Keio Associated Repository of Academic resouces | Sub Title Telerobotic-assisted bone-drilling system using bilateral control Author 臼田、慎(Usuda, Shin) 河奈、裕正(Kawana, Hiromasa) 大西、公平(Onishi, Kohei) 兪、浩洋(Yu, Koyo) Publisher Publication year Jittle 科学研究費補助金研究成果報告書 (2014.) JaLC DOI Abstract デンタルインプラント手術では、 術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術、 経験不足は周囲組織の損傷を引き起こすことがある。その結果として、重要血管、 神経損傷による出血、麻痺、または生命にかかわるリスクがある。これらの自己防止のために術者 支援技術が重要となってくる。このを解決すべく私達は、ロボットアームと感覚機能を有した歯がインプラントナビゲーションシステムの開発を試みた。この研究において、 触覚システムを応用したドリル自動停止システムが完成した。 In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic stop system for the haptic drilling robot will be proposed. Notes 研究種目: 挑戦的萌芽研究研究期間: 2012 ~ 2014 課題番号: 24659880 研究分野: 歯科口腔外科学 | nelo / Debelated nepository of / reductine resources | | | |--|--|---|--| | Author 日田,慎(Usuda, Shin) 河奈, 裕正(Kawana, Hiromasa) 大西,公平(Onishi, Kohei) 兪、浩洋(Yu, Koyo) Publisher Publication year 2015 Jtitle 科学研究費補助金研究成果報告書 (2014.) Abstract デンタルインプラント手術では、 術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術, 経験不足は周囲組織の損傷を引き起こすことがある。その結果として、重要血管、神経損傷による出血、麻痺、または生命にかかわるリスクがある。これらの自己防止のために術者支援技術が重要となってくる。このを解決すべく私達は、ロボットアームと感覚機能を有した歯杯インプラントナビゲーションシステムの開発を試みた。この研究において、触覚システムを応用したドリル自動停止システムが完成した。 In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic stop system for the haptic drilling robot will be proposed. Notes 研究種目: 挑戦的萌芽研究研究期間: 2012~2014 課題番号: 24659880 研究分野: 歯科口腔外科学 | Title | ロボットアームと感覚機能を有した歯科インプラントナビゲーションシステム | | | 河奈、裕正(Kawana, Hiromasa) 大西、公平(Onishi, Kohei) 兪、浩洋(Yu, Koyo) Publisher Publication year Jititle 科学研究費補助金研究成果報告書 (2014.) JaLC DOI Abstract デンタルインプラント手術では、 術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術、 経験不足は周囲組織の損傷を引き起こすことがある。その結果として、重要血管、 神経損傷による出血、麻痺、または生命にかかわるリスクがある。これらの自己防止のために術者 支援技術が重要となってくる。このを解決すべく私達は、ロボットアームと感覚機能を有した歯様 インプラントナビゲーションシステムの開発を試みた。この研究において、 触覚システムを応用したドリル自動停止システムが完成した。 In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic stop system for the haptic drilling robot will be proposed. Notes M究類音:挑戦的萌芽研究 研究期間:2012~2014 課題番号:24659880 研究分野:歯科口腔外科学 | Sub Title | Telerobotic-assisted bone-drilling system using bilateral control | | | 大西, 公平(Onishi, Kohei) | Author | | | | Ry A Paulisher Publication year 2015 Jtitle 科学研究費補助金研究成果報告書 (2014.) Abstract デンタルインプラント手術では、 術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術、 経験不足は周囲組織の損傷を引き起こすことがある。その結果として、重要血管、 神経損傷による出血、麻痺、または生命にかかわるリスクがある。これらの自己防止のために術者 支援技術が重要となってくる。