100000 trials)

Scalable k-means algorithm

When all document vectors can not be stored in main memory, a method for enabling multiple
iterations is to select randomly some documents as a sample and to apply a batch mode k-means
algorithm to only the sample stored in the memory. If ‘valid’ cluster representatives are constructed
from the sample, then in next step, it is enough to read out each document from the file on HDD,
and to assign them to the nearest cluster individually (i.e., ‘single-pass’ in this part), in which all
document vectors are not necessarily on the memory.

Furthermore, in order to remove influence from sampling error, it is possible to repeat the
clustering for some different samples, and to merge information from each sample [37, 90]. A
simple scalable k-means algorithm [340] according to this idea is shown in Figure 3.28 where ‘history
vectors’ keeping information on cluster centroids obtained from previous samples are denoted by
h1, . . . ,hL, and ṅk indicates the cumulative number of documents assigned to cluster Ck in the
previous samples (k = 1, . . . , L) 32. In this algorithm, previous results of an iterative k-means
algorithm are consecutively passed to next clustering through the history vectors. More precisely,
the history vector is incorporated into next sample as a single document vector (see step 2)). When
a history vector is assigned to a cluster at step 2) of the algorithm, its centroid vector is updated

32Note that the original algorithm [340] is slightly changed here.
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with consideration of documents in the previous samples. For instance, if using the basic k-means
algorithm, then it is feasible to update the centroid vector as a weighted average such that

mk ← 1

ñk + ṅk′
(ñkmk + ṅk′hk′), (3.40)

when history vector hk′ is assigned to cluster Ck at step 2) in the procedure (simultaneously, the
number of documents in the cluster is increased as ñk ← ñk + ṅk′).

.

‡ Simple scalable k-means algorithm for DC

Set: The number of clusters L and sample size n (n < N)

1) Read vectors of d1, . . . , dn into the memory, and execute an iterative k-means al-
gorithm for n documents (the number of documents in each cluster is recorded as
ṅk and each final centroid vector is kept into hk where k = 1, . . . , L). Set s to n.

2) Read vectors of d1+s, . . . , dn+s into memory and execute the iterative k-means
algorithm for {d̃1+s, . . . , d̃n+s,h1, . . . ,hL} using weighted average based on ṅk (if
n+ s > N , then dN+1, dN+2, . . . are inevitably ignored).

3) Update hk as hk ← mk/‖mk‖, and change ṅk according to the clustering result
(k = 1, . . . , L).

4) If n + s ≥ N , then terminate the procedure. Otherwise, s ← n + s and return to
2).

Out: Clusters C1, . . . , CL and final centroid vectors m1, ...,mL.

Figure 3.28: Simple scalable k-means algorithm for document clustering

Another technique of scalable k-means clustering is to constitute ‘sub-clusters’ in the first scan
of the target file, and to group the sub-clusters into L ‘global clusters’ iteratively by a batch mode
k-means algorithm at the second stage [164] 33. If all vectors of the sub-clusters can be stored in
main memory, then it is enough to scan the file on HDD just once. In order to generate the sub-
clusters at the first stage, the leader-follower clustering algorithm (Section 3.3.2) may be available.
A sub-cluster and its centroid are denoted here by C̈h and m̈h, respectively. Note that the centroid
of a cluster at the second stage can be computed as

mk =
1

ñk

∑
h:C̈h⊂Ck

n̈hm̈h, (3.41)

where n̈h indicates the number of documents in C̈h, and ñk =
∑

h:C̈h⊂Ck
n̈h (k = 1, . . . , L). Simi-

larly, other statistics such as RSS have to be calculated with considering the number of documents
belonging to the sub-cluster.

Spherical k-means algorithm

As described in previous chapters, inner product of two document vectors is often used for measur-
ing their similarity according to the traditional IR theory (i.e., vector space model). If document
vectors are normalized such that ||di|| = 1, then clustering results obtained by the Euclidean dis-
tance would be almost same with those by the inner product 34. However, in terms of efficiency,
the inner product has a computational advantage when document vectors are high dimensional
and sparse because it is enough to look into common terms appearing in both the two documents

33In [164], this technique is called ‘BIRCH-like k-means’. The BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) [334] is a general algorithm for clustering large-scale datasets.

34As described in Section 3.1.1, the squared Euclidean distance between two unit vectors is ‘mathematically’
coincident with their similarity computed as the cosine coefficient.
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for computing it. Meanwhile, for computing the Euclidean distance, terms included only in the
one document have to be additionally considered. For example, in the case of d1 and d5 of the
sample DB, since

d̃1 = [0.970, 0.243, 0.000, 0.000, 0.000, 0.000]T

d̃5 = [0.000, 0.667, 0.667, 0.000, 0.333, 0.000]T ,

the inner product can be computed from only the weight of t2 whereas those of t1, t3 and t5 are
also needed for calculation of the Euclidean distance. The computational efficiency of the inner
product leads to using it instead of the Euclidean distance in determining a cluster to which each
document belongs in k-means algorithms, which is often called spherical k-means method [81] 35.

Actually, in the the spherical k-means method, document di is allocated to Ck such that

k = argmax
k′=1,...,L

d̃T
i

ck′

‖ck′‖ , (3.42)

where ck denotes a cluster vector, which is typically assumed that

ck = ak ≡
∑

i:di∈Ck

d̃i. (3.43)

Since d̃i and ck/‖ck‖ are unit vectors, inner product in Equation (3.42) is equivalent to the cosine
coefficient between ck and di.

Straightforwardly, it is feasible to implement a spherical k-means algorithm by using Equation
(3.42) for allocation of documents to clusters and by updating cluster vectors based on Equation
(3.43) in procedure of the basic k-means method. In the case of a spherical k-means method
optimizing an objective function, Jk defined in Equation (3.5) is replaced by

J̃k =
∑

i:di∈Ck

d̃T
i ak/‖ak‖, (3.44)

and
∑

k J̃k is maximized in iterative computation [295] 36. When new document vector d̃† is

incorporated into a vector of cluster Ck, increment of J̃k (denoted by �+J̃k) is written as

�+J̃k =
∑

i:di∈Ck

d̃T
i

ak + d̃†
‖ak + d̃†‖

+ d̃T
†

ak + d̃†
‖ak + d̃†‖

− J̃k. (3.45)

Since

∑
i:di∈Ck

d̃T
i

ak + d̃†
‖ak + d̃†‖

=
1

‖ak + d̃†‖

( ∑
i:di∈Ck

d̃T
i ak +

∑
i:di∈Ck

d̃T
i d̃†

)

=
‖ak‖

‖ak + d̃†‖

(
J̃k +

ak
T d̃†

‖ak‖

)
, (3.46)

it becomes that

�+J̃k =

(
‖ak‖

‖ak + d̃†‖
− 1

)
J̃k +

2d̃T
† ak + 1

‖ak + d̃†‖
. (3.47)

Similarly, if document d† (∈ Ck) is removed from Ck, then decrement of J̃k is represented as

�−J̃k =

(
1− ‖ak‖

‖ak − d̃†‖

)
J̃k +

2d̃T
† ak − 1

‖ak − d̃†‖
. (3.48)

Therefore, by incorporating directly Equations (3.47) and (3.48) into the Hartigan-Wong algorithm
[119], the spherical k-means method based on the objective function can be executed 37.

35The spherical k-means algorithm can be formalized as a method based on a probabilistic mixture model using
von Mises-Fisher distribution (see Section 4.1.1).

36An experiment for comparing various criteria including J̃k was reported by [338].
37Of course, computations of the Euclidean distance are replaced by those of inner product in the original algo-

rithm. Note that if d† ∈ Ck′ and �−J̃k′ > �+J̃k for any cluster Ck (k �= k′), then d† does not move to the other
cluster. This technique was used in an experiment reported in Section 5.3.
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Willett’s algorithm

In order to execute k-means algorithms, the number of clusters or a set of initial cluster vectors
(i.e., seeds) has to be given a priori by users. However, they are often unknown in DC situations.
Willett’s algorithm [317] works without any information on the number of clusters or seeds by
using an index file.

In the algorithm, an initial cluster vector is computed from a set of documents sharing an index
term, which is easily known by checking an index file (Section 3.2.2). For example, in the case of
the sample DB in Table 3.1, a cluster vector for t1 is constructed from {d1, d2, d3} that is registered
in the index file as an entry of t1. Since such cluster is created for every index term, the number
of clusters is M (i.e., L = M) in initial stage (L = 6 in the sample DB), and it is possible that a
single document contributes to computation of two or more cluster vectors.

Next, every document is allocated to a single cluster and its cluster vector is updated in a
manner of k-means algorithms. After all documents were processed, clusters to which no document
is allocated are deleted. The process of allocating, updating and deleting is repeated until a
condition for termination is satisfied.

Users of this algorithm do not have to input L or seeds, which is an advantage. However, if
N � M , then the number of comparisons between documents and clusters approaches to N2. Also,
it is difficult to predict the total number of iterations r providing enough results. Thus feature
selection and definition of terminating condition would play a key role for executing the Willett’s
algorithm.

SKWIC algorithm

Another objective function,

JS =
L∑

k=1

∑
i:di∈Ck

M∑
j=1

w̃kjŵijk +
L∑

k=1

⎛
⎝δk

M∑
j=1

w̃2
kj

⎞
⎠ , (3.49)

was used in SKWIC (simultaneous keyword identification and clustering of text document) algo-
rithm [96] where

ŵijk =
1

M
− wijmkj , (3.50)

and mkj is j-th element of centroid vector mk in Equation (3.6) (δk is a parameter for Ck).
The SKWIC is a variation of SCAD (simultaneous clustering and attribute discrimination) [95], in
which clustering and feature weighting are performed simultaneously so as to minimize the objective
function 38. More specifically, it is attempted to obtain concurrently optimal clusters and optimal
term weights in clusters, denoted by w̃kj (k = 1, . . . , L; j = 1, . . . ,M), under a condition that

M∑
j=1

w̃kj = 1, k = 1, ..., L (3.51)

(i.e., mkj and w̃kj are completely different in the algortihm).
Note that

∑
j w̃kjŵijk in Equation (3.49) measures ‘dissimilarity’ between a document and a

cluster since term weight ŵijk in a document becomes small as wij×mkj is larger. The dissimilarity
is computed as an inner product, and therefore, it would be better that each document vector is
normalized such that d̃i = di/‖di‖ as in Equation (3.2).

The objective function in Equation (3.49) includes two components. The first component
would possibly become smaller when only fewer terms are relevant to each cluster. Thus it can be
interpreted that the first component measures ‘compactness’ of clusters. In contrast, the second
component is the sum of squared term weights, which becomes minimum when all weights are
equal. Balance of the two components is adjusted by parameters δk (k = 1, . . . , L), which is

38In ‘co-clustering’, documents (i.e., objects) and terms (i.e., features) are concurrently grouped (see also Section
4.3.2).
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defined as a ratio of the first and second components by each cluster,

δk = cδ

∑
i:di∈Ck

∑M
j=1 w̃kjŵijk∑M

j=1 w̃
2
kj

, k = 1, . . . , L, (3.52)

where cδ is a constant [96].
By using the Lagrange multiplier technique 39, it is feasible to obtain term weights w̃kj minimiz-

ing the objective function in Equation (3.49). Namely, if putting that H = JS−
∑

k λk(
∑

j w̃kj−1)
based on the condition in Equation (3.51) where λk is the Lagrange multiplier for Ck, then

∂H
∂w̃kj

=
∑

i:di∈Ck

ŵijk + 2δkw̃kj − λk. (3.53)

Therefore, by solving ∂H/∂w̃kj = 0, it follows that

w̃kj =
1

2δk

(
λk −

∑
i:di∈Ck

ŵijk

)
. (3.54)

Equation (3.51) requires that
∑

j(2δk)
−1(λk − ∑

i ŵijk) = 1, which leads to λk = M−1(2δk +∑
j

∑
i ŵijk). By substituting it into Equation (3.54),

w̃kj =
1

M
+

1

2δk

∑
i:di∈Ck

⎡
⎣
⎛
⎝ 1

M

M∑
j=1

ŵijk

⎞
⎠− ŵijk

⎤
⎦ , (3.55)

is finally obtained.
Procedure of the SKWIC algorithm is explained in Figure 3.29, and Tables 3.12 and 3.13 show

a result of applying the algorithm to the sample DB. In the execution, a document vector was
defined as a unit vector based on tf (i.e., wij = fij/

√
f2i1 + . . .+ f2iM ), and d̃1, d̃2 and d̃3 were

selected as initial cluster centroids (note that the combination of d1, d2 and d3 is never a good
initial set) and cδ = 10.

As Table 3.12 shows, final clusters C1 = {d1, d2, d3}, C2 = {d6, d8, d9, d10} and C3 = {d4, d5, d7},
which are the same with those by the k-means algorithm (see Table 3.4), were obtained in 3rd it-
eration (s = 3). Also, parameter δk converges almost in 7th iteration, which means that values of
w̃kj become also stable (see Equation (3.52)). The values are listed in Table 3.13, which shows that
t2 is the most relevant term to C1, t5 to C2 and t3 to C3. The result can be intuitively interpreted
as valid with referring to tf values in Table 3.1.

It would be possible to use scores of w̃kj for determining if a term is selected as a cluster label,
which is an advantage of the SKWIC algorithm. However, selecting an appropriate value of cδ
may be difficult. For example, when cδ = 1, the final set of clusters becomes C1 = {d1, d2, d3, d5},
C2 = ∅ and C3 = {d4, d6, d7, d8, d9, d10}, which is an invalid result for L = 3.

3.3.2 Leader-follower clustering algorithm

Whereas the number of clusters has to be given a priori for executing k-means algorithms, leader-
follower clustering algorithm [84] works based on a predefined threshold θs of similarity between
a document and a cluster, and the number of clusters L is determined posteriorly. A standard
procedure of the leader-follower clustering algorithm is shown in Figure 3.30 [247]. In the algorithm,
after computing similarities between each document and current clusters existing at the time, if
its maximum degree exceeds θs, then the document is allocated to the most similar cluster 40.
Otherwise, the document is registered as a new cluster (i.e., a singleton). Therefore, the number

39In order to minimize (or maximize) an objective function f(x) under a condition g(x) = a where a denotes a
constant, it is necessary to solve equations ∂H/∂x = 0 and ∂H/∂λ = 0 for a function H = f(x) − λ(g(x) − a).
Usually, λ is called the Lagrange multiplier. Note that ∂ indicates partial differentiation. When there are two
conditions, the function becomes H = f(x)− λ1(g1(x)− a1)− λ2(g2(x)− a2).

40This is exclusive clustering. When the document is allocated to all clusters whose similarity is over θs, nonex-
clusive clusters are obtained.
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‡ SKWIC algorithm

Set: The number of clusters L and a constant cδ.

1) Draw randomly L documents and record their vectors as centroids of L initial
clusters. Also, initialize w̃kj such that w̃kj = 1/M (k = 1, . . . , L; j = 1, . . . ,M).

2) Compute ŵijk by Equation (3.50) (i = 1, ..., N ; j = 1, ...,M ; k = 1, ..., L) and δk
by Equation (3.52) (k = 1, ..., L).

3) Update w̃kj by Equation (3.55) (k = 1, . . . , L; j = 1, . . . ,M).

4) Allocate di to k′-th cluster such as k′ = argmink
∑

j w̃kjŵijk for i = 1, . . . , N , and
update each cluster centroid by Equation (3.6) based on the allocation (if w̃kj = 0,
then mkj = 0).

5) If a condition is satisfied, then the procedure is terminated. Otherwise, return to
2).

Out: Clusters C1, . . . , CL and final weights w̃kj (k = 1, . . . , L and j = 1, . . . ,M).

Figure 3.29: SKWIC algorithm

Table 3.12: Result of SKWIC for sample DB (1) (L = 3)

Allocated cluster number in s-th iteration
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

d1 1 1 1 1 1 1 1
d2 2 1 1 1 1 1 1
d3 3 3 1 1 1 1 1
d4 2 3 3 3 3 3 3
d5 3 3 3 3 3 3 3
d6 3 3 2 2 2 2 2
d7 3 3 3 3 3 3 3
d8 2 2 2 2 2 2 2
d9 2 2 2 2 2 2 2
d10 2 2 2 2 2 2 2

Values of δk in s-th iteration
s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

C1 77.38 77.37 70.16 67.58 67.50 67.50 67.50
C2 61.17 65.12 63.33 60.40 60.28 60.27 60.27
C3 61.87 56.41 58.65 57.69 57.66 57.66 57.66

Note: Initial cluster centroids are d̃1, d̃2 and d̃3, and cδ = 10.

Table 3.13: Result of SKWIC for sample DB (2) (L = 3)

Term weight w̃kj

t1 t2 t3 t4 t5 t6 Total
C1 0.1681 0.1803 0.1629 0.1629 0.1629 0.1629 1.000
C2 0.1615 0.1628 0.1626 0.1669 0.1831 0.1631 1.000
C3 0.1608 0.1688 0.1789 0.1641 0.1661 0.1613 1.000
Note: These weights are of 7th iteration (s = 7).
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Table 3.14: Result of leader-follower clustering for sample DB (1)

θs Ascending order: d1 → d10
0.2 L = 2 {d1, d2, d3, d5, d6, d8, d9}, {d4, d7, d10}
0.3 L = 3 {d1, d2, d3, d5}, {d4, d7}, {d6, d8, d9, d10}
0.4 L = 4 {d1, d2, d3, d5}, {d4, d7}, {d6, d8, d9}, {d10}
θs Descending order: d10 → d1
0.2 L = 2 {d1, d2, d3}, {d4, d5, d6, d7, d8, d9, d10}
0.3 L = 3 {d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}
0.4 L = 4 {d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9}, {d10}
Note: Single-pass clustering.

of clusters L will be automatically determined after checking all documents. Actually, the value
of L is highly dependent on θs and the degree of topical homogeneity in the document set. For
instance, as θs is lower, L tends to be smaller because merging of documents into existing clusters
becomes easy.

‡ Basic leader-follower clustering algorithm (for exclusive clustering)

Set: Similarity threshold θs.

1) Set first document d1 as first cluster (c1 ← d1), and L ← 1 and i ← 2.

2) Compute similarities between di and vectors of all current clusters ck (k =
1, . . . , L). If the maximum of similarities s(di, ck′) (i.e., k′ = argmaxk s(di, ck))
exceeds θs, then allocate document di to cluster Ck′ and update ck′ based on the
allocation. Otherwise, generate a new cluster such that L ← L+ 1 and cL ← di.

3) i ← i+ 1. If i > N , then terminate the procedure. Otherwise return to 2).

Out: The number of clusters L, clusters C1, . . . , CL and final vectors c1, ..., cL.

Figure 3.30: Basic leader-follower clustering algorithm (single-pass)

Basically, the leader-follower clustering algorithm is a typical single-pass method for DC. Doc-
uments are sequentially checked from the top to bottom of the target file, in which clusters are
generated and updated incrementally. Thus the number of comparisons between documents and
clusters is not over N ×L times, and it is relatively easy to apply the algorithm to large-scale sets
of documents.

However, the number of comparisons approaches to O(N2) if L becomes larger and L ≈ N .
Also, like incremental k-means algorithms with no iteration, clustering results are highly dependent
on the order of documents to be processed. Table 3.14 shows two results of leader-follower clustering
for the sample DB in Table 3.1. One result was obtained by processing documents in ascending
order from d1 to d10, and the other was in descending order from d10 to d1.

In the execution of leader-follower clustering shown in Table 3.14, tf (term frequency) was
simply used as wij in each document vector, and w̃kj of cluster vectors was computed such that

w̃kj =
∑

i:di∈Ck

fij , (3.56)

which means that each cluster is regarded as a huge document created by concatenating documents
belonging to the cluster. When tf vector is adopted, an element of the cluster centroid is calculated
as mkj = w̃kj/ñk =

∑
i fij/ñk. Results in Table 3.14 were obtained by using the cosine coefficient
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Table 3.15: Result of leader-follower clustering for sample DB (2)

θs Ascending order: d1 → d10
0.2 L = 2 {d1, d2, d3, d5, d6, d8, d9}, {d4, d7, d10}
0.3 L = 3 {d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}
0.4 L = 4 {d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9}, {d10}
θs Descending order: d10 → d1
0.2 L = 2 {d1, d2, d3}, {d4, d5, d6, d7, d8, d9, d10}
0.3 L = 3 {d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}
0.4 L = 4 {d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9}, {d10}
Note: Double-pass clustering.

as similarity measure s(di, ck), in which elements w̃kj and w̃kj/ñk provide the same result 41.
It is clear from Table 3.14 that the two results are different, and the result by processing in

descending order appears to be slightly more valid. For example, in comparison with dendrograms
in Figure 3.5(b) and Figure 3.7(a) and results from the k-means algorithm in Table 3.4, the
partition, C1 = {d1, d2, d3, d5}, C2 = {d4, d7} and C3 = {d6, d8, d9, d10}, in the case of ascending
order with θs = 0.3 may be slightly problematic whereas the descending order with θs = 0.3
provides the same partition with that by the k-means algorithm 42.

A method for reducing the degree of dependency on the order of documents would be double-pass
clustering [71], in which the document file is scanned twice. In the first scan, a standard leader-
follower clustering algorithm is executed, and in the second scan, all documents are reallocated
to the most similar cluster without updating cluster vectors (typically, similarity threshold θs is
not applied to the reallocation in the second scan for exclusive clustering). Results of double-pass
leader follower clustering is shown in Table 3.15.

Double-pass clustering in two cases of θs = 0.3 and θs = 0.4 yielded the same partition both in
ascending and descending orders, which also equals to those by the k-means algorithm in Table 3.4.
This example implies that influence of the order is successfully weakened in double-pass clustering.
Unfortunately, when θs = 0.2, it was not the case (but dividing naturally the sample DB into
two separate parts may be difficult as shown in dendrograms in Figure 3.5(b) and Figure 3.7(a)).
Although processing time increases approximately twice, it would be worth while attempting the
double-pass clustering for obtaining better results.

In order to avoid double increase of the processing time, it may be possible to stop the first
scan at n-th document from the top of the target file (where n < N) 43. For example, when
N = 10000 and n = 1000, the number of comparisons becomes 1, 000 + 10, 000 = 11, 000, which is
only 110 %, not 200 %, of single-pass clustering. If cluster vectors having enough representativeness
are constructed by checking only the n documents, then quality of the clustering result would not
deteriorate largely. Of course, it is highly dependent on a condition of target document files. When
documents on various topics are randomly distributed in the entire file, the reduction of documents
checked in the first scan would not decrease cluster validity largely. In contrast, if documents on
particular topics are placed in top position of the file and the others appear in bottom parts, then
quality of the clustering result becomes inevitably low 44.

41Since

s(di, ck) =

∑M
j=1 wijw̃kj/ñk√∑M

j=1 w
2
ij

√∑M
j=1(w̃kj/ñk)2

=
ñ−1
k

∑M
j=1 wijw̃kj√

ñ−2
k

√∑M
j=1 w

2
ij

√∑M
j=1 w̃kj

,

ñ−1
k is canceled out during computation of the cosine coefficient.
42Actually, it would be difficult to determine a cluster to which t5 belongs in the sample DB. This will become

clearer in experiments of probabilistic and matrix-based clustering in Chapter 4. Therefore, it would be impossible
to conclude that the partition in ascending order with L = 3 is invalid.

43This idea was suggested by Kishida(2010) [152].
44Rather, in an experiment reported by Kishida(2010) [152] using RCV1 [187] as a test set, the reduction of

documents checked in the first scan enhanced the effectiveness of clustering under a condition. Note that this
experiment used logarithm-based tf-idf weighting in document vectors,

wij = (log fij + 1.0)× log
N

nj
, i = 1, . . . , N ; j = 1, . . . ,M,
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3.3.3 Cover-coefficient-based concept clustering

As a predefined parameter, the leader-follower clustering algorithm requires similarity threshold
θs, and the number of clusters L has to be given for execution of k-means clustering. However, in
many situations of DC, it would be difficult to specify correctly an optimal value of θs or L.

C3M (cover-coefficient-based concept clustering methodology) [51, 52, 53, 54] can work without
such kind of predetermined parameters by predicting L from ‘cover coefficient’, which measures
the degree to which a given document is ‘covered’ by the other documents. In computing the cover
coefficient, two quantities φij and φ̃ij are first defined such that

φij =
bij∑M
j=1 bij

, i = 1, ..., N ; j = 1, ...,M, (3.57)

φ̃ij =
bij∑N
i=1 bij

, i = 1, ..., N ; j = 1, ...,M, (3.58)

where if fij ≥ 1, then bij = 1, and otherwise, bij = 0. For example, in the sample DB in Table
3.1, φ12 = 1/2 because distinct two terms appears in document d1, and φ72 = 1/4, which suggests
that ‘importance’ of t2 is higher in d1 than in d7. Also, φ̃11 = 1/3 because t1 is contained in three
documents, and thus φ̃ij corresponds to inverse document frequency of tj .

The ‘cover coefficient’ is calculated such that

δii′ =

M∑
j=1

φij φ̃i′j , (3.59)

based on the two quantities, φij and φ̃ij . In the case that i = i′, δii can be considered to measure
‘uniqueness’ of document di, and its value becomes larger when the degree of uniqueness is higher.
Actually, if document di does not share any term with the other documents, then δii = 1, which
means that di is completely unique in the document set. Conversely, when all terms in document
di appear in all the other documents, δii becomes 1/N , which is the minimum value of δii.

For example, in the sample DB,

δ11 = φ11 × φ̃11 + φ12 × φ̃12 =
1

2
× 1

3
+

1

2
× 1

6
= 0.250, (3.60)

and

δ88 = φ84 × φ̃84 + φ85 × φ̃85 =
1

2
× 1

4
+

1

2
× 1

6
= 0.208, (3.61)

from which it turns out that d1 is more ‘unique’ than d8. The difference is caused from the fact
that the number of documents including t1, which is a factor of δ11, is smaller than that of t4 in
δ88 (the numbers of document including t2 and t5 are equal).

When all documents do not share any terms with the other documents (i.e., δii = 1 for i =

1, . . . , N), any merging of documents should not be done, and inevitably, L = N =
∑N

i=1 δii. In
contrast, if all documents have the same terms, then they may have to be merged into a cluster
(i.e., L = 1). In this case,

∑N
i=1 δii =

∑N
i=1 1/N = 1. The two extreme examples lead to estimating

the number of clusters by

L̂ =
N∑
i=1

δii =
N∑
i=1

M∑
j=1

bij∑M
j′=1 bij′

1

nj
. (3.62)

For example, in the sample DB, L̂ =
∑N

i=1 δii = 2.381, which suggests that L = 2 or L = 3 should
be selected.

and that elements of k-th cluster vector were defined by

w̃kj = log
∑

i:di∈Ck

fij + 1.0., j = 1, . . . ,M

(see Section 5.3.3 for details).
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Suppose that there is a document set whose matrix of tf is shown in Figure 3.31(1). Clearly,
L = 3 because three subsets of documents, {dA, dB}, {dC , dD, dE} and {dF }, do not have any
common term and are completely exclusive. Within a subset of the example (1) in Figure 3.31,

∑
i∈Ck

δii = ñk

M∑
j=1

bij∑M
j′=1 bij′

1

nj
=

ñk

nj

M∑
j=1

bij∑M
j′=1 bij′

= 1× 1 = 1, (3.63)

because nj is a constant for all terms appearing in the subset Ck, and equals to ñk in this special

situation. Hence, it can be obtained exactly that L̂ = 3 in Equation (3.62) for this example 45.
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Figure 3.31: Examples of document set (term-by-document matrices)

In example (2) of Figure 3.31, dA, dC and dF have a term appearing in a subset other than
the own subset. In this case, L̂ is smaller (i.e., L̂ = 2.19). Also, in example (3) of Figure 3.31,
‘uniqueness’ of dA and dC is higher, which makes value of L̂ larger (i.e., L̂ = 3.41).

Basically, the C3M is a variation of k-medoids clustering, in which a typical document is used
for representative of a particular cluster. Such documents are selected based on ‘cluster seed power’
that is defined as

κi = δii(1− δii)
M∑
j=1

bij , (3.64)

where
∑M

j=1 bij corresponds to the number of distinct terms appearing in the document. Note that
the maximum value of δii(1− δii) is 0.25 when δii = 0.5. In the sample DB, d7 has the maximum
‘cluster seed power’ (i.e, κ7 = 0.789) which is followed by d10 (κ10 = 0.636).

A seed document selected from values of κi in Equation (3.64) is denoted by di′ here. In
the C3M, document di other than seed documents is assigned to seed document di′ whose δii′ is
the maximum. In the sample DB, if it is assumed that d7 and d10 are first and second seeds,
respectively (i.e., L = 2), then C1 = {d1, d2, d3, d4, d5, d6, d7} and C2 = {d8, d9, d10} are generated.
For example, δ57 = 0.194 and δ5,10 = 0.055. In the case of d4, these values are equal, but cluster
of d7 is selected because d7 has greater ‘cluster seed power’ than d10

46. Note that δii′ tends to
become greater as the two documents share many more terms and the common terms have larger
idf factor (see Equation (3.59)).

45Of course, this result is easily conjectured from the fact that
∑N

i=1 δii = 1 when all documents have the same
terms in the entire set.

46Also, cover-coefficient-based incremental clustering methodology(C2ICM) has been proposed for modifying a
result by the C3M (see [49, 50]).
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3.3.4 Scatter/Gather algorithm

Scatter/Gather algorithm [72, 123, 284] allows users to obtain a small subset of documents rele-
vant to their information needs from a large-scale document collection by repeating operations of
‘scatter’ and ‘gather’, not executing keyword searches. The ‘scatter’ tries to divide automatically a
set of documents into subsets, and in the ‘gather’ stage, the user selects manually relevant subsets
among them and a new target set is created by concatenating these subsets. Repeatedly, the same
procedure will be applied to the new set, and gradually, relevant documents are filtered out into a
smaller subset.

More precisely, the ‘scatter’ is executed as follows:

1. Find L centroids by using a hierarchical clustering algorithm.

2. Apply a k-means algorithm.

3. Refine clusters obtained in previous step.

In order to alleviate a problem of high computational complexity for executing hierarchical clus-
tering in the first step, ‘Buckshot’ and ‘Fractionation’ algorithms were proposed [72].

In the Buckshot,
√
L× n documents are randomly selected from the set of documents, and

hierarchical clustering is executed for the random sample, where n denotes the number of docu-
ments included in the current set (initially, n = N). Although an incorrect clustering result may
be obtained due to using only a part of the set, the number of document pairs reduces to O(Ln)
from O(n2). Because the purpose of hierarchical clustering in this case is to find cluster centroids
for the k-means algorithm, it is enough that the random sample represents an unbiased ‘picture’ of
the entire set to a degree. Also, from the same reason, the hierarchical clustering is stopped when
L clusters are obtained.

In contrast, the Fractionation algorithm divides automatically the entire set into some smaller
subsets, and a hierarchical clustering algorithm is applied to each subset independently. In next
step, by regarding each resulting cluster as a single ‘huge’ document, the same procedure is re-
peated. Although the Fractionation would take much more time than the Buckshot, it may be
possible to provide better results because all documents in the set enter into the process.

Suppose that document set D is simply partitioned into N/m parts, each of which includes m
documents, respectively. If ρ ×m clusters are generated for each part (0 < ρ < 1) by applying a
hierarchical clustering algorithm, then in total, the number of clusters amounts toN/m×ρm = ρN .
These clusters are denoted by Ck,h (k = 1, ..., N/m; h = 1, ..., ρm) here. By considering each Ck,h

as a single ‘huge’ document, the ρN pseudo-documents are divided intom parts again and the same
procedure is applied. As a result, ρ2N clusters are obtained because ρN/m×ρm = ρ2N . After this
procedure is repeated r times, the current clusters are adopted as seeds for k-means clustering in
the next step if ρrN ≤ L. Its computational complexity becomes O(m2×N/m+m2×ρN/m+...) =
O(Nm(1 + ρ+ ρ2 + ...+ ρr)) = O(Nm) because 0 < ρ < 1 47.

Table 3.16 shows values of ρrN when N =10000, 50000 and 100000, and ρ = 0.2 and 0.5. In
the case that m = 10, N = 10000 and ρ = 0.2, and that the iterative process is stopped at r = 4,
it amounts to

Nm(1 + ρ+ ρ2 + ...+ ρr) = 10000× 10× (1 + 0.21 + . . .+ 0.24) = 124964.

After the computation, cluster centroids for L = 16 can be obtained (see Table 3.16). It should be
noted that ten documents are grouped into 2 (= 10 × 0.2) clusters at each iteration in this case.
For obtaining valid clusters, it is desirable that each set of 10 documents is topically homogeneous
to a degree. If the topical homogeneity can not be assumed, then larger m should be adopted. For
example, when m = 100, 100 documents are reduced into 20 pseudo documents at each iteration.
Inevitably, the value of Nm becomes large, which leads to higher computational complexity.

Finally, in order to refine a result of k-means clustering, each cluster is divided by using the
Backshot and two clusters sharing the same terms are joined [72].

47Actually,
∑r

s=0 ρ
s = (1− ρr+1)/(1− ρ) (i.e. the sum of the terms of a geometric progression), which converges

to a constant (1− ρ)−1 as r → ∞ if 0 < ρ < 1.
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Table 3.16: Values of ρrN at each iteration of Fractionation

r ρ = 0.2 ρ = 0.5
N = 10000 50000 100000 N = 10000 50000 100000

1 2000.00 10000.00 20000.00 5000.00 25000.00 50000.00
2 400.00 2000.00 4000.00 2500.00 12500.00 25000.00
3 80.00 400.00 800.00 1250.00 6250.00 12500.00
4 16.00 80.00 160.00 625.00 3125.00 6250.00
5 3.20 16.00 32.00 312.50 1562.50 3125.00
6 0.64 3.20 6.40 156.25 781.25 1562.50
7 0.64 1.28 78.13 390.63 781.25
8 0.26 39.06 195.31 390.63
9 19.53 97.66 195.31

10 9.77 48.83 97.66

3.3.5 Self-organizing map

Clustering based on SOM

Self-organizing map (SOM) by Kohonen [165] is widely used for visualizing a latent structure in
various fields, and is often applied to DC (e.g., [190, 59, 189, 229, 262, 35]). The research group
of Kohonen has also explored a method of DC based on SOM, which is specially called WEBSOM
[131].

The SOM is a kind of neural network that is composed of a pair of input space and output
layer. In the case of DC, di is used as a vector of the input space, and a ‘node’ in the output
layer corresponds to a cluster of documents. For example, if the output layer is formalized as
a rectangular consisting of 5 cells on x-axis and 10 cells on y-axis, then 5 × 10 = 50 nodes are
established in the output layer. In this section, a feature vector representing each node in the
output is denoted by vh (h = 1, ..., H) where H means the total number of nodes.

The SOM consists of ‘competitive’ stage and ‘collaborative’ stage, and the two stages are
iterated for developing nodes in the output layer. If similarity between input vector di and h-th
output vector vh (i = 1, . . . , N ;h = 1, . . . , H) is measured by squared Euclidean distance [229],
then the nearest node of input vector di can be determined as

h∗ = argmin
h

‖di − vh‖2 = argmin
h

M∑
j=1

(wij − vhj)
2, (3.65)

where vh = [vh1, ..., vhM ]T , and it is feasible to interpret the h∗-th node as a ‘winner’. The purpose
of competitive stage is to select the winner for each input vector.

The collaborative stage tries to adjust weights in vectors of the ‘winner’ node and its neighbors.
Let Nh∗ denote the set of the ‘winner’ node for di and its neighbors. The nodes in Nh∗ can be
updated such that

v
(s+1)
hj =

{
v
(s)
hj + η(s)(wij − v

(s)
hj ), if h-th node is included in Nh∗

v
(s)
hj , otherwise

, (3.66)

where s means current number of iterations and η(s) indicates ‘learning rate’ which decreases as s
increases [229].

Figure 3.32 shows a typical DC algorithm based on the SOM, and Figure 3.33 indicates an
example of SOM-based clustering for the sample DB, which was computed from unit vectors
di/‖di‖ (i = 1, . . . , N) by using somgrid() and SOM() of R [246]. In Figure 3.33, whereas H
was set to six a priori (= 2 × 3), resulting feature vectors of three cells became identical (the
cells include only d7 in the figure), and therefore, the number of clusters is four (i.e., L = 4).
Labels representing a topic of each cell can be automatically assigned based on term frequencies
in documents belonging to the cell [171].
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‡ Simple SOM-based document clustering

Set: The number of nodes in output layer H and the number of iterations r.

1) Initialize output vector vh h = 1, ..., H by generating random numbers.

2) For di (i = 1, . . . , N), a winner is determined by Equation (3.65) and feature vectors
of neighbor nodes are adjusted by Equation (3.66). This procedure is repeated r
times.

3) Each document di is allocated to the nearest node (i = 1, . . . , N).

Out: The number of clusters L, clusters C1, . . . , CL and final vectors of nodes in output
layer v1, ...,vH .

Figure 3.32: Simple SOM-based document clustering

 

Figure 3.33: Example of SOM (2× 3 = 6 units)

WEBSOM

The WEBSOM is tailored so as to be applied for partitioning a large-scale document set. For
example, over six million abstracts of patent materials were clustered by the WEBSOM [166].

In the WEBSOM, feature vectors in the output layer are modified such that

v
(s+1)
hj = v

(s)
hj + fc(di),h(s)(wij − v

(s)
hj ), (3.67)

where c(di) is a function returning an index number of the winner node for di, and

fc(di),h(s) = α(s) exp

(
−‖th − tc(di)‖2

2σ2(s)

)
. (3.68)

In the equation, th denotes two dimensional vectors indicating a location of h-th node, α(s)
indicates learning rate in s-th iteration, and σ2(s) is a parameter for adjusting variance of the
function fc(di),h(s). Due to using the function, it is not necessary to define explicitly a set of
neighbors Nh∗ .

Also, in order to execute the WEBSOM for large-scale document sets, dimensional reduction
of document vectors has been attempted by using a conversion in Equation (3.12) as described
above. Although it is possible to use LSI technique (Section 4.2.1) for defining B, the matrix may
be randomly generated so that elements of each column are normally distributed [141, 166].

3.3.6 Fuzzy clustering

Fuzzy c-means algorithm

The degree to which a data point (e.g., a document) is related with a cluster can be interpreted as
a value of membership function in a ‘fuzzy set’ developed by L. A. Zadeh, which naturally leads to
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an idea of fuzzy clustering [232]. A basic method of the fuzzy clustering would be fuzzy c-means
(FCM) algorithm [86, 25]. This algorithm is a variation of k-means, and tries to maximize an
objective function,

Q =
L∑

k=1

N∑
i=1

um
ki ‖di − ck‖2, (3.69)

where ck denotes k-th cluster vector, U = [uki] indicates a ‘partition matrix’, and m means
the ‘fuzzy factor’ here. In DC, the partition matrix is estimated from data d1, . . . ,dN under a
condition that

∑
k uki = 1. Thus an element ofU looks like formally ‘probability’ (i.e., 0 ≤ uki ≤ 1)

representing the degree to which a document belongs to a cluster. In addition, the ‘shape’ of each
cluster can be changed by using different fuzzy factor m (see [232] for details) 48.

By adding the Lagrange multiplier λ into objective function Q for the condition
∑

k uki = 1,
and differentiating it by uki, an equation for estimating uki becomes that mum−1

ki ‖di−ck‖2−λ = 0,
which leads to

uki =

(
λ

m

) 1
m−1 1

‖di − ck‖
2

m−1

. (3.70)

Since
∑

k uki = 1, (
λ

m

) 1
m−1

=

(
L∑

k′=1

1

‖di − ck′‖ 2
m−1

)−1

, (3.71)

is obtained, and therefore, uki can be estimated as

uki =

[
L∑

k′=1

( ‖di − ck‖
‖di − ck′‖

) 2
m−1

]−1

(3.72)

(k = 1, . . . , L; i = 1, . . . , N).
Also, since ∂Q/∂ck = −2

∑
i u

m
ki(di−ck), equation ∂Q/∂ck = 0 leads to ck =

∑
i u

m
kidi/

∑
i u

m
ki

49. Thus it is feasible to estimate uki (k = 1, . . . , L; i = 1, . . . , N) and ck (k = 1, . . . , L) by iterative
updates of ck by this equation and of uki by Equation (3.72), respectively, after initialization of the
partition matrix by generating random numbers. For example, the algorithm created a partition
matrix such that

U =

⎡
⎣ 0.50 0.98 0.94 0.09 0.30 0.07 0.07 0.05 0.02 0.24

0.26 0.01 0.03 0.79 0.53 0.09 0.87 0.07 0.02 0.37
0.23 0.01 0.02 0.12 0.17 0.84 0.07 0.88 0.96 0.39

⎤
⎦ ,

for the sample DB when L = 3 and m = 2.0 50. The partition matrix suggests to group documents
such as {d1, d2, d3}, {d4, d5, d7}, and {d6, d8, d9, d10}, which is a ‘valid’ set of clusters. Cluster
vectors were calculated such that

c1 = [0.306, 0.842, 0.031, 0.018, 0.021, 0.021]T ,

c2 = [0.036, 0.185, 0.743, 0.244, 0.147, 0.133]T ,

c3 = [0.020, 0.064, 0.064, 0.267, 0.854, 0.044]T .

As suggested by the partition matrix, the degrees to which d1, d5 and d10 belong to clusters
were relatively low (i.e., < 0.6). This may represent ‘inter-disciplinary’ nature of the three docu-
ments, or they may be ‘heterogeneous’ in the document set. Suppose that external knowledge on
heterogeneity of d1, d5 and d10 in the document set was given before executing DC. The knowledge
can be incorporated into fuzzy clustering by assuming that

L∑
k=1

uki = fi, (3.73)

48Furthermore, by adopting other types of distance (e.g., the Hamming distance, Tchebyschev distance, Minkowski
distance and so on) in Equation (3.69), the shape of clusters is drastically changed [232].

