優れています。神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。また創薬研究において、このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにも応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed these cells into neural crest cells and compared them with neural crest cells that were developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells	Kelo Associated Keposi	tory of Medderline resources
Author Publisher Publication year 2018 Jittle 科学研究費補助金研究成果報告書 (2017.) Abstract われわは、胎児の間に目、耳、鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために、生まれつき目、耳や顔面形成に異常をもつCHARGE症候群患者について、iPS細胞を用いた病気モデルを作成しました。このモデルは細胞の動きを実際に観察することができ、より直接的に障害を観察できる点が優れています。 神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。また創薬研究において、このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにも応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed these cells into neural crest cells and compared them with neural crest cells that were developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the most important for restoring the normal activity of neural crest cells. Notes 研究類目: 若手研究(B) 研究期目: 2014~2017 課題番号: 26860823 研究分野: 幹細胞学	Title	iPS細胞を用いた神経堤症モデルの作製及び神経堤症に対する創薬を目指した病態解明
Publication year Jittle 科学研究費補助金研究成果報告書 (2017.) Jal C DOI Abstract われわれは、胎児の間に目、耳、鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために、生まれつき目、耳や顔面形成に異常をもつCHARGE症候群患者について、iPS細胞を用いた病気モデルを作成しました。このモデルは細胞の動きを実際に観察することができ、より直接的に障害を観察できる点が優れています。 神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。また創薬研究において、このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにも応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the most important for restoring the normal activity of neural crest cells. Notes 研究種目:若手研究(B) 研究期間:2014~2017 課題番号:20860823 研究分野:幹細胞学 Research Paper	Sub Title	Neural crest disease model using iPS cells and elucidation of pathophysiology for drug discovery
Publication year Juitle 科学研究費補助金研究成果報告書 (2017.) Abstract 科学研究費補助金研究成果報告書 (2017.) Abstract われわれは, 胎児の間に目, 耳、鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために, 生まれつき目, 耳や顔面形成に異常をもつCHARGE症候群患者について, iPS細胞を用いた病気モデルを作成しました。このモデルは細胞の動きを実際に観察することができ, より直接的に障害を観察できる点が優れています。神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。また創薬研究において, このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにも応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the most important for restoring the normal activity of neural crest cells. Notes	Author	奥野, 博庸(Okuno, Hironobu)
Jalc Dol Abstract われわれは、胎児の間に目、耳、鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために、生まれつき目、耳や顔面形成に異常をもつCHARGE症候群患者について、iPS細胞を用いた病気モデルを作成しました。このモデルは細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。 神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。 また創薬研究において、このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにもた応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the most important for restoring the normal activity of neural crest cells. Notes 研究値目:若手研究(B) 研究期間:2014~2017 課題番号:26860823 研究分野:幹細胞学	Publisher	
Abstract われわれは、胎児の間に目、耳、鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために、生まれつき目、耳や顔面形成に異常をもつCHARGE症候群患者について、iPS細胞を用いた病気モデルを作成しました。このモデルは細胞の動きを実際に観察することができ、より直接的に障害を観察できる点が優れています。非経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。また創薬研究において、このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにも応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed these cells into neural crest cells and compared them with neural crest cells that were developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the most important for restoring the normal activity of neural crest cells. Notes Notes Research Paper Dental Park Park Park Park Park Park Park Park	Publication year	2018
Abstract われわれは, 胎児の間に目, 耳、鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために, 生まれつき目, 耳や顔面形成に異常をもつCHARGE症候群患者について, iPS細胞を用いた病気モデルを作成しました。このモデルは細胞の動きを実際に観察することができ, より直接的に障害を観察できる点が優れています。神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。また創薬研究において, このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにも応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed these cells into neural crest cells, and compared them with neural crest cells that were developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the most important for restoring the normal activity of neural crest cells. Notes Notes Research Paper Dana Research Paper	Jtitle	科学研究費補助金研究成果報告書 (2017.)
鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために,生まれつき目, 耳や顔面形成に異常をもつCHARGE症候群患者について,iPS細胞を用いた病気モデルを作成しま した。このモデルは細胞の動きを実際に観察することができ、より直接的に障害を観察できる点が 優れています。神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待し ています。また創薬研究において,このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安 全性スクリーニングにも応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed these cells into neural crest cells and compared them with neural crest cells that were developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the most important for restoring the normal activity of neural crest cells. Notes Notes Research Paper Genre Research Paper	JaLC DOI	
研究期間: 2014~2017 課題番号: 26860823 研究分野: 幹細胞学 Genre Research Paper	Abstract	鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために, 生まれつき目, 耳や顔面形成に異常をもつCHARGE症候群患者について, iPS細胞を用いた病気モデルを作成しました。このモデルは細胞の動きを実際に観察することができ, より直接的に障害を観察できる点が優れています。神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。また創薬研究において, このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにも応用可能と考えています。 CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells. We created iPSCs from CHARGE syndrome patients, developed these cells into neural crest cells, and compared them with neural crest cells that were developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome. We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the
	Notes	研究期間: 2014~2017 課題番号: 26860823
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KAKEN_26860823seika	Genre	Research Paper
	URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KAKEN_26860823seika