このを解決すべく私達は、ロボットアームと感覚機能を有した歯様 インプラントナビゲーションシステムの開発を試みた。この研究において、 触覚システムを応用したドリル自動停止システムが完成した。 In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic stop system for the haptic drilling robot will be proposed. Notes 研究種目:挑戦的萌芽研究研究期間: 2012~2014 課題番号: 24659880 研究分野: 歯科口腔外科学 Genre Research Paper | | | | | Publication year 2015 Jitite 科学研究費補助金研究成果報告書 (2014.) Abstract デンタルインプラント手術では、 術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術、経験不足は周囲組織の損傷を引き起こすことがある。その結果として、重要血管、神経損傷による出血、麻痺、または生命にかかわるリスクがある。これらの自己防止のために術者支援技術が重要となってくる。このを解決すべく私達は、ロボットアームと感覚機能を有した歯れインプラントナビゲーションシステムの開発を試みた。この研究において、触覚システムを応用したドリル自動停止システムが完成した。 In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic stop system for the haptic drilling robot will be proposed. Notes 研究種目:挑戦的萌芽研究研究期間:2012~2014 課題番号:24659880 研究分野:歯科口腔外科学 | | | | | Jtitle 科学研究費補助金研究成果報告書 (2014.) Abstract デンタルインプラント手術では、 術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術、 経験不足は周囲組織の損傷を引き起こすことがある。その結果として、重要血管、 神経損傷による出血、麻痺、または生命にかかわるリスクがある。これらの自己防止のために術者 支援技術が重要となってくる。このを解決すべく私達は、ロボットアームと感覚機能を有した歯져 インプラントナビゲーションシステムの開発を試みた。この研究において、 触覚システムを応用したドリル自動停止システムが完成した。 In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic stop system for the haptic drilling robot will be proposed. Notes 研究種目: 挑戦的萌芽研究研究期間: 2012~2014 課題番号: 24659880 研究分野: 歯科口腔外科学 Genre Research Paper | Publisher | | | | Abstract デンタルインプラント手術では、
術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術、
経験不足は周囲組織の損傷を引き起こすことがある。その結果として、重要血管、
神経損傷による出血、麻痺、または生命にかかわるリスクがある。これらの自己防止のために術者
支援技術が重要となってくる。このを解決すべく私達は、ロボットアームと感覚機能を有した歯杯
インプラントナビゲーションシステムの開発を試みた。この研究において、
触覚システムを応用したドリル自動停止システムが完成した。
In dental implant surgery、surgeons are required advanced techniques and extensive experiences
to correctly handle the cutting device. The lack of techniques and experiences may bring on an
over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the
subsequent complications or life-threatening accidents by heavy bleeding and nerve damage
during surgery. The supporting technology for the surgeon is required to prevent these accidents.
In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic
stop system for the haptic drilling robot will be proposed. Notes 研究種目:挑戦的萌芽研究
研究期間: 2012~2014
課題番号: 24659880