49Differentiation of a function with respect to a vector is defined as ∂f(x)/∂x = [∂f(x)/∂x1, . . . , ∂f(x)/∂xn]T

where x = [x1, . . . , xn]T and f : Rn → R. When f(x) = xTy, ∂f(x)/∂x = y for two vectors x and y.
50In this run, the matrix converged after 23 iterations. Of course, the number of iterations to be required depends

on the initial matrix and the criterion of converge.
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where, for example, f1 = f5 = f10 = 0.5 and fi = 1.0 for the other documents. Equation (3.73)
can be considered to insert a ‘condition’ or ‘context’ into fuzzy clustering, which is often called
conditional fuzzy clustering [232]. In this case, Equation (3.72) changes to

uki = fi

[
L∑

k′=1

( ‖di − ck‖
‖di − ck′‖

) 2
m−1

]−1

, (3.74)

according to the condition of Equation (3.73) 51.
For the sample DB, the conditional fuzzy clustering generated a partition matrix such that

U =

⎡
⎣ 0.24 1.00 0.99 0.06 0.17 0.06 0.07 0.05 0.01 0.123

0.14 0.00 0.01 0.86 0.23 0.07 0.86 0.07 0.01 0.186
0.13 0.00 0.01 0.08 0.10 0.87 0.07 0.88 0.98 0.193

⎤
⎦ ,

from which the same set of clusters is suggested. In contrast, the cluster vectors moved to

c1 = [0.254, 0.931, 0.013, 0.006, 0.009, 0.006]T ,

c2 = [0.011, 0.114, 0.832, 0.292, 0.109, 0.104]T ,

c3 = [0.006, 0.062, 0.063, 0.250, 0.907, 0.012]T ,

respectively. Because effect of d1, d5 and d10 located in middle points among three clusters de-
creases by introducing the condition fi, the three clusters become more apart from each other.
Actually, whereas the average Euclidean distance between three clusters is 1.16 in the standard
fuzzy clustering, that in the conditional fuzzy clustering amounts to 1.38.

Fuzzy co-clustering

Like the SKWIC algorithm (Figure 3.29), the fuzzy clustering algorithm can be applied for grouping
documents and terms simultaneously, which is called fuzzy co-clustering [169]. For instance, the
objective function becomes

Qc =
N∑
i=1

M∑
j=1

ukivkjwij , (3.75)

where vkj indicates the degree to which cluster Ck belongs to term tj (i.e.,
∑

j vkj = 1). By
maximizing the objective function under some assumptions and constrains, uki and vkj can be
estimated for fuzzy co-clustering 52.

3.3.7 Text stream clustering

In some applications of DC, it may be better to regard the target set explicitly as a ‘text stream’
in which documents are chronologically ordered. For instance, a system of detecting automatically
current news topics would have to process a stream of news articles arriving constantly through
the Internet, and to group them effectively and efficiently. Such kind of text stream clustering is a
relatively new research topic of DC.

51The function for minimizing Q becomes

Hi =
∑
k

um
ki‖di − ck‖2 − λ

(∑
k

uki − fi

)
,

for each di (i = 1, . . . , N).
52For instance, in [169],

H =
N∑
i=1

M∑
j=1

ukivkjwij − Tu

L∑
k=1

N∑
i=1

u2
ki − Tv

L∑
k=1

M∑
j=1

v2kj +
N∑
i=1

λi

(
L∑

k=1

uki − 1

)
+

L∑
k=1

γk

⎛
⎝ M∑

j=1

vkj − 1

⎞
⎠ ,

is maximized by differentiating it where λi and γk are the Lagrange multipliers and Tu and Tv are parameters. In
experiment reported by [169], Tu = 0.00001 and Tv = 1.5.
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Online processing for text stream clustering

For the text stream clustering, it is possible to assume two different situations on availability of
text data as follows:

• Full storage. Text data of all documents from the beginning of the stream can be fully stored
in disk(s) (e.g., in the form of document vector), which are available for generating clusters
at any time point.

• Online processing. Text data of each document are not stored and only representations of
clusters (e.g., cluster vectors) generated in past are available.

Usually, literature of text stream clustering appears to focus implicitly or explicitly on online
situations. Inevitably, under the assumption, online or incremental clustering techniques (Section
3.3.1) for which iterative computation in batch mode is prohibitive have to be applied. In the case
that the number of clusters is unknown, a natural way would be to use a single-pass leader-follower
clustering algorithm (Section 3.3.2) for online text stream clustering. Actually, some researchers
have adopted the algorithm or its variants in their experiments (e.g., [6, 327, 182, 326]). Of course,
it may not be easy to determine the threshold value θs in assigning a document to a cluster.

If the number of clusters can be reasonably assumed a priori, then it is possible to apply online
k-means algorithms. Especially, the simple scalable k-means algorithm [340] (see Section 3.3.1
for details) would be appropriate in this situation. In the case that a set of documents arriving
at a particular time interval can be regarded as each sample, this algorithm would be available
straightforwardly.

When computing term weights used in a clustering algorithm, it is necessary to select carefully
a method for calculating the idf factor because the arrival of new documents changes the number
of documents including a particular term. Possibly, another corpus in a similar domain would be
required for obtaining ‘valid’ idf weights (e.g., log(N/nj)) at early stage of the stream if the idf
factor must be included. In a continuing process of text stream clustering, whether the idf factor in
term weighting is incrementally updated at arrival of new documents or not may be an important
decision [327].

Incorporation of time-dependent factor

In the case of applying a clustering algorithm to chronologically ordered documents, it is natural
to suppose that the contents of two documents published in different time periods tend to be
dissimilar, which leads to incorporating a time-decay factor into computation of similarity measure
between two documents, between two clusters, or between a document and a cluster 53.

For instance, if similarity measure between a document vector and a centroid vector is denoted
by s(di,mk) where mk is centroid of cluster Ck, then a discounted similarity incorporating a ‘time
penalty’ factor written as T (di, Ck) can be calculated such that

s′(di, Ck) = s(di,mk)− T (di, Ck), (3.76)

or
s′(di, Ck) = s(di,mk)/T (di, Ck). (3.77)

Actually, it is assumed that T (di, Ck) increments as time interval between di and documents
included in Ck becomes large. As exemplified in the equations, the similarity measure used in
text stream clustering may consist of content-factor and time-factor. The actual form of T (di, Ck)
depends on the clustering technique to be used 54.

Additionally, identification of a ‘bursty feature’ may be helpful to obtain a good result of text
stream clustering [121, 132]. For example, a word ‘Olympic’ would be suddenly referred to in so
many documents at a specific period (i.e., when the Olympic Games are going on). Algorithms

53Note that, in some cases, after a set of new documents arriving in a given period were grouped into clusters,
the new clusters are merged into ‘old’ clusters generated in the past according to a similarity measure (e.g., cosine
coefficient of two centroid vectors).

54As to examples of time-decay factor for the leader-follower and spherical k-means algorithms, see [6] and [340],
respectively.
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for detecting automatically the sudden burst in words (or phrases) included in a text stream have
been developed so far, and it is expected that DC quality is improved by augmenting weights of
such words (i.e., ‘bursty feature’) in computation for clustering because the bursty feature possibly
indicates a single event or phenomena in the burst period, and is not ambiguous within the period.

For identifying the bursty features from text stream data, Kleinberg’s two-state finite automa-
ton model [160] can be used. After that, the weight of each bursty feature in documents created in
the burst period is augmented such that w′

ij = wij +δbj where bj is ‘bursty weight’ and δ indicates
a coefficient. The bursty weight can be computed from the Kleinberg’s model, and δ has to be set
as a positive constant.

Topic detection

Research efforts on text stream clustering were partially included in the Topic Detection and
Tracking (TDT) research program since around 1997, which had been supported by the U.S.
Government. An initial motivation of TDT research was to construct a system that “monitor
broadcast news and alert an analyst to new and interesting events happening in the world” (p.1 in
[5]). For developing component technologies of the system, some research institutes participated
in the program and tackled the following five tasks[5]:

1. Story segmentation. Dividing the transcript of a news show into individual stories.

2. First story detection. Recognizing the onset of a new topic in the stream of news stories.

3. Cluster detection. Grouping all stories as they arrive, based on the topics they discuss.

4. Tracking. Monitoring the stream of news stories to find additional stories on a topic that
was identified using several sample stories.

5. Story link detection. Deciding whether two randomly selected stories discuss the same news
topic or not.

Among them, whereas machine learning approach can be applied to the tracking task, the cluster
detection task is directly related with text stream clustering in unsupervised manner 55. For
instance, if the cluster detection is executed in ‘online’ mode, then a single-pass clustering algorithm
incorporating the time-decay factor can be used (e.g., see [327]).

Also, such kind of single-pass clustering may be used for the ‘first story detection’ task in
online mode, which is also called novelty detection in general 56. A simple way is to consider
that a document describes a ‘new topic’ if all similarities between the document and clusters
created previously do not exceed a predetermined threshold. However, it may be better to compare
similarities between the new document with ‘old’ documents arrived in a time window, respectively,
without any clustering procedure [327]. For example, if s(dA, di) < θs for all old documents di
(i = 1, ..., N) where θs is a threshold, then new arriving document dA would be judged to contain
a new topic not yet appearing in the set of {d1, . . . , dN}.

Compact storage of cluster profiles

Another technical issue of text streaming clustering is how to create profiles of current clusters
that exist at that time. It is hopeful that such kind of cluster profile keeps ‘efficiently’ information
on the cluster, and enables to allocate ‘effectively’ new arriving documents to proper clusters (see
[195] and [3] for detailed discussions).

55Due to the goal of TDT, ‘topic’ was operationally defined as “an event or activity, along with all directly related
events and activities” [66]. Furthermore, the ‘event’ was also carefully defined in TDT.

56According to [206], novelty detection is “the identification of new or unknown data or signal that a machine
learning system is not aware of during training”.
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Chapter 4

Probabilistic and Matrix-based
Document Clustering

4.1 Probabilistic Document Clustering

Since early 2000s, advanced methods of probabilistic clustering for textual data have been devel-
oped in order to overcome problems in text mining. Although they provide usually a flat partition
of a document set like k-means algorithms, underlying theories are complicated mathematically.
This section reviews some of the methods with checking clustering results by them for the sam-
ple DB in Table 3.1, which would provide deeper insights about the mechanism of probabilistic
clustering.

4.1.1 Clustering by mixture model

Poisson mixture model

A probability that document vector di is generated within cluster Ck is denoted by P (di|Ck)
(i = 1, . . . , N ; k = 1, . . . , L) here. It is possible to partition a document set based on a probabilistic
model of P (di|Ck). For instance, according to classical IR studies, Poisson distribution (Section
2.1.2) can be selected as the model. In this case, a probability of fij , which denotes occurrence
frequency of term tj (i.e., tf) in di as before, is written as

P (fij |Ck) =
λ
fij
j|ke

−λj|k

fij !
, fij = 0, 1, 2, . . . , (4.1)

for cluster Ck where λj|k is a parameter of the Poisson distribution for tj in Ck. By assuming
‘term independence’ used often in IR studies [257, 253] (Section 2.1.4), P (di|Ck) can be computed
as a simple multiplication of P (fij |Ck),

P (di|Ck) =

M∏
j=1

P (fij |Ck) =

M∏
j=1

λ
fij
j|ke

−λj|k

fij !
(4.2)

(note that di = [fi1, . . . , fiM ]T here, i.e., which is a tf vector).
By using P (di|Ck) (k = 1, . . . , L), a mixture model [209] is constructed such as

P (di) =

L∑
k=1

ηkP (di|Ck), (4.3)

where ηk is a mixing parameter, and since 0 ≤ ηk ≤ 1, it is necessary that

ηL = 1−
L−1∑
k=1

ηk. (4.4)
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Figure 4.1 shows two Poisson distributions of a single term in two clusters C1 and C2, respectively,
and a mixture of them (Poisson mixture) with η1 = η2 = 0.5.
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Figure 4.1: Two Poisson distributions and their mixture with η1 = η2 = 0.5

When the number of mixing components L is given a priori (where L �= ∞), Equation (4.3)
is particularly called finite mixture model, which is widely applied in various fields. In the case of
mixture models for document vectors, it is assumed that each cluster Ck contributes to generation
of vector representation di in proportion to size of parameter ηk.

For applying actually the mixture model, parameters contained in the model have to be esti-
mated from observed data (i.e., document collections). A set of parameters to be estimated can be
represented as a vector, which is denoted by Ψ in this section. For Poisson mixture model (PMM)
based on Equation (4.2), it becomes

Ψ = [η1, . . . , ηL, λ1|1 . . . , λM |L]T , (4.5)

which includes L+ (L×M) = (L+ 1)×M parameters since Poisson parameters λj|k and mixing
parameters ηk have to be estimated 1.

Estimation by EM algorithm

For estimating parameters in mixture models, it is feasible to employ an Expectation-Maximization
algorithm (EM algorithm), which is “a broadly applicable approach to the iterative computation
of maximum likelihood (ML) estimates, useful in a variety of incomplete-data problems, where
algorithms such as the Newton-Raphson method may turn out to be more complicated” (p.1 in
[208]). In general, the likelihood function can be defined as

L(Ψ) = P (y;Ψ), (4.6)

1Gaussian mixture model (GMM) [111, 193] is based on a probabilistic density function

f(di|Ck) =
1

(2π)M/2|Σk|1/2
exp

(
−1

2
[di − μk]

TΣ−1
k [di − μk]

)
,

where μk denotes mean vector of k-th cluster and Σk indicates a covariance matrix (Σ−1
k represents an inverse

matrix, and |Σk| is a determinant). Although the GMM is widely used for various applications, it seems that there
has been not so many cases utilizing directly it for DC. However, it should be noted that the k-means algorithm has
a close relationship with the GMM-based clustering when every Σk is assumed to be a constant diagonal matrix, in
which documents are grouped based on square Euclidean distance [di − μk]

T [di − μk] = ‖di − μk‖2 [21]. In this
case, Ψ = [η1, . . . , ηL,μ1, . . . ,μL, ]

T .
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where y means observed data 2, namely, y = [dT
1 , . . . ,d

T
N ]T for DC problems. The ML estimate

(MLE) of Ψ is obtained as a solution of equation ∂L(Ψ)/∂Ψ = 0 3, or equivalently,

∂ logL(Ψ)/∂Ψ = 0. (4.7)

According to statistical theory, the MLE has some desirable properties, and can be considered as
a ‘standard’ estimate when parameters in a probabilistic model have to be estimated from sample
data.

However, L(Ψ) of mixture models is often too complicated to calculate the derivative in Equa-
tion (4.7). For instance, by assuming that documents are generated independently, L(Ψ) in DC
situation can be written as

L(Ψ) = P (y;Ψ) =
N∏
i=1

P (di) =
N∏
i=1

L∑
k=1

ηkP (di|Ck), (4.8)

according to Equation (4.3). It is hard to differentiate analytically the most right-hand side of
the equation when P (di|Ck) is a distribution describing term frequency like Figure 4.1. In such
cases, the EM algorithm computes numerically the MLE of Ψ by assuming that y is incomplete
data including partially missing values or unobservable variables. For mixture model problems,
information on one-to-one relationship between a document (i.e., an element) and its cluster (i.e., a
mixture component to which the element belongs) is assumed to be missing [208]. The relationship
can be represented as unobservable variables (or missing data)

zik =

{
1 if i-th document belongs to k-th cluster
0 otherwise

(4.9)

(i = 1, . . . , N ; k = 1, . . . , L), which are also denoted by z = [z11, . . . , zNL]
T .

The ‘complete data’ into which both the observed data and missing data are included can be
written as x = [yT , zT ]T and the likelihood function of x is represented by Lc(Ψ) = P (x;Ψ). The
unobservable variables are usually selected so that resulting Lc(Ψ) (or logLc(Ψ)) becomes to be
differentiated easily. This allows to obtain MLEs by maximizing Lc(Ψ), which is called M-step
(‘M’ means the maximization). However, in order to calculate the derivative, it is necessary to
allocate actual values to the unobservable variables beforehand. Roughly speaking, an expectation
of the unobservable variable based on the observed data is used as its value (see below for precise
explanations) 4. The step of computing the expectation is called E-step (‘E’ indicates the expec-
tation). The EM algorithm repeats iteratively the E- and M-steps until the unknown parameters
in Ψ converge (note that each E-step is affected by a result from the previous M-step as shown
in Equation (4.11)). If Ψ in s-th iterative step is denoted by Ψ(s), then the EM algorithm allows
Ψ(s) for approaching gradually to the MLE of Ψ as s becomes larger.

Actually, in the case of mixture models in Equation (4.3), the log likelihood function for the
complete data becomes

logLc(Ψ) =

L∑
k=1

N∑
i=1

zik log ηk +

L∑
k=1

N∑
i=1

zik logP (di|Ck), (4.10)

from Equations (4.8) and (4.9) because terms with zik = 0 vanish 5. More precisely, in s-th E-step
of the EM algorithm, it is necessary to compute the expectation

Q(Ψ;Ψ(s)) ≡ EΨ(s){logLc(Ψ)|y}, (4.11)

2P (y;Ψ) is basically a probabilistic distribution of y based on parameters in Ψ, which means that P (y;Ψ) is a
function of y for fixed parameters. However, when P (y;Ψ) is interpreted as a likelihood function, it is considered
as a function of Ψ given observed data y, inversely.

3In this equation, 0 denotes a K-dimensional null vector [0, . . . , 0]T where K indicates the number of parameters
in Ψ.

4For a probabilistic distribution P (x) of a discrete random variable x, the expectation is defined as E(x) =∑
x xP (x) where

∑
x denotes summation over all possible values of x. When x is a continuous variable, E(x) =∫

xf(x)dx where f(x) is a probability density function.
5Since the logarithm is a monotonically increasing function, maximization of log f(x) is equal to that of f(x).
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where EΨ(s){x} means an operation of expectation with respect to x by using parameters in Ψ(s).
Since Q(Ψ;Ψ(s)) is a conditional expectation given y, it follows that

EΨ(s)
{logLc(Ψ)|y} =

∑
Z

logLc(Ψ
(s))PΨ(s)(Z|y), (4.12)

where Z is a vector of random variables corresponding to missing data z, PΨ(s)(·) indicates the
probability computed based on parameter Ψ(s) (i.e., PΨ(s)(·) ≡ P (· ;Ψ(s))), and

∑
Z denotes

summation over all patterns of values to be taken as elements of vector Z . In mixture models,
Z = [Z11, . . . , ZNL]

T where Zik is a binary variable (i.e., Zik = 0 or Zik = 1), and also,
∑

Z =∑
Z11

∑
Z12

. . .
∑

ZNL
.

In s-th M-step, Ψ(s+1) has to be determined so as to maximize Q(Ψ;Ψ(s)), namely,

Q(Ψ(s+1);Ψ(s)) ≥ Q(Ψ;Ψ(s)), (4.13)

over all Ψ ∈ Ω where Ω is a parameter space of Ψ. If Q(Ψ(s+1);Ψ(s)) satisfying the condition in
Equation (4.13) is found, then the log likelihood Lc(Ψ

(s+1)) increases (or does not change) and its
value is expected to approach somewhat to the maximum. Thus by repeating E-step in Equation
(4.11) and M-step in Equation (4.13), Ψ(s) would converge to the MLE of Ψ 6.

For computing Q(Ψ;Ψ(s)) of mixture models, it is enough to calculate PΨ(s)(Zik = 1|y) and
to replace zik in Equation (4.10) by it because Equation (4.10) is a linear function and Zik is a

binary variable 7. Namely if z
(s)
ik denotes a value of zik in s-th step, then

z
(s)
ik = PΨ(s)(Zik = 1|y). (4.14)

For showing it, each term corresponding to a particular pair of di and Ck in Equation (4.10) is
represented by

g(zik) = zik log ηk + zik logP (di|Ck). (4.15)

Thus Q(Ψ;Ψ(s)) based on Equation (4.10) can be written as

EΨ(s)
{logLc(Ψ)|y} =

L∑
k=1

N∑
i=1

EΨ(s)
{g(Zik)|y}, (4.16)

and each EΨ(s)
{g(Zik)|y} can be computed as

EΨ(s)
{g(Zik)|y} =

∑
Z

g(Zik)PΨ(s)(Z|y)

=
∑
Z11

. . .
∑
ZNL

g(Zik)PΨ(s)(Z|y)

=
∑
Zik

[
g(Zik)

∑
Z¬ik

PΨ(s)(Z|y)
]

=

1∑
Zik=0

g(Zik)PΨ(s)(Zik|y)

= [log ηk + logP (di|Ck)]PΨ(s)(Zik = 1|y), (4.17)

where Z¬ik means a sequence of Z11 . . . ZNL removing Zik
8. Note that if Zik = 0, then g(Zik) = 0

by definition in Equation (4.15). By substituting it into Equation (4.16), it turns out that Equation

6As to mathematical explanation why Ψ(s) converges to the MLE, see p.78-79 in [208].
7For a linear function f(x) = a + bx, E[f(x)] = E(a + bx) = E(a) + E(bx) = a + bE(x) by the definition of

expectation. Also, if z is a binary variable, then E(z) = E[zP (z)] = P (z) because a term with z = 0 vanishes.
8For n-dimensional vector of probabilistic variables (denoted by x = [x1, . . . , xn]T ),∑

x2

. . .
∑
xn

P (x) =
∑
x¬1

P (x) = P (x1),

which is called marginal distribution of P (x).
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(4.14) is valid. In particular, since PΨ(Zik = 1|y) = PΨ(y|Zik = 1)PΨ(Zik = 1)/PΨ(y) by Bayes’

theorem, z
(s)
ik can be updated by

z
(s)
ik =

η
(s)
k PΨ(s)(di|Ck)

PΨ(s)(di)
=

η
(s)
k PΨ(s)(di|Ck)∑L

k′=1 η
(s)
k′ PΨ(s)(di|Ck′)

, (4.18)

according to Equation (4.3) 9 and η
(s)
k = PΨ(Zik = 1) for all documents 10.

After computing the conditional expectation Q(Ψ;Ψ(s)) based on the updating formula of
Equation (4.18) in E-step, Q(Ψ(s+1);Ψ(s)) satisfying the condition in Equation (4.13) has to be
found in M-step. To do this for the mixture model, it is enough to differentiate the log likelihood
function of the complete data in Equation (4.10) under an assumption that the missing values in
z are completely known.

As to mixing parameter ηk, by introducing the Lagrange multiplier for the condition in Equation
(4.4), an equation to be differentiated becomes

H = logLc(Ψ)− λ

(
L∑

k=1

ηk − 1

)
, (4.19)

where λ denotes the Lagrange multiplier (not the Poisson parameter here), and it is necessary
to solve equation ∂H/∂ηk = 0 (k = 1, . . . , L). Since ∂H/∂ηk =

∑
i zik/ηk − λ, the equation

∂H/∂ηk = 0 leads to ηk = λ−1
∑

i zik. By definition in Equation (4.9),
∑

k

∑
i zik = N , and

therefore, λ = N for keeping the condition on mixing parameters in Equation (4.4). Thus the
updating formula in M-step can be obtained as

η
(s+1)
k =

1

N

N∑
i=1

z
(s)
ik , k = 1, . . . , L. (4.20)

In addition to ηk, parameters for specifying probabilistic distribution P (di|Ck) have to be
similarly estimated by using Equation (4.10) for executing M-step of the EM algorithm (see below).
After the parameters converge in iterations of E- and M-steps, estimated values of zik in Equation
(4.18) can be directly used for clustering. Specifically, it is feasible to partition the target document
set such that

Ck =

{
di

∣∣∣∣ argmax
k′

zik′ = k

}
, k = 1, . . . , L. (4.21)

Needless to say, results of DC based on the estimation of missing values in z may vary with the
probabilistic distribution P (di|Ck) to be used in the EM algorithm. In the following sections,
Poisson, multinomial and von Mises-Fisher distributions will be actually employed as P (di|Ck).

EM algorithm for Poisson mixture model

When P (di|Ck) is described as a Poisson distribution in Equation (4.1), Equation (4.18) in E-step
becomes

z
(s)
ik =

η
(s)
k

∏
j λ

(s)fij
j|k exp(−λ

(s)
j|k)∑L

k′=1 η
(s)
k′
∏

j λ
(s)fij
j|k′ exp(−λ

(s)
j|k′)

, (4.22)

since
∏

j fij ! in Equation (4.1) is canceled out. For obtaining an estimation of λ
(s+1)
j|k in M-step,

logLc(Ψ) in Equation (4.10) has to be differentiated. So,

∂ logLc(Ψ)

∂λj|k
=

N∑
i=1

zik
P (di|Ck)

∂P (di|Ck)

∂λj|k
(4.23)

9Note that PΨ(Zik = 1|y) = PΨ(Zik = 1|di) for particular di if it is assumed that documents in D are generated
independently.

10Probability PΨ(Zik = 1) is not dependent on a particular document.
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Table 4.1: Estimation of λj|k in PMM on sample DB

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
k = 1 2.000 3.333 0.000 0.000 0.000 0.000
k = 2 0.000 0.987 2.961 0.760 1.779 0.247
k = 3 0.000 0.000 0.000 2.009 2.982 1.358
Note: L = 3 and logL(Ψ) = −1254.59.

where
∂P (di|Ck)

∂λj|k
=

P (di|Ck)

P (fij |Ck)

∂P (fij |Ck)

∂λj|k
, (4.24)

according to the term independence model in Equation (4.2) 11. Since

∂P (fij |Ck)

∂λj|k
=

fijλ
fij−1

j|k e−λj|k

fij !
−

λ
fij
j|ke

−λj|k

fij !

= P (fij |Ck)×
(

fij
λj|k

− 1

)
, (4.25)

Equation(4.23) becomes

∂ logLc(Ψ)

∂λj|k
=

N∑
i=1

zik

(
fij
λj|k

− 1

)
, (4.26)

by substituting Equations (4.24) and (4.25) into it 12. Thus the updating formula for M-step,

λ
(s+1)
j|k =

1∑N
i=1 z

(s)
ik

N∑
i=1

z
(s)
ik fij , (4.27)

can be obtained from the equation that ∂ logLc(Ψ)/∂λj|k = 0 13.
A summarization of the EM algorithm for PMM is shown as Figure 4.2. Also, Tables 4.1 and 4.2

indicate a result of estimating actually λj|k and zik, respectively, when the EM algorithm for PMM
was executed for the sample DB of Table 3.1 in the case that L = 3 14. In the execution, ηk was
estimated such that η̂1 = 0.3, η̂2 = 0.41 and η̂3 = 0.29. Consequently, according to the estimation
of zik, the set of clusters generated by PMM was {{d1, d2, d3},{d4, d5, d6, d7},{d8, d9, d10}}.

In this execution on the sample DB, log likelihood scores logL(Ψ) computed by using estimated
parameters converged after around 20 iterations. More specifically, Figure 4.3 shows change of
the score during the iterations, which indicates that the score rapidly increased in the beginning
several iterations. Note that this is only an example, and that the number of iterations up to
enough convergence is dependent on initial values assigned to parameters.

11When y =
∑

i f(xi), dy/dxk = df(xk)/dxk (which is called ‘termwise differentiation’). If f(xk) can be formu-
lated as f(g(xk)), then df(xk)/dxk = (df/dg) × (dg/dxk) by chain rule. In the case that f(xk) = log g(xk), the
differential becomes df(xk)/dxk = g(xk)

−1 × dg(xk)/dxk, which is often needed for differentiating log likelihood
functions (note that differential of log x is x−1). Also, when y =

∏
i xi, dy/dxk = y/xk.

12When y = f(x)g(x), dy/dx = (df(x)/dx)g(x) + f(x)(dg(x)/dx). Also, differential of ex becomes again ex.
13According to statistical theory, the MLE of Poisson parameter is sample mean. Naturally, Equation (4.27)

coincides with an average of frequencies of term tj in documents of cluster Ck when zik is completely observed
because

∑
i zik represents the number of documents included in cluster Ck and similarly

∑
i zikfij means the total

occurrence frequency of term tj in Ck.
14In order to prevent λj|k from becoming zero, the updating formula in M-step was slightly changed to

λ
(s+1)
j|k =

1∑N
i=1 z

(s)
ik

(
ε+

N∑
i=1

z
(s)
ik fij

)
,

where ε is a very small number (e.g., ε = 1.0 × 10−8). Also, Math.random() method of Java language was used
for initialization of parameters in Ψ. Particularly, in the case of ηk, after a random number was allocated to each
of η1, . . . , ηL, these values were normalized as ηk/

∑
k′ ηk′ in this experiment. Similar methods for initialization of

parameters were used in other experiments discussed in this chapter.
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‡ Document clustering by PMM

Set: The number of clusters L.

1) Initialize parameters ηk and λj|k (k = 1, . . . , L; j = 1, . . . ,M) by generating random
numbers.

2) [E-step] Compute zik by Equation (4.22) (k = 1, . . . , L; i = 1, . . . , N)

3) [M-step] Update ηk and λj|k by Equations (4.20) and (4.27) (k = 1, . . . , L; j =
1, . . . ,M).

4) If parameters converge, then allocate each document to a cluster based on zik using
Equation (4.21) and terminate the procedure. Otherwise, return to 2).

Out: Clusters C1, . . . , CL and estimated values of parameters.

Figure 4.2: Document clustering by PMM

Table 4.2: Estimation of zik in PMM model on sample DB

i =
1 2 3 4 5 6 7 8 9 10

k = 1 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
k = 2 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.03 0.03 0.00
k = 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.97 1.00
Note: L = 3 and logL(Ψ) = −1254.59.
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Figure 4.3: Converge of the log likelihood score in an experiment
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Unfortunately, particular initial values may lead an iterative computation to a ‘local maximum’
of the log likelihood in a similar way of obtaining local minimums of the objective function for
k-means algorithms (see Figure 3.25). Figure 4.4 shows an example of local maximums provided
by x1 and x3, respectively, other than ‘global maximum’ by x2. As the figure indicates, when the
objective function maximized by an EM algorithm is not unimodal, its estimation may reach to
a local maximum. Inevitably, parameter estimations on local maximums differ from that on the
global maximum, which may cause a problem in applying mixture models.

 

f(x) 

xx1 x2 x3

global maximum 

local maximum 
local maximum 

Figure 4.4: Global and local maximums

For understanding the local maximum problem in DC, an experimental result of repeating
the estimation 1000 times with changing randomly initial parameters is shown in Figure 4.5. In
the simple experiment, 38 different maximums appeared (other maximums may be obtained if
the estimation will be repeated more). This suggests that the likelihood function of PMM for
DC has a complicated and multi-modal shape. Among them, the largest score was −1254.59,
which corresponds to the most left-hand bar in the graph since the maximums are arranged in
descending order. Note that the result of estimations in Tables 4.1 and 4.2 was obtained when
logL(Ψ) = −1254.59.
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Figure 4.5: Result of repeated estimations by EM algorithm of PMM (1000 runs)

In Figure 4.5, the two most appearing maximums were
logL(Ψ) = −1254.83: 208 times,
logL(Ψ) = −1255.09: 111 times,

which provided ‘valid’ clustering results that were obtained by the k-means algorithm and so
on (the sets of clusters are displayed in Figure 4.5). In contrast, small maximums generated
‘invalid’ clusters. For example, when logL(Ψ) = −1264.72, the set {{d1, d2, d3, d8, d9},{d4, d10},
{d5, d6, d7}} was provided (see Figure 4.5). Although a ‘valid’ cluster set was not always generated
for the sample DB even if the k-means algorithm was applied as described in Section 3.3.1, the
probability of obtaining the ‘valid’ cluster set appears to be lower in the case of PMM in comparison
with the Hartigan-Wong algorithm (Table 3.11).
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Multinomial mixture model

Alternative way for computing P (di|Ck) in DC (where di = [fi1, . . . , fiM ]T again) would be to use
multinomial distribution [223, 233] such that

P (di|Ck) = Ai ×
M∏
j=1

p
fij
j|k, (4.28)

where pj|k is a parameter constrained such that
∑

j pj|k = 1 (j = 1, . . . ,M ; k = 1, . . . , L), and

Ai denotes a multinomial coefficient 15 for document di. The parameter pj|k can be interpreted
as a probability that term tj is used in cluster Ck. In other words, document representation di is
assumed to be generated in cluster Ck by selecting randomly term tj according to probability pj|k
in Equation (4.28). Thus the vector of parameters becomes

Ψ = [η1, . . . , ηL, p1|1, . . . , pM |L]T , (4.29)

in the case of multinomial mixture model (MMM). Note that the number of parameters in the
MMM is equal to that in the PMM (i.e, (L + 1) ×M). Multinomial distribution is often used in
text categorization, and in this sense, it may be a natural choice for DC 16.

Evidently, Equation (4.20) is again used for updating mixing parameters ηk in M-step of an
EM algorithm for the MMM. Meanwhile, since Equation (4.28) is substituted into Equation (4.18)
for updating unobservable variable zik in E-step, it becomes

z
(s)
ik =

η
(s)
k

∏
j p

(s)fij
j|k∑L

k′=1 η
(s)
k′
∏

j p
(s)fij
j|k′

(4.30)

(note that multinomial coefficient Ai in Equation (4.28) is canceled out). Finally, as updating
formula of pj|k in M-step,

p
(s+1)
j|k =

∑N
i=1 z

(s)
ik fij∑M

j′=1

∑N
i=1 z

(s)
ik fij′

, (4.31)

can be derived by differentiating again an equation,

H = Lc(Ψ)− λ

⎛
⎝ M∑

j=1

pj|k − 1

⎞
⎠ , (4.32)

with respect to each pj|k like Equation (4.19). Actually, because

∂P (di|Ck)

∂pj|k
=

P (di|Ck)

p
fij
j|k

× fijp
fij−1

j|k =
fijP (di|Ck)

pj|k
, (4.33)

in the case of Equation (4.28), an equation,

∂H
∂pj|k

=

N∑
i=1

zik
P (di|Ck)

∂P (di|Ck)

∂pj|k
− λ =

N∑
i=1

zikfij
pj|k

− λ, (4.34)

can be obtained. By solving ∂H/∂pj|k = 0, it follows that pj|k = λ−1
∑

i zikfij . Since λ is a
constant for keeping the condition that

∑
j pj|k = 1 (i.e., λ is a normalizing factor), Equation

(4.31) is finally obtained. Of course, Equation (4.31) is a standard MLE of the parameter in

15More precisely,

Ai =
li!

fi1!fi2! . . . fiM !

where li =
∑

j fij (i.e., document length as before).
16Naive Bayes classifier for categorizing documents into a given classification scheme is often constructed based

on the multinomial model.
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Table 4.3: Values of pj|k in the sample database

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
k = 1 0.375 0.625 0.000 0.000 0.000 0.000
k = 2 0.000 0.146 0.439 0.113 0.265 0.037
k = 3 0.000 0.000 0.000 0.316 0.470 0.214
Note: logL(Ψ) = −46.82

multinomial distribution under an assumption that zik is completely known (i.e., the numerator
means occurrence frequency of tj within cluster Ck and the denominator is its total over all terms).

Consequently, in the EM algorithm for MMM, Equations (4.22) and (4.27) in the EM algorithm
of Figure 4.2 are replaced by Equations (4.30) and (4.31), respectively, while the other parts are
not changed except that the notation λj|k is rewritten as pj|k 17. As mentioned before, in both the
PMM and MMM, the number of unknown parameters amounts to L+L×M = (L+ 1)×M (see
Equations (4.5) and (4.29)). Also, for calculating all values of zik and λj|k (or pj|k) in both the
models, L×M ×N computations in loops of indexes i, j and k are needed in each E- and M-step,
respectively. Thus if r iterations are required for convergence of estimates, then computational
complexity of the PMM and MMM becomes O(rLMN), which means that their complexity is
comparable with that of the k-means algorithm.

In terms of not only computational complexity but also cluster validity, the PMM and MMM
would be similar. When the MMM is applied to the sample DB (L = 3), logL(Ψ) = −46.82 is
considered to be larger than any other local maximums. Table 4.3 shows estimates of pj|k in the
case of the largest maximum likelihood score. As to zik, the values were almost same with those
obtained by the PMM shown in Table 4.2, which means that the PMM and MMM provided the
same clustering result in the global maximum for the sample DB. Similarly, estimates of ηk were
almost equal between the two models.

Also, like the situation represented by Figure 4.5 for the PMM, 33 distinct maximums ap-
peared in an experiment executing repeatedly 1000 runs of the EM algorithm for MMM with
different initial values. The second largest maximum (logL(Ψ) = −47.17) and the fourth maxi-
mum (logL(Ψ) = −47.30) provided sets of clusters, {{d1, d2, d3}, {d4, d5, d7, d10}, {d6, d8, d9}} and
{{d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}}, respectively. They are the most frequently appearing
maximums in the experiment (i.e., 266 and 153, respectively 18). While a result that the second
and forth largest maximums with top frequencies generated ‘valid’ cluster sets was the same with
that in the case of PMM, the probability of obtaining the ‘valid’ sets by the MMM seems to be
slightly higher than by the PMM in this experiment. Section 4.1.2 will try to solve the problem of
many local maximums in the MMM by introducing a Bayesian framework.

Mixture of von Mises-Fisher distributions

One of the motivations for exploring spherical k-means methods [81] in which inner product is used
for measuring similarities is that computational efficiency of the inner product is higher than that of
the Euclidean distance when document vectors are high-dimensional and sparse (see Section 3.3.1).
In this sense, von Mises-Fisher distribution playing an important role in the field of directional
statistics 19 can be considered as a candidate of P (di|Ck) in mixture models [20, 19] because its
central part is an inner product of a random variable vector and a parameter vector.

When document vectors are normalized so that ||d̃i|| = 1, they are placed on a circle if M = 2
(see Figure 3.2). In general, the unit vectors are distributed on the surface of an M -dimensional
sphere (hypersphere). Such kind of data on a sphere can be analyzed by the theory of directional
statistics, and the von Mises-Fisher (vMF) distribution would be a natural choice for treating unit

17Like the algorithm for PMM, it may be better to replace
∑

i zikfij in Equation (4.31) by ε+
∑

i zikfij in order
to prevent pj|k from becoming zero where ε is a very small number.

18See the most left-hand column of Table 4.9. In Bayesian model of multinomial mixture, the standard MMM
discussed here corresponds to that with α = 1.0 and β = 1.0 (see Section 4.1.2 for details).

19Examples of cases treated by directional statistics are vanishing angle of birds released at a site, orientation of
turtles after laying eggs, and so on [203].

103



Table 4.4: Probabilistic densities of vMF distribution
(1)d1 (2)d2 (3)d3 (4)d5 (2)/(1) (2)/(3)

κ1 = 1 0.06 0.08 0.07 0.05 1.25 1.05
κ1 = 5 0.23 0.72 0.55 0.09 3.08 1.30
κ1 = 10 0.29 2.74 1.62 0.05 9.50 1.70
κ1 = 20 0.11 9.85 3.43 0.00 90.22 2.87
κ1 = 50 0.00 31.99 2.28 0.00 77316.16 14.01

‖d̃i − μ1‖ 0.72 0.27 0.42 0.94
Note: It is assumed that C1 = {d1, d2, d3}.

vectors d̃i (i = 1, . . . , N).
Specifically, P (di|Ck) in the mixture model of vMF distributions is written as

P (d̃i|Ck) = cM (κk) exp[κkμ
T
k d̃i], (4.35)

where

cM (κk) =
κ
M/2−1
k

(2π)M/2BM/2−1(κk)
, (4.36)

κk is a ‘concentration parameter’ (k = 1, . . . , L), and BM/2−1(κk) is the modified Bessel function
of the first kind and order of M/2 − 1. Also, it is necessary that ‖μk‖ = 1 (k = 1, . . . , L). Note
that Equation (4.35) shows probabilistic density function of the vMF distribution. Because d̃i and
μk are normalized, μT

k d̃i in Equation (4.35) can be interpreted as a cosine coefficient measuring
similarity between them.

Suppose that C1 = {d1, d2, d3} and μ1 =
∑

i:di∈C1
d̃i/‖

∑
i:di∈C1

d̃i‖. Table 4.4 shows values
of the probabilistic density in Equation (4.35) for d1, d2, d3 and d5. In the situation, d2 is
geometrically the closest to μ1 and its value becomes larger as the concentration parameter κ1

increases. Namely, when κ1 is large, probability mass tends to concentrate on points near μ1.
In the case of vMF distribution, the log likelihood of Equation (4.10) has to be maximized with

respect to μk and κk (k = 1, . . . , L) under a condition that μT
kμk = 1. Thus an equation to be

maximized for estimating μk and κk in M-step becomes

H =
L∑

k=1

[
N∑
i=1

zik log cM (κk) +
N∑
i=1

zikκkμ
T
k d̃i + λk(1− μT

kμk)

]
, (4.37)

where λk is the Lagrange multiplier for Ck (k = 1, . . . , L). Because

∂H
∂μk

=

N∑
i=1

zikκkd̃i − 2λkμk, (4.38)

each cluster vector can be obtained as

μk =
κk

2λk

N∑
i=1

zikd̃i, (4.39)

by solving ∂H/∂μk = 0 20. Similarly, from a differentiation of H with respect to κk,

∂H
∂κk

=
N∑
i=1

c′M (κk)

cM (κk)
zik +

N∑
i=1

zikμ
T
k d̃i, (4.40)

where c′M (κk) denotes differential of cM (κk), and an equation ∂H/∂κk = 0 provides

c′M (κk)

cM (κk)

N∑
i=1

zik = −μT
k

N∑
i=1

zikd̃i. (4.41)

20When f(x) = xTx, ∂f(x)/∂x = 2x.
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From the condition that μT
kμk = 1 and Equation (4.39), it follows that[
κk

2λk

N∑
i=1

zikd̃i

]T [
κk

2λk

N∑
i=1

zikd̃i

]
= 1, (4.42)

and therefore,

λk =
κk‖

∑N
i=1 zikd̃i‖
2

, (4.43)

and

μk =

∑N
i=1 zikd̃i

‖∑N
i=1 zikd̃i‖

. (4.44)

Also, by substituting Equation (4.44) into Equation (4.41), it becomes that

c′M (κk)

cM (κk)
= −‖∑N

i=1 zikd̃i‖∑N
i=1 zik

. (4.45)

By using Equation (4.45), the concentration parameter κk (k = 1, . . . , L) can be estimated such
that

κ̂k =
ĀM − Ā3

1− Ā2
, (4.46)

where Ā = −c′M (κk)/cM (κk) [19]
21. The resulting procedure of an EM algorithm for estimating

mixture model of vMF distributions for DC is shown in Figure 4.6.

‡ Document clustering by vMF mixture model

Set: The number of clusters L.

1) Initialize the parameters ηk, μk and κk (k = 1, . . . , L) by generating random num-
bers.

2) [E-step] Compute zik by Equations (4.35) and (4.18) (i = 1, . . . , N ; k = 1, . . . , L).

3) [M-step] Update ηk, μk and κk by Equations (4.20), (4.44) and (4.46), respectively
(k = 1, . . . , L).

4) If parameters converge, then allocate each document to a cluster based on zik using
Equation (4.21) and terminate the procedure. Otherwise, return to 2).

Out: Clusters C1, . . . , CL and estimated values of parameters.

Figure 4.6: Document clustering by vMF mixture model

Table 4.5 indicates a result of a simple experiment in which clustering of the sample DB by
the algorithm in Figure 4.6 was repeated 1000 times with different initial parameters. Actually,
because it is possible that an estimated value of κk becomes infinite [18] in the process, ‘1000.0’
was arbitrarily used as an upper bound of κk in this experiment. As the table indicates, although
nine maximums appeared in the repeated runs, about 90% of them generated sets of clusters,
{{d1, d2, d3}, {d4, d5, d7, d10}, {d6, d8, d9}} or {{d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}}, which
are ‘valid’ sets of clusters. For example, the document set at maximum No.1 in Table 4.5 was
obtained from estimated values of zik shown in Table 4.6. Due to the fact that probability of
obtaining the ‘valid’ set is near 0.9, the experimental result shows that the vMF mixture model
may be more useful than the simple PMM and MMM.