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

科学研究費助成事業 研究成果報告書

平成 30 年 5 月 31 日現在

機関番号: 32612 研究種目: 若手研究(B) 研究期間: 2014~2017

課題番号: 26860823

研究課題名(和文)iPS細胞を用いた神経堤症モデルの作製及び神経堤症に対する創薬を目指した病態解明

研究課題名(英文)Neural crest disease model using iPS cells and elucidation of pathophysiology for drug discovery

研究代表者

奥野 博庸 (Okuno, Hironobu)

慶應義塾大学・医学部(信濃町)・助教

研究者番号:70445310

交付決定額(研究期間全体):(直接経費) 3,200,000円

研究成果の概要(和文):われわれは、胎児の間に目、耳、鼻などの感覚器や顔の形成などに重要な役割をもつ神経堤細胞の異常のために、生まれつき目、耳や顔面形成に異常をもつCHARGE症候群患者について、iPS細胞を用いた病気モデルを作成しました。このモデルは細胞の動きを実際に観察することができ、より直接的に障害を観察できる点が優れています。神経堤細胞の障害により生じる多くの他の病気の病態解明に応用できると期待しています。また創薬研究において、このモデルは初期の胎児の神経堤細胞に影響を与える薬剤の安全性スクリーニングにも応用可能と考えています。

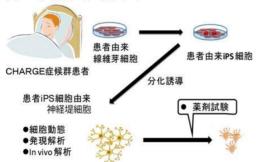
研究成果の概要(英文): CHARGE syndrome is a disease in which organs including the heart, eyes and ears may not develop properly. The cells that form the tissues affected by CHARGE syndrome develop in embryos called neural crest cells.

We created iPSCs from CHARGE syndrome patients, developed these cells into neural crest cells, and compared them with neural crest cells that were developed from healthy individuals. The neural crest cells developed from CHARGE syndrome showed multiple abnormalities. For example, they were not able to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome

to move around correctly. This is an important observation because neural crest cells must move through tissues to form the various organs affected by CHARGE syndrome.

We also observed changes in the activity of many genes other than CHD7 in the neural crest cells developed from CHARGE patients. Further research is now needed to find out which genes are the most important for restoring the normal activity of neural crest cells.

研究分野: 幹細胞学


キーワード: CHARGE症候群 神経堤 CHD7 iPS細胞 遊走

1.研究開始当初の背景

2006 年 Takahashi, Yamanaka らによりマウス線維芽細胞を用いて、ES 細胞(Embryonic stem cells)に匹敵する多分化能を有する iPS 細胞を樹立することに成功した(Takahashi K,et al.Cell 2006)。2007 年にはヒト皮膚線維芽細胞より、iPS 細胞が樹立することが可能となった(Takahashi K,et al.Cell 2007)。この技法を応用して患者由来ヒト iPS 細胞を樹立し、疾患部位の組織を作り、これまで解析が困難であった臓器における発症機転の研究を行うことが可能となった(図1)。

これまでに解析困難であった細胞の中で も、神経堤細胞は顔面骨の形成、感覚器の形 成(聴覚、視覚、嗅覚) 心臓発生、消化管 の蠕動運動など多岐の器官の働きにおよぶ 大変重要な働きをしていることが知られて おり、内胚葉/中胚葉/外胚葉に並ぶ第4の 胚葉とも呼ばれている。しかし、これらの細 胞は発生初期に神経管背側より遊離し、胎生 期に細胞が移動し、個々の器官の構成成分と なるため、ヒトでの研究がほとんどなされて いない。ヒト iPS 細胞からの神経堤細胞誘導 は、2009 年に Studer らにより報告されて以 降、改良が進められている(Lee GS et al. Nature 2009, Laura Menendez et al. PNAS 2011)。中でも Bajpai らにより報告された方 法は、安価で、短期間(10日間)に、これま での報告よりも 10 倍以上の神経堤細胞を得 ることができる(Bajpai R. et al. Nature 2010, Rada-Iglesias A et al. Nature 2011).