研究分野: 歯科口腔外科学 | Publication year | 2015 | | | Abstract デンタルインプラント手術では、 | Jtitle | 科学研究費補助金研究成果報告書 (2014.) | | | 術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術,経験不足は周囲組織の損傷を引き起こすことがある。その結果として,重要血管,神経損傷による出血,麻痺,または生命にかかわるリスクがある。これらの自己防止のために術者支援技術が重要となってくる。このを解決すべく私達は,ロボットアームと感覚機能を有した歯れインプラントナビゲーションシステムの開発を試みた。この研究において,触覚システムを応用したドリル自動停止システムが完成した。 In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic stop system for the haptic drilling robot will be proposed. Notes 研究種目:挑戦的萌芽研究研究期間: 2012~2014 課題番号: 24659880 研究分野: 歯科口腔外科学 | JaLC DOI | | | | Notes 研究種目:挑戦的萌芽研究
研究期間:2012~2014
課題番号:24659880
研究分野:歯科口腔外科学
Genre Research Paper | Abstract | 術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術,経験不足は周囲組織の損傷を引き起こすことがある。その結果として, 重要血管,神経損傷による出血, 麻痺, または生命にかかわるリスクがある。これらの自己防止のために術者支援技術が重要となってくる。このを解決すべく私達は, ロボットアームと感覚機能を有した歯科インプラントナビゲーションシステムの開発を試みた。この研究において, 触覚システムを応用したドリル自動停止システムが完成した。 In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic | | | | Notes | 研究種目:挑戦的萌芽研究
研究期間:2012~2014
課題番号:24659880 | | | URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KAKEN_24659880seika | Genre | Research Paper | | | | URL | https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=KAKEN_24659880seika | | 慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。 The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act. # 科学研究費助成事業 研究成果報告書 平成 27 年 6 月 8 日現在 機関番号: 3 2 6 1 2 研究種目: 挑戦的萌芽研究 研究期間: 2012~2014 課題番号: 24659880 研究課題名(和文)ロボットアームと感覚機能を有した歯科インプラントナビゲーションシステム 研究課題名(英文)Telerobotic-assisted bone-drilling system using bilateral control 研究代表者 臼田 慎(Shin, Usuda) 慶應義塾大学・医学部・助教 研究者番号:70445287 交付決定額(研究期間全体):(直接経費) 2,800,000円 研究成果の概要(和文): デンタルインプラント手術では、術者が骨切削ドリルを正しい方向に操作する高度な術式を要求される。技術、経験不足は周囲組織の損傷を引き起こすことがある。その結果として、重要血管、神経損傷による出血、麻痺、または生命にかかわるリスクがある。これらの自己防止のために術者支援技術が重要となってくる。このを解決すべく私達は、ロボットアームと感覚機能を有した歯科インプラントナビゲーションシステムの開発を試みた。この研究において、触覚システムを応用したドリル自動停止システムが完成した。 研究成果の概要(英文): In dental implant surgery, surgeons are required advanced techniques and extensive experiences to correctly handle the cutting device. The lack of techniques and experiences may bring on an over cut and damages to the surrounding tissue. As a result, this situation has risks of causing the subsequent complications or life-threatening accidents by heavy bleeding and nerve damage during surgery. The supporting technology for the surgeon is required to prevent these accidents. In order to solve this problem, we developed a haptic drilling robot. In this research, an automatic stop system for the haptic drilling robot will be proposed. 研究分野: 歯科口腔外科学 キーワード: ロボットアーム 歯科インプラント ナビゲーションサージェリー ### 1.