Also, in the case of maximum No.1, the concentration parameters were estimated such as
κ̂1 = 19.02, κ̂2 = 10.05, and κ̂3 = 66.39, and as to mixing parameters, η̂1 = 0.3, η̂2 = 0.4 and
η̂3 = 0.3. Also, final values of μk are shown in Table 4.7.

21There are other methods for estimating the concentration parameter of the vMF distribution (see [18]).
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Table 4.5: Result of estimation by EM algorithm of vMF mixture model

No. # of runs Clusters (L = 3)
1 637 {d1, d2, d3}{d4, d5, d7, d10}{d6, d8, d9}
2 260 {d1, d2, d3}{d4, d5, d7}{d6, d8, d9, d10}
3 39 {d1, d2, d3, d5}{d4, d7}{d6, d8, d9, d10}
4 23 {d1, d2, d3, d10}{d4, d5, d7}{d6, d8, d9}
5 23 {d1, d2, d3, d5, d10}{d4, d7}{d6, d8, d9}
6 15 {d1, d2, d3}{d4, d6, d8, d9, d10}{d5, d7}
7 1 {d1, d2, d3, d4, d5, d7}{d6, d9}{d8, d10}
8 1 {d1, d2, d3, d4, d10}{d5, d7}{d6, d8, d9}
9 1 {d1, d10}{d2, d3, d4, d5, d7}{d6, d8, d9}

Total 1000
Note: In total, 1000 runs were repeated for the sample DB.

Table 4.6: Estimation of zik in vMF mixture model

i =
1 2 3 4 5 6 7 8 9 10

k = 1 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
k = 2 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 0.00 1.00
k = 3 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00
Note: In the case of maximum No.1 in Table 4.5.

Table 4.7: Estimation of μk in vMF mixture model

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
k = 1 0.553 0.833 0.002 0.000 0.001 0.000
k = 2 0.001 0.278 0.785 0.388 0.234 0.317
k = 3 0.000 0.067 0.067 0.260 0.961 0.000
Note: In the case of maximum No.1 in Table 4.5.
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Model-based deterministic annealing

For a joint probability of two discrete random variables x and y, it is feasible to consider an
expectation E[logP (x|y)] =

∑
x

∑
y P (x, y) logP (x|y) =

∑
x P (x)

∑
y P (y|x) logP (x|y), which

corresponds to the expected log likelihood of P (x|y). By adding ‘entropy constraint’ to it, an
objective function,

logL1 = E[logP (x|y)]− T×MI(x, y), (4.47)

can be obtained where MI(x, y) is the mutual information (MI) and T is a parameter that controls
balance between maximization of E[logP (x|y)] and minimization of MI(x, y). Since a constraint∑

y P (y|x) = 1 has to be incorporated, the target function becomes finally

H = logL1 +
∑
x

λx

(∑
y

P (y|x)− 1

)
, (4.48)

where λx is the Lagrange multiplier. An equation ∂H/∂P (y|x) = 0 leads to

P (y|x) = P (y)P (x|y)1/T∑
y′ P (y′)P (x|y′)1/T , (4.49)

which can be interpreted as a Gibbs distribution 22. In simulated annealing which is a method
used extensively for optimization problems, T is interpreted as ‘temperature’. Note that P (y) can
be estimated by P (y) =

∑
x P (x)P (y|x).

In model-based deterministic annealing for DC [341, 342], x is replaced by document vector di

and y is considered as cluster Ck. So P (x|y) becomes P (di|Ck) which is a probabilistic model
such as multinomial, vMF and so on, and its parameters can be estimated by repeating E-step
and M-step of an EM algorithm again. Precisely, after Equation (4.49) is computed 23, parameters
in the probabilistic model are calculated so as to maximize

∑
x P (y|x) logP (x|y) for each cluster

(note that P (x|y) = P (di|Ck), which is a probabilistic model). If the parameters converge, then
each document is assigned to a cluster whose P (y|x) (i.e., = P (Ck|di)) is the maximum.

During the iterated calculations, the temperature becomes lower gradually. For instance, T
decreases such that T(s+1) = aT(s) in s-th step where 0 < a < 1. When the temperature is lower,
P (x|y)1/T of a dominant y (i.e., the cluster whose P (di|Ck) is the largest) becomes relatively larger
than those of the others due to the exponential factor 1/T. Extremely, if T → 0, then it becomes

P (y|x) =
{

1, y = argmaxy′ logP (x|y′)
0, otherwise

, (4.50)

which implies that a k-means algorithm is executed by assigning a document to a cluster with
the highest score computed from the model P (di|Ck), not with the shortest Euclidean distance to
its centroid, and by updating parameters in P (di|Ck) based on the assignment so that P (di|Ck)
is maximized 24. This can be called model-based k-means algorithm. In contrast, since the ex-
ponential factor vanishes with T = 1, Equation (4.49) leads to a standard EM algorithm in this
case. Therefore, the model-based deterministic annealing may be considered to provide a unified
framework of clustering based on a probabilistic model [341].

22MI(x, y) can be rewritten as
∑

x

∑
y P (y|x)P (x) logP (y|x)/P (y). If putting that f = P (y|x)P (x) and g =

logP (y|x)/P (y), then f ′ = P (x) and g′ = P (y|x)−1 where f ′ and g′ denote differentiation with respect to P (y|x),
respectively. So,

∂H
∂P (y|x) = P (x) logP (x|y)− TP (x) log

P (y|x)
P (y)

− TP (x) + λx.

An equation ∂H/∂P (y|x) = 0 leads to

T log
P (y|x)
P (y)

=
λx

P (x)
− T+ logP (x|y) = λ′

x + logP (x|y),

and it follows that P (y|x)/P (y) = eλ
′
x/TP (x|y)1/T, which means P (y|x) = λ′′

xP (y)P (x|y)1/T. Because λ′′
x is

determined so that
∑

y P (y|x) = 1, Equation (4.49) is obtained.
23This computation corresponds to E-step (note that Equation (4.49) equals to Equation (4.18) if T = 1).
24In literature, Equation (4.50) is often referred to as hard assignment, whereas P (x|y) (i.e., P (di|Ck)) is directly

used in the case of soft assignment. Actually, the vMF distribution was used as the model in [18].

107



4.1.2 Bayesian model of multinomial mixture

Basic Bayesian formula

From Equations (4.3), (4.8) and (4.28), the multinomial mixture model (MMM) can be again
written as

P (y;Ψ) =

N∏
i=1

P (di;Ψ) =

N∏
i=1

L∑
k=1

ηkAi

M∏
j=1

p
fij
j|k, (4.51)

where y = [dT
1 , . . . ,d

T
N ]T and Ψ denotes a vector of parameters as before. In the Bayesian

approach, a probability of parameter vector Ψ and a conditional probability of observed data y
given the parameter vector Ψ are explicitly introduced. As a result, based on the Bayes’ theorem,
a posterior probability distribution P (Ψ|y) is computed such that

P (Ψ|y) = P (y|Ψ)P (Ψ)

P (y)
, (4.52)

where

P (y) =

∫
P (y|Ψ)P (Ψ)dΨ, (4.53)

if P (Ψ) is assumed to be a probability density function of Ψ 25. In these equations, P (y|Ψ) is
the ‘observational’ distribution, and posterior P (Ψ|y) can be interpreted as L(Ψ) in non-Bayesian
manner 26. Note that, since P (y) is constant over all Ψs, Equation (4.52) is often treated as

P (Ψ|y) ∝ P (y|Ψ)P (Ψ). (4.54)

Usually, P (Ψ) is called prior probability distribution, which represents ‘knowledge’ on the
parameters held before observation. The prior knowledge will be updated into posterior distribution
P (Ψ|y) by using observational distribution P (y|Ψ) through Equation (4.52). This means that the
Bayesian approach tries to estimate basically distribution P (Ψ|y), not to calculate a point or
interval estimate of Ψ, which makes often Bayesian inference more complicated than conventional
statistical inference.

Since the mixing and multinomial parameters are independent each other in the case of the
MMM, the prior becomes

P (Ψ) = P (η,p) = P (η)P (p) = P (η)P (p1) . . . P (pL), (4.55)

where η = [η1, . . . , ηL]
T , p = [pT

1 , . . . ,p
T
L]

T and pk = [p1|k, . . . , pM |k]T (k = 1, . . . , L), and Dirich-
let distribution is often used as P (·) in Equation (4.55). For instance, the Dirichlet distribution of
pk (k = 1, . . . , L) can be written as

P (pk|β) =
Γ(
∑M

j=1 βj)∏M
j=1 Γ(βj)

M∏
j=1

p
βj−1

j|k , (4.56)

where β = [β1, . . . , βM ]T , which is a vector of parameters, and Γ(·) denotes a Gamma function.
Note that Equation (4.56) is a probability density function as mentioned above. According to
Bayesian convention, P (pk) is sometimes denoted by P (pk|β) in this chapter where each element of

25Strictly, for a continuous random variable x, the probability is computed as

P (x ≤ a) =

∫ a

−∞
f(x)dx,

where f(x) means a probability density function. Therefore, P (Ψ) should be properly written by using a notation
other than P (·) (e.g., f(Ψ)). However, for simplicity, the notation P (·) is used for continuous random variables in
this thesis because the parameters in Ψ will be always integrated out in the scope of discussions here. Namely, it
is enough to notice that an integral like that in Equation (4.53) is valid for P (Ψ) in this thesis. Also, an integral
of random vector x is defined as

∫
f(x)dx =

∫ ∫
. . .

∫
f(x1, . . . , xn)dx1dx2 . . . dxn where x = [x1, . . . , xn]T . If

x1, . . . , xn are independent each other, then
∫
f(x)dx =

∫
f(x1)dx1 × . . . × ∫

f(xn)dxn, which is always assumed
in this section.

26Therefore, the maximum likelihood (ML) estimation corresponds to ‘maximum a posterior’ (MAP) estimation
in the Bayesian framework.
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Table 4.8: Example of Dirichlet probability density

p1|k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p2|k 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

β1 = β2 = 5 0.0 0.4 1.2 2.1 2.5 2.1 1.2 0.4 0.0
β1 = β2 = 20 0.0 0.0 0.2 2.3 5.0 2.3 0.2 0.0 0.0
β1 = β2 = 50 0.0 0.0 0.0 1.1 8.0 1.1 0.0 0.0 0.0
β1 = 2, β2 = 8 3.4 3.0 1.8 0.8 0.3 0.1 0.0 0.0 0.0

β1 = 10, β2 = 40 1.3 7.0 1.5 0.0 0.0 0.0 0.0 0.0 0.0

β is often called hyperparameter. Naturally, it is also possible to assume a probabilistic distribution
P (β) for the hyperparameter, but such complicated model is not discussed in this thesis.

A main reason that the Dirichlet distribution is used in MMM, it is conjugate to the multinomial
distribution [99]. Namely, if P (di|pk) follows a multinomial distribution, then it becomes that

P (pk|di) ∝ P (di|pk)P (pk) ∝
M∏
j=1

p
fij
j|k

M∏
j=1

p
βj−1

j|k =
M∏
j=1

p
fij+βj−1

j|k , (4.57)

which means that posteriori distribution P (pk|di) becomes again a Dirichlet distribution (note
that ‘∝’ is used after P (di|pk)P (pk) because constants of the two distributions are omitted).

Table 4.8 exemplifies actual values of P (pk|β) when L = 2. If the distribution is ‘symmetric’
(i.e., β1 and β2 take a same value), then the value is the maximum in the case that p1|k = p2|k = 0.5,
and becomes larger as β1 and β2 increase. Meanwhile, when β1 = 10 and β2 = 40 (i.e., a non-
symmetric), the value is the maximum in the case that p1|k = 10/50 = 0.2 and p2|k = 40/50 = 0.8
as shown in Table 4.8. Since pj|k (j = 1, . . . ,M) is a discrete probability distribution for a fixed
k, the Dirichlet distribution can be interpreted as a ‘distribution of distribution’ as shown in the
table.

Consequently, the posterior distribution of MMM can be written as

P (η,p|y) ∝ P (y|η,p)P (η)P (p)

∝
N∏
i=1

L∑
k=1

ηk

M∏
j=1

p
fij
j|k ×

L∏
k=1

ηαk−1
k ×

L∏
k=1

M∏
j=1

p
βj−1

j|k , (4.58)

where α = [α1, . . . , αL]
T is a hyperparameter vector of Dirichlet distribution P (η|α) [251].

Estimation by EM algorithm

In order to estimate parameters in Equation (4.58) by an EM algorithm, unobservable variable
zik indicating the cluster to which a document belongs has to be introduced again (see Equation
(4.9)) so that Equation (4.58) becomes tractable. Actually, if the most right-hand side in Equation
(4.58) is treated as L, then the log likelihood for complete data can be written as

logLc(Ψ) =
L∑

k=1

N∑
i=1

zik log ηk +
L∑

k=1

N∑
i=1

zik log
M∏
j=1

p
fij
j|k

+

L∑
k=1

(αk − 1) log ηk +

L∑
k=1

M∑
j=1

(βj − 1) log pj|k, (4.59)

which corresponds to Equation (4.10) in non-Bayesian case, and the objective function H in Equa-
tions (4.19) and (4.32) can be straightforwardly used. First, since updating formula of zik in E-step
is the same with Equation (4.18),

z
(s)
ik =

η
(s)
k

∏
j p

(s)fij
j|k∑L

k′=1 η
(s)
k′
∏

j p
(s)fij
j|k′

, (4.60)
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Table 4.9: Result of experiment of Bayesian MMM (1000 runs with L = 3)

αk = 1.0 αk = 2.0 αk = 4.0 αk = 6.0
βj = 1.0 βj = 2.0 βj = 4.0 βj = 6.0

logL # logL # logL # logL #
1 -46.8 68 -52.9 442 -60.8 482 -66.1 1000
2 -47.2 266 -53.4 357 -61.3 331
3 -47.3 153 -54.2 185 -62.4 187
4 -47.6 106 -60.9 8
5 -48.5 102 -63.0 8
6 -48.8 32
7 -49.7 3
8 -50.7 18
9 -51.6 67

10 -51.8 23
11 Others 162

Total - 1000 - 1000 - 1000 - 1000
Note: ‘Others’ contains 23 different local maximums.

can be obtained again. Second, by solving ∂H/∂ηk = 0 and ∂H/∂pj|k = 0 based on Equations
(4.19) and (4.32), respectively, it follows that

η
(s+1)
k =

αk − 1 +
∑

i z
(s)
ik∑

k′

(
αk′ − 1 +

∑
i z

(s)
ik′

) , (4.61)

and

p
(s+1)
j|k =

βj − 1 +
∑

i fijz
(s)
ik∑

j′

(
βj′ − 1 +

∑
i fij′z

(s)
ik

) , (4.62)

which are slightly changed from Equations (4.20) and (4.31) because the third and fourth terms
in the right-hand side of Equation (4.59) are added 27. It is clear that the Bayesian model of
multinomial mixture reduces to the standard MMM if all hyperparameters are 1.0 (i.e., α1 = . . . =
αL = 1.0 and β1 = . . . = βM = 1.0).

Table 4.9 shows the result of an experiment for the Bayesian model of multinomial mixture
by using the sample DB when L = 3 28. As before, 1000 runs were repeated with varying initial
values of parameters, in which only symmetric Dirichlet distributions with a common value for the
hyperparameters were used. Therefore, the column of αk = βj = 1.0 indicates a result of clustering
based on the non-Bayesian MMM discussed before.

Whereas many local maximums were derived from executions by the EM algorithm of non-
Bayesian (standard) MMM, it is clear from Table 4.9 that the local maximum problem is drastically
improved in its Bayesian versions. Especially, runs based on the Bayesian model with αk = βj = 6.0
always reached to the global maximum with logL = −66.1, which successfully provide a ‘valid’
set of clusters, C1 = {d1, d2, d3}, C2 = {d4, d5, d7} and C3 = {d6, d8, d9, d10}, in this experiment.
The improvement was brought by a ‘smoothing’ effect of incorporating hyperparameters of the
Dirichlet distribution into the model. For example, Table 4.10 shows estimation of pj|k by the
Bayesian MMM with αk = βj = 6.0. By comparing it with Table 4.3 of the non-Bayesian MMM,
it turns out that the mass of probability given to each cluster is more widely spread over terms. In

27For instance, differential of
∑

k(αk − 1) log ηk with respect to ηk is calculated as (αk − 1)/ηk, which is added
to the original Equation (4.20).

28Note that the log likelihood values in Table 4.9 were computed as

logL = log

⎡
⎣ N∏
i=1

Ai

L∑
k=1

ηk

M∏
j=1

p
fij
j|k

⎤
⎦ ,

by using estimations of ηk and pj|k based on Equation (4.58).
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Table 4.10: Values of pj|k by Bayesian MMM

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
k = 1 0.226 0.324 0.122 0.106 0.115 0.106
k = 2 0.105 0.147 0.301 0.171 0.144 0.153
k = 3 0.092 0.114 0.116 0.191 0.335 0.133
Note: logL(Ψ) = −66.1, and αk = βj = 6.0.

other words, the differences of probability between terms become smaller in the case of Bayesian
MMM, which was caused by adding a constant 5.0 (= βk−1.0) to the numerator of Equation (4.62)
for all terms. The addition of hyperparameters common to all terms and clusters contributes to
avoiding ‘over-fitting’ in the estimation, which would lead to reduction of local maximums. As this
example shows, hyperparameters in the Bayesian MMM play an important role for obtaining good
clusters with avoiding to reach to a local maximum.

Estimation by Gibbs sampling

If unobservable variable vector z, which indicates allocation of each document to a cluster, is
assumed to be completely known, then the observational distribution of the Bayesian model of
multinomial mixture can be written as

P (y|η,p, z) =
N∏
i=1

Ai ×
L∏

k=1

ηñk

k

M∏
j=1

p
f̃kj

j|k, (4.63)

where
f̃kj =

∑
i:di∈Ck

fij , (4.64)

which means the total frequency of occurrences of term tj in cluster Ck, and ñk denotes the number
of documents allocated to cluster Ck (i.e., |Ck| = ñk). Therefore, the posterior distribution becomes

P (η,p|y, z) ∝ P (y|η,p, z)P (η)P (p) ∝
L∏

k=1

ηñk+αk−1
k

M∏
j=1

p
f̃kj+βj−1

j|k (4.65)

after the complete data x = [yT , zT ]T are observed.
Actually, z can not be observed. Thus an EM algorithm for the Bayesian MMM tries to

estimate η and p based on a criterion of maximizing analytically Equation (4.65) by employing
tentatively values of z estimated in the previous step of iterations. In the algorithm, random
numbers are used only for assigning initial values to η and p, and the same result of estimation
is always obtained for the same initial values. In this sense, the EM algorithm can be considered
as a ‘deterministic’ approach. Meanwhile, a ‘stochastic’ technique for estimating distribution
P (η,p, z|y), in which z is incorporated into the set of random variables on the left-hand side,
is also feasible for estimating parameters as a computational simulation. Because z is explicitly
treated as a parameter vector to be estimated, not as unobservable data, the set of parameters can
be rewritten as Ψ = [zT ,ηT ,pT ]T .

Generally, if a simulation method is applied to ‘imitate’ probabilistic distribution P (x), then the
computer generates a series of actual values of x so that its frequency distribution is approximately
equivalent to P (x). When x is a discrete variable, a practical strategy is to adopt the mode (i.e., a
value appearing most frequently) as an estimate of x because P (x) is empirically maximized at the
mode of x. Thus if frequency data on P (η,p, z|y) are obtained by a stochastic simulation, then it
is possible to partition the target document set into clusters based on the empirical data of z.

Among several simulation methods for generating such frequency data, Gibbs sampling method,
which is a specific version of Markov chain Monte Carlo (MCMC) [99, 252], is often used for
estimating parameters of Bayesian models. It is assumed that an m-dimensional parameter vector
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Ψ has to be estimated in a situation that its joint probability P (Ψ1, . . . ,Ψm|y) is intractable but
it is relatively easy to calculate analytically a conditional probability

P (Ψh|y; Ψ1, . . . ,Ψh−1,Ψh+1, . . . ,Ψm). (4.66)

This is often called ‘full conditional’ probability. The Gibbs sampling method tries to generate
actual values of Ψ following P (Ψ|y) as a Markov chain by using the full conditional probability.
Thus even if P (η,p, z|y) has a complicated form, it is possible to simulate P (η,p, z|y) when
Equation (4.66) can be analytically computed. Whether the full conditional probability can be
obtained or not is a critical point in applying the Gibbs sampling method.

More specifically, after selecting randomly initial values Ψ
(0)
1 , . . . ,Ψ

(0)
m , samples Ψ(s+1) (s =

0, 1, . . . , r − 1) are repeatedly drawn from each current conditional probability distribution in
Equation (4.66) based on random numbers generated by a computer as follows [208]:

1. Draw Ψ
(s+1)
1 from P (Ψ1|y; Ψ(s)

2 , . . . ,Ψ
(s)
m ).

2. Draw Ψ
(s+1)
2 from P (Ψ2|y; Ψ(s+1)

1 ,Ψ
(s)
3 , . . . ,Ψ

(s)
m ).

. . .
m. Draw Ψ

(s+1)
m from P (Ψm|y; Ψ(s+1)

1 , . . . ,Ψ
(s+1)
m−1 ).

A series of drawing Ψv (v = 1, . . . ,m) constitutes a Markov chain in which values of each Ψv appear

following P (Ψ|y) under a condition 29. Usually, some beginning samples (e.g., {Ψ(s)
v |s = 1, . . . , B}

where B is a number) are discarded because they may have large effect from initial values. The
earlier stage is often called ‘burn-in period’. If samples after the burn-in-period are recorded, then
parameter Ψv can be estimated by detecting the most frequent value. When Ψv is a continuous

variable, it is possible to estimate the parameter such that Ψ̂v = (r − B)−1
∑r

s=B+1 Ψ
(s)
v , which

is the mean of an empirical distribution of Ψv produced from the samples. Furthermore, other
statistics such as confidential intervals can be easily obtained from the empirical distribution. This
is an advantage of the Gibbs sampling in comparison with EM algorithms (fortunately, simple DC
does not has to use such statistics).

In the case of Gibbs sampling for the Bayesian MMM, it is necessary to determine three
conditional distributions, P (z|η,p,y), P (η|p, z,y) and P (p|η, z,y). First, it is reasonable to use
Equation (4.60) as a discrete distribution π(k) (k = 1, . . . , L) for sampling from P (z|η,p,y) [251].
More specifically, a discrete distribution πi(k) for particular di, which provides probabilities for
drawing index k of a cluster from {1, . . . , L}, becomes

πi(k) = P (zik = 1|η,p,y) =
η
(s)
k

∏
j p

(s)fij
j|k∑L

k′=1 η
(s)
k′
∏

j p
(s)fij
j|k′

. (4.67)

In actual sampling, a cumulative distribution is constructed such that Fi(1) = πi(1), Fi(2) =
Fi(1) + πi(2), . . . , Fi(L − 1) = Fi(L − 2) + πi(L − 1), Fi(L) = 1.0. For example, if πi(1) = 0.3,
πi(2) = 0.4, πi(3) = 0.3 and L = 3, then Fi(1) = 0.3, Fi(2) = 0.7 and Fi(3) = 1.0. After that, a
random number U following a uniform distribution whose range is from 0 to 1 (which is denoted
by U ∼ U [0, 1]) is generated by a computer program (e.g., Math.random() in Java), and zik is
determined as

z
(s+1)
ik =

{
1 if Fi(k − 1) < U ≤ Fi(k)
0 otherwise

, k = 1, . . . , L, (4.68)

which means that a ‘new’ allocation of document di to a cluster is drawn as a sample at (s+1)-th
iteration 30.

By using the sampling result, it is possible to compute the number of documents and total
frequency of term occurrences in each cluster at (s+ 1)-th iteration such that

ñ
(s+1)
k =

N∑
i=1

z
(s+1)
ik , (4.69)

29Roughly speaking, by selecting repeatedly a value of xi according to P (xi|x1, . . . , xi−1, xi+1, . . . , xn) for i =
1, . . . , n, various ‘states’ of x = [x1, . . . , xn]T appear in a chain of the samples. If the chain is ergodic, which means
that it reaches to all states, then an empirical distribution of P (x) can be produced by counting each state of x in
an enough number of samples.

30In this notation, since Fi(0) is not defined, z
(s+1)
i1 = 1 if U ≤ Fi(1). See [252] for details on implementing

practically the generation of random numbers following a discrete distribution.
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and

f̃
(s+1)
kj =

N∑
i=1

z
(s+1)
ik fij , (4.70)

for k = 1, . . . , L. These values will be used for sampling from P (η|p, z,y) and P (p|η, z,y) in the
step. Since η, p1, ..., pL are all independent each other, it is clear from Equation (4.65) that
η(s+1) should be drawn from a Dirichlet distribution with parameters

α̃ = [ñ
(s+1)
1 + α1, . . . , ñ

(s+1)
L + αL]

T (4.71)

(see [263]) 31. Similarly, a sample of p
(s+1)
k can be obtained from the Dirichlet distribution with

parameters

β̃k = [̃f
(s+1)
k1 + β1, . . . , f̃

(s+1)
kM + βM ]T , (4.72)

(k = 1, . . . , L).
After s is incremented (i.e., s ← s + 1), a new iteration is started from Equation (4.67).

By repeating the iterative procedure (e.g., 1000 times), empirical distributions of P (z|η,p,y),
P (η|z,y) and P (p|z,y) can be produced from a set of samples. Figure 4.7 shows the procedure
of Gibbs sampling for the MMM. In order to create a cluster set from the samples, it is enough to
count the number of allocations in the set of samples, and to determine the final clusters as

Ck =

{
di

∣∣∣∣∣k = argmax
k′=1,...,L

r∑
s=B+1

z
(s)
ik′

}
, (4.73)

which corresponds to finding the mode of allocations for each document.

‡ Clustering by MMM based on Gibbs sampling

Set: The number of clusters L, the Dirichlet parameters αk and βj (k = 1, . . . , L; j =
1, . . . ,M), the number of total iterations r and constant B in Equation (4.73).

1) Initialize parameters η1, . . . , ηL and p1|1, . . . , pM |L by generating random numbers,
and set s to 1 (i.e., s ← 1).

2) For i = 1, . . . , N , compute Equation (4.67) and allocate di randomly to a cluster
according to Equation (4.68).

3) Based on resulting allocations in step 2), compute Equations (4.69) and (4.70) for
k = 1, . . . , L and j = 1, . . . ,M .

4) Draw s-th samples of ηk and pj|k from the Dirichlet distributions with parameters
in Equations (4.71) and (4.72), respectively, for k = 1, . . . , L and j = 1, . . . ,M .

5) s ← s+ 1. If s > r, then go to step 6). Otherwise, return to 2).

6) Terminate the procedure after allocating di to a cluster based on Equation (4.73)
for i = 1, . . . , N .

Out: Clusters C1, . . . , CL and r −B samples of parameters ηk and pj|k.

Figure 4.7: Clustering by MMM based on Gibbs sampling

Actually, in order to draw samples from the Dirichlet distributions at the step 4) in Figure 4.7,
it is necessary to generate random numbers following the Dirichlet distributions with parameters in
Equations (4.71) and (4.72). The generation of random numbers following various distributions is
an essential part of the stochastic simulation like MCMC 32. If random numbers Xi (i = 1, . . . , α)

31Due to the independence assumption, P (η,p|y, z) = P (η|y, z)P (p|y, z) and P (η|p,y, z) = P (η|y, z). There-

fore, P (η|p,y, z) is only dependent on term
∏

k η
ñk+αk−1
k in Equation (4.65), which leads naturally to sampling

based on the Dirichlet distribution.
32Various sophisticated techniques for the generation of random variables have been developed (e.g., see [252]).
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follow an Exponential distribution F (x) = 1− e−x (where F (x) represents the cumulative proba-
bility distribution), then G̃ =

∑α
i=1 Xi is distributed as a Gamma distribution with parameters α

and 1. Suppose that there are L random numbers following Gamma distributions with parameters
αk and 1, respectively (k = 1, . . . , L), each of which is denoted by G̃k. Then, a random variable
vector Y = [Y1, . . . , YL]

T following a Dirichlet distribution with parameters α1, . . . , αL is computed

as Yk = G̃k/
∑L

k′=1 G̃k′ for k = 1, . . . , L (e.g., see [99]).
A random number of the Exponential distribution at its staring point can be easily generated

by using a random number following a uniform U [0, 1] according to a relation x = − log(1 − u)
where x is a random variable of the Exponential distribution and u is of U [0, 1] 33. Consequently,
random numbers following the Dirichlet distribution can be generated from random numbers of
U [0, 1] 34 similarly to Equation (4.68).

Unfortunately, when applying the Gibbs sampling method to a mixture model, it is necessary to
solve a so-called label-switching problem (see p.129 in [209]) because the criterion of maximizing the
likelihood P (η,p, z|y) does not specify a unique order of mixture components. For example, the
likelihood score of set C1 = {d1, d2} and C2 = {d3} is completely equal to that of set C1 = {d3} and
C2 = {d1, d2}, which means that the likelihood is invariant when labels switch between clusters.
Although this problem is also caused in execution of the EM algorithm, the Gibbs sampling method
suffers more serious damage from it because the estimation is based on cumulated samples.

The left-hand sides of Table 4.11 and Figure 4.8 indicate results from an execution of Gibbs
sampling in Figure 4.7 for the sample DB when L = 3, r = 1100, B = 100 and αk = βj = 1.0 for all
k and j (which means that no prior knowledge on the parameters ηk and pj|k was incorporated into
the Bayesian model) 35. The table lists the numbers of allocations to clusters by each document
and the figure shows a frequency distribution of samples of p3|2 for t3 in C2. During the 1100
iterations, the label switching between C2 and C3 occurred frequently, which mixed up allocations
to the two clusters in 1000 iterations after the burn-in period. For example, whereas

• 397th iteration: C2 = {d6, d8, d9, d10} and C3 = {d4, d5, d7}
provided a ‘valid’ set of clusters, d6 moved ‘accidentally’ to C3 by a random allocation in next
398th iteration. After eight iterations, the ‘valid’ set of clusters came back again as

• 406th iteration: C2 = {d4, d5, d7} and C3 = {d6, d8, d9, d10}
in which labels of clusters were exchanged. Such mixing of two clusters throughout all iterations
brought an invalid result as shown in the left-hand sides of Table 4.11 and Figure 4.8.

In general, various techniques for alleviating the label switching problem have been proposed
(e.g., see [263]). A simple ‘batch mode’ method would be to change operationally the labels
based on values of pj|k at each iteration after obtaining all allocations from r − B iterations.
More specifically, by using a particular iteration achieving the largest log likelihood as a criterion,
cluster labels of each iteration can be heuristically changed according to ‘closeness’ of its p(s) to
that of the criterion. The estimate of p at the iteration with the largest log likelihood is denoted
by p̃ = [p̃1|1, . . . , p̃M |L]T here. For example, in the experiment using the sample DB, the 559th
iteration provided the largest log likelihood and its allocation of documents was C2 = {d4, d5, d7}
and C3 = {d6, d8, d9, d10}, cluster labels of which are different from those at the 397th iteration
mentioned above. Intuitively, it is expected that p at the 397th iteration becomes closer to p̃ if
cluster numbers 2 and 3 are swapped.

In order to detect automatically effective swapping of labels, it is necessary to check all L!
permutations of k = 1, . . . , L, which are denoted by σ(k; b) (b = 1, . . . , L!). In the case of 397th
iteration, if σ(1; 1) = 1, σ(2; 1) = 3 and σ(3; 1) = 2 when b = 1, then this permutation would
provide the closest p to p̃ among all permutations. The closeness between p of each iteration and

33Like the case of discrete distributions in Equation (4.68), random numbers of a continuous variable X following
the target probability distribution (e.g, Exponential) can be generated by corresponding its cumulative function
F (X) to U (∼ U [0, 1]). When putting that U = F (X), P (U ≤ u) = P [F (X) ≤ F (x)] for a pair of u and x. If
there is an inverse function x = F−1[F (x)], then P [F (X) ≤ F (x)] = P [F−1(F (X)) ≤ F−1(F (x))] = P (X ≤ x),
which means that x = F−1(u) follows the target distribution. Since u = F (x) = 1− e−x in this case of Exponential
distribution, it follows that x = F−1(u) = − log(1− u) [252].

34The statistical language R [246] provides rgamma() function generating directly a random number of the Gamma
distribution. The other sophisticated algorithms of generating Gamma random numbers are also available (e.g.,
[299]).

35When the procedure is executed only once, it brings a ‘single chain’. In contrast, if the procedure is repeated
with changing initial parameters, then multiple chains are implemented. The execution of this experiment is a single
chain.
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Table 4.11: Allocations of documents to clusters in sample DB by Gibbs sampling

Before changing labels After changing labels
C1 C2 C3 Total C1 C2 C3 Total

d1 975 12 13 1000 980 13 7 1000
d2 979 9 12 1000 983 12 5 1000
d3 992 0 8 1000 996 2 2 1000
d4 0 512 488 1000 4 843 153 1000
d5 143 404 453 1000 147 642 211 1000
d6 11 406 583 1000 14 335 651 1000
d7 7 512 481 1000 9 879 112 1000
d8 6 459 535 1000 8 218 774 1000
d9 2 462 536 1000 5 213 782 1000
d10 5 530 465 1000 4 343 653 1000
Note: αk = βj = 1.0, r = 1100 and B = 100.
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Figure 4.8: Distribution of samples on p3|2 for sample DB
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Table 4.12: Averages of p̂j|k after changing cluster labels in Gibbs sampling

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
k = 1 0.307 0.499 0.053 0.043 0.053 0.044
k = 2 0.045 0.120 0.354 0.176 0.183 0.121
k = 3 0.044 0.078 0.102 0.210 0.408 0.157
Note: αk = βj = 1.0, r = 1100 and B = 100.

p̃ can be measured by the well-known Kullback-Leibler divergence such that

DKL(p̃‖p(s); b) =
L∑

k=1

M∑
j=1

p̃j|k log
p̃j|k

p
(s)
j|σ(k;b)

, (4.74)

which leads to changing cluster labels of s-th iteration by using a permutation, σ(1; b′), . . . , σ(L; b′)
such that

b′ = argmin
b=1,...,L!

DKL(p̃‖p(s); b), (4.75)

for s = B + 1, . . . , r. Namely, the original label k is replaced by σ(k; b′) for each iteration in the
storage of samples as a batch process (k = 1, . . . , L).

The right-hand sides of Table 4.11 and Figure 4.8 show results after changing cluster labels
based on Equation (4.75). It seems that both the clustering result and parameter estimation were
drastically improved. Table 4.12 indicates also averages of pj|k after changing cluster labels, which
are slightly different from estimations by the EM algorithm in Table 4.3.

A weak point of the MMM based on Gibbs sampling is its computational complexity. Clearly,
many iterations are needed for obtaining a stable result even though only a single chain is executed.
Additionally, for exchanging cluster labels, DKL(p̃‖p(s); b) has to be computed L! times for each
iteration. In the case of DC, the number of clusters L is usually not small, and L! computations
may be infeasible.

However, if disregarding estimation of pj|k, and trying only generation of document clusters,
then it is possible to obtain easily clusters by counting ‘cluster patterns’ regardless of cluster
numbers. For example, both the above 397th and 406th samples can be considered to provide
the same set of clusters {d1, d2, d3}, {d4, d5, d7} and {d6, d8, d9, d10} even though labels of the
latter two sets were different. From the purpose of DC, it would not be necessary to incorporate a
complicated technique for solving the label switching problem, and it is enough to count occurrences
of each cluster pattern in samples obtained after the burn-in period (the techniques is called ‘cluster
pattern count method’ in this thesis for convenience).

4.1.3 Probabilistic latent semantic analysis (PLSA)

Latent classes of words

Probabilistic latent semantic analysis (PLSA) 36 proposed by Hofmann(1999) [130] is based on
another framework for modeling probability of j-th term in i-th document (i.e., P (tj |di)), in which
unobservable variables τk k = 1, . . . , L are incorporated into calculation of the probability such
that,

P (tj |di) =
L∑

k=1

P (tj |τk)P (τk|di). (4.76)

Each τk can be interpreted as a latent class of words, which corresponds to a ‘topic’ discussed
in documents. For example, when values of P (“family”|τk), P (“home”|τk) and P (“kid”|τk) are
relatively larger, then variable τk may be postulated to represent a latent topic on ‘family’.

Equation (4.76) can be considered as a probabilistic topic model, which is applicable to various
applications of IR, text categorization or DC. In the case of DC, clusters Ck can be produced such

36PLSA is often called PLSI (probabilistic latent semantic indexing) or aspect model.
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that

Ck =

{
di

∣∣∣∣∣ k = argmax
k′=1,...,L

P (τk′ |di)
}
, (4.77)

based on probabilities P (τk|di) (k = 1, . . . , L) [233].

Estimation in PLSA

For estimating P (tj |τk) and P (τk|di) in PLSA from observed data, an EM algorithm is available.
If P (tj |di) is assumed to be a parameter of multinomial distribution describing P (di), then the
likelihood function given data y = [dT

1 , . . . ,d
T
N ]T becomes

L(Ψ) =
N∏
i=1

P (di;Ψ) =
N∏
i=1

Ai

M∏
j=1

P (tj |di)fij , (4.78)

where Ai is a multinomial coefficient of di (see Equation (4.28)). Therefore, by substituting
Equation (4.76) for P (tj |di) in it, the log likelihood can be written as

logL(Ψ) = A+

N∑
i=1

M∑
j=1

fij log

L∑
k=1

P (tj |τk)P (τk|di), (4.79)

where A =
∑

i logAi that does not contribute to estimation of parameters 37. Therefore, unknown
parameters in PLSA become

Ψ = [P (t1|τ1), . . . , P (tM |τL), P (τ1|d1), . . . , P (τL|dN )]T ,

and the number of parameters amounts to M × L+ L×N = L× (M +N).
In order to estimate the parameters by an EM algorithm, unobservable variables zk|ij (k =

1, . . . , L; i = 1, . . . , N ; j = 1, . . . ,M) are introduced where zk|ij = 1 if a given pair of tj and di is
generated from τk, and otherwise, zk|ij = 0. Suppose that every pair of a term and a document is
generated from only a single latent topic. Under the assumption, if all zk|ij are observed (i.e., a
particular τk is found for a given pair of tj and di), then the log likelihood for complete data can
be written as

logLc(Ψ) = A+

M∑
j=1

N∑
i=1

fij log

L∑
k=1

zk|ijP (tj |τk)P (τk|di)

= A+
M∑
j=1

N∑
i=1

fij

L∑
k=1

zk|ij log[P (tj |τk)P (τk|di)]. (4.80)

In E-step, it is feasible to compute Q(Ψ;Ψ(s)) by using the same way of deriving Equation
(4.18) because Equation (4.80) is a linear function and zk|ij is a zero-one indicator variable. Namely,
an updating formula of unobservable variable zk|ij in E-step becomes

z
(s)
k|ij = PΨ(s)(Zk|ij = 1|y), (4.81)

where Zk|ij is a random variable corresponding to zk|ij 38. In the framework of PLSA, it is clearly
reasonable to define that

PΨ(Zk|ij = 1|y) = P (tj |τk)P (τk|di)
P (tj |di)

, (4.82)

37Originally, Hofmann(1999) [130] used P (tj , di), not P (tj |di), such that

P (di, tj) = P (di)
L∑

k=1

P (tj |τk)P (τk|di) =
L∑

k=1

P (τk)P (tj |τk)P (di|τk),

were P (τk), P (tj |τk), and P (di|τk) were estimated by an EM algorithm.
38If putting that g(zk|ij) = zk|ij log[P (tj |τk)P (τk|di)], then calculation similar to that in Equation(4.17) can be

again repeated, and it turns out that Q(Ψ;Ψ(s)) is obtained by imputing PΨ(s) (Zk|ij = 1|y) into the position of
zk|ij , straightforwardly, in Equation (4.80).
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which leads to

z
(s+1)
k|ij =

P (s)(tj |τk)P (s)(τk|di)∑L
k′=1 P

(s)(tj |τk′)P (s)(τk′ |di)
, (4.83)

where P (s)(tj |τk) and P (s)(τk|di) are values of P (tj |τk) and P (τk|di) in s-th step, respectively.
Updating formula for P (τk|di) in M-step can be obtained by solving ∂H/∂P (τk|di) = 0 where

H = logLc(Ψ)− λk{
∑

k′ P (τk′ |di)− 1} (λk is the Lagrange multiplier). Since

∂H
∂P (τk|di)

=
M∑
j=1

fijzk|ij
1

P (tj |τk)P (τk|di)
P (tj |τk)− λk, (4.84)

from Equation (4.80), it follows that P (τk|di) = λ−1
k

∑
j fijzk|ij . Because λk is a normalizing factor,

the final updating formula becomes

P (s)(τk|di) =
∑M

j=1 fijz
(s)
k|ij∑L

k′=1

∑M
j=1 fijz

(s)
k′|ij

. (4.85)

Similarly, updating formula of P (tj |τk) in M-step can be obtained such that

P (s)(tj |τk) =
∑N

i=1 fijz
(s)
k|ij∑M

j′=1

∑N
i=1 fij′z

(s)
k|ij′

. (4.86)

Procedure of DC based on the EM algorithm for PLSA is shown in Figure 4.9 as a summary.
Actually, Table 4.13 indicates an experimental result when estimation of P (tj |τk) and P (τk|di) on
the sample DB was repeated 1000 times with changing initial values of these probabilities 39. So
many local maximums appeared, and the largest log likelihood score was −32.26, which is followed
by −32.42, in this experiment. About 58% of runs reached to the two largest maximums, which
would provide ‘valid’ clustering results, except that d5 belongs to two clusters.

‡ Document clustering by PLSA

Set: The number of clusters L.

1) Initialize parameters P (τk|di) and P (tj |τk) (k = 1, . . . , L; i = 1, . . . , N ; j =
1, . . . ,M) by generating random numbers, and s ← 0.

2) [E-step] Compute z
(s+1)
k|ij in Equation (4.83) (k = 1, . . . , L; i = 1, . . . , N ; j =

1, . . . ,M), and s ← s+ 1.

3) [M-step] Update P (τk|di) and P (tj |τk) by Equations (4.85) and (4.86), respectively
(k = 1, . . . , L; i = 1, . . . , N ; j = 1, . . . ,M).

4) If parameters converge, then allocate each document to a cluster by Equation (4.77)
and terminate the procedure. Otherwise, return to 2).

Out: Clusters C1, . . . , CL and estimated values of parameters.