図1 本研究のアウトライン

神経堤細胞が関与する機能の中でも、特に 視覚、嗅覚、聴覚はヒトの生活において直接 に関係する機能であるが、神経堤症の患者お よび家族はこれらの不具合のために多くの 不便をもち生活している。iPS 細胞を用いた ヒト神経堤症の研究をすることで、遺伝学的 原因によりこれらの感覚器の障害を持った 児にすこしでも音、におい、景色のある開学 をできるようにしたいと考え、研究を開始した。 これらの機能障害が改善することで学習 効果が上がり、家族や社会と共存していく上 でも大きな効果を認めると考える。

2.研究の目的

神経堤細胞は第4の胚葉と呼ばれ、多くの 器官の形成に重要な役割を果たしている。 iPS 細胞を用いたヒト神経堤症に関する研 究を通して、神経堤細胞の異常のために視覚、 聴覚、嗅覚などに障害を持つ児の治療に役立 ちたいと考える。

3. 研究の方法

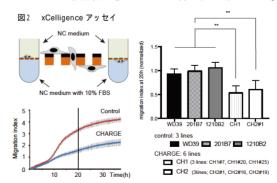
研究代表者はすでに神経堤症の1つである CHARGE 症候群患者2名より皮膚線維芽細胞を採取し、iPS 細胞を樹立している。またコントロールおよび CHARGE 症候群由来 iPS 細胞の両方より P75/HNK1(+/+)神経堤細胞を10日間で樹立することに成功している。これらの細胞を用いて、

(1)細胞移動について in vitro での観察研究を行う(Transwell Assay,

Time laps 顕微鏡下で Wound scratch を行い遊走する細胞を観察)

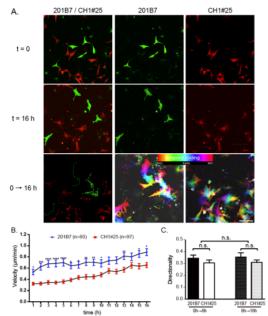
(2)健常人由来神経堤細胞、患者由来神経 堤細胞の遺伝子発現をアレイ解析を用いて 行う、

(3) CHARGE 症候群の原因遺伝子(CHD7)は胚発生において chromatin remodeling 複合体と共に、神経堤細胞の転写因子の活性化と神経堤細胞の移動促進を制御していることが報告されている。CHD7を用いて誘導した神経堤細胞の ChIP-seq を行い、(2)で得られた結果の中で CHD7 に直接制御されている候補因子を絞る。これらのシグナルカスケードをレスキューすることで作製した in vitro/in vivo モデルにおいて細胞移動の改善が得られるものを探索する。


4. 研究成果

すでに CHARGE 症候群および健常者より樹立 した下記の iPS 細胞を用いて解析を行なった。

name		genotype	sex	age
CHARGE	CH-1	CHD7: c.4171delC p.Gln1391fs*13	М	10
	CH-2	CHD7: c.4480C>T p.Arg1494Ter	F	10


(1)細胞移動について;

<u>xCelligence 解析:</u>CHARGE 症候群由来神経 堤細胞で有意に遊走障害を認めた。試験管内 で CHRGE 症候群病態モデルの作成に成功した。

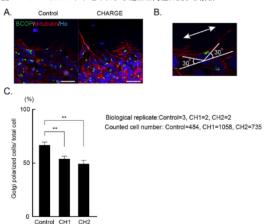
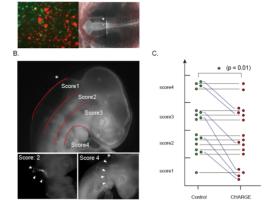
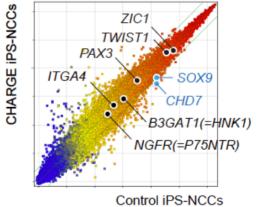

タイムラプス解析:健常人 iPS 細胞由来神経 堤細胞および患者 iPS 細胞由来神経堤細胞を 別々の蛍光標識をし、混ぜ合わせたものを経 時観察した。両群を比較し、患者群で有意に 移動距離の低下がみられた。患者由来神経堤 細胞に運動障害が見られたことは、細胞自立 的な影響による遊走障害が生じていること を示している。