研究開始当初の背景 近年,歯科インプラントが多くの施設で行われるようになった一方で,医療過誤も多発しており,インプラント治療に絡む訴訟件数は年々増える一方である.主な医療過誤としては下歯槽神経の損傷,舌側皮質骨への穿孔,上顎洞へのインプラント迷入などである.以前よりわれわれは手術ナビゲーションシステムを使用しこれらの医療過誤を防止,治療計画に基づいた治療を可能とすべく臨床研究を行って来た. そこでかつてのナビゲーションシステムとは一線を画するシステムを構築すべくロボットアームと感覚機能を有した歯科インプラントナビゲーションシステムの開発を目的に本研究を計画した. ## 2.研究の目的 術者の主観や経験に頼らずコンピュータを使用し客観的に,手術の安全性,精度を向上させる目的で登場したのが手術ナビゲーションシステムである.脳神経外科の定位手術より発展した本システムはソフトウェア,ハードウェアの発展により,耳鼻咽喉科,整形外科などの領域で使用されている. 一方,本邦においては口腔外科領域での報告は少なく,上顎嚢胞,上顎癌,口腔インプラント埋入手術において報告されているだけである.歯科口腔外科手術に特化したナビゲーションシステムは非常に限られており必ずしも扱い易いものではない.本システムは,患者の手術領域の座標系とでTや MRI などで得られた画像情報の座標系とを適合させ(レジストレーション),手術中に操作している位置,姿勢および状態を画像上で認識するシステムのことである. これらのシステムに求められているのはあくまでも正確な位置情報を術者に知らせることであった.しかしながら,本来手術というものは五感を使って行うべきものである.特に,骨の手術を目的とする歯科口腔外科手術(特に歯科インプラント手術)は触覚がとても重要な情報となる.座標軸の位置関係と触覚を併用することで,さらに安全なナビゲーションが可能ではないかと考えたのが本研究の始まりである. われわれが目的としている歯科口腔外科 手術に特化したシステムを構築すべく次に 挙げるナビゲーションシステム条件を目標 とした. (1) ロボットアームによるアシストで位置決めを行う。 従来は術者がモニターを見ながら位置 決めを行い,ナビゲーションに従いドリ リングを行なっていたが CT 上の計画に 従い,位置,方向をロボットアームが半 自動にアシストしてくれる.画面を見な がらの手術から解放され術野に集中でき るナビゲーションシステムは現在存在し ない. (2) 光学式ナビゲーションよりもコンパクトで簡便にレジストレーションができる. 従来の光学式ナビゲーションは可動する下顎骨へのレジストレーションが困難な場合があったり、ナビゲーション中は術者のポジショニングによりナビゲーションが中断されていた.現在われわれが開発中のモーションキャンセラーという技術を用いることにより、可動する下顎骨に対しても、ロボットアームが追随することができる. (3) ハプティック技術(感覚伝送技術)を用いたドリルにより遠隔操作にてドリルを 進めることができる. 位置方向はロボットアームにてアシストされているので、骨の感触に注意しながらドリリングをすることだけに集中でき、骨質や手技による埋入方向、位置の変化が生じない、現在、リアルタイムに感覚を伝送できるシステムは世界においてもわれわれのシステムのみである. (4) ドリリング時のテレメトリー(遠隔測定) を行うことができる. 従来は術者の感覚のみで骨の状態を推察していたが、骨質やドリリング操作の客観的な評価ができる.今までは結果のみが評価されてきている手術の技術的な裏付けがとれる. (5) 自動車の衝突防止システムのように危険 時にコンピュータ制御によって手術動作 の停止ができる. 下歯槽神経や舌側皮質骨の貫通など最悪の事態を回避できることは医療事故を防ぐ上でとても重要でである.これには現在われわれが研究を行なっているハプティック技術によって得られたデータを解析し貫通前の危険予測が可能となりうる. (6) システムを小型化することで手軽に使う ことができ小規模診療所でも導入が可能 である. 口腔外科小手術で手軽に使用できるナビゲーションシステムでなくては日常診療の事故防止には至らない.低価格で準備が簡便なものを開発することを目標とする. Fig.1 ナビゲーション構想 上記システムの構築を目的とし、感覚のデータ化と遠隔感知を可能にする骨ドリルの開発、評価、骨質分類の評価を行った。 ## 3.研究の方法 開発したドリリングシステムは,加速度を用いたバイラテラル制御による遠隔操作システムのハプティック技術によるものである.ドリルの回転に回転モータ,ロータリエンコーダを,切削方向の遠隔操作にバイラテラル制御を実装したリニアモータ,リニアエンコーダを用いて構成している(Fig2, 3). Fig.2 システム構成 Fig.3 バイラテラル制御 本システムを用いて、インプラント埋入手 術を想定したドリル回転数 900 rpm にて、 ファイバーボードを穿通する実験により、 リル部(スレーブと呼称)での感覚に正確覚 の操作部(マスタと呼称)に感覚に正確に 映するかを測定した.さらに、 ブタにで での進んだ程 を穿通する実験を行い、ドリルの進んだ程 によって、骨質がどのように変化するか を守した.ドリルを装填したスレーブで骨の切 削力計測を行い、スレーブとは遠隔地にある マスタで切削力の再現と記録、視覚的提示を 行った. 同様のドリルを使用し Misch の D1-D4の 分類で定義されている 4 種類の材料を用いて 切削に対する数値化を行い検討した.