Figure 4.9: Document clustering by PLSA

Examples of estimating P (tj |τk) and P (τk|di) are shown in Tables 4.14 and 4.15, respectively,
(where logL(Ψ) = −32.26). Since P (τ1|d5) = P (τ2|d5) = 0.4, document d5 belongs to two clusters
in Table 4.13. Documents d6 and d7 have also probabilities more than 0.0 for all three latent topics
while P (τk|di) of the other documents concentrates on a single topic.

39Note that convergence of parameters computed by this algorithm seems to be slower than by the PMM and
MMM (i.e., many more iterations were needed until convergence in this experiment) possibly because the number
of parameters is larger.
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Table 4.13: Experimental result of executing PLSA repeatedly (L = 3)

logL(Ψ) # of runs clusters
-32.26 331 {d1, d2, d3, d5}{d4, d5, d7, d10}{d6, d8, d9}
-32.42 247 {d1, d2, d3, d5}{d4, d5, d7}{d6, d8, d9, d10}
-32.68 21 {d1, d2, d3, d5}{d4, d7, d10}{d6, d8, d9}
-33.41 86 {d1, d2, d3}{d4, d5, d7}{d6, d8, d9, d10}
-34.00 33 {d1, d2, d3}{d4, d5, d6, d7}{d8, d9, d10}
-34.81 53 {d1, d2, d3}{d4, d5, d6, d7, d9}{d8, d10}
-35.74 51 {d1, d2, d3}{d4, d5, d6, d7, d8, d9}{d10}
-37.77 57 {d1, d2, d3, d4, d5, d7}{d6, d8, d9}{d10}
-38.09 16 {d1, d2, d3, d10}{d4, d5, d7}{d6, d8, d9, d10}
-41.00 10 {d1, d10}{d2, d3, d4, d5, d7}{d6, d8, d9, d10}
Others 95 -
Total 1000
Note: 1. In total, 1000 runs were repeated using the sample DB.

2.“Others” includes 40 maximums appearing less than 10 runs.

Table 4.14: P (tj |τk) when logL(Ψ) = −32.26

t1 t2 t3 t4 t5 t6
τ1 0.300 0.700 0.000 0.000 0.000 0.000
τ2 0.000 0.000 0.800 0.200 0.000 0.000
τ3 0.000 0.000 0.000 0.222 0.593 0.185

Table 4.15: P (τk|di) when logL(Ψ) = −32.26

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
τ1 1.00 1.00 1.00 0.00 0.40 0.14 0.13 0.00 0.00 0.00
τ2 0.00 0.00 0.00 1.00 0.40 0.14 0.63 0.00 0.00 0.00
τ3 0.00 0.00 0.00 0.00 0.20 0.71 0.25 1.00 1.00 1.00
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The PLSA may allow to categorize terms by using probability P (tj |τk) shown in Table 4.14.
For example, term tj can be allocated to the k-th latent topic such that

k = argmax
k′

P (tj |τk′), (4.87)

which leads to a clustering result such as {t1, t2}, {t3} and {t4, t5, t6}. Inevitably, in PLSA, the
number of term clusters is always equal to that of document clusters (i.e., L is the number of latent
topic classes in PLSA).

Extension of PLSA

As a natural extension of the PLSA, it may be possible to consider a model including two different
types of the latent class for terms and documents, respectively. For instance, P (tj |di) can be
assumed to be generated such that

P (tj |di) =
L∑

k=1

L′∑
m=1

P (tj |τ̃m)P (τ̃m|τk)P (τk|di), (4.88)

where τ̃m and τk denote latent classes of terms and documents, respectively (m = 1, . . . , L′; k =
1, . . . , L).

Each probability can be formally obtained by an EM algorithm based on unobservable variable
zmk|ij such that

zmk|ij =
P (tj |τ̃m)P (τ̃m|τk)P (τk|di)∑L

k′=1

∑L′
m′=1 P (tj |τ̃m′)P (τ̃m′ |τk′)P (τk′ |di)

, (4.89)

which leads to

P (τk|di) =
∑M

j=1

∑L′

m=1 fijzmk|ij∑L
k′=1

∑M
j=1

∑L′
m=1 fijzmk′|ij

(4.90)

(P (tj |τ̃m) and P (τ̃m|τk) can be computed in similar ways). However, it should be noted that there
would be so many local maximums because P (τ̃m|τk) is completely free from observed data and
determined within only the model 40.

In the sample DB, when L′ = 4 and L = 3, the maximum log likelihood score of the model in
Equation (4.88) would be also −32.26, which provides the same estimations on P (τk|di) with those
in Table 4.15. Also, estimated values of P (tj |τ̃m) (m = 1, 2, 3) were also identical to those in Table
4.14. Meanwhile, values for an augmented latent topic τ̃4 were P (t1|τ̃4) = 0.000, P (t2|τ̃4) = 0.138,
P (t3|τ̃4) = 0.177, P (t4|τ̃4) = 0.511, P (t5|τ̃4) = 0.174 and P (t6|τ̃4) = 0.000, which means that
term clusters become {t1, t2}, {t3}, {t4} and {t5, t6}. However, because it was estimated that
P (τ̃1|τ1) = 1.000, P (τ̃2|τ2) = 1.000, P (τ̃3|τ3) = 1.000, and P (τ̃4|τk) = 0.000 for k = 1, 2, 3, the
forth term cluster has no contribution to computation of P (tj |di) in this case.

4.1.4 Latent Dirichlet allocation (LDA)

Generative model based on Dirichlet prior

PLSA tries to estimate each parameter P (τk|di) indicating a probability that document di is related
with (or relevant to) latent topic τk (see Equation (4.76)), but it is possible to generate estimates
over-fitted to observed data like in the case of pj|k for the standard (non-Bayesian) MMM. Actually,
Table 4.13 shows that many local maximums were obtained by the EM algorithm for PLSA, which
would be partly caused by calculating precisely values for all pairs of topics and documents.

40Another model has been proposed by [233] such that

P (tj |di) =
L∑

k=1

L′∑
m=1

P (tj |τ̃m, τk)P (τ̃m)P (τk|di).

In the model, since P (τ̃m) is perfectly free, different combinations of estimated values of P (tj |τ̃m, τk) and P (τ̃m)
may provide the same likelihood score.
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In particular, when each probability P (tj |τk) is used for applications other than DC, the over-
fitting may become more serious problem. For instance, estimation of P (tj |τk) allows to analyze a
vocabulary in a corpus (e.g., a set of articles in scientific journals or of news papers), which helps
us to understand a trend of topics to be focused on in the corpus. In such cases, P (tj |τk) can be
considered as a topic model. If the set of documents in a corpus is assumed as just a ‘sample’ for
observing an underlying topic model, then it is possible that parameters estimated by using the
set may be extraordinarily tailored to a particular sample.

One of the solutions is to assume that topic τk in a document is randomly chosen according
to a common probability distribution, not to estimate directly P (τk|di) as a unique probability
for a particular document. Then each term of the document is supposed to be generated based
on the selected topic. This kind of generative probabilistic model was introduced by Blei, Ng &
Jordan(2003) [30], which is called latent Dirichlet allocation (LDA) and has been widely used in
various areas (e.g., DC, NLP, data mining, and so on).

In the LDA, the generation of a document is formalized on a sequence of word tokens wih in
di (h = 1, . . . , li and li means document length) such that

wi = [wi1, . . . ,wili ]
T = [tω(1|i), . . . , tω(li|i)]

T , (4.91)

where ω(h|i) indicates index number of a term appearing in h-th position in document di. For
example, if ω(4|i) = 8, then the 4th word token in document di is t8. Similarly, index number of a
latent topic for token wih is denoted by z̃ih here (e.g., if 4th token in di is generated from τ2, then
z̃i4 = 2), which means that a latent topic is assigned to each token, not each term 41.

Each token in di is assumed to be randomly selected from a discrete distribution,

φk ≡ [φ1|k, . . . , φM |k]T = [P (t1|τk), . . . , P (tM |τk)]T , (4.92)

after determining randomly τk as a topic of the token based on another discrete distribution,

θi = [θi1, . . . , θiL]
T , (4.93)

element θik of which indicates a probability that k-th topic is chosen for di (i.e.,
∑

k θik = 1). For
example, if first token of d4 is t3, then it can be imagined that

d4 → θ4 → π(·|θ4) �→ τ2 → φ2 → π(·|φ2) �→ t3 → w41,

in which τ2 and t3 are assumed to be drawn from distributions θ4 and φ2, respectively (e.g., π(·|θ4)
represents a discrete distribution, P (1) = θ41, . . . , P (L) = θ4L).

Furthermore, in the LDA model, φk and θi are supposed to be drawn from Dirichlet distribu-
tions, and therefore, a process of generating di becomes as follows [30, 109, 29]:

1. Choose φk from a Dirichlet distribution, φk ∼ PD(·|β).

2. Choose θi from a Dirichlet distribution, θi ∼ PD(·|α).

3. For each token wih (h = 1, . . . , li),

(a) Choose a topic z̃ih from a discrete distribution, z̃ih ∼ π(·|θi),

(b) Choose a term from {t1, . . . , tM} as token wih according to a discrete distribution con-
ditioned on the topic z̃ih, wih ∼ π(·|z̃ih,φ).

Particularly, PD denotes a Dirichlet distribution here, and φ is defined by

φ = [φT
1 , . . . ,φ

T
L]

T = [P (t1|τ1), . . . , P (tM |τL)]T . (4.94)

As described above, notation z̃ih ∼ π(·|θi) means that a topic number k is randomly selected from
a discrete distribution π(k) = θik (k = 1, . . . , L) for di, and wih ∼ π(·|z̃ih,φ) implies that the
discrete distribution for selecting a term is actually π(j) = P (tj |τk) (j = 1, . . . ,M) under a result
that z̃ih = k in step 3(a). Figure 4.10 shows graphical models describing the PLSA and LDA,
respectively (note that l in the figure denotes ‘collection length’, which is defined by l =

∑
i li).

41Therefore, when a term appears twice in a single document, it may be possible that their latent topics are
different.
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Figure 4.10: Graphical model representation of PLSA and LDA

In the framework of LDA, the basic formula of PLSA in Equation (4.76) changes to

P (wih|φ,θi) =
L∑

k=1

P (wih|z̃ih = k,φ)P (z̃ih = k|θi), (4.95)

under an assumption that z̃ih is independent of φ. Therefore, when it is simply assumed that
P (wi) =

∏
h P (wih), the posterior distribution of LDA model can be written as

P (wi|α,β) =

∫ ∫
P (φ|β)P (θi|α)

[
li∏

h=1

L∑
z̃ih=1

P (wih|z̃ih,φ)P (z̃ih|θi)

]
dθidφ, (4.96)

by integrating out φ and θi (i = 1, . . . , N) [30]. Also, if observed data of tokens in D is denoted
by w = [wT

1 , . . . ,w
T
N ]T , then a probabilistic model of D can be represented as

P (w|α,β) =
N∏
i=1

P (wi|α,β), (4.97)

by using Equation (4.96) under an assumption of document independence.

Estimation by using variational parameters

Whereas it is indispensable to estimate φ in exploring a topic model, estimation of θi (i = 1, . . . , N)
is more important from a viewpoint of DC because a cluster set can be naturally generated as

Ck =

{
di

∣∣∣∣∣ k = argmax
k′=1,...,L

θ̂ik′

}
, (4.98)

if estimates θ̂ik (i = 1, . . . , N ; k = 1, . . . , L) were obtained from the observed data. However, the
posterior distribution in Equation (4.96) is intractable, and therefore, it is hard to compute the
MLEs based on Equations (4.96) and (4.97).

One of the solutions is to employ a variational distribution q, which allows to have a lower bound
of the log likelihood computed from Equation (4.96) (i.e., logP (wi|α,β)). Blei, Ng & Jordan
(2003) [30] provided a detailed explanation on a technique of parameter estimation based on the
variational distribution. If topic assignment to each token in di is denoted by z̃i = [z̃i1, . . . , z̃ili ]

T ,
then the logarithm of Equation (4.96) becomes that

logP (wi|α,β) = log

∫ ∫ ∑
z̃i

P (wi,θi,φ, z̃i|α,β)dθidφ, (4.99)
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where
∑

z̃i
=
∑

z̃i1
. . .

∑
z̃ili

42. Similarly, since all documents in a set are assumed to be in-

dependent each other, index i can be simply removed from the equation for the entire set such
that

logP (w|α,β) = log

∫ ∫ ∑
z̃

P (w,θ,φ, z̃|α,β)dθdφ, (4.100)

where θ = [θT
1 , . . . ,θ

T
N ]T and z̃ = [z̃T1 , . . . , z̃

T
N ]T .

A strategy of the technique for estimation of parameters is to insert a variational distribution
q(θ,φ, z̃) into the equation such that

logP (w|α,β) = log

∫ ∫ ∑
z̃

P (w,θ,φ, z̃|α,β)q(θ,φ, z̃)

q(θ,φ, z̃)
dθdφ, (4.101)

which leads to an inequality

logP (w|α,β) ≥ Eq[logP (w,θ,φ, z̃|α,β)]− Eq[log q(θ,φ, z̃)] ≡ Lq (4.102)

where Eq means an expectation by q 43. For instance, if it is assumed that x and z are continuous
and discrete variables, respectively, then the expectation of a joint probability distribution P (x, z)
by q(x, z) is computed as

Eq[P (x, z)] =

∫ ∑
z

P (x, z)q(x, z)dx. (4.103)

Since Lq in Equation (4.102) gives a lower bound of logP (w|α,β), it is possible to estimate
parameters in LDA model by maximizing Lq instead of intractable Equations (4.96) and (4.97).

Needless to say, for proper estimation, it is necessary to select an appropriate distribution as
q. Blei, Ng & Jordan(2003) [30] proposed to use

q(θ,φ, z̃|γ,ϕ,ν) =
L∏

k=1

q(φk|νk)×
N∏
i=1

q(θi|γi)

li∏
h=1

q(z̃ih|ϕih), (4.104)

where ν, γ, and ϕ are called variational parameters. More specifically, the parameters are de-
fined such that νk = [ν1k, . . . , νMk]

T and ν = [νT
1 , . . . ,ν

T
L]

T , and γi = [γi1, . . . , γiL]
T and

γ = [γT
1 , . . . ,γ

T
N ]T . Also, ϕih = [ϕih1, . . . , ϕihL]

T and ϕ = [ϕT
11, . . . ,ϕ

T
NlN

]T . In Equation (4.104),
q(φk|νk) and q(θi|γi) are assumed to be Dirichlet distributions, and q(·|ϕih) is a discrete distri-
bution.

By factorizing P and q with considering dependency between parameters,

Lq = Eq[logP (θ|α)] + Eq[logP (z̃|θ)] + Eq[logP (w|z̃,φ)] + Eq[logP (φ|β)]
−Eq[log q(θ)]− Eq[log q(z̃)]− Eq[log q(φ)], (4.105)

is obtained 44. Each term Eq[·] in the equation can be calculated as follows. First,

Eq[logP (θ|α)] =
N∑
i=1

∫
[logP (θi|α)] q(θi|γi)dθi =

N∑
i=1

Eq[logP (θi|α)|γi], (4.106)

42If li = 2, then
∑

z̃1

∑
z̃2

P (w1, z̃1)P (w2, z̃2) =
∑

z̃1
P (w1, z̃1)

∑
z̃2

P (w2, z̃2) due to the assumption of inde-

pendence between tokens (note that index i is omitted here for simplicity). This implies that
∑

z̃

∏
h P (wh, z̃h) =∏

h

∑
z̃h

P (wh, z̃h).
43For simplicity, hyperparameters are omitted here. If an expectation is defined by Equation (4.103), then by

using Jensen’s inequality, Equation (4.102) can be written as

log

∫ ∫ ∑
z̃

P (w,θ,φ, z̃)

q(θ,φ, z̃)
q(θ,φ, z̃)dθdφ ≥

∫ ∫ ∑
z̃

q(θ,φ, z̃) log
P (w,θ,φ, z̃)

q(θ,φ, z̃)
dθdφ,

and the right-hand side of this equation means Lq in Equation (4.102). Note that g[E(x)] ≥ E[g(x)] if E(x) is finite
and g is a concave function, which is called Jensen’s inequality. In this case, g(·) = log, and the logarithm is a
concave function.

44In the factorization, it is assumed that

P (w,θ,φ, z̃|α,β) = P (w,φ, z̃|θ,β)P (θ|α) = P (w, z̃|φ,θ)P (φ|β)P (θ|α) = P (w|z̃,φ)P (z̃|θ)P (φ|β)P (θ|α),

according to the dependency. Also, note that E[log(xy)] = E(log x) + E(log y) by the definition of expectation.
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where

logP (θi|α) = log Γ

(
L∑

k=1

αk

)
−

L∑
k=1

log Γ(αk) +
L∑

k=1

(αk − 1) log θik, (4.107)

because P (θi|α) is a Dirichlet distribution. When q(θi|γi) is a Dirichlet distribution,

Eq[log θik|γi] =

∫
log θikq(θi|γi)dθi = ψ(γik)− ψ

(
L∑

k′=1

γik′

)
, (4.108)

where ψ(x) = d log Γ(x)/dx which is generally called digamma function 45. Thus Equation (4.106)
becomes that

Eq[logP (θ|α)] =
N∑
i=1

[
log Γ

(
L∑

k=1

αk

)
−

L∑
k=1

log Γ(αk)

+
L∑

k=1

(αk − 1)

[
ψ(γik)− ψ

(
L∑

k′=1

γik′

)]]
. (4.109)

Second,

Eq[logP (z̃|θ)] =
N∑
i=1

li∑
h=1

Eq[logP (z̃ih|θi)], (4.110)

where

Eq[logP (z̃ih|θi)] =

L∑
k=1

ϕihk

[
ψ(γik)− ψ

(
L∑

k′=1

γik′

)]
, (4.111)

because q(·|ϕi) is a discrete distribution 46.
Third,

Eq[logP (w|z̃,φ)] =
N∑
i=1

li∑
h=1

Eq[logP (wih|z̃ih,φ)], (4.112)

where

Eq[logP (wih = tj |z̃ih,φ)] =
L∑

k=1

ϕihk

⎡
⎣ψ(νjk)− ψ

⎛
⎝ M∑

j′=1

νj′k

⎞
⎠
⎤
⎦ , (4.113)

for each token 47.

45This expectation can be derived from the natural parameterization of the exponential family representation of
the Dirichlet distribution (see [30] for details).

46From the definition,

Eq [logP (z̃ih|θi)] =

∫ L∑
k=1

logP (z̃ih = k|θi)q(θi|γi)q(z̃ih = k|ϕi)dθi

=
L∑

k=1

ϕihk

∫
log θikq(θi|γi)dθi.

By using Equation (4.108), Equation (4.111) can be obtained.
47When tj is used as token wih, it becomes

Eq [logP (wih = tj |z̃ih,φ)] =

∫ L∑
k=1

logP (wih = tj |z̃ih = k,φk)q(φk|νk)q(z̃ih = k|ϕi)dφk

=
L∑

k=1

ϕihk

∫
log φjkq(φk|νk)dφk.

According to Equation (4.108), Equation (4.113) is obtained.
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Forth, Eq[logP (φ|β)] can be computed in a similar way to calculation of Eq[logP (θ|α)], which
consequently leads to

Eq[logP (φ|β)] =

L∑
k=1

⎡
⎣log Γ

⎛
⎝ M∑

j=1

βj

⎞
⎠−

M∑
j=1

log Γ(βj)

+

M∑
j=1

(βj − 1)

⎡
⎣ψ(νjk)− ψ

⎛
⎝ M∑

j′=1

νj′k

⎞
⎠
⎤
⎦
⎤
⎦ . (4.114)

Finally, it is necessary to compute Eq[log q(θ)], Eq[log q(z̃)] and Eq[log q(φ)] in Equation
(4.105), which are expectations of q itself. Among them, Eq[log q(θ)] and Eq[log q(φ)] are again
computed in a similar way to Eq[logP (θ|α)], namely,

Eq[log q(θ)] =

N∑
i=1

[
log Γ

(
L∑

k=1

γik

)
−

L∑
k=1

log Γ(γik)

+
L∑

k=1

(γik − 1)

[
ψ(γik)− ψ

(
L∑

k′=1

γik′

)]]
, (4.115)

and

Eq[log q(φ)] =
L∑

k=1

⎡
⎣log Γ

⎛
⎝ M∑

j=1

νjk

⎞
⎠−

M∑
j=1

log Γ(νjk)

+
M∑
j=1

(νjk − 1)

⎡
⎣ψ(νjk)− ψ

⎛
⎝ M∑

j′=1

νj′k

⎞
⎠
⎤
⎦
⎤
⎦ , (4.116)

because q(θ) and q(φ) are also Dirichlet distributions. In contrast, since q(z̃) is a discrete distri-
bution,

Eq[log q(z̃)] =
N∑
i=1

li∑
h=1

L∑
k=1

ϕihk logϕihk, (4.117)

is obtained.
The MLEs of parameters in the LDA model can be approximately obtained by maximizing the

lower bound in Equation (4.105) for each parameter, which means that its derivatives have to be
calculated. For instance, a variational parameter γik appears in Equations (4.109), (4.111) and
(4.115), and it follows that

∂Lq

∂γik
= ψ′(γik)

(
αk +

li∑
h=1

ϕihk − γik

)
− ψ′

(
L∑

k′=1

γik′

)
L∑

k′=1

(
αk′ +

li∑
h=1

ϕihk′ − γik′

)
, (4.118)

where ψ′(x) = dψ(x)/dx. The derivative ∂Lq/∂γik is always zero if

γik = αk +

li∑
h=1

ϕihk, (4.119)

for k = 1, . . . , L, which can be considered as an estimate of γik [30]. Also, from Equations (4.111),
(4.113) and (4.117), the derivative with respect to ϕhk for a token such that wih = tj becomes that

∂Lq

∂ϕihk
=

[
ψ(γik)− ψ

(
L∑

k′=1

γik′

)]
+

⎡
⎣ψ(νjk)− ψ

⎛
⎝ M∑

j′=1

νj′k

⎞
⎠
⎤
⎦

− logϕihk − 1 + λ, (4.120)
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where λ is the Lagrange multiplier for a condition that
∑

k ϕihk = 1. Therefore, ϕihk can be
estimated such that ϕihk = ϕ̃ihk/

∑
k′ ϕ̃ihk′ where

ϕ̃ihk = exp

⎡
⎣ψ(γik) + ψ(νjk)− ψ

⎛
⎝ M∑

j′=1

νj′k

⎞
⎠
⎤
⎦ , (4.121)

for a particular token wih (note that ψ(
∑

k γik) is canceled out in the normalization of ϕ̃ihk).
Finally, by comparing Equation (4.111) with (4.113), (4.109) with (4.114) and (4.115) with

(4.116), it is clear that the derivative of Lq with respect to νjk takes the almost similar form to
that with respect to γik. Thus from ∂Lq/∂νjk = 0,

νjk = βk +
N∑
i=1

li∑
h=1

I(wih = tj)ϕihk, (4.122)

is obtained where I(wih = tj) is an indicator function returning 1 if wih = tj , and otherwise 0 [29].
By computing iteratively Equations (4.119), (4.121) and (4.122) for a given dataset until they

converge, estimation of variational parameters becomes feasible. After that, θik in Equation (4.98)
can be estimated as

θ̂ik =
γik∑L

k′=1 γik′
, (4.123)

and similarly, φ̂j|k = P̂ (tj |τk) = νjk/
∑M

j′=1 νj′k [29]. Figure 4.11 is a summary of the DC algorithm
based on variational parameters for LDA model.

‡ Document clustering based on variational parameters for LDA model

Set: The number of clusters L, and hyperparameter vectors α and β.

1) Initialize ϕihk for all tokens, all topics (clusters) and for all documents.

2) Update νjk based on Equation (4.122) for j = 1, . . . ,M and k = 1, . . . , L.

3) For each document (i = 1, . . . , N),

3-1) Update γik using Equation (4.119) for k = 1, . . . , L.

3-2) Update ϕihk such that ϕihk = ϕ̃ihk/
∑

k′ ϕ̃ihk′ where ϕ̃ihk is computed by
Equation (4.121) (h = 1, . . . , li; k = 1, . . . , L).

4) If variational parameters converge, then generate clusters based on Equations
(4.123) and (4.98), and terminate the procedure. Otherwise, return to step 2).

Out: Clusters C1, . . . , CL and estimates of φj|k and θik.

Figure 4.11: Document clustering based on variational parameters for LDA model

Table 4.16 shows an example of estimating variational parameters for the LDA model by ap-
plying the algorithm in Figure 4.11 to the sample DB, in which αk = 0.1 and βj = 0.1 were fixed
for all k and j (i.e., all Dirichlet distributions are symmetric in this experiment) 48. It seems that
a valid set of clusters was obtained by the algorithm. However it should be noted that there would
be many local maximums in the variational inference of the LDA model partly because many vari-
ational parameters are included in the computation. For example, Figure 4.12 shows a result of an
experiment in which clustering by variational parameters for the LDA model was independently

48A technique of estimating empirically hyperparameters from the data using the Newton-Raphson method was
also provided by [30]. Since actual values of the hyperparameters have a strong influence on its result (i.e., results may
be largely changed by using another set of values), it should be carefully to set actual values for the hyperparameters
if they are not empirically estimated. This problem will be discussed in the section of estimation by Gibbs sampling.
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Table 4.16: Examples of estimating LDA model by variational parameters

θ̂ik φ̂j|k
C1 C2 C3 C1 C2 C3

d1 .962 .019 .019 t1 .318 .005 .004
d2 .953 .023 .023 t2 .661 .076 .004
d3 .973 .014 .014 t3 .005 .599 .004
d4 .014 .973 .014 t4 .005 .153 .250
d5 .337 .644 .019 t5 .005 .112 .570
d6 .133 .191 .676 t6 .005 .054 .168
d7 .012 .976 .012
d8 .019 .019 .962
d9 .016 .016 .968
d10 .001 .001 .976

Note: 1. αk = 0.1 and βj = 0.1 for all k and j.
2. The number of iterations was 29.

repeated 1000 times for the sample DB. It turns out that many local maximums appeared and that
only 28.8% of 1000 runs reached to ‘valid’ cluster set, {{d1, d2, d3}, {d4, d5, d7, d10}, {d6, d8, d9}}
or {{d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}}, in this experiment.
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Figure 4.12: Clustering results by estimated variational parameters of LDA (1000 runs)

Estimation by Gibbs sampling

Another method for inferencing parameters of LDA model was given by Griffiths & Steyvers(2004)
[109], which has been widely used by other researchers. Its strategy is to use a Gibbs sampling
method for estimating distribution P (z̃|w) =

∏
i P (z̃i|wi) where z̃i = [z̃i1, . . . , z̃ili ]

T and z̃ =
[z̃T1 , . . . , z̃

T
N ]T , each term of which can be computed as

P (z̃i|wi) =
P (z̃i,wi)

P (wi)
=

P (wi|z̃i)P (z̃i)

P (wi)
. (4.124)

As described below, although parameters φ and θi are integrated out in process of calculating
analytically full conditional distributions for sampling, it is possible to estimate them empirically
from samples obtained through iterative steps of Gibbs sampling for computation of P (z̃|w).

When using explicitly the parameters φ and θi, two probabilities in the numerator of the most
right-hand side in Equation (4.124) can be written as

P (wi|z̃i,φ) =
li∏

h=1

φ[ω(h|i)|z̃ih], (4.125)
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where φ[j|k] ≡ φj|k = P (tj |τk), and

P (z̃i|θi) =

li∏
h=1

θ[z̃ih], (4.126)

where θ[k] ≡ θk, respectively, according to LDA model. If a symmetric Dirichlet distribution such
that

P (φk|β) =
Γ(βM)

Γ(β)M

M∏
j=1

φβ−1
j|k (4.127)

(i.e., β = [β, . . . , β]T ) is assumed as PD(·|β) for φk, then since P (φ) = P (φ1) × . . . × P (φL), it
follows that

P (wi|z̃i) =
∫

P (wi|z̃i,φ)P (φ)dφ ∝
L∏

k=1

∫ li∏
h=1

φ[ω(h|i)|z̃ih]
M∏
j=1

φβ−1
j|k dφk =

L∏
k=1

∏
j Γ(fj|ik + β)

Γ(f·|ik +Mβ)
,

(4.128)
where fj|ik indicates the times that tj appears as a token of document di when z̃ih = k (h =
1, . . . , li), and f·|ik =

∑
j fj|ik [109] 49. Similarly, when the Dirichlet distribution P (θi|α) is also

symmetric (i.e., α = [α, . . . , α]T ),

P (z̃i) =

∫
P (z̃i|θi)P (θi) dθi ∝

∏
k Γ(fk|i + α)

Γ(f·|i + Lα)
, (4.129)

is also obtained where fk|i denotes the number of tokens belonging to topic k in di, and f·|i =∑
k fk|i = li.
The samples for estimating distribution P (z̃|w) can be drawn from full conditional probability,

P (z̃ih = k|z̃¬ih,w) =
P (z̃ih = k, z̃¬ih|w)

P (z̃¬ih|w)
, k = 1, . . . , L, (4.130)

where z̃¬ih denotes a vector created by removing particular single element z̃ih from z̃. Since
P (z̃|w) =

∏
i P (z̃i|wi), by using Equations (4.128) and (4.129), it follows that

P (z̃¬ih|w) ∝ P (w|z̃¬ih)P (z̃¬ih)

∝
L∏

k=1

∏
j Γ(F

¬ih
j|k + β)

Γ(F¬ih
·|k +Mβ)

×
N∏

i′=1

∏
k Γ(f

¬ih
k|i′ + α)

Γ(f¬ih
·|i′ + Lα)

, (4.131)

where

F¬ih
j|k =

i−1∑
i′=1

fj|i′k + f¬h
j|ik +

N∑
i′=i+1

fj|i′k, (4.132)

and

f¬h
j|ik =

{
fj|ik − 1 if k = z̃ih
fj|ik if k �= z̃ih

. (4.133)

Namely, F¬ih
j|k means the total frequency of tj occurring as tokens allocated to topic k in D when

token wih is removed. Similarly, f¬ih
k|i′ indicates the total number of tokens allocated to topic k in

49The integral of a probabilistic distribution in Equation (4.127) becomes∫
P (φk|β) dφk =

Γ(
∑

j β)∏
j Γ(β)

∫ ∏
j

φβ−1
j|k dφk = 1,

which leads to an equation, ∫ ∏
j

φβ−1
j|k dφk =

∏
j Γ(β)

Γ(
∑

j β)
.

If t1 appears as a token at the position such that z̃i2 = 3 (i.e., h = 2 and k = 3), then a φ1|3 in Equation (4.125) is

incorporated into the integral and φβ−1
1|3 changes to φβ

1|3. Thus by counting φj|k for all pairs of a topic and a term

of all tokens in di, Equation (4.128) is obtained.
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di′ in the case that token wih is ignored (inevitably, if i′ �= i, then fk|i′ does not take any influence).

Needless to say, F¬ih
·|k =

∑
j F

¬ih
j|k and f¬ih

·|i′ =
∑

k f
¬ih
k|i′ .

Equation (4.133) implies that Fj|k in P (z̃ih = k, z̃¬ih|w) is just one larger than that in

P (z̃¬ih|w) (i.e., Fj|k = F¬ih
j|k + 1 where j = ω(h|i) and z̃ih = k), and that the other terms Fj′|k′

where j′ �= ω(h|i) and k′ �= k are completely identical with those in P (z̃¬ih|w), which are canceled
out in the process of calculating Equation (4.130). So, the corresponding part in Equation (4.130)
reduces to a simple form,

Γ(F¬ih
j|k + 1 + β)

Γ(F¬ih
j|k + β)

= F¬ih
j|k + β, j = ω(h|i), (4.134)

since generally Γ(x + 1)/Γ(x) = x. Because the same operation can be applied to F¬ih
·|k , f¬ih

k|i′ and

f¬ih
·|i′ , the full conditional probability in Equation (4.130) becomes finally

P (z̃ih = k|z̃¬ih,w) ∝
F¬ih
ω(h|i)|k + β

F¬ih
·|k +Mβ

f¬ih
k|i + α

f¬ih
·|i + Lα

∝
F¬ih
ω(h|i)|k + β

F¬ih
·|k +Mβ

(f¬ih
k|i + α), (4.135)

where ω(h|i) = j (note that factor f¬ih
·|i + Lα is constant when assigning a topic to each token)

[109]. Actually, a set of probabilities that

πih(k) =
P (z̃ih = k|z̃¬ih,w)∑L

k′=1 P (z̃ih = k′|z̃¬ih,w)
, k = 1, . . . , L, (4.136)

based on Equation (4.135) is used as a discrete distribution for randomly assigning a topic to token
wih in s-th sample.

The parameters of LDA model can be empirically estimated by

φ̂j|k =
Fj|k + β

F·|k +Mβ
, (4.137)

and

θ̂ik =
fk|i + α

f·|i + Lα
, (4.138)

in each sample after assigning topics to all tokens. Therefore, it is easy to compute an average of
the values in each sample such that

¯̂
φj|k =

1

r −B

r∑
s=B+1

φ̂
(s)
j|k,

¯̂
θik =

1

r −B

r∑
s=B+1

θ̂
(s)
ik ,

for k = 1, . . . , L, j = 1, . . . ,M and i = 1, . . . , N (where φ̂
(s)
j|k and θ̂

(s)
ik are estimates in s-th iteration),

and they can be used as estimates of the parameters.
Also, by using the estimates, document clusters can be generated as

Ck =

{
di

∣∣∣∣∣ argmax
k′=1,...,L

¯̂
θik′

}
. (4.139)

Otherwise, it is possible to use a smaller subset of samples, or to count ‘cluster patterns’ without
calculating θ̂ik for creating clusters as discussed in Section 4.1.2 (‘cluster pattern count method’).

Figure 4.13 shows the algorithm of clustering documents based on Gibbs sampling for the LDA
model. Because φj|k and θik do not have to be ‘directly’ estimated in the procedure, the algorithm
becomes simple and compact. Basically, data to be recorded in the iterations are only values of Fj|k
and fk|i, and it is enough to update them only when the current topic of a given token is changed.
Although the total number of iterations r has to be large in a situation, the Gibbs sampling for
LDA keeps its computational complexity at the level of O(l×L×r), basically (l denotes a collection
length as before).
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‡ Document clustering based on Gibbs sampling for LDA model

Set: The number of clusters L, hyperparameters α and β, and the number of total
iterations r (constant B is also needed if using Equation (4.139) as a clustering
criterion).

1) After allocating randomly initial topics to all tokens, compute Fj|k and fi|k (k =
1, . . . , L; j = 1, . . . ,M ; i = 1, . . . , N), and set s to 1 (i.e., s ← 1).

2) For i = 1, . . . , N , select randomly a topic to token wih based on Equation (4.136)
and if the topic of wih is changed, then update Fj|k and fi|k for old and new topics
(h = 1, . . . , li).

3) s ← s+ 1. If s > r, then go to step 4). Otherwise, return to 2).

4) Terminate the procedure after allocating di (i = 1, . . . , N) to a cluster based on
Equation (4.139) or other methods.

Out: Clusters C1, . . . , CL, and estimators of φj|k and θik if needed.

Figure 4.13: Document clustering by based on Gibbs sampling for LDA mode

However, it should be noted that results from Gibbs sampling for the LDA model would be
sensitive to values of hyperparameters α and β. As shown in Equation (4.135), the hyperparameter
works actually as a smoothing factor in the process of Gibbs sampling. If the value is small, then
it is relatively difficult that a token transfers to another topic, which means that the result from
sampling becomes stable, and consequently, possibility of escaping from a local maximum becomes
relatively lower. Inversely, when the hyperparameter is large, topic assignment is often unstable
and it may be possible to obtain many inappropriate samples.

In Griffiths & Steyvers(2004) [109], it was recommended that α = 50/L and β = 0.1 for a set of
scientific abstracts, whereas a more recent experiment [198] showed that a combination of α = 0.1
and β = 0.01 works well for a set of news articles (β = 0.01 was originally used for a collection of
text passages from educational materials in [294]). It may be naturally to consider that appropriate
values of the hyperparameters are dependent on each situation to which this method is applied.
For example, if 5% of all tokens included in a given document set is assumed to be distributed for
smoothing each estimator of θik and φj|k evenly, then it follows that

α =
l × 0.05

NL
, (4.140)

because the number of parameters θki is N × L, and similarly,

β =
l × 0.05

ML
. (4.141)

Although ‘0.05’ is an arbitrary value and there is no evidence on the validity, this would be a way
for determining size of hyperparameters depending on a property of the target document set.

In the case of the sample DB, since l = 62, M = 6 and N = 10, it becomes that α = 0.103
and β = 0.172 when L = 3. Table 4.17 shows parameters estimated from samples generated
by a single chain of the Gibbs sampling when the algorithm in Figure 4.13 was applied to the
sample DB with L = 3, α = 0.103, β = 0.172, r = 1100 and B = 100. It seems that the
clustering criterion in Equation (4.139) worked well in the experiment because a set of clusters

{{d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}} was successfully generated. Especially, averages of θ̂ik
of d1, d2 and d3 for C1 were over 0.9, which indicates that they were allocated to a particular topic
very frequently in the iterative sampling and that a ‘stable’ result on the three documents was
obtained. In contrast, when using larger values of α and β, the estimated values spread evenly
over all topics due to the smoothing effect. For example, an execution of Gibbs sampling for the
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Table 4.17: Examples of estimating LDA model by Gibbs sampling

Averages of θ̂
(s)
ik Averages of φ̂

(s)
j|k

C1 C2 C3 C1 C2 C3

d1 .934 .032 .033 t1 .317 .005 .005
d2 .916 .042 .041 t2 .647 .055 .023
d3 .950 .026 .023 t3 .011 .541 .046
d4 .024 .815 .160 t4 .007 .187 .218
d5 .309 .468 .222 t5 .009 .082 .612
d6 .107 .219 .674 t6 .009 .128 .095
d7 .088 .727 .184
d8 .032 .110 .857
d9 .027 .075 .897
d10 .030 .435 .535

Note: 1.A single chain with r = 1100 and B = 100.
2.α = 0.172 and β = 0.103.

sample DB with α = 2.0 and β = 2.0 provided a result that the averages of θ̂3k for three topics in
d3 were .307, .361 and .332, respectively, from which it would be hard to obtain a valid clustering
set.

It should be noted that the average of θ̂52 (i.e., value of d5 for C2) is not large (= .468) even
though using 0.103 and 0.172 as hyperparameters (see Table 4.17). Figure 4.14 shows frequency

distributions of θ̂
(s)
31 (value of d3 for C1) and of θ̂

(s)
52 in the 1000 samples of this experiment, which

implies that some ‘bad’ samples in which the value of t5 for C2 is small were drawn in the process
of 1000 iterations. This suggests that topic assignment to tokens in d5 is relatively difficult, and
for safety, it may be better to use multiple sets of samples generated from parallel chains 50.
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Figure 4.14: Distributions of estimated values θ̂31 and θ̂52 (in 1000 samples)

The result of executing 100 chains of Gibbs sampling for the sample DB is shown in Table
4.18, which indicates that 92% of chains generated a ‘valid’ set of {{d1, d2, d3}, {d4, d5, d7, d10},
{d6, d8, d9}} or {{d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9, d10}} in the case that α = 0.103, β = 0.172
and r = 1100 (B = 100). In contrast, chains with only 200 iterations sometimes generated
‘invalid’ samples. Similar trend was also observed when using α = 0.1 and β = 0.01 adopted in an
experiment by [198] (see Table 4.18).

50Actually, Griffiths & Steyvers(2004) [109] reported an experiment in which eight Markov chains were executed
and 10 samples were taken from each chain with an interval of 100 iterations.
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Table 4.18: Multiple 100 chains of Gibbs sampling for LDA in sample DB

α = .100 α = .172
β = .010 β = .103

no. of iterations = 200 1100 200 1100
1. {d1, d2, d3, d4, d5, d7}{d6, d8, d9}{d10} 9 1 0 0
2. {d1, d2, d3, d5}{d4, d7, d10}{d6, d8, d9} 8 5 8 1
3. {d1, d2, d3, d5}{d4, d7}{d6, d8, d9, d10} 0 1 1 0
4. {d1, d2, d3}{d4, d5, d6, d7, d8, d9}{d10} 3 3 3 1
5. {d1, d2, d3}{d4, d5, d6, d7, d9}{d8, d10} 1 0 1 0
6. {d1, d2, d3}{d4, d5, d6, d7, d10}{d8, d9} 2 0 0 0
7. {d1, d2, d3}{d4, d5, d6, d7}{d8, d9, d10} 3 8 5 1
8. {d1, d2, d3}{d4, d5, d7, d10}{d6, d8, d9} 29 15 33 18
9. {d1, d2, d3}{d4, d5, d7}{d6, d8, d9, d10} 39 60 37 74
10. {d1, d2, d3}{d4, d7, d8, d10}{d5, d6, d9} 0 2 0 1
11. {d1, d2, d3}{d4, d7, d10}{d5, d6, d8, d9} 2 2 4 2
12. {d1, d2, d3}{d4, d8, d9, d10}{d5, d6, d7} 1 0 1 0
13. {d1, d2, d3}{d4, d10}{d5, d6, d7, d8, d9} 0 0 4 0
14. Others 3 3 3 2

Total 100 100 100 100
Note: 1.B = 100.

2.‘Others’ includes cluster sets appearing only a single chain.

4.1.5 Hierarchical Dirichlet process mixture model

Infinite mixture model

Like other techniques of partitioning a document set such as k-means, finite mixture model, PLSA
and so on, it is necessary for executing LDA to determine the number of clusters a priori. In
contrast, hierarchical Dirichlet process (HDP) mixture model that is an extension of the LDA can
estimate automatically the number of latent topics, which is a useful property for DC. Namely,
without any model selection process in which estimation is repeated with varying the number
of topics and the log likelihood scores between them are compared, an optimal number can be
empirically obtained when the HDP mixture model is used (actually, the resulting number may be
more or less dependent on values of its hyperparameters as discussed later).

The reason why the number of topics L can be automatically estimated by the HDP mixture
model is to assume that L is infinite (i.e., L = ∞) in the level of conceptual modeling, and actually,
L converges to a finite value in a process of estimation from observed data 51. More specifically,
generation θi ∼ PD(·|α) in the LDA model is replaced by θi ∼ PD(·|α0ρ) in the HDP mixture
model, where ρ is theoretically assumed to be a vector with ‘infinite’ length (inevitably, θi becomes
also an infinite-length vector) and its k-th component is defined such that

ρk = ρ̃k

k−1∏
k′=1

(1− ρ̃k′), k = 1, 2, . . . ,∞, (4.142)

where 0 < ρ̃k < 1 (note that α0 is a constant). Particularly, ρ̃k is distributed according to a Beta
distribution with parameters 1 and ζ [300, 302]. Equation (4.142) is often called ‘stick-breaking’
construction. By combining generation φk ∼ PD(·|β) with ρ, a random measure G0 can be defined
such that

G0 =
∞∑
k=1

ρkδ(φk), (4.143)

51Strictly, the number of document clusters may be different from that of topics. But, for simplicity, L is used for
mathematical explanation for a while. In Figure 4.15, the two numbers are represented by different notations (i.e.,
L and L′).
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where δ(x) means a distribution concentrated on a single point x. Actually, G0 is a distribution
of φk, which enables to select randomly a particular φk from a set {φ1,φ2, . . .}. Since Equation
(4.143) is derived from a Dirichlet process (DP) into which β and ζ are incorporated as parameters,
it is possible to interpret that the DP provides an infinite mixture model, which is often called
Dirichlet process mixture model.