図3 タイムラプスによる健常者およびCHARGE 症候群iPS細胞由来神経堤細胞の遊口速度の解析

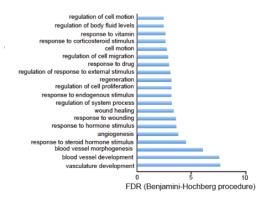


神経堤細胞の遊走方向性の解析: iPS 細胞由来神経堤細胞を 8well チェンバーに播種し創傷治癒アッセイを実施した。播種 2 時間後に細胞固定し、核とゴルジ体の位置より遊走方向性をみた。ゴルジ体の位置が核よりみて創傷部位の 120 度内にあるときを方向付けられた細胞とカウントし、コントロール由来および CHARGE 由来神経堤細胞を比較したところ CHARGE 症候群で有意に方向付けられている細胞が少ないことがわかった。

図4 Wound Scrachアッセイによる遊口口向性に関する解析



二ワトリ胚を用いた in vivo での遊走解析: 健常人 iPS 細胞由来神経堤細胞を HH ステージ 8-12 の二ワトリ胚の後脳付近に移植し、iPS 細胞由来神経堤細胞が in vivo で背側から腹側へと遊走する系を確立した。コントロール由来および CHARGE 由来神経堤細胞を混合した細胞塊を移植し、CHARGE 患者由来のものに遊走障害が生じていた。 図5 ニワトリ胚内における健常者およびCHARGE症候群iPS細胞由来神経堤細胞の遊口



(2)遺伝子発現解析: CHARGE 症候群由来神経堤細胞で接着や遊走に関する遺伝子発現の異常が示唆された。これまでに臨床症状より CHARGE 症候群と神経堤細胞の関連が示唆されていたが、今回の発現解析はそれを裏付ける結果となった。

図6 健常者およびCHARGE症候群iPS細胞由来神経堤細胞の遺伝口発現解析

TOP 20 in the GO analysis of 338 DEG

(3) CHD7 に直接制御されている候補因子の探索:健常人 iPS 細胞由来神経堤細胞をもちいて、CHD7 抗体により ChIP-seq を実施した。ChIP-seq データおよび遺伝子発現アレイデータより、Hippo-YAP pathway や PAX 6 下流に関連する遺伝子近傍に CHD7 が結合していることが示唆された。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

Chai M, Sanosaka T, Okuno H, Zhou Z, Koya I, Banno S, Andoh-Noda T, Tabata Y, Shimamura R, Hayashi T, Ebisawa M, Sasagawa Y, Nikaido I, Okano H, Kohyama J. Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes Dev. 2018 Jan 15;32(2):165-180.doi: 10.1101/gad.301887.117.查読

Okuno H, Renault Mihara F, Ohta S, Fukuda K, Kurosawa K, Akamatsu W, Sanosaka T, Kohyama J, Hayashi K, Nakajima K, Takahashi T, Wysocka J, Kosaki K, Okano H. CHARGE syndrome modeling using patient-iPSCs reveals defective migration of neural crest cells harboring CHD7 mutations. Elife. 2017 Nov 28;6. pii: e21114. doi: 10.7554/eLife.21114. 查読有

Veraitch O, Mabuchi Y, Matsuzaki Y, Sasaki T, Okuno H, Tsukashima A, Amagai M, Okano H, Ohyama M. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+) THY-1(+) mesenchymal cells. Sci Rep. 2017 Feb 21;7:42777. doi: 10.1038/srep42777. 查読有

Ohta S, Yaguchi T, <u>Okuno H</u>, Chneiweiss H, Kawakami Y, Okano H. CHD7 promotes proliferation of neural stem cells mediated by MIF. Mol Brain. 2016 Dec 13;9(1):96. doi: 10.1038/srep42777. 查読

〔学会発表〕(計4件)

H.Okuno In vitro and in vivo cell dynamics analysis of iPSC-derived neural crest cells harboring CHD7 mutations reveals defective migration of CHARGE syndrome. Society for Neuroscience.2017.

H.Okuno, Differentiation of iPS cells into cranial neural crest cells to model congenital disorder that arises from defects in cranial neural crest cell development. The 13th International Congress of Human Genetics 2016.

<u>H.Okuno</u>, Modeling of human neural crest cell disease: CHARGE syndrome patient iPSC-derived neural crest cell exhibit abnormal migration. The 38th Japan Neuroscience Society 2015.

<u>奥野博庸</u>. CHARGE 症候群患者 iPS 細胞由 来神経堤細胞を用いた病態解析. 第 38 回日 本小児遺伝学会学術集会 2015.

〔産業財産権〕

出願状況(計件)

名称: 発明者: 権利者: 種類: 番号: 出原年月日: 国内外の別:

取得状況(計件)

名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別:

〔その他〕 ホームページ等

6. 研究組織

(1)研究代表者

奥野 博庸 (OKUNO, Hironobu) 慶應義塾大学・医学部 (信濃町)・助教

研究者番号:70445310