インプラント埋入手術を想定したドリル回転数 900rpm にて, D1-D4 に属する 4 種類の材料 (カエデ材,スプルース材,バルサ材,発泡スチロール材)を切削する実験により,スレーブでの感覚が,マスタの感覚に正確に反映するかを測定した.実験ではドリルを装填し たスレーブで骨の切削力計測を行い,遠隔地にあるマスタで切削力の再現と記録,視覚的提示を行った. ## 4. 研究成果 , ともに,マスタ・スレーブ間の位置 追従と仮想的な作用反作用(Fig.4,5)が実 現され,操作者はマスタ側のリニアモータで 仮想再現された切削力,とくに骨貫通時の 急激な力変化を遠隔で鮮明に知覚できた.マ スタ側での力応答の時間-周波数解析では, 切削振動のスペクトルが 30Hz で観察され, 切削力が緻密に再現されたことを確認した (Fig.6). ## マスタ(操作者側)赤 スレーブ(ドリル側)青 Fig.4 位置応答 ## マスタ(操作者側)赤 スレーブ(ドリル側)青 Fig.5 力応答 Fig.6 マスタ側 力応答の時間-周波数解析 についてはマスタ・スレーブ間の位置追従と仮想的な作用反作用が実現され,操作者はマスタ側のリニアモータで再現された切削力の材料による違いを鮮明に知覚できた.マスタとスレーブの力応答のグラフを Fig.7 に示す.縦軸はマスタの操作力およびスレーブへの反作用力を,横軸は切削深さを表す.なお,発泡スチロールの切削力はほぼ0であったため,グラフからは除外した. Fig.7 等速度実験結果 バイラテラル制御を実装したロボットドリル切削システムを開発し、その有用性を確認した.皮質骨から海綿骨、また皮質骨を貫通する変化を捉えることができ、さらには海面骨内でも単純な D1-4 分類では捉えられない複雑な骨質の変化を記録できた.これにより D1-D4 分類を数値化にて判別できる可能性が示唆された.そして、それが予後に反映できるような新たな骨質分類を提案ができることが示唆された. 今回の実験により感覚機能を有するドリル開発が可能となった.今後はナビゲーションシステムに対する感覚機能の応用を目的とし、新たなるナビゲーションシステムの構築を目指していく予定である。 ## 5.主な発表論文等 〔雑誌論文〕(計 2件) - (1) <u>Usuda S</u>, Truppe M, Kaneko T, Ogawa K, Asoda S, Hatazawa C, Usuda S, Yamada Y, Ewers R, Nakagawa T, <u>Kawana H</u>.: Auricular malformation treated by placement of an osseointegrated implant-supported epithesis using telenavigation and model simulation: A case report. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 查 読有り, In Press, vailable online 17 September 2013. DOI: 10.1016 - (2) 兪 浩洋,笠原佑介,河奈裕正,臼田 慎, 大西公平: ロボット切削システムのため の骨密度分類法.電気学会論文誌 D(産業 応用部門誌),査読有り,133(3):1-7, 2013.03 DOI:10.1541 #### [学会発表](計4件) (1) <u>Shin Usuda</u>, <u>Kohei Ohnishi</u>, Koyo Yu, Taneaki Nakagawa, <u>Hiromasa Kawana</u>: Automatic Stop System for Avoiding Over Cut in Implant Surgery Using Haptic Drilling Robot. AAOMS 2014 Annual Meeting, Honolulu (USA) 2014.9.11 (Poster) - (2) <u>臼田 慎</u>, <u>大西公平</u>, 兪浩洋, 中川種昭, <u>河奈裕正</u>: ハプティック技術を応用した 口腔インプラント教育用デバイスの開発. 第 58 回(社)日本口腔外科学会総会, 福岡国際会議場(福岡県・福岡市), 2013.10.11 (ポスター) - (3) <u>臼田慎</u>, 兪浩洋, <u>大西公平</u>, 中島悠, 中川種昭, <u>河奈裕正</u>: 感覚のデータ化と遠隔感知が可能な骨ドリルを用いた骨質分類の評価.第16回日本顎顔面インプラント学会, 福岡国際会議場(福岡県・福岡市), 2012.12.1 (口頭) - (4) 兪浩洋, 大西公平, 河奈裕正, 臼田慎: ロボットドリル切削システムを用いたCT 値推定法 .第 21 回日本コンピュータ外科 学会大会, あわぎんホール(徳島県・徳 島市, 2012.11.2(ポスター) ## [図書](計0件) 〔産業財産権〕 出願状況(計0件) 取得状況(計0件) #### 6.研究組織 (1)研究代表者 臼田 慎(USUDA, Shin) 慶應義塾大学・医学部・助教 研究者番号:70445287 #### (2)研究分担者 河奈 裕正 (KAWANA, Hiromasa) 慶應義塾大学・医学部・准教授 研究者番号: 50224803 大西 公平 (OHNISHI, Kohei) 慶應義塾大学・理工学部・教授 研究者番号: 80137984 (3)連携研究者 なし