In particular, since θi is generated from PD(·|α0ρ) after ρ was obtained, it is feasible to write
again that Gi =

∑∞
k=1 θikδ(φk) for each document (i = 1, . . . , N). Because ρ is generated in the

DP process about G0, G0 and Gi can be considered to form a hierarchy. Thus the model based
on G0 and Gi should be called hierarchical DP (HDP) mixture model, which was formalized by
Teh, Jordan, Beal & Blei(2005, 2006) [300, 301]. In the basic procedure of HDP mixture model,
after θi is generated, topic assignment z̃ih is determined by π(·|θi), and then, a term is selected as
token wih from a distribution π(·|z̃ih,φ), similarly to the LDA model.

Another method for realizing the DP is to formalize an infinite limit of the finite mixture model
[219]. First, a conditional distribution

P (z̃ih = k|z̃¬ih
i ) = P (z̃ih = k, z̃¬ih

i )/P (z̃¬ih
i ), (4.144)

is considered here. If ρ = [1/L, . . . , 1/L]T for a finite L, then it becomes that

P (z̃i) =

∫
P (z̃i|θi)P (θi|α0ρ)dθi ∝

∏
k Γ(fk|i + α0/L)

Γ(f·|i + α0)
, (4.145)

from the observed data, since P (z̃i|θi) is a discrete distribution and P (θi|α0ρ) is a Dirichlet
distribution (see Equation (4.129)). By applying Equation (4.145) to Equation (4.144), then
P (z̃ih = k|z̃¬ih

i ) = (f¬ih
k|i + α0/L)/(f

¬ih
·|i + α0) is obtained as before. So, letting L go to infin-

ity (i.e., L → ∞) leads to a limit such that

P (z̃ih = k|z̃¬ih
i ) →

f¬ih
k|i

li − 1 + α0
, (4.146)

which implies that there is a probability of selecting a ‘new’ topic as a value of z̃ih because∑
k f

¬ih
k|i = li − 1. Consequently, under assumptions of the DP mixture model, the probability

of topic assignment becomes that

P (z̃ih = k|z̃¬ih
i ) →

{
f¬ih
k|i

li−1+α0
, if k appears already in z̃¬ih

i
α0

li−1+α0
, otherwise (i.e., ‘new’ topic)

(4.147)

(i = 1, . . . , N ; h = 1, . . . , li; k = 1, 2, . . .).

Estimation by Gibbs sampling

Teh, Jordan, Beal & Blei(2005) [300, 301] provided a Gibbs sampling technique for estimating pa-
rameters in the HDP mixture model based on a scheme of the ‘Chinese restaurant franchise’(CRF),
in which each document is regarded as a single Chinese restaurant having tables with customers
eating a dish 52. The dish corresponds to a topic (i.e., a cluster in DC), which is assumed to be
selected from a common menu of the franchise. A sequence number of a dish selected at u-th table
in restaurant di is denoted by kiu. For example, if customers at the second table in d5 eat the third
dish in the common menu, then k52 = 3. Note that only a single dish is eaten at each table, but
the dish may be exchanged with another dish (e.g., from k52 = 3 to k52 = 1). Since a customer
means a word token, it can be interpreted that kiu-th topic is assigned to customer wih sitting
at u-th table, and the term at position of token wih is assumed to be generated from φk where
k = kiu. When the dish is exchanged, the topic of all customers (i.e., tokens) at the table is shifted
concurrently. Also, it is possible that the customer transfers to another table in the restaurant.

Namely, in the CRF model, a value of z̃ih (i.e., a topic) will be determined through the table
to which wih belongs rather than directly drawn from π(·|θi). Finally, a term in di is supposed to

52The number of customers at each table in a single restaurant can be formalized as Chinese restaurant process
(CRP), which describes a distribution of partitions of n integers {1, 2, . . . , n} where n is discrete time index [296].
In the case of HDP, a set of restaurants administrated as a ‘franchise’ chain is considered.
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be drawn from π(·|uih,ki,φ) where uih denotes a sequence number of a table selected by customer
wih, ki = [ki1, . . . , kimi· ]

T , and mi· indicates the number of tables in di. If uih is generated from a
discrete distribution π(·|θ̃i) where θ̃i is an mi·-dimensional vector following a Dirichlet distribution
PD(·|α0/mi·, . . . , α0/mi·), then its limit with mi· → ∞ becomes a distribution similar to Equation
(4.147), which can be written as

P (uih = u|u¬ih
i ) →

{
f¬ih
u|i

li−1+α0
, if u appears already in u¬ih

i
α0

li−1+α0
, u is a ‘new’ table

, (4.148)

where ui = [ui1, . . . , uili ]
T and f¬ih

u|i denotes the times that u-th table appears in u¬ih
i .

The Gibbs sampling based on the the CRF consists of (a) drawing tables and (b) drawing
dishes. The conditional probability of drawing a table for token wih can be written as

P (uih = u|u¬ih,w,k) =
P (uih = u,u¬ih|w,k)

P (u¬ih|w,k)

=
P (w|uih = u,u¬ih,k)

P (w|u¬ih,k)
× P (uih = u,u¬ih|k)

P (u¬ih|k) , (4.149)

similarly to Equation (4.130) in the LDA where u = [uT
1 , . . . ,u

T
N ]T and k = [kT

1 , . . . ,k
T
N ]T . If u-th

table has been previously used (i.e., not a ‘new’ table), then particular φk can be specified for the
table and the first term of the most right-hand side in Equation (4.149) is written as

P (wih = tj ,w
¬ih|uih = u,u¬ih,k)

P (wih = tj ,w¬ih|u¬ih,k)
=

F¬ih
j|k[ih] + β

F¬ih
·|k[ih] +Mβ

≡ f¬ih
k (wih), (4.150)

by applying the analytical calculations deriving Equation (4.134) again (note that k[ih] in the
equation denotes a sequence number of the dish eaten at the table to which wih belongs, i.e.,
k[ih] ≡ kiuih

, and Dirichlet distributions PD(φk|β) for k = 1, . . . , L are assumed to be a symmetric
again with parameter β).

In contrast, because particular φk is not determined for a new table (which is denoted by u†),
P (w|uih = u†,u¬ih,k) has to be computed with considering that all dishes (i.e., topics) have a
chance to be selected for the table. A dish of a table is drawn from a discrete distribution π(·|κ),
and κ is also generated from a Dirichlet distribution PD(·| ξ/L, . . . , ξ/L) in the CRF model [300],
namely, kiu ∼ π(·|κ) and κ ∼ PD(·| ξ/L, . . . , ξ/L). Under the assumption, the probability that
topic τk is selected for u-th table in di given data k¬iu becomes again

P (kiu = k|k¬iu) →
{

m·k/(m·· + ξ), if k = 1, . . . , L
ξ/(m·· + ξ), otherwise (‘new’ topic)

, (4.151)

with L → ∞, where m·k is the number of tables eating k-th dish in all restaurants and m·· =∑L
k=1 m·k (note that u† = mi· + 1). Since P (w|uih = u†,u¬ih,k) should be formulated as an

expectation by the probabilities of selecting a dish, Equation (4.150) for new table u† becomes
that

P (wih = tj ,w
¬ih|uih = u†,u¬ih,k)

P (wih = tj ,w¬ih|u¬ih,k)
=

L∑
k=1

m·k
m·· + ξ

f¬ih
k (wih = tj) +

ξ

m·· + ξ

1

M

≡ P (wih = tj |†), (4.152)

where 1/M is a priori distribution of selecting tj . This means that a term is randomly selected
from the vocabulary for the new topic because there is no prior knowledge about term distribution
of a new dish in the franchise.

As to the second term of the most right-hand side in Equation (4.149), Equation (4.148) can
be straightforwardly used since P (uih = u,u¬ih|k)/P (u¬ih|k) = P (uih = u|u¬ih,k), (note that
the selection of a table is independent of k). Therefore, by combining Equation (4.148), (4.150)
and (4.152), the conditional distribution of uih in Equation (4.149) can be computed as

P (uih = u|u¬ih,w,k) ∝
{

f¬ih
u|i f

¬ih
k (wih), if u is previously used

α0P (wih = tj |†), if u = u† . (4.153)
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Consequently, in the case that u �= u†, a probability distribution similar to Equation (4.135) in
the LDA model was derived under some assumptions of the HDP mixture model. If a new table
was drawn from Equation (4.153), then a dish (i.e., topic) of the new table for wih has to be
successively drawn according to the probability distribution,

P (kiu† = k|u,k¬iu†
,w) ∝

{
m·kf¬ih

k (wih), if k = 1, . . . , L
ξ/M, if k = k† , (4.154)

where k† denotes a new dish of the franchise (i.e., k† = L+ 1) 53.
For sampling a dish for every table at next stage, it is necessary to consider the conditional

probability for all tokens belonging to the target table because all customers (i.e., tokens) at the
table eat the same dish as noted above. A set of index numbers of terms appearing as such tokens
is denoted by Λ[i, u] here. For example, if tokens w14 and w17 belong to the second table in d1
and their terms are t3 and t6, respectively, then Λ[1, 2] = {3, 6}. From similar calculations, the
likelihood corresponding to Equation (4.150) becomes that

P (w|u, kiu = k,k¬iu)

P (w|u,k¬iu)
=

∏
j∈Λ[i,u] Γ(Fj|k + ξ)∏
j∈Λ[i,u] Γ(F

¬iu
j|k + ξ)

×
Γ(F¬iu

·|k + Lξ)

Γ(F·|k + Lξ)
≡ g¬iu

k (w), (4.155)

where F¬iu
j|k denotes occurrence frequency of tj at tables eating k-th dish in all restaurants except

u-th table in di and F¬iu
·|k =

∑
j F

¬iu
j|k . By using again Equation (4.151), a probability distribution

for sampling topic k at each table,

P (kiu = k|u,k¬iu,w) ∝
{

m¬iu
·k g¬iu

k (w), if k = 1, . . . , L
ξg¬iu

k† (w), if k = k† , (4.156)

is obtained where m¬iu
·k denotes the number of tables eating k-th dish except u-th table in di and

g¬iu
k† (w) is a prior distribution. The prior can be reasonably assumed to be

g¬iu
k† (w) = (1/M)|Λ[i,u]|, (4.157)

if terms at the table are randomly selected from the whole vocabulary in a situation that there is
no knowledge 54.

After sampling repeatedly a table for each customer (i.e., token) and a dish (i.e., topic) for
each table, it is possible to generate document clusters by counting the number of tokens at tables
with k-th dish in di (i.e., fk|i) 55. For example, by using the result, θ̂ik in Equation (4.138) can

be estimated. It should be noted that the number of document clusters computed based on θ̂ik
is not necessarily equal to the number of dishes (i.e., topics) because some dishes may not be
dominant for any restaurant (i.e., document). Namely, the number of document clusters generated
posteriorly may become less than that of topics in each sample. The number of topics is denoted
by L′ for discriminating it from the number of document clusters L afterward (i.e., L′ ≥ L).

An example of DC procedure based on the HDP mixture model is shown in Figure 4.15. As
indicated in the figure, the number of topics L′ is changed in the sampling process, and a value of L′

is determined for each sample. If the set of clusters is produced by each sample (e.g., document di
is allocated to topic k = argmaxk′ fk′|i), then an empirical distribution of the number of document
clusters L over samples can be observed.

Figure 4.16 shows the empirical distributions obtained by Gibbs sampling for the sample DB
with α0 = 0.1 and β = 0.01. The number of iterations was 1100 times (a single chain), and the

53The distribution can be derived in a similar way for Equation (4.153). It follows that

P (kiu = k|u,k¬iu,w) =
P (k|u,w)

P (k¬iu|u,w)
=

P (w|k,u)
P (w|k¬iu,u)

× P (k|u)
P (k¬iu|u) ,

and P (w|k,u)/P (w|k¬iu,u) is computed by f¬ih
k (wih) in Equation (4.150) if k �= k†. When k = k†, the probability

can be assumed to be 1/M as before. Also, P (k|u)/P (k¬iu|u) is reduced to Equation (4.151) because selection of
a dish is not dependent on u.

54Note that |Λ[i, u]| indicates the number of elements in Λ[i, u].
55In the CRF model, fk|i is computed from fu|i of all tables ordering k-th dish in di.
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‡ Example of document clustering by Gibbs sampling for HDP mixture model

Set: Hyperparameters α0, β and ξ, and the total number of iterations r.

1) Set the number of topics to an initial value (e.g., L′ = 2) and assign each topic to
an initial table for di (mi· = L′; i = 1, . . . , N). After selecting randomly a table for
every token in di (i = 1, . . . , N), compute Fj|k and fu|i (k = 1, . . . , L′; j = 1, . . . ,M ;
u = 1, . . . ,mi·; i = 1, . . . , N), and set s to 1 (i.e., s ← 1).

2) [Sampling of tables] For i = 1, . . . , N , select randomly a table of token wih based
on Equation (4.153) (h = 1, . . . , li).

* If a new table is added (i.e., mi· ← mi· + 1), then determine a topic for it
based on Equation (4.154). Also, if a new topic is selected at this time, then
L′ ← L′ + 1.

* If a new table is added or token wih (= tj) transfers to another existing table,
then update Fj|k and fu|i for old and new tables.

* If the old table becomes empty as a result of the transfer, then it is removed
(i.e., mi· ← mi· − 1). Also, if the number of tables belonging to the topic
becomes zero by the removal, then the topic is deleted (i.e., L′ ← L′ − 1).

3) [Sampling of topics] For i = 1, . . . , N , select randomly a topic of each table in di
based on Equation (4.156) (u = 1, . . . ,mi·).

* If a new topic is assigned or the topic is changed, then update Fj|k for old and
new topics where j ∈ Λ[i, u] (in the case of a new topic, L′ ← L′ + 1).

* If the number of tables belonging to the old topic becomes zero at this time,
then the topic is deleted (i.e., L′ ← L′ − 1).

4) s ← s+ 1. If s > r, then go to step 5). Otherwise, return to 2).

5) Terminate the procedure after allocating di (i = 1, . . . , N) to a cluster based on a
method (e.g., by Equation (4.139)).

Out: L′ and L, and clusters C1, . . . , CL.

Figure 4.15: An example of DC procedure based on Gibbs sampling for HDP model
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distributions in Figure 4.16 were complied from a set of 1000 samples after the burn-in-period
(i.e., B = 100) with ξ = 0.1 and ξ = 0.5, respectively. It seems that L = 4 was obtained as
an optimal number of document clusters in this experiment. However, since hyperparameter ξ
governs a possibility that a new topic k† is selected in the stage of sampling topics for tables, a
bigger value of ξ tends to generate more topics as the graphs show. Also, hyperparameters α0

and β have an effect on the resulting numbers of topics and clusters. Actually, it would not be
easy to determine optimal values of the hyperparameters although the HDP mixture model has an
advantage of determining automatically the numbers of topics and clusters for observed data.
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Figure 4.16: Numbers of document clusters estimated by HDP for sample DB (for 1000 samples
after burn-in-period when α0 = 0.1 and β = 0.01)

Since a topic of all terms at a table may be changed together in the stage of sampling the
topics, label switching would naturally occur. For example, in the experiment using the sample
DB, d1, d2, d3, d4 and d5 were allocated to topics such that

d1: k = 1, d2: k = 1, d3: k = 1, d4: k = 3, d5: k = 3 in 515th sample,
d1: k = 3, d2: k = 3, d3: k = 3, d4: k = 1, d5: k = 1 in 570th sample,

according to the rule that k = argmaxk′ fk′|i. Needless to say, the two samples indicate the
same clustering result of {d1, d2, d3} and {d4, d5} even though the topic numbers are swapped.
Therefore, a criterion corresponding to Equation (4.75) is required for determining exactly a topic
for each document. However, if disregarding estimation of φj|k and θki and trying only production
of document clusters, then it is enough to apply the ‘cluster pattern count method’ described in
Section 4.1.2. The result of applying it to the data of samples in Figure 4.16(a) is shown in Table
4.19, which indicates that the set of documents, {{d1, d2, d3}, {d4, d5, d7}, {d6, d8, d9}, {d10}}
(L = 4), was appearing most frequently in a single chain with ξ = 0.1.

Teh, Jordan, Beal & Blei(2005) [300] described other methods of Gibbs sampling based on the
CRF model. Alternatively, a variational inference technique for estimation of the HDP mixture
model was also proposed [302]. Instead of the algorithm in Figure 4.15, it is possible to use them
for DC based on the HDP mixture model. In addition, the Chinese restaurant model was applied
to construct a hierarchical topic structure [28].

4.2 Matrix-based Document Clustering

By manipulating a document-by-term matrix or term-by-document matrix like the sample DB in
Table 3.1, based on the linear algebra theory, a partition of documents or terms can be obtained.
In this section, DC techniques utilizing the matrix operations are reviewed.

4.2.1 Use of latent semantic indexing (LSI)

Latent semantic indexing (LSI) developed by Deerwester et al.(1990) [79] for enhancing effectiveness
of IR tries to reduce dimensionality of a document-by-term matrix (or its transposed matrix) by
using matrix operations. A document-by-term weight matrix is denoted by W = [wij ] (i =
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Table 4.19: Result of Gibbs sampling for HDP mixture model in sample DB

Clusters L No. of samples
1. {d1, d2, d3}{d4, d5, d7}{d6, d8, d9}{d10} 4 276
2. {d1, d2, d3, d5}{d4, d7}{d6, d8, d9}{d10} 4 194
3. {d1, d2, d3}{d4, d5, d7}{d6, d8, d9, d10} 3 68
4. {d1}{d2, d3}{d4, d5, d7}{d6, d8, d9}{d10} 5 66
5. {d1, d2, d3, d5}{d4, d7}{d6, d8, d9, d10} 3 55
6. {d1, d2, d3}{d4, d7}{d5, d6, d8, d9}{d10} 4 44
7. {d1, d2, d3}{d4, d5, d7, d10}{d6, d8, d9} 3 35
8. {d1, d2, d3}{d4, d5, d7}{d6, d9}{d8, d10} 4 21
9. {d1, d2, d3, d4, d5, d7}{d6, d8, d9, d10} 2 20
10. {d1}{d2, d3, d5}{d4, d7}{d6, d8, d9}{d10} 5 13
11. Others: 86 sets of clusters in total - 208

Total - 1000
Note: A single chain with α0 = 0.1, β = 0.01 and ξ = 0.1.

1, . . . , N ; j = 1, . . . ,M). According to matrix algebra, W = [wij ] can be exactly decomposed such
that

W = UQVT , (4.158)

where U is an N × r orthogonal matrix Q is an r× r diagonal matrix, V is an M × r orthogonal
matrix, and r indicates the ‘rank’ of matrix W (where r ≤ min(N,M)) 56. Alternatively, Equation
(4.158) can be represented as

W = η1u1v
T
1 + η2u2v

T
2 + . . .+ ηrurv

T
r , (4.159)

where U = [u1, . . . ,ur], V = [v1, . . . ,vr], and η1, . . . , ηr are diagonal elements of Q. Equation
(4.158) or (4.159) is called singular value decomposition (SVD). If η1 > . . . > ηr, then u1 and v1

are the dominant factors explaining data matrix W, followed by u2 and v2, u3 and v3, and so on
(see Figure 4.17).

 

Figure 4.17: Singular value decomposition (SVD)

As an example, let W be a 5× 6 matrix constructed by extracting only d1, d2, d4 and d8 from

56In this section, r denotes rank of a matrix, not the total number of iterations.
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the sample DB and by adding specially d11 = [0, 0, 0, 0, 1, 4]T , namely,

W = [d1,d2,d4,d8,d11]
T =

⎡
⎢⎢⎢⎢⎣

4 1 0 0 0 0
1 3 0 0 0 0
0 0 4 3 0 0
0 0 0 2 3 0
0 0 0 0 1 4

⎤
⎥⎥⎥⎥⎦ , (4.160)

which is decomposed into

U =

⎡
⎢⎢⎢⎢⎣

0.000 0.851 0.000 0.000 −0.526
0.000 0.526 0.000 0.000 0.851
0.911 0.000 −0.237 0.338 0.000
0.397 0.000 0.280 −0.874 0.000
0.112 0.000 0.930 0.349 0.000

⎤
⎥⎥⎥⎥⎦ , (4.161)

Q =

⎡
⎢⎢⎢⎢⎣

5.255
4.618

4.231
3.079

2.382

⎤
⎥⎥⎥⎥⎦ , (4.162)

and

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.000 0.851 0.000 0.000 −0.526
0.000 0.526 0.000 0.000 0.851
0.693 0.000 −0.224 0.439 0.000
0.671 0.000 −0.035 −0.238 0.000
0.248 0.000 0.418 −0.738 0.000
0.085 0.000 0.880 0.453 0.000

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.163)

since the rank of W is five (i.e, r = 5) 57. It should be noted that UQVT is also represented as
(−U)Q(−VT ), which is clear from Equation (4.159).

If Q is replaced by Q′ whose diagonal elements are 5.255, 4.618, 0.000, 0.000 and 0.000 (i.e.,
new diagonal matrix Q′ is constructed by extracting only the two largest elements from Q, which
can be represented as Q′ = diag [5.255, 4.618, 0.000, 0.000, 0.000]), then

W′ = UQ′VT
=

⎡
⎢⎢⎢⎢⎣

3.342 2.065 0.000 0.000 0.000 0.000
2.065 1.276 0.000 0.000 0.000 0.000
0.000 0.000 3.319 3.213 1.187 0.409
0.000 0.000 1.447 1.400 0.517 0.178
0.000 0.000 0.409 0.396 0.146 0.050

⎤
⎥⎥⎥⎥⎦ . (4.164)

Matrix W′ can be interpreted as a new document-by-term matrix reflecting only two dominant
dimensions within the original space represented by W. In IR, the dominant dimension is often
regarded as a ‘major’ concept represented by a set of different terms in documents. For example,
the first dimension corresponding to 5.255 in Q would be a concept relating to third, fourth, fifth
and sixth terms in W because values of these terms in the first column of V in Equation (4.163)
are not zero. Actually, whereas a standard similarity measure between d4 and d11 becomes zero by
computation using the original matrix W due to no common term between them, the similarity of
them is not zero for W′ in Equation (4.164).

It is the main idea of LSI to extract such ‘latent’ concepts behind terms by using SVD of
the document-by-term (or term-by-document) matrix, and if a search query is incorporated by a
method into the LSI space constructed from some dominant dimensions, then it is expected that
IR performance is improved. Otherwise, a 5× 2 matrix,

UQ′ =

⎡
⎢⎢⎢⎢⎣

0.000 3.928
0.000 2.428
4.787 0.000
2.086 0.000
0.590 0.000

⎤
⎥⎥⎥⎥⎦ , (4.165)

57Because N = 5 and M = 6, min(N,M) = 5. There is no row represented by a linear combination of other rows
in W, and therefore, straightforwardly r = 5. For details on the rank, see a textbook on matrix algebra.
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can be potentially used for some applications as more compact representations of documents. Since
UQ = WV and [WV]T = VTWT , if m < r ≤ M , the set of vectors v1, ...,vm can be used for
converting each document vector such that

d̄i = [v1, ...,vm]Tdi, i = 1, . . . , N. (4.166)

The d̄i is an m-dimensional vector, which means that the LSI allows for reducing dimensions of a
given document space with keeping main concepts (or semantics) in the resulting compact space.

In this trivial case, UQ′ (or U) can be used for DC. Equation (4.165) explicitly shows that the
document set can be divided into two clusters, C1 = {d4, d8, d11} and C2 = {d1, d2}. However, in
general, it is hard to use directly results from the SVD for DC. For example, in the case of the
sample DB,

Q = diag [ 9.025, 7.294, 6.316, 4.854, 3.633, 2.588 ], (4.167)

and

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.079 0.281 0.098 0.175 −0.917 −0.119
−0.140 0.382 0.104 0.090 0.027 0.061
−0.271 0.721 0.192 0.141 0.307 0.160
−0.309 −0.066 −0.595 0.041 −0.135 0.620
−0.271 0.181 −0.102 −0.168 0.117 −0.058
−0.488 −0.162 0.327 −0.263 0.008 −0.199
−0.401 0.071 −0.524 −0.294 −0.018 −0.491
−0.302 −0.227 0.181 0.124 −0.045 0.415
−0.425 −0.310 0.385 −0.078 −0.062 0.075
−0.246 −0.198 −0.125 0.857 0.160 −0.332

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.168)

from which it is not easy to extract any interpretation on clustering. As discussed later, W should
be converted before executing SVD.

4.2.2 Principal component analysis (PCA)

By regarding each term as a variable, it is possible to treat W as a data matrix to which principal
component analysis (PCA) is applied. In the PCA, a variable ζ is assumed to be constructed as a
linear combination of observed variables t1, . . . , tM such that

ζ = a1t1 + a2t2 + ...+ aM tM , (4.169)

where aj is a weight (j = 1, . . . ,M) and
∑

j a
2
j = 1. If observed variables and weights are written

as vectors, x = [t1, ..., tM ]T and a = [a1, ..., aM ]T , respectively, the constructed variable becomes
ζ = aTx. By using a covariance matrix

Σ = E[(x− E(x))(x− E(x))T ], (4.170)

the variance of ζ can be represented as V (ζ) = aTΣa 58.
In the PCA, the weight vector a is empirically determined from observed data so that V (ζ) is

maximized under a condition that aTa = 1. For the maximization, it is necessary to differentiate

H = aTΣa− λ(aTa− 1), (4.171)

where λ is the Lagrange multiplier, and to solve a equation ∂H/∂a = 0. So, it follows that

Σa = λa. (4.172)

Generally, λ is called an eigenvalue and a is an eigenvector.
The matrix Σ can be computed from observed data such that

Σ̂ =
1

N
[W − emT ]T [W − emT ], (4.173)

58Because ζ = aTx, V (ζ) = E[(aTx − E(aTx))(aTx − E(aTx))T ] = E[(aT (x − E(x))(aT (x − E(x))T ] =
E[aT (x− E(x))(x− E(x))T a] = aTE[(x− E(x))(x− E(x))T ]a = aTΣa. Note that E(aTx) = aTE(x) since a is
a weight vector independent of x.
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where m is an M -dimensional ‘mean vector’, j-th element of which is mj = N−1
∑N

i=1 wij (j =
1, ...,M) and e is an N -dimensional vector whose all elements are one (i.e., e = [1, 1, 1, ..., 1]T ) 59.

By solving Σ̂a = λa, weights for the linear combination of Equation (4.169) can be obtained.
If the SVD of W̃ = N−1/2[W − emT ] is written as

W̃ =
1√
N

[W − emT ] = UQVT , (4.174)

then Equation (4.173) becomes

Σ̂ = [UQVT ]TUQVT = VQUTUQVT = QQVVT , (4.175)

which leads to Σ̂V = QQV. In this context, it is possible to interpret thatV = [a1,a2, . . . ,ar], and
the corresponding element of diagonal matrix Q2 is an eigenvalue of eigenvector ak (k = 1, . . . , r).

It is assumed that the diagonal elements of Q is arranged in descending order of their values
like Equation (4.162), and that columns of U and V are also replaced in the same order here.
Conventionally, variable ζ computed by eigenvector a1 is called ‘first component’, and that by a2
is ‘second component’ and so on. Figure 4.18 is a plot of documents in the sample DB by scores
of the first component W̃a1 (x-axis) and those of the second component W̃a2 (y-axis). Actually,
in the case of the sample DB,

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.286 0.112 −0.212 0.707 −0.217 0.561
−0.670 0.210 0.245 −0.535 0.043 0.400
0.105 −0.754 0.551 0.039 −0.154 0.303
0.271 −0.224 −0.451 −0.205 0.613 0.507
0.608 0.546 0.376 −0.090 −0.152 0.398
0.124 −0.164 −0.497 −0.404 −0.727 0.136

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.176)

and for example, the first element of W̃a1 is −0.667, which is a value for d1. According to W̃V
obtained from the PCA, a graphical representation of document groups like this figure becomes
feasible.
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Figure 4.18: Result of PCA

As mentioned above, V (ζ) = aTΣa and Σ̂V = QQV. Thus since VT Σ̂V = VTQQV =
QQVTV, variance of k-th component can be computed as η2ka

T
k ak = η2k where ηk means k-th

element of Q as before. In the sample DB,

Q = diag
[
2.339, 1.998, 1.623, 1.226, 0.825, 0.372

]
. (4.177)

59In statistical inference from a sample, N − 1 is often used instead of N in Equation (4.173).
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So, the variance of first component is 2.3392 = 5.472, which amounts to about 37.9% of total
variance of all principal components (i.e., = 2.3392/(2.3392 + . . . + 0.3722)). Because variance of
the second component is about 27.7%, cumulative portion of variance up to the second component
is computed as 65.6%, which can be considered to indicate the degree to which the plot in Figure
4.18 reflects variation in original data W.

Otherwise, U in Equation (4.174) can be used for DC. For the sample DB, this matrix is
computed such that

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.285 0.097 −0.278 0.800 −0.197 0.190
−0.350 0.110 −0.059 −0.023 0.086 −0.561
−0.622 0.209 0.084 −0.437 0.136 0.460
0.127 −0.591 0.005 0.090 0.587 0.264

−0.110 −0.093 0.223 −0.071 −0.024 −0.525
0.295 0.339 0.361 −0.036 −0.215 0.232
0.039 −0.510 0.400 −0.007 −0.497 0.024
0.280 0.181 −0.116 0.033 0.413 −0.182
0.408 0.390 0.118 0.039 0.062 0.065
0.219 −0.131 −0.738 −0.390 −0.350 0.034

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.178)

whose the first column splits the dataset into {d1, d2, d3, d5} and {d4, d6, d7, d8, d9, d10} by setting
zero as a border. Similarly, by using the second column, the former is furthermore partitioned into
{d1, d2, d3} and {d5}, and the latter becomes {d4, d7, d10} and {d6, d8, d9}. Based on this heuristic
rule, it is possible to obtain document clusters from a result of SVD after converting W as shown
in Equation (4.174). According to this heuristic rule, documents are divided into four quadrants
by the first and second components as indicated in Figure 4.18 (however, in the case of sample
DB, it appears that d5 and d10 are located in the middle area between three clusters) 60.

Needless to say, similar partitioning is feasible by using W̃V. It should be noted that, rather
than using SVD of W̃, the PCA can be executed by applying directly an algorithm for computing
eigenvalues and eigenvectors of Σ̂ such as the Householder method, QR algorithm, Lanczos method
and so on. In this case, document clustering is executed inevitably based on V because U is not
explicitly computed.

In principal direction divisive partitioning PDDP) algorithm [31, 32], which is a kind of binary
divisive clustering (Section 3.2.4), the target document collection is repeatedly divided by using
PCA. In each step, documents involved in a set are classified into two parts depending on whether
the first component score is positive or negative. Also, in NGPDDP(non-greedy version of PDDP)
algorithm [224], components other than the first one can be selected for the partition according
to a criterion on the variance of a set of clusters. Meanwhile, PDDP(l) algorithm [331] tries to
classify the target set into 2l parts in each stage where l ≥ 1 (i.e., if l = 1, then the PDDP(l)
algorithm reduces to the original one) 61.

Another extension of the PDDP algorithm is to use kernel PCA [332], which is a nonlinear ver-
sion of PCA. Let Φ denote a nonlinear map, Φ : RM → F where RM means anM -dimensional space
of real numbers and F represents a feature space with arbitrarily high dimensionality 62. When
the target dataset can not be well classified into homogeneous subsets by any ‘linear’ function, the
nonlinear map may enhance performance of the classification. Usually, based on the nonlinear map,
a kernel function is defined as k(di,dh) ≡ Φ(di)

TΦ(dh), which allows to not use directly a compli-
cated nonlinear map. For example, Gaussian kernel is defined as k(di,dh) = exp(−‖di−dh‖2/σ2)
where σ is a parameter [69] 63.

An N ×N symmetric matrix whose (i, h)-element is k(di,dh) is denoted by K here, which can
be decomposed as K = UQUT based on the spectral decomposition theorem if K is a nonnegative

60Otherwise, like spectral clustering (Section 4.3.2), it may be possible to execute k-means clustering for some
columns (e.g., the first and second ones) extracted from matrix U.

61Only in this part, l does not denote the collection length.
62If the number of dimensions in F is lower than M , then the map can be considered as a dimensional reduction.
63Another example is polynomial kernel, k(di,dh) = (dT

i dh + c)p, where p is polynomial degree and c indicates a
parameter [69]. If p = 1 and c = 0, then the kernel reduces to an inner product. ‘Kernel-based clustering’ techniques
including support vector clustering (SVC) algorithm (see [322]) are useful for some problems (e.g., identification of
handwritten digit patterns).
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definite matrix [120]. Since

k(di,dh) = [K]ih = [UQUT ]ih =
r∑

j=1

λjuijuhj , (4.179)

where r is the rank of K (i.e., r ≤ N) 64, λj is a diagonal element of Q, and uij is (i, j)-element
of U, the nonlinear map can be represented as

Φ(di) =
[√

λ1ui1, . . . ,
√
λruir

]T
(4.180)

(Φ(dh) is similarly written) [69].
If N−1

∑
i Φ(di) = 0 (i.e., the data is ‘zero-centered’), then the covariance matrix can be

written as

Σ̂ =
1

N

N∑
i=1

Φ(di)Φ(di)
T = ΦΦT , (4.181)

where Φ = [Φ(d1)/
√
N, . . . ,Φ(dN )/

√
N ] (i.e., an r×N matrix). By substituting it into Equation

(4.172), a kernel PCA becomes feasible. In the kernel PCA, it is assumed that eigenvector a in
Equation (4.172) is a vector on the feature space, which means that the eigenvector is represented
as a = Φα where α = [α1, . . . , αN ]T , or equivalently, a =

∑
i αiΦ(di) (αi can be interpreted as

a coefficient). Thus Equation (4.172) becomes that Σ̂Φα = λΦα, which leads to ΦTΦα = λα.
Since K = N−1ΦTΦ, finally,

Kα = Nλα, (4.182)

is obtained. Thus by computing the eigenvalue decomposition under the constraint that λαTα = 1
for keeping aTa = 1 65, a result of the kernel PCA can be obtained 66. A variant of PDDP(l)
algorithm using the kernel PCA is called KPDDP(l) [332] 67.

4.2.3 Rescaling techniques for identifying minor clusters

Iterative residual rescaling (IRR) algorithm

An original intention of LSI is to identify major factors explaining variation of term occurrences
among documents so that a minor portion causing ‘noisy’ search results is removed. However,
in the case of DC, it may be useful to find clusters representing such minor portion. Iterative
residual rescaling (IRR) algorithm [10, 11] tries to extract iteratively ‘base vectors’ corresponding
to column vectors of V in Equation (4.158) with rescaling of the document-by-term matrix from
which the base vectors are extracted. The residual matrix from which a vector is extracted in each
iteration is denoted by R (an N ×M matrix), and rescaling of the matrix is defined such that

Rs = [‖r̃1‖q r̃1, ‖r̃2‖q r̃2, ..., ‖r̃N‖q r̃N ]T , (4.183)

where r̃i indicates a column vector of RT and q is a constant for rescaling (q > 0). Note that
since r̃i corresponds to a document vector, its norm can be considered as document length. Thus
Equation (4.183) means that each document vector is augmented according to its length and that
a longer document vector becomes further longer in the iterative steps.

If SVD of R is written as R = UQVT , then

RTRV = VQ2, (4.184)

as before (see Equation (4.175)), which means that each vector ofV is an eigenvector of a symmetric
matrixRTR. Therefore, as an algorithm for obtainingV that is a right matrix of SVD, it is possible
to compute Equation (4.184) repeatedly as follows:

64[ · ]ij means (i, j)-element of the matrix.
65Note that aT a = αTΦTΦα = N−1αTKα = N−1αTNλα = λαTα.
66When the dataset is not centered, matrix K has to be converted before computing the decomposition (see

[322, 332]).
67As an application of DC, the kernel has been also used in ‘semantic locally adaptive clustering’ (semantic LAC)

by [7].
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1. Set that k ← 1 and record the rank of initial R into r.

2. Solve Equation (4.184) and keep its first eigenvector (i.e., the vector corresponding to the
largest eigenvalue) as vk.

3. Compute projection 68 of R on a subspace constructed by vk such that Rvkv
T
k .

4. Compute residual portion by subtracting the projection from R, and replace R by R −
Rvkv

T
k , namely, R ← R−Rvkv

T
k .

5. If k = r, then the procedure is terminated. Otherwise, return to step 2 after k ← k + 1.

By initially setting that R = W, this procedure allows to compute the right matrix in SVD of W
(note that this is a part of general algorithm for calculating SVD).

In the IRR algorithm, before computing eigenvectors of R, R is rescaled by Equation (4.183).
If vectors of documents belonging to minor portion are enough enlarged by the rescaling, the IRR
algorithm may find clearly it. The precise procedure of IRR algorithm is shown in Figure 4.19.
The base vectors bj (j = 1. . . . ,m) correspond to components of right matrix of SVD, and if q = 0
and m = M , then it becomes that bj = vj (j = 1. . . . ,M), which means that the IRR algorithm
reduces to computation of standard SVD.

‡ IRR algorithm

Set: The number of iterations m (< M) and a constant q (> 0). Initially, R = W, and
k ← 1.

1) Compute Rs by Equation (4.183) .

2) Compute eigenvectors of RT
s Rs, and record the first eigenvector as bk.

3) Compute residual matrix as R ← R−Rbkb
T
k .

4) k ← k + 1. If k > m, then the procedure is terminated. Otherwise, return to 1).

Out: Basis vectors b1, . . . ,bm.

Figure 4.19: IRR algorithm

After calculating the base vectors by the IRR algorithm, each document can be converted as

d̄i = [b1, ...,bm]Tdi, i = 1, . . . , N, (4.185)

in which bk is used for vk of Equation (4.166) (k = 1, . . . ,m). For example, the sample DB is
converted by the IRR algorithm with q = 2.0 and m = 3 such that

¯̃WT =

⎡
⎣ 0.461 0.807 1.593 −0.622 0.228 −0.348

0.065 0.129 0.183 −0.173 −0.276 −0.498
−0.719 −0.078 0.205 0.915 0.287 −0.486

−0.335 −0.511 −0.619 −0.654
−0.522 0.054 −0.243 1.281
0.865 −0.376 −0.701 0.090

⎤
⎦ ,

where W̃ = N−1/2[W−emT ] as before and ¯̃W is a conversion of W̃ according to Equation (4.185)
(i.e., initially, R = W̃ in the IRR algorithm). Figure 4.20 is a plot of documents using the first

and second rows of ¯̃WT , which provides a partition slightly different from that in Figure 4.18.
68In general, projection of a column vector y on a subspace representing a matrix X can be computed such that

z = X[XTX]−1XTy. Suppose that z = Xc for vector c (which means that z is a vector on the subspace). If z is
projection of y on X, then XT [y − z] = XT [y − Xc] = 0 by its definition. Therefore, c = [XTX]−1XTy, which
leads to z = X[XTX]−1XTy. By replacing X with vk, it follows that z = vk[v

T
k vk]

−1vT
k y. But, since vT

k vk = 1,

it becomes that z = vkv
T
k y which leads to zT = yTvkv

T
k because vkv

T
k is a symmetric matrix. By replacing y

with a document vector, projection Rvkv
T
k can be obtained.
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 Figure 4.20: Result of IRR (q = 2.0)

As already mentioned, the scale factor q has an effect of augmenting length of each document
vector so that longer vectors become further longer. For example, in the above case, the initial
vector of d1 is

[1.075,−0.126,−0.379,−0.284,−0.506,−0.158]T ,

which becomes
[1.804,−0.212,−0.637,−0.478,−0.849,−0.265]T ,

in the first stage. The rate of augmentation is rapidly increasing during the iteration. It may be
possible to pick up outliers as minor clusters by using the augmentation of vectors.

COV-rescale algorithm

Unlike the IRR algorithm, COV-rescale algorithm [162] extracts base vectors from SVD of co-
variance (COV) matrix computed from rescaled residual matrix Rs. So, without any rescal-
ing operation, the COV-rescale algorithm computes standard SVD of a centralized matrix W̃ =
N−1/2[W − emT ] (see Equation (4.173)) 69.

In the algorithm, the factor q is determined such that

q =

⎧⎨
⎩

x−1 if x > 1.0
1.0 + x if x ≈ 1.0

101/x
2

if x < 1.0

, (4.186)

where x = max(‖r̃1‖, . . . , ‖r̃N‖). More specific procedure of the COV-rescale algorithm is shown
as Figure 4.21.

For the sample DB, since x = 6.08 in the first step, it becomes that q = 0.164, which augments
the first document vector [4, 1, 0, 0, 0, 0]T into

[5.049, 1.262, 0.000, 0.000, 0.000, 0.000]T ,

and finally, the algorithm generates a matrix

W̄T =

⎡
⎣ −1.786 −2.332 −4.390 1.285 −0.534 2.404

−0.561 −0.659 −1.224 3.713 0.593 −2.182
−0.394 0.526 1.207 0.868 1.955 2.721

69If q = 0.0, then the result from the IRR algorithm with W̃ is equal to that from the COV-rescale algorithm
with W. But, if q > 0.0, then these results are not identical because the matrices rescaled in both the algorithms
are different.
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‡ COV-rescale algorithm

Set: The number of iterations m (< M). Initially, R = W, and k ← 1.

1) Compute q by Equation (4.186) after calculating norms of all vectors in R.

2) Compute Rs by Equation (4.183).

3) Compute SVD of covariance matrix of Rs, and record the first vector of its right
matrix as bk.

4) Compute the residual matrix as R ← R−Rbkb
T
k .

5) k ← k + 1. If k > m, then the procedure is terminated. Otherwise, return to 1).

Out: Basis vectors b1, . . . ,bm.

Figure 4.21: COV-rescale algorithm

0.643 2.313 3.234 1.897
3.218 −1.204 −2.529 0.748
2.887 0.258 1.485 −3.009

⎤
⎦ ,

whose first and second rows provide a similar map with Figure 4.18 by the PCA.

4.2.4 Factorization into nonnegative matrices

Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) has been recently used for identifying latent structure
behind a phenomenon in various area including signal processing, neuroscience, data mining and
so on [65], and also becomes being applied to DC problems [324]. According to the convention in
literature, a term-by-document matrix Z ≡ WT = [d1,d2, . . . ,dN ] is considered to be an input
to the NMF algorithm here. By the algorithm, original data set Z is approximately factorized
into two non-negative matrices A and C such that Z ≈ ACT (all elements of the matrices are
non-negative, i.e., A = [aij ] where aij ≥ 0 and C = [cij ] where cij ≥ 0) 70. If Z is an M × N
matrix, then A is an M × L matrix and C is an N × L matrix where L < min(N,M). It should
be noted that A and C are not an orthogonal matrix, which is one of the differences from SVD 71.

In the case of DC, L corresponds to the number of clusters, which has to be determined a priori,
and the matrix C obtained by numerical computation (see below) allows for allocating document
di to cluster Ck such that

k = argmax
j=1,...,L

cij , (4.187)

(i.e., k = j where cij is the maximum among the set {ci1, . . . , ciL}). Because C does not contain
any negative element unlike U in the SVD, it is possible to allocate directly documents to clusters.
This is an advantage of the NMF when it is employed for DC. In general, the non-negativity makes
interpretation of results easier in connection with target entities in real world, which may be a
reason that the NMF is widely applied in various areas. Note that terms in documents can be
simultaneously grouped based on matrix A by a criterion similar to Equation (4.187).

For the NMF, it is necessary to find computationally A and C that minimize an objective
function

H(A,C) =
1

2
‖Z−ACT ‖2. (4.188)

70Alternatively, the NMF can be formulated as Z = ACT +E where E denotes a matrix of error terms.
71When the orthogonality of A or C is assumed, then it is specially called ‘semi-orthogonal NMF’ [65]. In DC, it

seems that the assumption of orthogonality is not adopted.
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When using Frobenius norm 72 as ‖ · ‖, this objective function can be transformed such that

H(A,C) = (1/2)tr[(Z−ACT )(Z−ACT )T ]

= (1/2)tr(ZZT )− tr(ZCAT ) + (1/2)tr(ACTCAT ), (4.189)

according to its definition 73.
Since this is a minimization problem with inequality constrains that aij ≥ 0 and cij ≥ 0 for

all i and j, it is necessary to apply Karush-Kuhn-Tucker (KKT) theorem for solving it. Suppose
that f(x) has to be minimized under a condition g(x) ≥ 0 where x is an n-dimensional vector and
f : Rn → R and g : Rn → R

p. According to the KKT theorem, there exists α ∈ R
p satisfying

conditions such that

1. α ≥ 0

2. Df(x∗)T −Dg(x∗)Tα = 0

3. g(x∗)Tα = 0

where x∗ = [x∗
1, . . . , x

∗
n]

T is a local minimizer and D means differentiation 74 [63]. The vector α is
called the KKT multiplier vector.

In the case of NMF, Equation (4.189) corresponds to the function f(x∗) in the conditions, and
its derivatives can be computed such that

∂H(A,C)

∂A
= −ZC+ACTC, (4.190)

∂H(A,C)

∂C
= −ZTA+CATA, (4.191)

from the definition of trace 75. Also, since p = n and g(x) = x (i.e., g1(x) = x1, . . . , gn(x) = xn)
in the case of NMF, Dg(x) = I(n) and Dg(x)Tα = α are obtained where I(n) denotes an n-
dimensional diagonal matrix whose all diagonal elements are one. Therefore, for computing NMF,

72Frobenius norm of a matrix X = [xij ] is defined as

‖X‖ =

⎛
⎝∑

i

∑
j

x2
ij

⎞
⎠

1/2

.

73If X is a 2× 2 matrix, then

XXT =

[
x2
11 + x2

12 x11x21 + x12x22

x11x21 + x12x22 x2
21 + x2

22

]
,

and since the trace of a square matrix is defined as the sum of its diagonal elements,

tr(XXT ) =
2∑

i=1

2∑
j=1

x2
ij = ‖X‖2.

Also, tr(XYT ) = tr(YTX) where X and Y are an n × m matrix, and tr(X−Y) = tr(X) − tr(Y) when both X
and Y are a square matrix [120].

74Since g(x) = [g1(x), . . . , gp(x)]T , for a point x = x0,

Dg(x0) =

[
∂g

∂x1
(x0), . . . ,

∂g

∂xn
(x0)

]
=

⎡
⎢⎢⎢⎣

∂g1
∂x1

(x0) . . . ∂g1
∂xn

(x0)

..

.
. . .

..

.
∂gp
∂x1

(x0) . . .
∂gp
∂xn

(x0)

⎤
⎥⎥⎥⎦ ,

which is called Jacobian matrix or derivative matrix. Also, Df(x) = [∂f(x)/∂x1, . . . , ∂f(x)/∂xn] according to the
definition.

75For an m×n matrix X = [xij ] and an n×m matrix Y = [yij ], ∂tr[YX]/∂xij = ∂tr[XY]/∂xij = yji. Therefore,

∂tr[YX]

∂X
=

∂tr[XY]

∂X
= YT ,

and similarly, when X is an n×m matrix,

∂tr[YXT ]

∂X
=

∂tr[XTY]

∂X
= Y.
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the second KKT condition related to Equation (4.190) becomes

−ZC+ACTC− Ā1 = O, (4.192)

where Ā1 = [α1, . . . ,αL], αj is an M -dimensional KKT multiplier vector (j = 1, . . . , L), and O
denotes a zero matrix. Similarly,

−ZTA+CATA− Ā2 = O, (4.193)

where Ā2 = [α̃1, . . . , α̃L] and α̃j is an N -dimensional KKT multiplier vector.
Since the third KKT condition becomes x∗

j′ × αj′ = 0 where αj′ indicates an element of α
(j′ = 1, . . . , n) in the case that p = n and g1(x) = x1, . . . , gn(x) = xn, the KKT multiplier vector
can be eliminated such that

−ZC ◦A+ACTC ◦A− Ā1 ◦A = −ZC ◦A+ACTC ◦A = O, (4.194)

where ◦ means the Hadamard product 76. Similarly,

−ZTA ◦C+CATA ◦C = O, (4.195)

and Equations (4.194) and (4.195) lead to

−[ZC]ijaij + [ACTC]ijaij = 0, (4.196)

−[ZTA]ijcij + [CATA]ijcij = 0, (4.197)

for each element of A and C. From the equations, updating formulas for computing numerically
A and C can be derived such that

aij ← aij
[ZC]ij

[ACTC]ij
, (4.198)

cij ← cij
[ZTA]ij
[CATA]ij

. (4.199)

Therefore, by updating repeatedly each value of aij (i = 1, . . . ,M ; j = 1, . . . , L) and cij (i =
1, . . . , N ; j = 1, . . . , L) according to Equations (4.198) and (4.199), respectively, after allocating
randomly initial positive values to them, NMF can be executed. This computational method is
often called multiplicative iterative algorithm or ‘Lee-Seung algorithm’ [180], which is relatively
easier to be implemented than other estimation techniques such as Newton’s method.

However, A and C obtained by the algorithm using Equations (4.198) and (4.199) are not
unique because clearly

Z ≈ ACT = [AD][CD−1]T (4.200)

for a diagonal matrix D. In this section, each column of A is converted into a unit vector based
on the norm, namely, elements on j-th column are divided by (

∑
i a

2
ij)

1/2 for obtaining a unique
result.

By this algorithm of NMF under an assumption that L = 3, the sample DB can be approxi-
mately factorized such that

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.323 0.000 0.000
0.945 0.024 0.010
0.036 0.907 0.000
0.000 0.358 0.211
0.019 0.040 0.974
0.000 0.216 0.081

⎤
⎥⎥⎥⎥⎥⎥⎦
,

76If X and Y are a 2× 2 matrix, then

X ◦Y =

[
x11 × y11 x12 × y12
x21 × y21 x22 × y22

]
,

which is element-by-element multiplication of two matrices with the same dimension.

148



and

CT =

⎡
⎣ 2.238 3.160 5.996 0.000 1.867 0.916 0.870 0.000 0.000 0.000

0.000 0.000 0.000 4.701 1.702 0.446 4.711 0.401 0.000 1.754
0.000 0.000 0.000 0.013 0.718 4.796 0.420 3.291 5.081 1.700

⎤
⎦ .

Because

[ACT ]T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.724 2.116 0.081 0.000 0.043 0.000
1.021 2.987 0.114 0.000 0.060 0.000
1.938 5.669 0.217 0.000 0.115 0.000
0.000 0.111 4.265 1.685 0.199 1.017
0.603 1.813 1.612 0.761 0.802 0.426
0.296 0.926 0.437 1.170 4.707 0.485
0.281 0.938 4.306 1.775 0.612 1.052
0.000 0.044 0.364 0.837 3.222 0.353
0.000 0.053 0.000 1.071 4.950 0.412
0.000 0.059 1.591 0.986 1.725 0.517

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.201)

it is clear that ACT is not exactly equivalent to Z and just an approximation of it.
The matrix CT indicates that the sample DB was partitioned into {d1, d2, d3, d5} (with the first

row), {d4, d7, d10} (with the second row), and {d6, d8, d9} (with the third row), which is almost
consistent with the results from other techniques. Concurrently, by estimated A, terms can be
grouped into {t1, t2} (with the first column), {t3, t4, t6} (with the second column) and {t5} (with the
third column). Alternatively, in the case of using unit vectors as input data (i.e., Z = [d̃1, . . . , d̃N ]),
the set of clusters became {d1, d2, d3}, {d4, d5, d7} and {d6, d8, d9, d10} with term clusters {t1, t2},
{t3, t6} and {t4, t5}.

More specifically, the above matrices were computed based on Equations (4.198) and (4.199)
as shown in Figure 4.22. Actually, a package of R for NMF becomes available [103, 102], and it is
not necessary to write source code for implementing NMF if using the package.

‡ Clustering by NMF

Set: The number of clusters L.

1) Set initial A and C by allocating a random number to each element.

2) Iterate the following process from a) to d). If A and C converge or the times of
iterations exceed a prescribed number, then go to step 3).

a) Compute xij = [ZC]ij/[ACTC]ij (i = 1, . . . ,M ; j = 1, . . . , L).

b) Compute yij = [ZTA]ij/[CATA]ij (i = 1, . . . , N ; j = 1, . . . , L).

c) Update A and C by aij ← aijxij and cij ← cijyij for all elements.

d) Divide each element of j-th column of A by (
∑

i a
2
ij)

1/2.

3) Generate clusters based on Equation (4.187) and terminate the procedure.

Out: Cluster set C1, . . . , CL, and A and C.

Figure 4.22: Clustering by NMF

One of the problems in computing NMF is instability of results. Like other iterative algorithms,
a series of iterative computation may fall into a local minimum. Also, it is not guaranteed that
different algorithms for estimating A and C reach always to the same approximation of them.

Nonnegative block value decomposition

In nonnegative block value decomposition (NBVD) [196], a ‘block’ matrix B is additionally incor-
porated into the middle position of NMF such that

Z ≈ ABCT , (4.202)
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where A (M × L′ matrix), B (L′ × L matrix) and C (N × L matrix) are non-negative matrices,
where L′ < M and L < N 77. If B = I(L) and A is an N × L matrix (i.e., L′ = L), then the
NBVD in Equation (4.202) reduces to NMF. Similarly, the objective function in estimation of A,
B and C corresponding to Equation (4.188) becomes

H(A,B,C) =
1

2
‖Z−ABCT ‖2. (4.203)

Actually, NBVD of the sample DB can be estimated such that

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.244 0.000 0.000
0.714 0.015 0.008
0.027 0.599 0.000
0.000 0.233 0.165
0.014 0.011 0.763
0.000 0.141 0.063

⎤
⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎣ 0.000 19.922 0.000

0.000 0.000 20.770
20.396 0.000 0.461

⎤
⎦ ,

and

CT =

⎡
⎣ 0.000 0.000 0.000 0.000 0.045 0.300 0.025 0.206 0.318 0.106

0.149 0.210 0.398 0.000 0.124 0.061 0.058 0.000 0.000 0.000
0.000 0.000 0.000 0.343 0.124 0.032 0.344 0.029 0.000 0.128

⎤
⎦ .

The matirx CT suggests that documents are partitioned into {d6, d8, d9} (with the first row),
{d1, d2, d3} (with the second row), and {d4, d5, d7, d10} (with the third row) (where more precisely,
c52 = 0.12406 and c53 = 0.12412). Also, in this case, [ABCT ]T becomes almost equivalent to
Equation (4.201) obtained by NMF.

Because A and C are normalized in this estimation so that the sum of elements in each column
becomes one (see below), each element of matrix B indicates the times that terms belonging to
i-th term cluster occur in documents included in j-th document cluster. Note that the sum of all
elements in B amounts to about 61.55, which equals almost to the total number of tokens in the
sample DB (i.e., = 62).

For this estimation of A, B and C, a method almost similar to that from Equation (4.190) to
(4.199) can be used. Since Equation (4.203) becomes

H(A,B,C) =
1

2
tr[(Z−ABCT )(Z−ABCT )T ]

=
1

2
tr(ZZT )− tr(ZCBTAT ) +

1

2
tr(ABCTCBTAT ), (4.204)

by calculating ∂H/∂A, ∂H/∂B and ∂H/∂C and considering the KKT second condition, it follows
that

ZCBT −ABCTCBT + B̄1 = O, (4.205)

ATZC−ATABCTC+ B̄2 = O, (4.206)

ZTAB−CBTATAB+ B̄3 = O, (4.207)

where B̄h is a matrix consisting of KKT multiplier vectors (h = 1, 2, 3). Finally, by applying ‘◦A’,
‘◦B’ and ‘◦C’ to both sides of these equations, respectively, so that B̄h is eliminated (h = 1, 2, 3)
based on the third KKT conditions (i.e., B̄1 ◦A = O, B̄2 ◦ B = O and B̄3 ◦ C = O) as before,
updating formulas for the NBVD become

[A]ij ← [A]ij
[ZCBT ]ij

[ABCTCBT ]ij
, (4.208)

[B]ij ← [B]ij
[ATZC]ij

[ATABCTC]ij
, (4.209)

77The decomposition in Equation (4.202) can be considered as a special case of ‘three-factor NMF’ or ‘tri-NMF’.
Actually, there are many versions of NMF with varying constraints on the matrix components (see [65]). Also,
decomposition similar to NBVD has been proposed by [323], which calls it ‘concept factorization’.
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[C]ij ← [C]ij
[ZTAB]ij

[CBTATAB]ij
. (4.210)

If Equations (4.208), (4.209) and (4.210) are used in iterative procedure like that for NMF after
B is also initialized by allocating random numbers, NBVD can be similarly computed for a given
data matrix Z. However, in the NBVD, normalization in 2-d) step of the procedure is slightly
different as mentioned above. Precisely, aij is replaced by aij/

∑
i′ ai′j and cij by cij/

∑
i′ ci′j

at the end of each iteration, which means that the sum of elements in each column of A and C
becomes one (normalization based on unit vectors would be feasible).

Nonnegative tensor factorization

Target data are assumed here to be represented as three-way array X = [xijk] (i = 1, . . . , n;
j = 1, . . . ,m; k = 1, . . . , p). For example, if terms appearing in a set of e-mails are counted by
author and month, then xijk may indicate occurrence frequency of j-th term in e-mails written by
i-th author on k-th month (i.e,. ‘author × term × time’ data).

One of the techniques for analyzing such complicated data is PARAFAC (parallel factors) model
[116], which is widely applied in various areas. In this model, a data element xijk in X is assumed
to be decomposed as

xijk =
L∑

h=1

aihbjhckh, i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , p, (4.211)

which resembles SVD or NMF in that each data element is explained as the sum of L components
aihbjhckh (h = 1, . . . , L) (see Figure 4.23).
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Figure 4.23: PARAFAC model

For estimating aih, bjh and ckh, it is necessary to convert Equation (4.211) into matrix form.
This conversion is often called ‘unfolding’ or ‘matricization’. For example, three-way array X can
be represented as a matrix

X(n×mp) =

⎡
⎢⎢⎢⎢⎢⎣

x111 x121 · · · x1m1 x112 · · · x1m2 · · · x11p · · · x1mp

x211 x221 · · · x2m1 x212 · · · x2m2 · · · x21p · · · x2mp

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...
xn11 xn21 · · · xnm1 xn12 · · · xnm2 · · · xn1p · · · xnmp

⎤
⎥⎥⎥⎥⎥⎦ , (4.212)

by putting xijk into (i, j′)-element of the matrix where j′ = (k − 1) × m + j (i.e., index j runs
faster than k).

Meanwhile, it is assumed that A = [a1, . . . ,aL], B = [b1, . . . ,bL], and C = [c1, . . . , cL], where
ah = [a1h, . . . , anh]

T , bh = [b1h, . . . , bmh]
T , and ch = [c1h, . . . , cph]

T , respectively (h = 1, . . . , L).
Since the Khatri-Rao product can be defined as

C ∗B ≡ [c1 ⊗ b1, . . . , cL ⊗ bL], (4.213)
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where ⊗ indicates the Kronecker product 78, it becomes that

[C ∗B]T =

⎡
⎢⎢⎢⎣

b11c11 b21c11 · · · bm1c11 · · · b11cp1 · · · bm1cp1
b12c12 b22c12 · · · bm2c12 · · · b12cp2 · · · bm2cp2

...
...

. . .
...

. . .
...

. . .
...

b1Lc1L b2Lc1L · · · bmLc1L · · · b1LcpL · · · bmLcpL

⎤
⎥⎥⎥⎦ . (4.214)

So, (i, j′)-element of an n×mp matrix A[C ∗B]T can be written as

[A[C ∗B]T ]ij′ =
L∑

h=1

aihbjhckh, (4.215)

where j′ = (k − 1)×m+ j again.
By combining Equations (4.212) and (4.215), the PARAFAC model in Equation (4.211) can be

represented as a product of two matrices such that

X(n×mp) = A[C ∗B]T = AZT
1 , (4.216)

where Z1 ≡ C ∗B. Similarly, by changing the turn of running indexes, i, j and k, it follows that

X(m×pn) = B[A ∗C]T = BZT
2 , (4.217)

X(p×nm) = C[B ∗A]T = CZT
3 , (4.218)

where Z2 ≡ A ∗C and Z3 ≡ B ∗A.
Although the PARAFAC model can be solved by alternating least squares (ALS) algorithms,

the multiplicative iterative algorithm (Lee-Seung algorithm) can be applied if A, B and C are
assumed to be nonnegative [315]. Because Equation (4.216) can be considered as NMF of X(n×mp),
by repeating the procedure for deriving Equation (4.198), an updating formula is obtained as

aih′ ← aih′
[X(n×mp)Z1]ih′

[AZT
1 Z1]ih′

, h′ = 1, . . . ,mp, (4.219)

and similarly, Equations (4.217) and (4.218) lead to

bjh′ ← bjh′
[X(m×pn)Z2]jh′

[BZT
2 Z2]jh′

, h′ = 1, . . . , pn, (4.220)

and

ckh′ ← ckh′
[X(p×nm)Z3]kh′

[CZT
3 Z3]kh′

, h′ = 1, . . . , nm. (4.221)

Therefore, since Z1 ≡ C ∗ B, Z2 ≡ A ∗ C and Z3 ≡ B ∗ A, by allocating random numbers to
elements of A, B and C and updating them iteratively based on Equations (4.219), (4.220) and
(4.221), the estimation may be feasible.

When non-negativity is imposed into matrices of PARAFAC, it is called ‘nonnegative PARAFAC’
or nonnegative tensor factorization (NTF) 79 [14, 65]. Technically, the NTF can be applied to a
model including four or more factors (see [65] for details).

4.3 Graph-based Document Clustering

It is possible to execute document clustering (DC) based on graph theory. Since a graph can be
represented by a matrix as described below, the graph-based clustering has a close relationship
with the matrix-based clustering discussed in previous section.

78For instance, c1 ⊗ b1 = [c11bT
1 , c21bT

1 , . . . , cp1bT
1 ]T , which is an (m× p)-dimensional vector.

79NTF is sometime called ‘positive tensor factorization’ (PTF) (e.g., see [315]).
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4.3.1 Graph cut

Definition of graph

Formally, a graph (or network) is defined as a set G = {V,E} where V is a collection of vertices
(or nodes), which is denoted by V = {v1, v2, . . . , vN}, and E is a collection of edges (or links) such
as eih = (vi, vh) (vi, vh ∈ V ). In the case that edge eih is allowed to traverse in only one direction
(e.g., eih is allowed, but ehi is not), G is called directed graph. When traverse in both directions is
feasible, G is an undirected graph.

A document collection can be considered as a graph by regarding document di as vertex vi.
For instance, it is tentatively assumed that two documents are connected by an edge if they share
‘two or more’ different index terms. Under the assumption, the sample DB can be displayed as a
graph in Figure 4.24, which is equivalently represented by a matrix

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.222)

This is an adjacency matrix, which is formally defined as G = [gih] such that

gih =

{
1, eih ∈ E
0, otherwise

, (4.223)

where i, h = 1, . . . , N (i.e., G is an N ×N matrix) [83].
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Figure 4.24: Graph representation of sample DB

Otherwise, it may be possible to use cosine measure between two documents as a weight of the
edge, which constitutes a weighted graph. Actually, the similarity matrix of Table 3.3 is a lower
triangle matrix of the weighted graph with removing diagonal elements, and therefor, a hierarchical
clustering algorithm (Section 3.1.2) can be applied for detecting a structure inherent in the graph.

Min-cut clustering

Another strategy for identifying the graph structure is to partition directly a graph into subgraphs
by removing edges 80. Generally, if a subset E′ of E includes only edges between two subsets V1

and V2 such that V = {V1, V2}, then E′ is a cut, which separates the graph exclusively into two
parts. For instance, in a graph shown as Figure 4.25, when edge e46 is removed, the graph is
partitioned into V1 = {v1, v2, v3, v4} and V2 = {v5, v6, v7, v8} (note that E′ = {e46}, which is the
cut).

80Formally, if V ′ ⊆ V and E′ ⊆ E, then G′ = {V ′, E′} is a subgraph of G (in other words, G is a supergraph of
G′) [83].
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Figure 4.25: Example of graph

The size of a cut is measured as the sum of weights of edges on the cut, which is formally
defined as

c(V1, V2) =
∑

i:vi∈V1

∑
h:vh∈V2

sih, (4.224)

where sih denotes the weight of edge eih. When c(V1, V2) is calculated directly from an adjacency
matrix G in Equation (4.222), it becomes that sih = gih. For partitioning a graph into two parts,
it is natural to select first a cut whose size is minimal (i.e., ‘min-cut’). This is often called min-cut
clustering [214]. Actually, binary divisive clustering is feasible by partitioning the target document
collection iteratively based on the min-cut 81.

Betweenness-based clustering

A path is a non-empty graph P = {V ′, E′} such that

V ′ = {v1, v2, . . . , vk} and E′ = {(v1, v2), (v2, v3), . . . , (vk−1, vk)},

where vi (i = 1, . . . , k) are all distinct. Namely, vertices v1 and vk are linked by P [83]. The
length of a path is measured as the number of edges on it. Girvan-Newman algorithm [107] is a
graph-base clustering technique, which removes repeatedly an edge with the highest ‘betweenness
centrality’ at the current stage. Actually, the betweenness centrality of an edge is measured by the
number of shortest paths between nodes that go through the edge. A shortest path from vi to vh
is denoted by Ps(i, h) here. For example, in a graph shown in Figure 4.25, 16 shortest paths (i.e.,
Ps(1, 5), Ps(1, 6), . . . , Ps(4, 8)) go through edge e46, which leads to removing e46 first (as a result,
the graph is partitioned into {v1, v2, v3, v4} and {v5, v6, v7, v8}).

More precisely, steps of the Girvan-Newman algorithm are as follows:

1. Compute betweenness centralities of all edges.

2. Remove an edge with the largest betweenness centrality.

3. Terminate if there is no edge. Otherwise, recalculate the centralities and return to step 2.

By recording the removals of edges in each iteration, it is easy to construct a dendrogram after the
procedure is terminated. For computing the betweenness centralities, it is necessary to identify
the shortest paths between pairs of all vertices 82, which takes O(Nm) times where N = |V | and
m = |E| [214]. Because the procedure has to be repeated N times at most, the running time
amounts to O(N2m). Several modifications of the Girvan-Newman algorithm has been explored
(see [173]).

4.3.2 Spectral clustering

Spectral graph partitioning

The min-cut method may choose uneven-sized partition (e.g., a single vertex may be separated
from the rest of vertices). In order to avoid it and to obtain ‘balanced’ partition, ‘ratio-cut’ or

81As to an actual implementation of clustering algorithm based on the min-cut, see [92, 264], in which the method
is called ‘cut-clustering algorithm’.

82For instance, well-known Dijkstra’s algorithm can be used for finding the shortest path (see [214]).
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‘normalized-cut’ in which the size of each part is considered, are often used [214]. For instance,
the ratio-cut is defined as

cR(V1, V2) =
c(V1, V2)

|V1|
+

c(V1, V2)

|V2|
, (4.225)

which includes the number of vertices in each part.
Spectral graph partitioning introduced in the 1970s [80] allows to find partition V = {V1, V2}

of an undirected graph so that its ratio-cut or normalized-cut is approximately minimum. The
‘spectral’ implies here ‘spectrum’ of a matrix, which is mathematically a set of its eigenvalues. In
the spectral graph partitioning, the target is Laplacian matrix L = D−S where D is the diagonal
‘degree’ matrix with [D]ii =

∑
h sih, and S = [sih] (sih denotes the weight of edge eih as before).

So, (i, h)-element of the Laplacian matrix is defined by

[L]ih =

{ ∑N
h′=1 sih′ , i = h

−sih, i �= h
(4.226)

(note that sih = 0 if eih �∈ E and that sii = 0). Based on the Laplacian matrix, the ratio-cut can
be computed such that

qTLq = |V | × cR(V1, V2), (4.227)

where q indicates an N -dimensional vector whose i-th element is defined by

qi =

{
+
√
|V2|/|V1|, vi ∈ V1

−
√
|V1|/|V2|, vi ∈ V2

(4.228)

(i = 1, . . . , N) 83 [200].
For instance, when N = 3, since

qTL =
[
q1 q2 q3

] ⎡⎣
∑

h s1h −s12 −s13
−s21

∑
h s2h −s23

−s31 −s32
∑

h s3h

⎤
⎦ , (4.229)

the value of qTLq becomes

q1

(
q1

∑
h

s1h − q2s21 − q3s31

)
+ q2

(
−q1s12 + q2

∑
h

s2h − q3s32

)
+ q3

(
−q1s13 − q2s23 + q3

∑
h

s3h

)
.

If it is supposed that V1 = {v1, v2} and V2 = {v3}, then

qTLq = (q21 − q1q3)s13 + (q21 − q1q3)s23 + (q23 − q1q3)s13 + (q23 − q1q3)s23, (4.230)

because q1 = q2 and sih = shi. Since q21 − q1q3 = |V2|/|V1|+ 1 and q23 − q1q3 = |V1|/|V2|+ 1,

qTLq =
|V1|+ |V2|

|V1|
(s13 + s23) +

|V1|+ |V2|
|V2|

(s13 + s23) = |V |
(
s13 + s23

|V1|
+

s13 + s23
|V2|

)
. (4.231)

Note that

N∑
i=1

qi =
∑

i:vi∈V1

√
|V2|/|V1| −

∑
h:vh∈V2

√
|V1|/|V2| = |V1|

√
|V2|/|V1| − |V2|

√
|V1|/|V2| = 0, (4.232)

83Since sih = shi, it follows that

qTLq = qTDq− qTSq =
N∑
i=1

N∑
h=1

sihq
2
i −

N∑
i=1

N∑
h=1

qiqhsih =
1

2

N∑
i=1

N∑
h=1

sih(qi − qh)
2.

By substituting Equation (4.228) into it,

qTLq =
1

2

∑
i:vi∈V1

∑
h:vh∈V2

sih

(√
|V2|/|V1|+

√
|V1|/|V2|

)2
+

1

2

∑
i:vi∈V2

∑
h:vh∈V1

sih

(
−
√

|V1|/|V2| −
√

|V2|/|V1|
)2

= c(V1, V2) (|V2|/|V1|+ |V1|/|V2|+ 2) = c(V1, V2) [(|V1|+ |V2|)/|V1|+ (|V1|+ |V2|)/|V2|] ,
can be obtained, and Equation (4.227) is derived from this result because |V | = |V1|+ |V2|.

155



which is also represented qTe = 0 where e = [1, 1, . . . , 1]T , and that

‖q‖2 =

N∑
i=1

q2i = |V1|(|V2|/|V1|) + |V2|(|V1|/|V2|) = |V2|+ |V1| = N. (4.233)

It is possible to compute vector qminimizing the criterion in Equation (4.227) under the constraints
in Equations (4.232) and (4.233) based on an eigenvector corresponding to the second smallest
eigenvalue of L (the minimum eigenvalue is zero) [200]. If q is obtained, then the vertices can be
divided into two groups according to the sign of value of element qi (i = 1, . . . , N). This is an
approximation of the ratio-cut in the case of bipartition.

Partitioning into three or more subgraphs

In the case of partitioning V into L sets {V1, V2, . . . , VL} where L > 2, the cut is written as

c(Vk, V̄k) =
∑

i:vi∈Vk

∑
h:vh∈V̄k

sih, (4.234)

where V̄k = V \ Vk (k = 1, . . . , L). For partition {V1, V2, . . . , VL}, N -dimensional vector bk is
defined so that its i-th element becomes

bi|k =

{
1/
√
|Vk|, if vi ∈ Vk

0, otherwise
, k = 1, . . . , L. (4.235)

Since bT
kLbk = c(Vk, V̄k)/|Vk| for k-th set 84, the ratio-cut for L-partition can be computed as

cR(V1, . . . , VL) ≡
L∑

k=1

c(Vk, V̄k)

|Vk|
=

L∑
k=1

bT
kLbk =

L∑
k=1

[BTLB]kk = tr(BTLB), (4.236)

where B = [b1, . . . ,bL] and BTB = I. So, minimization of cR(V1, . . . , VL) equals to finding a
partition {V1, . . . , VL} with the minimum of tr(BTLB), and the minimization problem can be
approximately solved by replacing B by eigenvectors of the Laplacian matrix L 85. Consequently,
a spectral clustering algorithm based on the criterion of minimizing the ratio-cut can be executed as
shown in Figure 4.26. At last stage in the procedure, a k-means algorithm is applied for determining
subgraphs (i.e., clusters) to which each vertex (i.e., document) belongs because discrete partition
in Equation (4.235) has to be estimated from real numbers of the eigenvectors (note that each
eigenvector uk is used for bk, respectively).

In the sample DB, eigenvalues of the Laplacian matrix can be computed as

0.000, 0.696, 1.725, 2.024, 2.117, 3.342, 3.465, 3.861, 4.227, 4.744

in ascending order when the similarity matrix is constructed from tf vectors based on the cosine
coefficient. If L = 3, then L′ = �log2 3� = 2 86 and

u2 = [0.640, 0.354, 0.334,−0.213, 0.026,−0.152,−0.092,−0.270,−0.257,−0.370]T ,

u3 = [0.595,−0.256,−0.325,−0.164,−0.229,−0.069,−0.246, 0.084, 0.044, 0.567]T ,

84As before, from manipulation on L,

bT
k Lbk =

1

2

N∑
i=1

N∑
h=1

sih(bi|k − bh|k)2,

can be obtained. If vh �∈ Vk, then bh|k = 0 and only sih/|Vk| remains in the sum. Otherwise, (bi|k − bh|k) becomes
zero.

85Let Λ = diag[λ1, . . . , λL] be a diagonal matrix of the Lagrange multipliers. The object function is H =
tr(BTLB) − Λ[BTB − I], and ∂H/∂B = LB − ΛB. Thus ∂H/∂B = 0 means that B is a matrix of eigenvectors
for eigenvalues in Λ.

86�x� is called ceiling function, which indicates a minimum integer that be greater than x. Note that log2 3 is
about 1.58.
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‡ Spectral clustering based on minimizing the ratio-cut

Set: The number of clusters L and similarity matrix S = [sih]

1) Compute the Laplacian matrix L.

2) Compute the first L′ + 1 eigenvectors u1, . . . ,uL′+1 of L (e.g., L′ = �log2 L� [80]).

3) Extract i-th row of matrix Ũ = [u2, . . . ,uL′+1] as new representation xT
i (i =

1, . . . , N).

4) Cluster x1, . . . ,xN by a k-means algorithm.

Out: Clusters C1, . . . , CL.

Figure 4.26: Spectral clustering algorithm based on the criterion of minimizing the ratio-cut

which leads to a cluster set of C1 = {d1}, C2 = {d2, d3, d5, d7} and C3 = {d4, d6, d8, d9, d10} by
using the the Hartigan-Wong algorithm.

Meanwhile, the normalized-cut is represented as

cN (V1, . . . , VL) =

L∑
k=1

c(Vk, V̄k)

d(Vk)
, (4.237)

where d(Vk) ≡
∑

i:vi∈Vk
[D]ii (i.e., the sum of edge weights). For approximating the criterion, the

Laplacian matrix has to be normalized, for instance,

Ln = D−1/2LD−1/2 (4.238)

(see [200] for details) 87. When using the criterion, the partition is often referred to as normal-
ized spectral clustering. In contrast, clustering based on the raito-cut using straightforwardly the
Laplacian matrix in Figure 4.26 can be called unnormalized spectral clustering. In the case of DC,
like hierarchical clustering, it is often hard to compute the similarity matrix including O(N2) pairs
of documents when executing the spectral clustering. In addition, eigenvalues and eigenvectors
have to be computed for a large-scale Laplacian matrix if N is large.

Spectral co-clustering

Dhillon(2001) [80] applied the spectral clustering algorithm to an undirected ‘bipartite’ graph
including both documents and terms as its vertices. Generally, a graph is called ‘r-partite’ when V
is partitioned into r classes such that every edge has its ends in different classes and that vertices in
the same partition class must not be adjacent [83]. In Dhillon(2001) [80], one class is the document
set and the other is the word set, and its weighted adjacency matrix is constructed as

M =

[
O WT

W O

]
, (4.239)

where W is a document-by-term matrix as before. So, M is an (M + N) × (M + N) matrix
and its partitioning allows for grouping documents and terms simultaneously, which is often called
co-clustering.

Actually, Dhillon(2001) [80] employed a more convenient formula based on SVD,

Wn = UQVT , (4.240)

where Wn = D
−1/2
2 WD

−1/2
1 and

D =

[
D1 0
0 D2

]
, (4.241)

87Note that i-th element of bk is 1 if vi ∈ Vk, otherwise zero, in this instance
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Figure 4.27: Result of spectral co-clustering for the sample DB

which can be derived by some algebraic manipulations under an assumption that normalized-cut
is minimized 88. In this case, the data entering into the k-means algorithm are

X =

[
D

−1/2
1 Ṽ

D
−1/2
2 Ũ

]
, (4.242)

where Ṽ = [v2, . . . ,vL′+1] and Ũ = [u2, . . . ,uL′+1]. Note that vectors vh and uh are arranged in
ascending order of (1−ηh) where ηh is h-th diagonal element of matrix Q (h = 1, . . . ,min(N,M)).
Actually, for the sample DB,

Wn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.789 0.447 0.000 0.000 0.000 0.000
0.500 1.500 0.000 0.000 0.000 0.000
0.378 2.268 0.000 0.000 0.000 0.000
0.000 0.000 1.512 1.134 0.000 0.000
0.000 0.894 0.894 0.000 0.447 0.000
0.000 0.378 0.378 0.000 1.890 0.000
0.000 0.354 1.768 0.000 0.354 0.354
0.000 0.000 0.000 0.894 1.342 0.000
0.000 0.000 0.000 0.408 2.041 0.000
0.000 0.000 0.000 1.061 0.354 1.414

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.243)

and when L = 3, a cluster set,

C1 = {d1, d2, d3, d5, t1, t2}, C2 = {d4, d7, d10, t3, t4, t6}, C3 = {d6, d8, d9, t5},

was obtained by the Hartigan-Wong algorithm from X which is an (M + N) × 2 matrix (i.e.,
L′ = 2). Figure 4.27 is a plot of documents and terms where the first column of X is used on the
x-axis and the second column on the y-axis.

88From Equation (4.238), the eigenvalue problem for minimizing the normalized-cut is represented by
D−1/2LD−1/2z = λz where z indicates an eigenvector and λ is an eigenvalue. In the case of the bipartite graph
represented in Equation (4.239), since L = D−M, it becomes that[

D1 −WT

−W D2

] [
x
y

]
= λ

[
D1 O
O D2

] [
x
y

]
,

where z = [xT ,yT ]T . The equation is separated into D1x−WTy = λD1x and −Wx+D2y = λD2y, which can

be rewritten such as v−D
−1/2
1 WTD

−1/2
2 u = λv and −D

−1/2
2 WD

−1/2
1 v+u = λu if putting that v = D

1/2
1 x and

u = D
1/2
2 y. These equations imply that WT

n = (1− λ)vuT and Wn = (1 − λ)uvT , which are equivalent to SVD

in Equation (4.240). Thus after computing the SVD, the eigenvector can be obtained as [[D
−1/2
1 v]T , [D

−1/2
2 u]T ]T .
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Chapter 5

Experiments of Large-Scale
Multilingual Document Clustering

5.1 Scalable Multilingual Document Clustering Technique

Through discussions in Chapters 2, 3 and 4, characteristics or properties of techniques of cross-
language information retrieval (CLIR) and document clustering (DC) have become sufficiently
clear. Based on them, this section attempts to propose a method for large-scale multilingual
document clustering (MLDC).

5.1.1 Literature on Multilingual Document Clustering

When the target multilingual set of documents is sufficiently small and the length of each document
is short, machine translation (MT) software can be used for translating the documents into a
single language. In this case, MLDC reduces to standard monolingual DC. For example, Rauber
et al.(2001) [248] applied an algorithm of self-organizing map (SOM) (Section 3.3.5) to a set of
documents translated by MT software. MT software was also used in Columbia Newsblaster
[183, 89], which is a system for summarizing news articles collected from the web.

In Topic Detection and Tracking (TDT) evaluation workshop [14] (Section 3.3.7), many research
groups have used results of MT, which were provided as a part of TDT corpus, for clustering English
and Chinese news stories. The collection of stories used in this workshop was not small, which
implies that MT is applicable to large multilingual sets. A typical method of MLDC in TDT
workshop would be incremental one (e.g., [182]), in which each translated story is allocated to a
cluster whose centroid (see Equation (3.6)) is the most similar.

If MT software is not available, then bilingual dictionaries, multilingual thesauri or parallel
corpora can be employed as language resources for translation (Section 2.2.3). In Pouliquen et
al.(2004) [241], documents in different languages were mapped onto a single classification scheme
by using a multilingual thesaurus Eurovoc, and similarly, Montavalo et al.(2007) [216] used Euro
Wordnet. Also, Pham et al.(2008) [235] have applied a language-independent ontology for SOM-
based clustering of multilingual medical documents. In contrast, parallel corpora were used as
language resources in Chau et al.(2005) [56] and Wei et al.(2008) [314]. Chau et al.(2005) [56]
developed a technique of supervised text categorization enabling unsupervised document clustering
to be executed in a multilingual setting, in which language-independent concept-based vectors
representing multilingual documents were generated by applying an SOM algorithm to a parallel
corpus, and as a result, a hierarchy of document categories was constructed based on the vectors.
In Wei et al.(2008) [314], a latent semantic indexing (LSI) technique was applied to MLDC. More
specifically, agglomerative hierarchical clustering was executed based on document vectors in a
multilingual semantic space constructed from a parallel corpus using singular value decomposition
(SVD) (Section 2.2.2).

Silva et al.(2001) [283] proposed a method of dividing a document collection based on model-
based clustering analysis with multivariate Gaussian mixtures (Section 4.1.1), in which the doc-
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ument set is assumed to be a parallel corpus. Dictionary-based translation (Section 2.2.3) was
adopted by Mathieu et al.(2004) [207], Wu & Lu.(2007) [319] and so on. Mathieu et al.(2004) [207]
applied shared nearest neighbor (SNN) to a multilingual set of documents in which similarities
were measured based on dictionary-based translation with no disambiguation. Wu & Lu(2007)
[319] proposed a unique method of determining concurrently clusters and optimal translations de-
scribing the content of clusters based on a domain alignment translation model. When there are
source terms having no corresponding translation in language resources, cognate matching (Section
2.2.2) can be used to measure the similarities between documents in different languages. Montavalo
et al.(2007) [216] attempted to compare MLDC performance between term translation and cognate
matching of named entities based on edit distance (for named entities, see also [241]). Meanwhile,
in Chen & Lin(2000) [60] and Chen & Ku(2002) [61], a transliteration method (Section 2.2.2) was
used for clustering a set of English and Chinese documents.

5.1.2 Leader-follower algorithm with dictionary-based translation

For clustering large-scale multilingual document sets, it is indispensable to adopt the following two
strategies as components of the system, namely,

1. dictionary-based translation, and

2. leader-follower clustering (LFC) algorithm,

which is a straightforward conclusion from discussions in Chapters 2, 3 and 4. First, in the case
of MLDC, document translation (Section 2.2.2) has to be attempted, and the dictionary-based
translation would be optimal when the document set is large. In this thesis, techniques based on
parallel corpora are out of the scope because their applicability is very limited by availability of
such special corpora. In practice, various languages may be processed in MLDC situations, and it
is unrealistic to assume the availability of parallel corpora for them. Second, the LFC algorithm
can be considered as a more promising clustering technique for large document sets than any other
methods. It is hard to apply probabilistic mixture models (Section 4.1.1) to situations in which the
total number of distinct terms M is so large. For instance, in multinomial mixture model (MMM),

the probability is computed by Equation (4.28) including multiplication
∏M

j=1, and the calculation
by computers would easily underflow to zero when M is large. Similarly, matrix-based clustering
methods (Section 4.2) would not be appropriate for large-scale document clustering due to the
fact that a very large term-by-document matrix has to be processed many times. For example,
nonnegative matrix factorization (NMF) (Section 4.2.4) requires many matrix computations for
estimating the factorization (see Equations (4.198) and (4.199)).

However, the simple and ‘powerful’ combination of the dictionary-based translation and the
LFC algorithm for MLDC has not been sufficiently verified in literature so far 1. Therefore, it
is indispensable to verify experimentally ‘effectiveness’ of the ‘efficient’ method in the following
points:

1. Effectiveness of scalable technique for translation disambiguation used in the dictionary-based
translation.

2. Effectiveness of the LFC algorithm for monolingual DC in comparison with more theoretically
sophisticated techniques.

3. Effectiveness of the LFC algorithm with dictionary-based translation for large-scale MLDC.

The following sections in this chapter will describe three experiments for examining the three
kinds of effectiveness, respectively.

1Kishida(2011) [154] reported exceptionally an experiment exploring the combination of two methods, which is
a main part of this thesis and will be discussed in Section 5.4.
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5.2 Experiment of Term Disambiguation Techniques

This section reports an experiment on term disambiguation techniques for CLIR based on Kishida
(2007) [150]. As discussed in Section 2.2.3, dictionary-based translation would yield many irrelevant
terms in the context of individual documents, and therefore, translation disambiguation may play
an important role for MLDC.

5.2.1 Purpose and methods

Since translation disambiguation techniques based on the target document sets do not require
special language resources (e.g., parallel corpus), they are more appropriate for the purpose of this
thesis than the other techniques discussed in Section 2.2.4 from a practical viewpoint. In order to
examine empirically performance of the techniques, a standard experiment of bilingual retrieval
from German to Italian was attempted by using the CLEF 2003 test collection 2 (note that this
experiment is an IR test, not DC test, unlike those reported in the following sections). The target
Italian document collection in this experiment is a set of full-text news articles (see [39]).

The method adopted for executing CLIR is basically dictionary-based query translation, and
English was used as an intermediary language for translating German into Italian. This is often
called ‘pivot language approach’ (Section 2.2.3), namely, the translation proceeds as ‘German terms
→ English translations → Italian translations’. More precisely, first, each query term in German is
replaced by a set of the corresponding English terms based on a German to English dictionary, and
second, each term in the English set is again replaced by a set of the corresponding Italian terms
according to an English to Italian dictionary. Such transitive translation via a pivot language
often yields many irrelevant translations because all final translations obtained from irrelevant
terms in the intermediary language (i.e., English) are possibly also irrelevant (see Figure 2.5).
Therefore, it is especially important for the dictionary-based pivot language approach to enhance
search performance by incorporating translation disambiguation.

Furthermore, in order to verify research findings from the German to Italian searches, the
similar experiment was repeated for the case of French to Italian (pivot language approach via
English) and English to Italian (non-pivot) searches on the same CLEF 2003 test collection. The
additional experiments will be described after discussing results from the experiment of German
to Italian searches.

The experiment compared search performance between the following term disambiguation tech-
niques:

1. Disambiguation by term co-occurrence statistics (see Figure 2.7)

(a) Best pairs selection based on Equation (2.55)

(b) Best sequence selection based on Equation (2.57)

(c) Best cohesion selection based on Equation (2.60)

2. PRF based disambiguation by Kishida & Kando(2004) [157] according to Equation (2.62)

Note that they are techniques using only the target document collection.
At the time that an index file for the original Italian document collection was created, term

co-occurrence was also counted and recorded in another index file enabling to find quickly infor-
mation on the occurrence. In this experiment, sentence-based co-occurrence was adopted, namely,
sentences in which a pair of terms appear together were counted and used as ‘the number of co-
occurrences’. Similarly in this experiment, ‘the number of occurrences’ indicates the number of
sentences including a given term, which denoted by c(t) where t is an index term. As similarity
measures of two terms computed from co-occurrence frequencies, the experiment used the mutual
information (MI), cosine coefficient, Dice coefficient, and overlap coefficient, which are defined as

log2
Sc(t, s)

c(t)c(s)
,

c(t, s)√
c(t)c(s)

,
2c(t, s)

c(t) + c(s)
,

c(t, s)

min[c(t), c(s)]
,

2CLEF (Cross-Language Evaluation Forum) is a well-known research project for CLIR experiments. At present,
it is named ‘Conference and Labs of the Evaluation Forum’ (see http://www.clef-initiative.eu//).
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respectively, where c(t, s) indicates the number of sentences including both terms t and s, and S
is the total number of sentences in the target collection (see Section 2.2.4).

5.2.2 Search algorithm and text processing

The well-known BM25 of Okapi formula in Equation (2.28) [259] was used for computing document
scores in this experiment. In order to compute the scores for a given query, both German and Ital-
ian text in queries and documents were processed by the following steps: 1) identifying tokens, 2)
removing stopwords, 3) stemming (Section 2.1.6). In particular, decomposition of compound words
in German was executed using a heuristic rule based on longest matching against headwords in-
cluded in a German to English dictionary, according to Kishida & Kando(2004) [157]. For example,
German word, “Briefbombe” is broken down into two headwords listed in the German to English
dictionary, “Brief” and “Bombe”, according to a rule that only the longest headwords included
in the original compound word are extracted from it (see also Section 5.4.2 for decomposition of
German compound words).

Free bilingual dictionaries (German to English and English to Italian) on the Internet 3 were
used for transitive query translation. Stemmers and stopword lists for German and Italian lan-
guages were downloaded from the web site of the Snowball project 4. Stemming for English was
performed by the original Porter’s algorithm [240]. Before executing transitive translation by using
two bilingual dictionaries, all terms included in the bilingual dictionaries were normalized accord-
ing to the same stemming procedure for processing text of documents and queries. The actual
translation process was a simple replacement. If no corresponding headword was included in the
dictionaries (German-English or English-Italian), then the unknown word was sent directly to next
step without any change.

5.2.3 Results and analysis

Effectiveness of similarity measures

The Italian document collection contains 157,558 documents in total, and its average document
length became 181.86 tokens after text processing. First of all, the effectiveness of similarity
measures (i.e., MI, cosine, Dice and overlap) used in the process of the term co-occurrence based
method for disambiguation is discussed here. For comparison of the effectiveness of searches, scores
of mean average precision (MAP) (Section 2.1.8) were calculated for a set of 51 search topics having
one or more relevant documents in the Italian document collection (see Table 5.1). In Table 5.1,
MAP scores are listed by ‘short queries’ and ‘long queries’. In the case of short queries, each search
was executed using only the <TITLE>field in the topics of the CLEF 2003 test collection, whereas
in the case of long queries, both the <TITLE>and <DESCRIPTION>fields were employed. The
<TITLE>field usually includes a few search terms, and a sentence representing the search query is
described in the <DESCRIPTION>field (see [39]). Since the sentence was decomposed according
to the procedure described above, each long query tends to contain relatively many terms as a
result. Therefore, unfortunately, search results for the ‘best sequence’ algorithm in the case of long
queries could not be obtained in this experiment due to excessive computational complexity.

The experiment also attempted post-translation feedback [15] (Section 2.2.4), which is often
used for enhancing search performance after the process of translation disambiguation. In this
experiment, a standard PRF technique (Section 2.1.4) was simply used. Actually, the feedback
was executed by extracting 10 terms from top-ranked 30 documents, which were obtained by an
initial search using translations selected by each disambiguation method, based on term weight ωj

in Equation (2.36) 5. However, from the purpose of this thesis, the effectiveness of disambiguation
methods without the post-translation feedback should be mainly discussed because other factors
would affect the search performance through the feedback. Therefore, the search results with the
post-translation feedback will be treated as supplementary findings in this thesis.

3http://www.freelang.net/
4http://snowball.tartarus.org/
5According to a standard manner, if an extracted term was already included in the set of initial query terms,

then its weight in the query was increased to 1.5 times. Otherwise, its weight was set to be 0.5 (see Section 2.1.5).
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Table 5.1: MAP scores for term co-occurrence based methods
MI Dice Cosine Overlap

Short Long Short Long Short Long Short Long
queries queries queries queries queries queries queries queries

Without feedback
Best pair 0.1430 0.1516 0.1619 0.1941 0.1558 0.1967 0.1539 0.1786
Best cohesion 0.1514 0.1857 0.1620 0.1988 0.1601 0.2031 0.1565 0.1881
Best sequence 0.1747 N/A 0.1621 N/A 0.1796 N/A 0.1550 N/A
Average 0.1564 0.1687 0.1620 0.1964 0.1652 0.1999 0.1551 0.1834

0.1613 0.1758 0.1790 0.1664
With feedback
Best pair 0.1462 0.1967 0.1687 0.2308 0.1545 0.2223 0.1587 0.1984
Best cohesion 0.1480 0.2239 0.1685 0.2281 0.1636 0.2398 0.1587 0.2075
Best sequence 0.1812 N/A 0.1700 N/A 0.1893 N/A 0.1599 N/A
Average 0.1585 0.2130 0.1691 0.2294 0.1691 0.2310 0.1591 0.2029

0.1792 0.1932 0.1939 0.1766
N/A: Results could not be obtained due to excessive computational complexity.

In Table 5.1, it can be observed that the cosine coefficient provided better search results than
any other similarity measures, namely, the best performance was obtained by using the cosine
coefficient in all cases of searching for short queries without feedback (its MAP score is 0.1796),
short queries with feedback (0.1893), long queries without feedback (0.2031) and long queries with
feedback (0.2398). The averages of MAP scores for the cosine coefficient were also higher than
those for other measures (0.1790 without feedback and 0.1939 with feedback). However, it should
be noted that the Dice coefficient was consistently more effective than the cosine measure in the
cases of the best pair and best cohesion methods for short queries, namely, the cosine coefficient
was not always dominant in every case.

It should be also noted that the difference of scores was not so large for making a definite
conclusion on the dominance of the cosine coefficient. For example, the difference of MAP scores
between the cosine and MI was only 0.0049 in the case of best sequence algorithm for short queries
without feedback (i.e., 0.1796 for the cosine and 0.1747 for MI). Therefore, a statistical test is
needed for confirming reliability of the conclusions, and actually, the sign test, which is a non-
parametric method for statistically checking if two samples were drawn from a single population
(Section 2.1.8), was used. In this experiment, H = 51 (i.e., the total number of topics), and the
total number of topics excluding those where two average precision values are equal (i.e., ‘tie’) is
denoted by H ′ (note that m means the number of topics where one method outperforms the other,
as before).

Table 5.2 shows the probabilities between the best two results for two cases of short queries and
long queries without feedback. In both the cases, values ofH ′ are small (i.e., 14 and 10, respectively,
whereas the total number of topics is 51). This means that an identical set of translations was
selected in most of the topics. For the case of short queries, the cosine coefficient outperforms
the MI in 11 out of 14 topics, and the probability is 0.0287, which is a statistically significant
difference at 5% level. Although the difference of MAP scores is very small (i.e., 0.0049), it can be
concluded that there is statistically significant difference due to the fact that the cosine coefficient
was dominant in many topics. In contrast, for the case of long queries, the cosine coefficient was
dominant in only 4 out of 10 topics, which means no statistically significant difference. Hence, it is
not feasible to draw a clear conclusion on the dominance of the cosine coefficient for long queries
containing many terms.

Selection algorithms for term co-occurrence based method

As discussed in Section 2.2.4, the performance of selecting translations based on the best pairs
tends to be relatively poor in Table 5.1. There is no case in which the MAP score of this algorithm
is greater than that of the best cohesion or the best sequence methods (except the results with
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Table 5.2: Results of sign tests (1): similarity measures

(a) short queries without feedback (b) long queries without feedback
Cosine /sequence 0.1796 Cosine /cohesion 0.2031
MI /sequence 0.1747 Dice /cohesion 0.1988
Difference 0.0049 Difference 0.0043
Probability 0.0287 Probability 0.8281

H ′ = 14,m = 11 H ′ = 10,m = 4

Table 5.3: Average of MAP scores by disambiguation method

Algorithms Short queries Long queries
Best pair 0.1536 0.1803
Best cohesion 0.1575 0.1939
Best sequence 0.2132 N/A
Note: without feedback

feedback) although the difference is small. Also, the best sequence algorithm is dominant except
just one case of the overlap coefficient for short queries (the best cohesion outperforms the best
sequence in this case).

From these empirical observations, the relative performance can be represented as

Best pair ≺ Best cohesion ≺ Best sequence,

which is almost consistent with the conclusion derived logically in Section 2.2.4. This is again
observed in Table 5.3, which shows averages of the MAP scores for each disambiguation technique.
The highest average for short queries was that of the best sequence algorithm, followed in order
by the best cohesion and the best pair. For long queries, the average for the best pair algorithm
was lower than that for the best cohesion.

Results of the sign test is shown in Table 5.4 for only cases using the Dice or cosine measure
without feedback. Although there is no statistically significant difference between the term selection
algorithms (i.e., all probabilities are over 0.05), it turns out that the best sequence algorithm
outperforms the best pair method, namely, probabilities of the best sequence against the best
pairs are 0.3438 (Dice) and 0.1133 (cosine), which are relatively small. For example, the probability
0.1133 was obtained from a binomial distribution with m = 8 and H ′ = 11. This means that there
are 8 topics for which the one method outperforms, 3 topics for which the other outperform,
and 40 topics in which the performance is equal (i.e., ‘ties’). A statistically significant difference
may be observed if a larger sample is available. In contrast, the evidence that the best sequence
outperforms the best cohesion may not be enough, since the probabilities for Dice and cosine
are 0.6563 (Dice) and 0.3770 (cosine), respectively. With regard to relationship between the best
cohesion and the best pair algorithms, only in the cases of long queries with Dice and short queries
with cosine, it may be concluded that the best cohesion algorithm yields better results than the
best pair method, although no statistically significant difference was observed.

Comparison of term co-occurrence and PRF based methods

MAP scores of search runs using PRF based methods are shown in Table 5.5, in which the number
of top-ranked documents that are assumed to be relevant is set to be 30, 50, 100, 500 and 1000,
respectively (the numbers of top-ranked documents were arbitrarily selected in order to look for
the best-possible performance). It can be seen that the performance is slightly changed by the
number of top-ranked documents used for disambiguation. On average, it seems that the case
of top-ranked 30 documents was dominant in the situation without feedback, but its degree of
dominance was small.

Table 5.6 summarizes the best scores selected from Tables 5.1 and 5.5, respectively. As in-
dicated, the term co-occurrence based method (with the best sequence algorithm) outperforms
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Table 5.4: Result of sign tests (2): term co-occurrence based methods

Similarity measure Queries Method 1 & MAP Method 2 & MAP H ′ m P (x ≥ m)
Dice Short Sequence: 0.1621 Pair: 0.1619 6 4 0.3438

Short Sequence: 0.1621 Cohesion: 0.1620 6 3 0.6563
Short Cohesion: 0.1620 Pair: 0.1619 2 2 0.2500
Long Cohesion: 0.1988 Pair: 0.1941 19 12 0.1796

Cosine Short Sequence: 0.1796 Pair: 0.1558 11 8 0.1133
Short Sequence: 0.1796 Cohesion: 0.1601 10 6 0.3770
Short Cohesion: 0.1601 Pair: 0.1558 5 4 0.1875
Long Cohesion: 0.2031 Pair: 0.1967 20 9 0.7483

Note: without feedback

Table 5.5: MAP scores for PRF based methods
No. of top-ranked documents
30 50 100 500 1000

Without feedback
Short queries 0.1690 0.1552 0.1508 0.1489 0.1639
Long queries 0.2073 0.2037 0.2096 0.2059 0.2044
Average 0.1882 0.1794 0.1802 0.1774 0.1841
With feedback
Short queries 0.1885 0.1737 0.1724 0.1670 0.1826
Long queries 0.2496 0.2605 0.2686 0.2642 0.2507
Average 0.2191 0.2171 0.2205 0.2156 0.2166

the PRF method for short queries whereas the PRF method outperforms the term co-occurrence
based method for long queries. This empirical observation suggests that the best sequence algo-
rithm provides higher performance, but unfortunately it is not feasible to use it due to excessive
computational complexity in some situations as discussed above (actually, the algorithm was not
able to work for long queries in this experiment). If the computation is impossible, then there is
no alternative than using the best cohesion algorithm. It is therefore worth comparing the perfor-
mance between the best cohesion and the PRF based method. As shown in Table 5.6, the PRF
based method outperforms the best cohesion algorithm for both short and long queries. However,
no statistically significant difference was observed between these methods (see Table 5.7).

Table 5.6 also shows MAP scores of search results without any disambiguation, which can be
considered as a ‘baseline’. Clearly, there are large differences of the scores between the baseline and
the disambiguation methods. Actually, the sign tests indicate statistically significant differences
at 1% level between the results with disambiguation and with no disambiguation. For instance,
its probability is 0.0008 between the best sequence with the cosine and no disambiguation for
short queries (without feedback) and is 0.0010 between the PRF based method by the top-ranked
100 documents and no disambiguation for long queries (without feedback). Finally, recall-precision
curves of search runs listed in Table 5.6 are shown in Figures 5.1 and 5.2 for short and long queries,
respectively.

Additional experiments for verifying research results

In order to confirm reliability of results obtained from the empirical test on German to Italian
searches, the same experiment was repeated for French to Italian and English to Italian searches
by using the same test collection (CLEF 2003). French topics were transitively translated into
Italian by the pivot approach via English like German to Italian searches, but inevitably, English
to Italian bilingual retrieval was non-pivot. Procedure of searches was almost similar to that in the
German to Italian case, and language resources (French to English dictionary, French stopword list
and French stemmer) were also downloaded from the same web sites used for German to Italian
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Table 5.6: Comparison of MAP scores (summary)

Methods Without feedback With feedback
1) short queries: TITLE only
No disambiguation 0.1344 0.1537
Best pair 0.1619 (Dice) 0.1687 (Dice)
Best cohesion 0.1620 (Dice) 0.1685 (Dice)
Best sequence 0.1796 (Cosine) 0.1893 (Cosine)
PRF 0.1690 (top 30) 0.1885 (top 30)
(2) long queries: TITLE and DESCRIPTION
No disambiguation 0.1484 0.1537
Best pair 0.1967 (Cosine) 0.2308 (Dice)
Best cohesion 0.2031 (Cosine) 0.2398 (Cosine)
Best sequence N/A N/A
PRF 0.2096 (top 100) 0.2686 (top 100)

Table 5.7: Result of sign tests (3): term co-occurrence and PRF based methods

Method 1 Method 2 H ′ m Prob.
Short queries PRF (top 30) Dice (Cohesion) 23 11 0.6612
Long queries PRF (top 100) Cosine (Cohesion) 35 17 0.6321
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retrieval. However, unlike text processing for German topics, any term in French and English
topics was not decomposed.

Results of additional experiments were almost similar to that in the case of German to Italian
retrieval. MAP scores of searches for short queries with no feedback are shown in Table 5.8. First, it
can be concluded again that the dominant method for disambiguation based on term co-occurrence
was to select the best sequence since its average scores were the highest in both cases of French and
English topics. The best sequence method is followed by the best cohesion (see Table 5.8). Second,
the PRF method showed again good performance. Especially, in these additional experiments, this
method outperforms slightly the term co-occurrence based methods (‘Top 100’ and ‘Top 50’ were
dominant among all runs of French to Italian and English to Italian retrieval, respectively).

Finally, it was observed that the cosine similarity is superior to other measures in the case of
French to Italian retrieval. Also, the Dice coefficient outperforms the cosine coefficient in the non-
pivot case (English to Italian) and the dominance of the Dice coefficient was also partly observed
in the case of German to Italian searches although the differences were so small (see Table 5.1) 6.

5.2.4 Discussion

Case studies

This section tries to explore more deeply the disambiguation process for two particular topics,
C145 and C164 in the case of German to Italian searches, in order to understand characteristics of
each method. Table 5.9 shows scores of average precision and stems of each selected translation for
topic C245, <TITLE>of which is “Japans Reisimport (Japan’s rice import)”. The decomposing
algorithm used for German words broke automatically “Reisimport” into “Reis” and “Import”,
and transitive query translation was executed for the three source terms, “Japans”, “Reis”, and
“Import” by using German to English and English to Italian dictionaries. In the process of trans-
lation, some irrelevant translations were obtained. For example, the Italian stem “viagg”, which
means “travel”, was yielded from the German word “Reise”, which was unfortunately converted
into “Reis” by the stemming algorithm when the dictionary was implemented on the system. As
shown in Table 5.9, performance of the best pair, cohesion and PRF based methods, was poor due
to the fact that this irrelevant term was finally selected, whereas only the best sequence algorithm
correctly chose stem “ris”, which means “rice”.

From Table 5.10 which indicates similarities of “ris” and “viagg” with the other translation

6Based on the result, the Dice coefficient was used in MLDC experiment discussed in Section 5.4.
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Table 5.8: MAP scores in French to Italian and English to Italian (short query without feedback)

Methods French to Italian English to Italian
No disambiguation 0.1242 0.2093
1)Best pair MI 0.1305 0.1889

Dice 0.1957 0.2309
Cosine 0.2225 0.2261
Overlap 0.1822 0.2179
Ave. 0.1827 0.2160

2)Best cohesion MI 0.1668 0.2075
Dice 0.1971 0.2290
Cosine 0.2240 0.2215
Overlap 0.1943 0.2112
Ave. 0.1956 0.2173

3)Best sequence MI 0.1751 0.2180
Dice 0.1989 0.2296
Cosine 0.2262 0.2221
Overlap 0.2132 0.2140
Ave. 0.2034 0.2209

4)PRF Top 10 0.2260 0.2338
Top 30 0.2273 0.2375
Top 50 0.2286 0.2397
Top 100 0.2314 0.2356
Top 500 0.2215 0.2282
Top 1000 0.2180 0.2216
Ave. 0.2255 0.2327

Table 5.9: Average precision and selected translations for topic C145 (short query)

Methods Ave. Prec. Translations (only stems)
Japans Reis Import

Cosine Best pair 0.0714 giappon viagg import
Cosine Best cohesion 0.0714 giappon viagg import
Cosine Best sequence 1.0000 giappon ris import
PRF Top 30 0.0714 giappon viagg import
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Table 5.10: Cosine similarities in topic C145

Source terms Translations (stems) ris viagg
Japans giappon 0.00392 0.00593

lacc 0.00000 0.00068
Import import 0.00652 0.00370

important 0.00160 0.00735
introdurr 0.00000 0.00097
rilev 0.00158 0.00330
rilevant 0.00000 0.00197
signific 0.00106 0.00241
trascendent 0.00000 0.00126
vistos 0.00000 0.00088

candidates, the reason why the best pair and cohesion algorithms consequently selected the irrele-
vant translation can be understood. As shown, many irrelevant translations were produced by the
decomposing algorithm and transitive translation via English. Among them, “important” has the
highest similarity with “viagg”, and the best pair algorithm accidentally selected “viagg” for the
source term “Reis” (fortunately, “important” was not adopted because “giappon” and “import”
had already been chosen with higher similarity of 0.018). It is obvious from this case that the
best pair algorithm has very limited ability for selecting correct translations due to locality in its
selection process (i.e., only a single pair is considered in each step, independently), as discussed in
Section 2.2.4.

For this case, unfortunately, the best cohesion algorithm also made an error. The total value of
cohesion of “ris” is only 0.01044 (= “giappon” 0.00392 + “import” 0.00652), which is less than that
of “viagg” (“giappon” 0.00593 + “important” 0.00735 = 0.01328). If the similarity between the
pair of “viagg” and “giappon” are lower, then the cohesion method would correctly identify “ris”.
However, since the irrelevant translation “viagg” happens to have a close relationship with the
other correct translation “giappon” (e.g., “travel to Japan”), the irrelevant term was selected by
mistake. It should be noted that, although the best cohesion algorithm could not make a correct
choice in this case, more information (i.e., similarity with “giappon”) was used. So, its error
probability is naturally expected to be lower than that of the best pair algorithm as indicated
empirically in previous section.

In the best sequence algorithm, the similarity between “ris” and “import” has an effect on
selection, because the cosine coefficient between “import” and “giappon” is very high as described
above and consequently the combination of the three correct translations “import,” “giappon” and
“ris” has a high average score of similarities. Fortunately, the similarity between “import” and
“viagg” is not so high, and therefore an irrelevant sequence of “import,” “giappon” and “viagg”
cannot be dominant. As shown in the case, the best sequence algorithm would keep the error
probability lower than that of other methods by taking more evidence into account.

The PRF based method also erroneously selected the irrelevant translation “viagg” due to the
fact that five documents in the top-ranked 30 documents included “viagg” whereas the number
of documents containing “ris” was just two. However, in another topic C164, the PRF based
method outperforms the best sequence algorithm. The short query of topic C164 is “Europäische
Strafurteile zu Drogen (European sentences for drugs)”. Table 5.11 shows average precision scores
and selected translations (stems) for topic C164. The German word “Strafurteile” was decomposed
into “Straf (penal)” and “Urteile (judgments)” by the algorithm used in this experiment and
the best sequence algorithm chose an inappropriate translation “vol (i.e., volere)” for “Urteile”.
“Volere” is a polysemous word having more than one sense (i.e., “judge”, “think”, “maintain”
and so on), and therefore the best sequence algorithm was inferior in performance to the PRF
based method, which identified a more adequate translation “sentenz” which means “judgment”,
“sentence”, “case”, and so on, according to the fact that “sentenz” appears in 28 out of the
top-ranked 30 documents (whereas “vol” occurs in only 8 documents).

The reason why “vol” was selected by the best sequence algorithm is that this term has a
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Table 5.11: Average precision and selected translations for topic C145 (short query)

Methods Ave. Prec. Translations (only stems)
Europäische Straf Urteile Drogen

Cosine Best sequence 0.0648 europ pun vol drog
PRF Top 30 0.1187 europ pun sentenz drog

Table 5.12: Cosine coefficients in topic C164

europ pun drog Total
vol 0.00935 0.00810 0.01983 0.03727
sentenz 0.00267 0.00880 0.02020 0.03168

relatively strong relationship with the correct translation “europ (Europe)” (see Table 5.12). As
the average precision score in Table 5.11 and cosine similarities in Table 5.12 indicate, it cannot
be definitively concluded that “vol” is a wrong translation, namely, the average precision score of
the best sequence is not zero and “vol” has a relationship with “pun” and “drog” to some degree.
From this viewpoint, the best sequence algorithm never makes a mistake, however, it does not
allow to obtain the more appropriate translation “sentenz” due to the fact that a general term
“europ” having a close relationship with the polysemous term “vol” happens to be included in the
query. This would be a problem of using macro-statistics for translation selection.

Comparison of performance

Through the discussion on the two topics C145 and C164, it was clarified that success of the
translation selection is strongly dependent on other translation candidates having a relationship
with the correct translation. This is true not only for the term co-occurrence based method but also
for the PRF based method. For example, in topic C145, the reason why this method erroneously
selected “viagg” is perhaps because the list of translation candidates includes other Italian terms
about “travel” such as “viaggiant (traveling)” and “viaggiator (traveler)” and therefore many
documents on “travel to Japan” may accidentally be included in the top-ranked documents. The
situational dependency may have made it harder for a statistically significant difference to be
observed in previous section.

Thus it is difficult to draw a clear conclusion that be commonly applied to every case, and
just some tentative findings on translation disambiguation were obtained in this experiment. For
instance, the best sequence algorithm is likely to be dominant, followed in order by the best
cohesion and the best pair algorithms, and it seems that the PRF based method often outperforms
the best cohesion and pair algorithms. However, these tentative conclusions are an important
starting point, and they may be used as a hypothesis for further experiments based on other test
collections.

Efficiency of processing for IR

One problem for implementing the PRF based method would be that processing for it takes longer
time in on-line IR settings because the document collection is repeatedly searched two times. If
only a few translations are entered, then the search result would be obtained within a reasonable
response time. However, in general, a set of translation candidates tends to contain many terms.
Thus the disambiguation technique based on PRF would be appropriate for batch mode searching
rather than usual on-line searching.

In contrast, it should be noted that no extra device is needed for executing the PRF based
method other than the standard search function with document ranking and PRF, which is an
advantage of this method for IR. In the case of the term co-occurrence based method, a special
index file for quickly finding and extracting co-occurrence information is required. If the size of
the document collection is large, then it may be difficult to prepare such an index file because too
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many pairs of terms are included in the whole collection (huge computer resources may be required
for implementation). Thus the situation in which translation disambiguation is needed should be
carefully considered. This experiment suggested that there is no large difference in ‘effectiveness’
between the term co-occurrence and PRF based methods, and so efficiency may be a key factor
when choosing a disambiguation method 7.

5.3 Experiment of Monolingual Document Clustering

This section reports an experiment on monolingual document clustering, which is partly based on
Kishida(2010) [152].

5.3.1 Purpose

Before attempting an experiment on multilingual document clustering (MLDC), it is necessary
to ascertain effectiveness of the leader-follower clustering (LFC) algorithm in comparison with
other algorithms even though the LFC algorithm has an advantage in terms of efficiency. As
discussed above, there are not so many algorithms appropriate to large-scale document clustering.
Particularly, this experiment used two algorithms,

1. Spherical k-means (SKM) algorithm (batch mode)

2. Hierarchical Dirichlet process (HDP) mixture model

as baselines for articulating effectiveness of the LFC algorithm. Both the methods are based
on iterative computation whereas the LFC algorithm can generate clusters after only single or
double scans of the target document file, which means that the LFC algorithm clearly is superior
to the SKM algorithm and the HDP mixture model in terms of efficiency. The purpose of the
experiment is to examine empirically validity or quality of clusters generated by the LFC algorithm
in a situation of ‘monolingual’ document clustering. By comparing the cluster validity with that
achieved by the SKM and HDP methods, the effectiveness of the LFC algorithm will become clear.
If ‘cost-effectiveness’ of the LFC is empirically confirmed, then MLDC based on the LFC algorithm
would be able to obtain a reality.

The second purpose of the experiment on monolingual DC is to verify effectiveness of the LFC
algorithm for large-scale document sets. Even though the LFC algorithm is well-known as an
efficient clustering algorithm, whether the effectiveness is kept for large-size sets of documents or
not has not yet been sufficiently clear 8. In this experiment, the LFC algorithm was applied to a
set of over 70,000 documents, and the cluster validity was examined for it.

5.3.2 Dataset and text processing

The Reuter corpus RCV1 created as a test collection for text categorization [187] was used to
compare the effectiveness of document clustering techniques. Since one or more ‘topic codes’ are
assigned to each record of the corpus, which can be used as ‘answers’ of clustering, the validity
of clusters generated by each algorithm can be assessed based on the topic codes (note that the
topic codes were used only for evaluation). Particularly, in this experiment, among news articles
published during August 1996, a set of 6,374 records to which just a single topic code is assigned
was extracted from the collection and used as a sample (i.e., N = 6374) because evaluation of
clustering results including multi-topic documents becomes too complicated. In total, 68 different
topic codes appear in the 6,374 records. The number of documents to which each topic code is
assigned is shown in Figure 5.3, in which the 68 topic codes are sorted in descending order of
the number of documents on the x-axis. As indicated in the figure, the distribution is somewhat

7As discussed later, because document translation is required for MLDC, the PRF based disambiguation is not
appropriate. If the method is applied, then a set of translations for each sentence of a document is considered as a
query and searching the target set for the long query would have to be repeated for all sentences (perhaps, it may
be impossible to execute the PRF based method for a document vector).

8This problem was partly solved by Kishida(2010) [152], method and experiment of which will be described in
this part.
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skewed. Actual subject of each topic code and its number of documents is listed in Table 5.16 of
Section 5.4.
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Figure 5.3: Rank distribution of topic codes in the collection

Similarly to the previous experiment, by standard text processing which consists of tokenization,
removing stopwords and stemming by Porter’s algorithm, document vectors for clustering were
generated from the records. As discussed in Section 4.1.5, the idf factor (Section 2.1.2) can not be
directly incorporated into probabilistic mixture model. So, in the first experiment, term frequency
was simply used as elements of document vectors, and instead of incorporating the idf factor into
the element, ‘non-specific’ terms appearing in more than 10% of all documents (i.e., over 637
documents) were removed from all document vectors. Also, terms appearing in only one document
were not used as features for clustering. As a result, in total, 19,610 distinct terms appeared in
the collection (i.e., M = 19610) and the average document length was 99.99.

The document set with 6,374 records and the vocabulary including 19,610 index terms were
used for the first experiment of monolingual DC in which effectiveness of the LFC algorithm was
compared with that of the SKM algorithm and the HDP mixture model. Meanwhile, in the second
experiment, all index terms appearing just one document or over 10% of all documents are also
counted unlike the first experiment because tf-idf weighting was used for elements of document
vectors (of course, terms appearing in a single document does not contribute to computation of
inner product). As a result, 44,770 distinct terms were extracted from 6,374 records and used as
features (the indexing rule was very slightly different from that in the first experiment, but it does
not affect interpretation of the experimental results).

5.3.3 Implementation of clustering methods

The document vector was defined by di = [fi1, . . . , fiM ]T as mentioned above, and the element
of cluster vectors was simply computed such that w̃kj =

∑
i:di∈Ck

fij for the LFC algorithm (i =
1, . . . , N ; k = 1, . . . , L; j = 1, . . . ,M) in the first experiment.

For clustering by the HDP mixture model, Gibbs sampling based Chinese restaurant franchise
(CRF) model was employed (Figure 4.15 in Section 4.1.5). As the SKM algorithm, this experiment
used a modified Hartigan-Wong algorithm in which the inner product of unit vectors of a document
and a cluster is computed and Equation (3.47) and (3.48) are incorporated for reallocation of
documents (L documents at top positions in the file were automatically selected as seeds).

In contrast, the second experiment using larger datasets (see below) adopted standard tf-idf
weighing scheme because only the LFC algorithm was applied. More specifically, an element of
document vector di was defined by

wij = (log fij + 1.0)× log
N

nj
, (5.1)
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Table 5.13: nMI scores of clustering results

Methods Parameters nMI score L No. of scans
Spherical k-means L = 80 .4200 80 47

L = 74 .4315 74 43
L = 68 .4313 68 30
L = 54 .4454 54 39

HDP mixture α = 0.1, β = 0.01, γ = 0.1 .4715* 54.1* 3000
α = 0.1, β = 0.01, γ = 0.5 .4725* 73.7* 3000
α = 0.1, β = 0.01, γ = 1.0 .4486* 84.3* 3000

LFC (double-pass) θs = 0.04 .3185 17 2
θs = 0.05 .4713 29 2
θs = 0.06 .4644 47 2
θs = 0.07 .4527 80 2
θs = 0.08 .4499 104 2
θs = 0.09 .4383 130 2
θs = 0.10 .4421 167 2
θs = 0.11 .4338 200 2
θs = 0.12 .3966 243 2

Note: *An average over 10 samples.

and that of cluster vector ck was determined by

w̃kj = log
∑

i:di∈Ck

fij + 1.0. (5.2)

When the target document set is very large, it may not be necessary to read all documents for
generating cluster vectors in the first scan (see Section 3.3.2) 9. In this experiment, only top
2,000 documents were checked in the first scan of the double-pass LFC algorithm, which is called
‘modified double-pass method’ for convenience in this thesis.

5.3.4 Results and analysis

Comparison of effectiveness

In this experiment, the cluster validity was measured by the normalized mutual information (nMI)
in Equation (3.18) of Section 3.1.4 based on the topic codes of RCV1. The nMI scores of each
clustering method are shown in Table 5.13.

As shown in the table, some sets of parameters were used in this experiment. In the HDP
mixture model, three patterns of hyperparameters were examined. Among them, α = 0.1, β = 0.01
and γ = 0.5 showed the highest nMI score. Because clustering by the HDP mixture model is
based on the Gibbs sampling, a set of clusters can be obtained in each sample by allocating each
document to the dish (i.e., topic) of a table at which the most tokens of the document are sitting
(see Section 4.1.5). Therefore, in this experiment, after the Gibbs sampling was executed 3,000
times iteratively (note that this is a single chain), 10 samples extracted from the 2010th iteration
to 3000th iteration with 10 intervals were used for generating sets of clusters, respectively, and the
nMI score was averaged over the ten samples, which is indicated in Table 5.13. In the case that
α = 0.1, β = 0.01 and γ = 0.5, the average was 0.4725, which outperforms those by the SKM and
the LFC algorithms within this table 10.

In the LFC algorithm, threshold value θs for merging a document into a cluster has to be
determined a priori (Section 3.3.2). In the case that θs = 0.05, the highest nMI score (= .4713)

9This idea was proposed by Kishida(2010) [152].
10However, it may be possible that 3,000 iterations were insufficient for attaining enough convergence. Because

more than 3,000 iterations for 6,374 documents was considered as unrealistic and the HDP mixture model is not
the main target of this thesis, the problem of convergence when applying the HDP mixture model to document
clustering is left for future research.
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was obtained in this experiment. However, the number of clusters is only 29 (the number of topic
codes is 68), and the threshold may be inappropriate in this sense. Actually, by trial and error,
it turned out that threshold θs = 0.06571 achieves 0.4770 of the nMI score 11, which is slightly
superior to the highest nMI score in the HDP mixture model (i.e., 0.4747 at 2930th sample when
α = 0.1, β = 0.01 and γ = 0.5). Inevitably, the result does not mean dominance of the LFC
algorithm because other sets of hyperparameters in the HDP mixture model were not examined.

Rather, an important thing is that the LFC algorithm generated clusters with quality ‘com-
parable’ to those obtained by the HDP mixture model. The confusion matrix, which is a cross
tabulation of the number of documents by topic code and generated cluster (see Table 3.5), is
shown in Figures 5.4 and 5.5, respectively, as a two-dimensional histogram. In these graphs, clus-
ters are ordered by the number of documents belonging to them, and topic codes are arranged in
alphabetical order. Although it is hard to understand its details due to the fact that there are
many bars in the graph, it does not seem that ‘anomalous’ or ‘erroneous’ results were obtained by
the two clustering executions.
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Figure 5.4: Confusion matrix (1): LFC algorithm (θs = 0.07)

Unfortunately, it seems that the SKM algorithm provided slightly ‘poor’ clustering results in
this experiment. In the case of the k-means algorithm, the number of clusters has to be provided
a priori (see Section 3.3.1), and this experiment attempted four cases, L = 54, 68, 74, 80. Among
them, 54 and 74 were adopted from results of the HDP mixture model, and L = 80 was used for
comparing with the LFC algorithm when θs = 0.07. Needless to say, 68 is the number of topic
codes. The nMI scores were relatively lower than those by the HDP mixture model and the LFC
algorithm. Note that this result does not necessarily mean inferiority of k-means algorithms again
because there are other k-means algorithms and the difference of nMI scores was small.

Table 5.13 indicates the number of times that the document file was scanned by each algorithm.
In the case of the SKM based on the Hartigan-Wong algorithm, scans from 30 to 50 were needed
until the results converged, which is about ten times more than that in the LFC algorithm. This
means that computational complexity of the LFC algorithm is actually lower than that of the SKM
algorithm even though the LFC algorithm provides clustering results with quality comparable to
that by the HDPmixture model and the SKM algorithm based on iterative computation. Therefore,
in terms of ‘cost-effectiveness’, it can be concluded that the LFC algorithm clearly outperforms
the HDP mixture model and the SKM algorithm.

11The number of generated clusters was 68, which is equal to the number of topic codes.
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Figure 5.5: Confusion matrix (2): HDP mixture (α = 0.1, β = 0.01, γ = 0.5, 2930th sample)

Effectiveness for larger datasets

In the second part of this experiment, effectiveness of the LFC algorithm was examined for larger
document sets. In terms of executing DC, the set with 6,374 records would be enough large, but
in real situations, larger document collections have to be processed. For the experiment, more
records with a single topic code were extracted and added to the document collection as shown in
Table 5.14.

For example, the “Aug.-Sep. 1996” dataset consists of 22,892 documents extracted from the
RCV1 corpus in the period of August to September 1996. This dataset was created by adding news
articles in September 1996 to the original test dataset used in the first experiment, and its size was
increased about 3.4 times. Similarly, as a result of adding news articles cumulatively, the “Aug.-
Oct.” dataset included 40,697 documents (about 6.4 times). Also, the numbers of documents in
the “Aug.-Nov.” and “Aug.-Dec.” datasets amount to 57,076 (about 9.0 times) and 72,835 (about
11.5 times), respectively. It should be noted that only documents having a single topic code were
included in the datasets according to the same procedure in the first experiment, and the same
text processing was executed on the datasets. Note that only θs = 0.08 was used as the threshold
in the second experiment of this section.

As indicated in Table 5.14, the modified double-pass algorithm worked well for the larger
dataset. For instance, 77 clusters were generated for 79 topic codes and nMI score was relatively
high (=0.462) in the “Aug.-Sep.” dataset. The same tendency can be observed even if documents
included in the dataset more increase. The nMI scores were 0.459 for 40,697 documents of the
“Aug.-Oct.” dataset, 0.462 for 57,076 documents of the “Aug.-Nov.” dataset, and 0.453 for 72,835
documents of the “Aug.-Dec.” dataset (see Table 5.14). This result indicates a possibility that the
modified double-pass algorithm can provide effective clustering results for larger datasets.

The modified double-pass algorithm in which only top n documents are checked in the first scan
(i.e., n < N) is always executed in less computational complexity than the original double-pass
algorithm, and its effectiveness of clustering was also improved in this experiment (results by the
original algorithm are shown as ‘baseline’ in Table 5.14) 12. If there are enough representative
documents up to n documents in the file, then it is expected that this algorithm works effectively.
This condition is considered to be satisfied in the sample used for this experiment. Figure 5.3
indicates that the test set contains relatively few large ‘true’ clusters and many small ones. In such

12Of course, by looking for optimal values of θs more carefully, the original algorithm may provide better results.
It is enough to confirm the effectiveness of the modified double-pass algorithm here.
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Table 5.14: Performance of LFC algorithm for larger dataset

Dataset: Year - 1996
Aug. - Sep. Aug.-Oct. Aug.-Nov. Aug.-Dec.

No. of documents 22892 40697 57076 72835
No. of topic codes 79 82 83 86
Baseline: Original double-pass method by Crouch(1975) [71]
No. of clusters 180 250 305 354
nMI 0.417 0.388 0.375 0.365
Elapsed time (sec.) 6357.5 19629.3 37996.9 61336.5
Modified double-pass method (2000 docs) by Kishida(2010) [152]
No. of clusters 77 84 85 85
nMI 0.462 0.459 0.462 0.453
(% of the baseline 110.8% 118.3% 123.2% 124.1%
Elapsed time (sec.) 3445.1 10091.4 19356.1 31292.2
(% of the baseline 54.2% 51.4% 50.9% 51.0%
Note: θs = 0.08.

skewed distribution, documents belonging to large ‘true’ clusters tend to be included in processing
of the first scan, and so, cluster vectors generated by these documents are likely to work positively
for generating homogeneous clusters related to the large ‘true’ clusters in the second scan, which
would increase the quality of the clustering result.

Actually, not all topic codes appear up to 2,000 documents in the file as shown in Figure 5.6,
which is a plot of cumulative numbers of distinct topic codes appearing in each position from the
top of the test file with 6,374 records. Nevertheless, the modified double-pass algorithm effectively
returned clustering results with high quality in this experiment, and the skewness in the set of
‘true’ clusters would enable the modified double-pass algorithm to provide good clustering results.
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Figure 5.6: Cumulative numbers of distinct topic codes appearing in each position of the sample
file

Conversely, it is not guaranteed that the modified double-pass algorithm works well on a docu-
ment set that does not have a skewed distribution of documents over ‘true’ clusters unlike the test
data in this experiment. The ideal situation would be that representative documents of all ‘true’
clusters appear up to n documents from the top of the file, and the distribution of documents over
‘true’ clusters in the set of n documents is similar to that in the entire set of documents. In such
situation, the modified double-pass algorithm would be able to return a clustering result without

176



creating insufficient cluster vectors.

5.4 Experiment of Multilingual Document Clustering

This section reports an experiment of large-scale multilingual document clustering (MLDC) based
on Kishida(2011) [154], which is the main topic of this thesis. Research findings in previous sections
were utilized for designing the experiment discussed in this section.

5.4.1 Purpose

More specifically, the experiment has three purposes:

1. To verify the degree of effectiveness of MLDC compared to monolingual DC.

2. To compare the effectiveness of MLDC between two strategies of cluster translation and
document translation.

3. To confirm whether translation disambiguation improves the effectiveness of MLDC or not.

Cluster translation and document translation will be explained later.

5.4.2 Clustering strategy for multilingual documents

Dictionary-based translation

As mentioned above, simple dictionary-based translation is adopted for MLDC in this thesis. Gen-
erally, bilingual dictionaries are easy to obtain, and especially, dictionaries for translation between
each language and English are more readily available because English is the prevailing international
language. Thus even if the target set consists of documents written in various languages, automat-
ically converting words in the documents into English equivalents by using the machine-readable
bilingual dictionaries allows to execute a clustering algorithm for the multilingual set. Also, since
the conversion of words is a simple operation with searching dictionaries, it is easy to implement
the module into a DC system. From these reasons, dictionary-based translation should be closely
examined as a first step for developing effective and efficient algorithms of MLDC.

In CLIR studies, some researchers have adopted a strategy of translating target documents,
not search queries, using bilingual dictionaries or bilingual term lists (see Section 2.2.2). Basically,
this thesis attempts to apply the strategy to the MLDC problem.

Document translation vs. cluster translation

It is possible to translate clusters after executing monolingual clustering independently for re-
spective parts of each language, rather than directly translating individual documents before the
clustering operation. Specifically, terms in representation of each cluster generated by the monolin-
gual clustering at the first stage are converted into English ones by the dictionary-based translation,
and then a clustering algorithm is again applied to the set of translated clusters at the second stage
for outputting a final result of MLDC (see the left side of Figure 5.7). If ‘correct’ homogeneous
clusters are created at the first stage and translation of clusters is successful, then this ‘cluster
translation’ strategy would show good performance. When documents are grouped into a suffi-
ciently small number of clusters at the first stage, the processing time for cluster translation is
expected to be shorter than for document translation in which all documents have to be translated
(see the right side of Figure 5.7) even though it is necessary to repeat the clustering operation
twice. This is an advantage of cluster translation.

Translation disambiguation

For a source word, an entry in a bilingual dictionary often provides multiple translations with
different senses, and therefore, word sense disambiguation for the translations (i.e., translation
disambiguation) is important for executing CLIR (Section 2.2.4).
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Indeed, retrieval experiments have shown that translation disambiguation often improves search
performance as indicated actually by the experiment in Section 5.2, so it is worth applying a
disambiguation technique also to dictionary-based translation in MLDC. A variety of methods of
translation disambiguation such as techniques using parallel corpora, techniques based on term co-
occurrence statistics, techniques based on query expansion (QE) and so on, have been developed
in the field of CLIR (Section 2.2.4). Among them, parallel corpus-based techniques would be
inappropriate in situations that a pair of languages for which a parallel corpus is difficult to obtain
is included in the target document set. Also, because QE-based techniques require IR operations
on the target document set, it would be unrealistic to apply them to a large-scale multilingual
document set. By regarding each document as a long query and searching the target document
collection (i.e., the English document set) for the query, QE-based methods may be applied to
MLDC, but the repeated searches for such long queries take too long time. Therefore, techniques
based on term co-occurrence frequencies would be the most promising approach for disambiguation
in practical MLDC. In particular, a version of this technique adopted by CLIR experiments in
Adriani(2000) [1] and Gao et al.(2001) [101] was selected for this experiment because experiments
in Section 5.2 showed that the method was sufficiently effective and its computational complexity is
relatively low. More precisely, the ‘best cohesion’ method based on Equation (2.60) was employed
in this experiment.

Double-pass algorithm for DC

This experiment used the double-pass leader-follower clustering (LFC) algorithm proposed by
Crouch(1975) [71] for clustering documents or for grouping clusters according to experimental
results in previous section. As discussed in 3.3.2, the target document file is scanned twice, and
cluster vectors are generated at the first scan and each document is allocated to a cluster at
the second scan in the double-pass algorithm. Although double-pass clustering takes longer time
than single-pass clustering in which cluster generation and allocation are concurrently executed, the
double-pass algorithm is known to provide better results. Because the difference in processing time
between the two algorithms is not so large, this experiment adopted the double-pass algorithm.
Also, the modified double-pass clustering [152] keeps high effectiveness for large-scale document
collections as shown in previous section, but in this experiment, the modified version was not used
(of course, the modified double-pass algorithm can be applied to MLDC situations).

Note that term weights in document and cluster vectors were computed according to Equations
(5.1) and (5.2), respectively, for the double-pass LFC algorithm.

5.4.3 Dataset and text processing

Dataset for the experiment of MLDC was created by extracting a subset of records from the Reuters
corpus RCV2, which is a multilingual document set developed for exploring text categorization
[187]. The RCV2 contains a huge number of documents, and therefore it was impossible to employ
all the documents in the experiment because the clustering operation had to be repeated many
times with varying values of parameters in order to closely examine the clustering performance. A
subset of the records was therefore selected based on the following rules:

1. Only four languages, English, French, German and Italian, are used because text processing
for these four languages is relatively easy.

2. Only documents to which a single topic code is assigned are used because it is complicated
to measure the effectiveness of clustering documents with two or more subject topics.

3. At least one thousand documents must be included in the subset of each language in order
to keep a sufficient volume of test data.

Accordingly, data extraction was started from a subset of news articles published in August 1996,
and proceeded chronologically to the next month if over 1,000 documents were not obtained in
the month. While the August 1996 subset included over 1,000 English documents (in total, 6,374
documents as before), French and German documents were extracted from two subsets of August
and September 1996 (2,403 and 3,153 documents, respectively). Partly because there are fewer
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Table 5.15: Basic statistics of document sets for MLDC experiment

No. of No. of different No. of different Average length
records topic codes index terms of document

English 6374 68 44758 193.015
French 2403 23 16896 166.128
German 3153 24 28924 177.513
Italian 1220 18 5929 76.642
Total 13150 69 96507 173.588

documents in Italian than in other languages, five subsets from August to December 1996 were
checked and 1,220 documents were extracted. The numbers of documents in the experiment are
summarized in Table 5.15, which indicates that the multilingual test set consists of 13,150 doc-
uments in total. Also, Table 5.15 shows the numbers of different topic codes appearing in each
language subset (see Table 5.16 for details of the topic codes). These topic codes are considered to
represent ‘true’ clusters in the dataset, namely, the experimental dataset contains 69 ‘true’ clusters
which were employed as correct answers for evaluating MLDC techniques. Note that the topic
codes were used only for the evaluation and not for the clustering stage similarly to the experiment
in previous section, because this thesis focuses on only unsupervised classification techniques.

Although a set of 13,150 documents is not large from a viewpoint of IR applications, its size
was considered to be appropriate for repeated executions of clustering that is a time consuming
task. It is expected that experimental results obtained from this medium-scale document set can
be valid in situations of clustering larger collections unless homogeneity of documents is largely
changed. For example, if only 69 topic codes shown in Table 5.15 are appearing in another larger
subset of RCV2 and heterogeneous documents are not included in it, then clustering results would
be almost identical. Actually, the previous section reported that clustering effectiveness did not
largely change when the test set was enlarged from 6,374 documents to 72,835 documents, by using
the RCV1 corpus (see Table 5.14).

Each term postulated as an analytical unit in calculation for clustering (i.e., Equations (5.1)
and (5.2)) was automatically identified from text in each news article based on a standard indexing
technique (Section 2.1.6), in which removal of stopwords and stemming of words were executed
using linguistic resources (more precisely, stopword lists and Porter’s stemmers for English, French,
German, and Italian languages) developed by the Snowball Project 13. For only German words,
a simple heuristic was used to decompose compound words during the indexing process similarly
to the CLIR experiment in Section 5.2. German strings surrounded by delimiters (e.g., blank,
punctuation marks and so on) in the text were extracted and broken down into a set of German
entries registered in a German dictionary. As this dictionary, a German-English bilingual dic-
tionary discussed later was employed. For example, the German string, “Zeitungsberichten” can
be decomposed into “Zeitung (newspaper)” and “berichten (inform)” by performing operations of
matching entry terms of the dictionary if these two component words are listed as entries. More
precisely, only the longest matching entries were used as index terms after stemming. For example,
“Zeit (time)” was not extracted from “Zeitungsberichten” because “Zeitung” is longer than “Zeit”
(namely, no string was extracted any more from the longest matching entry “Zeitung”). Also, an
unknown substring not matching any entry was treated as an independent word if the substring
contained three or more characters.

The heuristics may not provide always a linguistically correct solution, but it was expected
to work well in the experiment for examining the performance of MLDC, in which the objective
of decomposition is not to translate correctly each sentence, but to just enhance correctness of
similarity measure between documents. Table 5.15 indicates the different number of index terms
by each language, namely, 44,758 index terms appeared in English documents 14, 16,896 in French
ones, 28,924 in German ones, and 5,929 in Italian ones. The average length of documents is

13http://snowball.tartarus.org//
14For some reasons, this number is slightly different from that in the second experiment reported by the previous

section.
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Table 5.16: Numbers of records in dataset by code and language

No Code English French German Italian Total
1 C11 Strategy/Plans 198 2 1 201
2 C12 Legal/Judicial 8 8
3 C13 Regulation/Policy 84 1 6 91
4 C14 Share Listings 40 6 46
5 C15 Performance 2 2
6 C151 Accounts/Earnings 93 93
7 C152 Comment/Forecasts 33 33
8 C16 Insolvency/Liquidity 9 1 6 1 17
9 C17 Funding/Capital 6 1 1 8
10 C171 Share Capital 8 8
11 C172 Bonds/Debt Issues 1 1
12 C173 Loans/Credits 2 2
13 C174 Credit Ratings 1 1
14 C181 Mergers/Acquisitions 31 31
15 C182 Asset Transfers 3 3
16 C183 Privatisations 1 1
17 C21 Production/Services 159 159
18 C22 New Products/Services 99 99
19 C23 Research/Development 11 11
20 C24 Capacity/Facilities 267 1 268
21 C31 Markets/Marketing 280 280
22 C32 Advertising/Promotion 10 10
23 C33 Contracts/Orders 222 2 224
24 C34 Monopolies/Competition 4 4
25 C41 Management 4 1 5
26 C42 Labour 2 2
27 E11 Economic Performance 150 145 80 97 472
28 E12 Monetary/Economic 89 117 142 144 492
29 E121 Money Supply 1 1
30 E131 Consumer Prices 2 2
31 E14 Consumer Finance 2 2
32 E143 Retail Sales 1 1
33 E21 Government Finance 4 4
34 E31 Output/Capacity 11 11
35 E311 Industrial Production 1 1
36 E411 Unemployment 1 1
37 E51 Trade/Reserves 9 24 7 40
38 E512 Merchandise Trade 28 28
39 E61 Housing Starts 4 4
40 E71 Leading Indicators 155 155
41 G15 European Community 52 52
42 G154 EC Monetary/Economic 1 1
43 GCRIM Crime, Law Enforcement 320 374 608 70 1372
44 GDEF Defence 29 78 140 10 257
45 GDIP International Relations 291 456 439 33 1219
46 GDIS Disasters And Accidents 119 119
47 GEDU Education 10 14 24
48 GENT Arts, Culture, Entertainment 48 74 44 3 169
49 GENV Environment And Natural World 22 22
50 GHEA Health 28 20 83 131
51 GIOB Labour Issues 1 62 68 86 217
52 GODD Human Interest 47 75 65 187
53 GPOL Domestic Politics 324 401 639 216 1580
54 GPRO Biographies, Personalities, People 59 59
55 GREL Religion 3 36 24 63
56 GSCI Science and Technology 8 27 30 65
57 GSPO Sports 896 896
58 GTOUR Travel and Tourism 2 3 4 2 11
59 GVIO War, Civil War 403 403
60 GWEA Weather 39 39
61 GWELF Welfare, Social Services 2 25 19 12 58
62 M11 Equity Markets 1031 283 30 172 1516
63 M12 Bond Markets 449 187 703 357 1696
64 M13 Money Markets 1 1 2 3 7
65 M131 Interbank Markets 3 3
66 M132 Forex Markets 5 5
67 M14 Commodity Markets 137 2 139
68 M141 Soft Commodities 12 12
69 M142 Metals Trading 6 6

Total 6374 2403 3153 1220 13150
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also indicated in Table 5.15, which shows that English news articles were the longest on average
(average document length of 193.02), followed by German and French ones. Among the four
languages, Italian documents were the shortest, with an average length of less than half of that of
English ones.

5.4.4 Implementation of clustering and translating processes

Clustering process

In this experiment, the double-pass algorithm based on Equations (5.1) and (5.2) was used in all
operations of clustering. The values of N and nj in the equations were estimated for respective
parts of each language (e.g., N = 2403 for French documents), and weight wij of each source term
was used for the corresponding translations with no change in the case of MLDC. Also, as heuristics,
all documents for which the maximum similarity was lower than 0.01 were forcibly allocated to a
‘miscellaneous’ cluster in the second scan of the double-pass algorithm. When grouping clusters
at the second stage in the cluster translation strategy, the same procedure can be applied by
regarding a monolingual cluster as a single document. Therefore, Equation (5.1) was used for the
monolingual cluster and Equation (5.2) for multilingual clusters generated at the second stage of
the cluster translation strategy.

Translating process

In this experiment, simple dictionary-based translation to English was executed in both the strate-
gies of document translation and cluster translation, namely, French, German and Italian index
terms identified by the indexing process were simply replaced by the corresponding English words
listed in entries of machine-readable bilingual dictionaries. French to English, German to English
and Italian to English dictionaries were downloaded from the web site of freelang.com in January
2010 15 and used for the replacement. The French to English dictionary contains over 36,000
French entries and 1.28 translations per entry are listed (the standard deviation is about 0.64).
Also, the German to English dictionary includes over 173,000 entries (1.05 translations per entry
and the standard deviation is about 0.28) and the Italian to English dictionary has over 39,000
entries (1.53 translations per entry and the standard deviation is about 0.99). On average, entries
of the Italian to English dictionary list more English terms than any other dictionaries.

All corresponding English words were stemmed by Porter’s algorithm and recorded as index
terms for MLDC. In order to avoid incomplete identification of relevant entries, all headwords of
entries were stemmed before searching the dictionaries (see Section 2.2.3 for details of stemming
in the matching operation). Nevertheless, if no entry matching French, German and Italian words
were found in the bilingual dictionaries, then these words were sent to Porter’s English stemmer
with no change and were straightforwardly treated as English words for MLDC because they may
be proper nouns such as names of places, persons, and so on 16.

In the case of disambiguating translations, the technique based on term co-occurrence frequen-
cies was directly applied to the sets of English words obtained from the bilingual dictionaries
after stemming. However, in the case of document translation, complexity of computing ‘cohe-
sion’ C(t, Tk) in Equation (2.60) is considerably high because many words are included in each
document or cluster vector, unlike query translation in standard CLIR. One of the solutions is to
extract a fixed number of index terms from each document or cluster, which corresponds to feature
selection in text categorization techniques (Section 3.1.3). This experiment adopted 10, 30, 50 and
100 index terms selected from each document or cluster, which means that m = 10, 30, 50, 100 in
Equation (2.60), and top-ranked terms which were ordered based on weight in Equation (5.1) were
chosen as the features. Also, when no disambiguation technique was applied, the set of English
words obtained from the bilingual dictionaries was straightforwardly adopted as the features of
document or cluster vectors after stemming, in which 10, 30, 50 and 100 words were selected in the

15http://www.freelang.com/. The dictionaries were used in the CLIR experiment of Section 5.2, but the versions
are different.

16Note that the translation process is almost same with that in the CLIR experiment of previous section.
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Table 5.17: Results of clustering by each language (monolingual DC)

English French German Italian Total no.
θs L nMI L nMI L nMI L nMI of clusters
0.04 9 0.327 4 0.301 3 0.273 3 0.236 19
0.06 29 0.474 11 0.355 16 0.482 7 0.461 63
0.08 91 0.477 41 0.477 45 0.444 8 0.508 185
0.10 218 0.453 114 0.423 111 0.417 21 0.548 464
0.12 404 0.438 217 0.403 201 0.383 45 0.528 867
0.14 639 0.438 309 0.401 318 0.379 69 0.463 1335
Ave. 231.7 0.435 116.0 0.393 115.7 0.396 25.5 0.457 -

same manner for comparison. As similarity measure sim(t, t′) in Equation (2.59), this experiment
employed the Dice coefficient 17.

5.4.5 Results and analysis

Monolingual clustering by each language

Before examining MLDC techniques, performance level of monolingual clustering for each language
should be confirmed. Table 5.17 shows the numbers of generated clusters and nMI scores in
Equation (3.18) as a result of monolingual clustering by each language, in which a set of values of
threshold θs for merging, {0.04, 0.06, 0.08, 0.10, 0.12, 0.14}, was adopted. Because it is difficult
to determine an optimal threshold in the LFC algorithm, this combination of threshold values was
empirically selected in this experiment for checking overall trend of the effectiveness of clustering.
For example, 0.477 at the threshold of 0.08 is the maximum nMI score of English DC among
the scores in Table 5.17 18, but it is not guaranteed that this value represents the true highest
effectiveness. This fact suggests at most that the maximum score would not be significantly larger
than 0.477 and that the highest effectiveness may be obtained in a threshold near 0.08 (it can not
be completely rejected that 0.477 is the maximum score). The purpose of this experiment is not
to find precisely the maximum nMI score, but to observe the overall trend, and then such kind
of sets of threshold values will be used in successive analyses in this experiment. Regarding other
languages, the maximum values of nMI in Table 5.17 were 0.477 in French (with threshold of 0.08),
0.482 in German (with threshold of 0.06), and 0.548 in Italian (with threshold of 0.10). On average,
Italian clustering was the most successful, followed by English (i.e., the average nMI score over all
threshold values is 0.457 in Italian and 0.435 in English). In the situation that an optimal threshold
is unknown, it can be interpreted that higher average of nMI scores over thresholds indicate more
successful clustering of documents.

The clustering performance in German and French sets of documents was slightly lower but
sufficiently comparable to that of English clustering (i.e., the average was 0.393 in French and
0.396 in German). This means that the text processing procedure in this experiment worked
almost equally well in all four languages (at least, there would be no serious problem for it).

Cluster translation

In the cluster translation strategy, sets of clusters generated by the double-pass LFC algorithm for
each language were translated into English, and were again merged into some groups by the same
procedure of the double-pass technique (see Figure 5.7). As discussed above, the translation can be
executed either without any disambiguation or with disambiguation. The effectiveness of MLDC
based on cluster translation without disambiguation is shown in Table 5.18. The number of index
terms entered into the translation process was limited to four cases, namely, (a) 10, (b) 30, (c) 50
and (d) 100 terms, and the set of threshold values for DC at the first stage (i.e., monolingual DC

17According to an experimental result in Section 5.2, there is almost no difference of effectiveness between the
Dice and cosine coefficients for translation disambiguation.

18Inevitably, the score is not largely different from that by monolingual DC in the experiment of previous section.
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Table 5.18: Results of MLDC by cluster translation without disambiguation

Thresholds at 1st stage (cluster generation)
Thresholds at 0.06 0.08 0.10 0.12
2nd stage L nMI L nMI L nMI L nMI
(a) No. of selected terms = 10
0.06 47 0.341 124 0.342 218 0.317 323 0.302
0.08 49 0.346 137 0.349 258 0.330 397 0.316
0.10 55 0.352 155 0.358 307 0.341 478 0.327
0.12 60 0.357 164 0.361 346 0.345 561 0.336
Ave. 52.8 0.349 145.0 0.352 282.3 0.334 439.8 0.320
(b) No. of selected terms = 30
0.06 52 0.338 127 0.342 218 0.313 289 0.292
0.08 58 0.347 149 0.354 288 0.329 420 0.315
0.10 60 0.351 161 0.364 337 0.339 528 0.327
0.12 62 0.358 170 0.367 386 0.350 619 0.336
Ave. 58.0 0.348 151.8 0.357 307.3 0.333 464.0 0.318
(c) No. of selected terms = 50
0.06 52 0.346 126 0.343 192 0.300 232 0.281
0.08 56 0.355 151 0.357 271 0.321 374 0.306
0.10 60 0.354 163 0.365 331 0.332 495 0.320
0.12 62 0.358 172 0.371 373 0.339 597 0.335
Ave. 57.5 0.353 153.0 0.359 291.8 0.323 424.5 0.310
(d) No. of selected terms = 100
0.06 49 0.344 94 0.316 128 0.276 118 0.247
0.08 54 0.351 131 0.347 206 0.301 216 0.267
0.10 62 0.358 154 0.364 281 0.323 362 0.294
0.12 62 0.358 165 0.367 338 0.336 499 0.316
Ave. 56.8 0.353 136.0 0.349 238.3 0.309 298.8 0.281
Note: Term selection was executed only at second stage.

by each language) was reduced to {0.06, 0.08, 0.10, 0.12} by removing 0.04 and 0.14 because in
the case of 0.04 and 0.14, their effectiveness was relatively lower (see Table 5.17).

The nMI scores listed in Table 5.18 clearly show that even if many more terms in cluster vectors
were translated, the effectiveness of final MLDC was not always improved. For example, when the
threshold at the first stage is 0.12, the average scores of nMI indicated in Table 5.18 decrease as
the number of selected terms becomes large, namely, 0.320 for 10 terms, 0.318 for 30 terms, 0.310
for 50 terms, and 0.281 for 100 terms. In the case of a threshold of 0.10, a similar monotonically
decreasing pattern was found, but when the threshold was 0.06 and 0.08, no consistent increasing
or decreasing pattern was observed.

Table 5.19 shows the numbers of translations entered into clustering operations at the second
stage for merging clusters generated at the first stage. Because there are actually source terms
having two or more translations, clustering at the second stage was executed based on many
more translated English terms than the number of selected (source) terms in the case of French,
German and Italian clusters if translation is executed with no disambiguation. For example, when
the number of selected terms was 10 and the threshold was 0.06, 10.64 English translations were
generated from French clusters on average (per cluster).

A similar conclusion can be obtained for cluster translation with disambiguation, result of
which is shown in Table 5.20. Only in the case of the threshold of 0.08, a monotonically increasing
pattern was observed, while for the other values of threshold, no consistent increasing or decreasing
pattern was found. In order to articulate this observation more clearly, two-way ANOVA with
repeated measurement was attempted for the two factors of disambiguation (its levels are ‘with’
and ‘without’) and the number of selected terms (its levels are ‘10’, ‘30’, ‘50’ and ‘100’). Note that
data for the analysis are all nMI scores enumerated in Tables 5.18 and 5.20 (except for average
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Table 5.19: Statistics on numbers of translations in cluster translation strategy without disam-
biguation

French German Italian
θs Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.
(a) No. of selected terms = 10
0.06 10.64 3.05 9.81 3.26 18.29 6.54
0.08 11.56 4.41 11.87 5.00 18.00 5.50
0.10 11.48 3.84 12.45 5.04 24.24 8.78
0.12 11.97 4.00 12.92 5.09 28.27 10.96
(b) No. of selected terms = 30
0.06 33.00 8.41 30.75 5.23 72.43 24.77
0.08 36.90 9.79 40.24 14.77 75.63 20.48
0.10 39.04 9.72 44.41 14.66 85.76 30.57
0.12 39.94 9.38 46.86 15.86 96.00 27.91
(c) No. of selected terms = 50
0.06 54.00 10.72 53.00 7.39 132.00 37.35
0.08 59.66 15.20 71.73 25.74 137.50 29.99
0.10 64.37 15.45 82.67 28.65 135.71 43.43
0.12 67.26 15.14 89.33 28.56 158.87 46.41
(c) No. of selected terms = 100
0.06 105.09 24.83 126.06 22.75 274.71 42.68
0.08 103.83 34.09 144.22 37.00 268.75 39.19
0.10 110.09 35.14 167.11 46.67 265.57 103.17
0.12 115.45 36.00 177.30 47.67 288.11 108.32

scores). Although it is not possible to conduct an exact statistical test in this experiment, ANOVA
would be useful to grasp an overall tendency of clustering effectiveness under the situation that
an optimal threshold can not be determined a priori. The results of ANOVA are shown in Table
5.21, implying that both the factors of the disambiguation and the number of selected terms
have no statistically significant effect on clustering effectiveness (i.e., the p-values are 0.343 and
0.173, respectively), and also, the p-value of the cross-effect was 0.636, which means that the null-
hypothesis can not be rejected at the significance level of 5% for all factors. However, the p-value
of the number of selected terms is relatively small (p = 0.173), and so it may be difficult to reject
its effect completely. Therefore, in the case of cluster translation, it can be concluded that:

• Translation disambiguation has no effect on MLDC based on cluster translation.

• The number of selected terms may have weak effect on MLDC in the case of cluster transla-
tion.

From a practical viewpoint, this finding is important because these conclusions support the con-
jecture that more ‘efficient’ MLDC, in which fewer terms in cluster vectors are translated without
any disambiguation operation, may also be ‘relatively’ effective.

However, a fundamental problem is the overall low effectiveness of MLDC based on cluster
translation. Table 5.22 shows nMI scores in the case of not merging any cluster at the second
stage. For example, when the threshold for clustering at the first stage was 0.06, monolingual DC
by each language generated 29 clusters in English, 11 in French, 16 in German and 7 in Italian,
and 63 clusters in total were obtained (see the far-right column of Table 5.17). If these clusters
are not merged at the second stage, then the nMI score of a simple union of these monolingual
clusters becomes 0.361, as indicated in Table 5.22. Note that each set of clusters by respective
language is more homogeneous except for French (with nMI scores of 0.474, 0.355, 0.482 and 0.461,
respectively, as shown in Table 5.17), but the nMI score of the union of these sets reduces to 0.361
due to simply concatenating them into a single set. Unfortunately, all nMI scores of MLDC based
on cluster translation indicated in Tables 5.18 and 5.20 are not higher than those of the simple
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Table 5.20: Results of MLDC by cluster translation with disambiguation based on term co-
occurrence statistics

Thresholds at 1st stage (cluster generation)
Thresholds at 0.06 0.08 0.10 0.12
2nd stage L nMI L nMI L nMI L nMI
(a) No. of selected terms = 10
0.06 48 0.339 124 0.339 221 0.316 312 0.299
0.08 49 0.341 132 0.348 252 0.323 389 0.313
0.10 51 0.344 146 0.355 294 0.336 446 0.323
0.12 57 0.351 155 0.358 332 0.344 535 0.331
Ave. 51.3 0.343 139.3 0.350 274.8 0.330 420.5 0.317
(b) No. of selected terms = 30
0.06 48 0.333 125 0.346 230 0.321 303 0.301
0.08 53 0.344 149 0.357 306 0.339 448 0.324
0.10 57 0.347 158 0.359 359 0.347 564 0.332
0.12 62 0.357 167 0.363 391 0.353 654 0.339
Ave. 55.0 0.345 149.8 0.356 321.5 0.340 492.3 0.324
(c) No. of selected terms = 50
0.06 51 0.343 130 0.349 220 0.319 262 0.296
0.08 54 0.349 147 0.352 304 0.339 421 0.317
0.10 60 0.356 158 0.359 354 0.344 562 0.334
0.12 61 0.357 170 0.367 385 0.351 672 0.345
Ave. 56.5 0.351 151.3 0.357 315.8 0.338 479.3 0.323
(d) No. of selected terms = 100
0.06 45 0.327 109 0.341 157 0.298 152 0.261
0.08 54 0.344 143 0.362 254 0.325 280 0.293
0.10 58 0.353 158 0.366 326 0.337 464 0.324
0.12 62 0.358 168 0.367 378 0.346 614 0.340
Ave. 54.8 0.345 144.5 0.359 278.8 0.327 377.5 0.305
Note: Word selection was executed only at second stage.

Table 5.21: Results of ANOVA for data of MLDC based on cluster translation
Variation d.f. Variance Observed var. P-value

Disambiguation 0.0004980 1 0.000498 0.906391 0.343
No. of selected terms 0.0027842 3 0.000928 1.689157 0.173
Interaction 0.0009396 3 0.000313 0.570059 0.636
Residual 0.0659314 120 0.000549
Total 0.0701532 127
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Table 5.22: Score of nMI in the case of not merging any cluster at the second stage

Thresholds at 1st stage
0.06 0.08 0.10 0.12

Score of nMI 0.361 0.375 0.367 0.363
No. of clusters 63 185 464 867
Note: Nos. of clusters are shown in Table 5.17.

unions. This means that there was no effect of MLDC based on cluster translation in comparison
with monolingual DC.

Figure 5.8 shows a change of nMI score with different values of threshold at the second stage
(only when 50 terms were selected and the threshold at the first stage was 0.08). The score of
nMI increases up to around 0.1 of threshold at the second stage, but the score is in saturation
at the area of higher threshold in which any translated cluster is not merged with the other (the
nMI score is indicated in Table 5.22, i.e., 0.375). Upon checking the effectiveness further, very
few cases where MLDC slightly outperformed the simple union were found (for example, in the
case of cluster translation with disambiguation with a threshold of 0.12 in the first stage and a
threshold of 0.35 in the second stage, its nMI score was 0.3628 in comparison with 0.3627 in the
simple union), but their differences were very small. Therefore, it can be concluded that:

• MLDC based on cluster translation has almost no effect in comparison with monolingual DC.
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Figure 5.8: Change of nMI score with different values of threshold in second stage (no. of selected
terms is 50 and threshold at first stage is 0.08)

Document translation

Tables 5.23 and 5.24 show the nMI scores of MLDC based on document translation without dis-
ambiguation and with disambiguation, respectively. In the case of document translation, the set
of threshold θs was determined as {0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.20, 0.25, 0.30, 0.35, 0.40} so the
peak of nMI scores can be roughly grasped, while the numbers of selected terms are identical with
those in cluster translation (i.e., {10, 30, 50, 100}). In the case of higher values of threshold, many
more clusters were generated than cluster translation. For example, when the threshold was 0.40,
over 7,000 clusters were obtained (see Tables 5.23 and 5.24). Because the number of ‘true’ clusters
is only 69, it may be able to consider that the higher threshold values did not provide successful
results, but these cases will be included in the successive analysis for understanding an overall
trend.
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Table 5.23: Results of MLDC by document translation without disambiguation

No. of selected term
Thresholds for 10 30 50 100
clustering L nMI L nMI L nMI L nMI
0.04 335 0.280 145 0.359 66 0.401 18 0.345
0.06 591 0.300 362 0.355 181 0.393 69 0.413
0.08 903 0.313 675 0.360 405 0.383 179 0.414
0.10 1258 0.321 1053 0.359 743 0.375 399 0.405
0.12 1643 0.326 1455 0.358 1166 0.377 675 0.397
0.14 2063 0.329 1914 0.359 1614 0.376 1065 0.391
0.20 3356 0.338 3466 0.356 3178 0.368 2557 0.379
0.25 4395 0.340 4715 0.353 4508 0.361 3968 0.369
0.30 5438 0.340 5863 0.348 5741 0.354 5292 0.360
0.35 6420 0.339 6986 0.344 6871 0.347 6504 0.351
0.40 7235 0.337 7892 0.339 7877 0.341 7668 0.343
Ave. - 0.324 - 0.354 - 0.371 - 0.379

Table 5.24: Results of MLDC by document translation with disambiguation

No. of selected term
Thresholds for 10 30 50 100
clustering L nMI L nMI L nMI L nMI
0.04 343 0.295 197 0.372 82 0.407 24 0.390
0.06 596 0.309 428 0.373 245 0.403 86 0.412
0.08 877 0.322 781 0.371 534 0.392 228 0.417
0.10 1214 0.327 1197 0.372 970 0.385 508 0.404
0.12 1592 0.334 1669 0.370 1424 0.384 900 0.400
0.14 2038 0.337 2202 0.369 1920 0.382 1381 0.394
0.20 3536 0.344 3779 0.363 3501 0.371 2982 0.381
0.25 4740 0.344 5032 0.356 4760 0.362 4284 0.370
0.30 5904 0.343 6137 0.350 5953 0.354 5539 0.360
0.35 6843 0.340 7162 0.344 7013 0.347 6670 0.351
0.40 7650 0.338 8025 0.339 7928 0.341 7775 0.343
Ave. - 0.330 - 0.362 - 0.375 - 0.384
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Table 5.25: Results of ANOVA for data of MLDC based on document translation
Variation d.f. Variance Observed var. P-value

Disambiguation 0.0008097 1 0.0008097 2.1601399 0.146
No. of selected terms 0.0377586 3 0.0125862 33.5762425 0.000
Interaction 0.0000433 3 0.0000144 0.0384827 0.990
Residual 0.0299884 80 0.0003749
Total 0.0686000 87

First, unlike cluster translation, MLDC clearly has a positive effect in comparison with the sim-
ple union of clusters from monolingual DC. For example, the average of nMI scores over thresholds
in the case of 100 terms selected is 0.379 without disambiguation (see Table 5.23) and is 0.384 with
disambiguation (see Table 5.24), both of which are larger than 0.363 of the simple union (Table
5.22). Therefore, it can be concluded that:

• MLDC based on document translation has a substantial positive effect.

Also, unlike cluster translation, both the number of selected terms and translation disam-
biguation appear to influence the effectiveness of MLDC in the case of document translation. For
example, the averages of nMI scores over thresholds were 0.324, 0.354, 0.371 and 0.379 in the case
without disambiguation, and 0.330, 0.362, 0.375 and 0.384 with disambiguation (see the bottom
lines of Tables 5.23 and 5.24). These four values in each sequence correspond to the numbers
of selected terms, 10, 30, 50 and 100, respectively, and it is clear from a comparison between
the two sequences that MLDC clustering with disambiguation was more effective than without
disambiguation and that selecting many more words outperforms fewer words.

In order to obtain more evidence, ANOVA with two factors, disambiguation and the number
of selected terms, was executed again using the scores in Tables 5.23 and 5.24 similarly to ANOVA
in the case of cluster translation. Table 5.25 indicates the results. The p-values suggest that the
number of selected terms has a strong effect (i.e., p = 0.000), which means that longer vectors of
documents are desirable in MLDC based on document translation. In contrast, disambiguation
does not have a statistically significant influence on the effectiveness of MLDC. However, its p-
value is relatively small (p = 0.146), and therefore it would be difficult to reject completely that
disambiguation has a positive effect on the performance of MLDC based on document translation.
From the ANOVA results, in the case of document translation, it can be concluded that:

• Translation disambiguation has a weak positive effect on MLDC by document translation.

• Selecting many more terms for document translation enhances the effectiveness of MLDC.

As shown in Table 5.23 and 5.24, in the cases that 50 and 100 terms were selected, the number
of generated clusters is close to that of ‘true’ clusters at thresholds providing higher scores of nMI.
For example, in Table 5.23, when 100 terms were selected, the number is 69 at a threshold of 0.06
(nMI is 0.413), and in Table 5.24, when 50 terms, it is 82 at 0.04 (nMI is 0.407). This means
that document translation strategy provides good clustering results. However, it is concurrently
suggested that an appropriate threshold has to be specified according to the number of selected
terms for obtaining a partition in which the number of clusters is reasonable.

5.4.6 Discussion

The results in this experiment are summarized in Table 5.26. Note that the results were obtained
by using only a single dataset and particular bilingual dictionaries downloaded from the Internet.
Therefore, if other datasets and more sophisticated language resources are used, then some of the
conclusions may change 19. For example, the conclusion that MLDC based on cluster translation
has almost no effect in comparison with the simple union of clusters generated by monolingual
DC may be rejected when using a more sophisticated language resource in another experiment,
namely, cluster translation may be more effective.

19Of course, this is relevant to all experiments of IR and DC more or less. Rather, it would be important to
accumulate such experimental results for enhancing the theory and technology of them.
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Table 5.26: Summary of results from experiment

Cluster translation Document translation
Effect in comparison with
monolingual clustering No effect Positive effect
Effect of translation
disambiguation No effect Weak positive effect
Effect of many more terms to be
selected for constructing vectors Weak effect Positive effect

However, the conclusion that document translation outperforms cluster translation would re-
main unchanged because a more sophisticated resource would improve document translation con-
currently. For a similar reason, the conclusion that selecting many more terms has a positive effect
on MLDC by document translation would be relatively reliable. Although a more sophisticated
dictionary may be able to achieve better effectiveness by using fewer words, there is no good reason
why longer document vectors would greatly reduce its effectiveness in the situation.

Of course, ‘feature selection’ is another research issue. For example, a comparison of the
effectiveness between using all terms in a document and only a portion of them as the set of vector
elements is beyond the scope of this thesis. Rather, this experiment focused on the number of
terms entered into the translation process because translation disambiguation takes a long time
when many source terms have to be processed. Even without disambiguation, it is desirable for
efficient processing to translate fewer source terms, because dictionary-based translation often
yields many translations (see Table 5.19). Therefore, the conclusion that longer vectors show
higher effectiveness is not useful for developing actual systems, unfortunately.

In contrast, the fact that translation disambiguation had no large effect in this experiment (see
Table 5.26) may make it easier to implement MLDC systems. In CLIR, disambiguation is often
applied to translations of a given query that is much shorter than a document, in which ambiguous
words play an important role in matching operations for IR. However, in the case of document
translation or cluster translation, the relative importance of ambiguous terms would decrease
because many other terms are included in the vectors. Non-ambiguous terms or combinations of
ambiguous terms in a document or a cluster are expected to be useful for computing the similarity
between each document and clusters.

Cluster translation would be effective only when several constraints are satisfied: 1) the trans-
lation quality is quite good, 2) subject representations of clusters are sufficiently appropriate, 3)
the clustering algorithm is effective (in the case of LFC algorithm, an optimal value of threshold
θs has to be correctly selected). The low performance of DC based on cluster translation in this
experiment may be partially due to the simple representation or weighting of cluster vector. As
mentioned above, in the case of cluster translation strategy, it is expected that the processing time
of cluster translation is shorter than that of document translation if the number of clusters gen-
erated at the first stage is enough small. Although a clustering algorithm has to be executed two
times in the cluster translation strategy, reduction in time for translation is attractive for actual
MLDC. If more sophisticated representation or weighting of cluster vector allowing for effective
clustering is developed and an effective method for reducing computational complexity in execution
of clustering at the second stage is applied (e.g., by feature selection), then cluster translation may
become an efficient strategy for MLDC.

In order to execute the LFC, threshold θs has to be determined a priori, which may cause a
problem, as mentioned above. For example, in Tables 5.18, 5.20, 5.23 and 5.24, inappropriate values
of the threshold produce low scores of nMI. This means that actual users have to know appropriate
θs for obtaining good results of clustering in real applications, but it is usually difficult. If the
number of clusters L is known a priori, then it is possible to use a k-means algorithm. However, L
is also unknown in many DC situations. Which of θs and L is easy to predefine depends on each
situation. This problem is a classical issue of DC and further researches are needed.
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Chapter 6

Conclusion

In this thesis, first, CLIR methods (Chapter 2) and DC techniques (Chapters 3 and 4) have been
exhaustively reviewed to identify useful techniques for large-scale MLDC in terms of efficiency. Par-
ticularly, regarding DC techniques, in addition to reviewing theories and algorithms systematically,
small experiments were executed for obtaining deeper insights on the DC techniques, which are
useful for filtering out DC techniques. Specifically, they were divided into two groups, and in Chap-
ter 3, traditional techniques of hierarchical and non-hierarchical clustering were mainly focused on.
Meanwhile, probabilistic and matrix-based clustering methods, which have been developed recently,
were examined carefully in Chapter 4. Main DC techniques discussed in Chapters 3 and 4 are as
follows: hierarchical clustering (single linkage, complete linkage, group average linkage and Ward’s
method), k-means clustering (basic algorithm, Hartigan-Wong method, online k-means, scalable
k-means and spherical k-means), SKWIC method, leader-follower clustering, Scatter/Gather, self-
organizing map (SOM), fuzzy clustering, probabilistic mixture model (Poisson, multinomial and
von Mises-Fisher distributions), Bayesian model of multinomial mixture, probabilistic latent se-
mantic analysis (PLSA), latent Dirichlet allocation (LDA), hierarchical Dirichlet process (HDP)
mixture model, latent semantic indexing (LSI), principal component analysis (PCA), nonnegative
matrix factorization (NMF), spectral clustering.

All translation methods in CLIR and all clustering techniques for textual data discussed in
literature are not always appropriate to large-scale document collection. This thesis selected two
components of the MLDC system through discussions in Chapter 2, 3 and 4, namely,

• dictionary-based translation with term disambiguation based on term co-occurrence fre-
quency,

• double-pass leader-follower clustering algorithm,

in terms of efficiency and feasibility in clustering of large-scale document collections. A combination
of the translating and clustering techniques was considered as the most promising scheme that
enables large-scale MLDC in this thesis.

Chapter 5 reported three experiments examining effectiveness and efficiency of the MLDC
system empirically as follows:

• Experiment of term disambiguation techniques. It was observed that ‘best cohesion’ method
works well although its computational complexity is relatively low.

• Experiment of monolingual document clustering. It was shown that the leader-follower clus-
tering algorithm for which the target file is scanned only twice can generate ‘good’ cluster
sets, which are comparable with those obtained by the spherical k-means algorithm and the
HDP mixture model.

• Experiment of multilingual document clustering. It was clarified that the MLDC system
works well for a document collection including over 13,000 news articles written in English,
French, German and Italian.
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The spherical k-means algorithm and the HDP mixture model used in the second experiment
require iterative computation (i.e., higher computational complexity), but they were selected as
methods providing ‘baseline’ for verifying effectiveness of more ‘efficient’ leader-follower clustering
algorithm. Also, in the second experiment, it was empirically shown that the leader-follower
clustering algorithm works well even if target document sets are enlarged.

The last experiment investigating effectiveness of MLDC using dictionary-based translation
and the double-pass clustering algorithm is the main experiment of this thesis, and the following
conclusions were obtained:

• Document translation has a positive effect on MLDC, but cluster translation has almost no
effect.

• A longer vector for matching operation in MLDC is desirable in the case of the document
translation strategy.

• Translation disambiguation does not have a large effect on MLDC.

These findings would be valuable for developing more sophisticated MLDC systems.
In order to increment more our knowledge on MLDC and to enhance the algorithm for it, the

following efforts would be indispensable:

• Experiment of MLDC using other document collections and language resources.

• Development of document and cluster representations more appropriate to MLDC.

• Application of more sophisticated CLIR techniques (e.g., multilingual IR in Section 2.2.6).

• Sophistication of the leader-follower clustering method based on techniques of text stream
clustering (Section 3.3.7).

These tasks remains for future research efforts.
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