慶應義塾大学学術情報リポジトリ Keio Associated Repository of Academic resouces

Title	The host-pathogen association of Exobasidium in Japan inferred from molecular phylogeny of ITS and large subunit rDNA sequences
Sub Title	ITS領域とrDNA D1/D2領域のシークエンスより解析した日本産もち病菌の宿主- 病原菌関連性
Author	長尾, 英幸(Nagao, Hideyuki) 糟谷, 大河(Kasuya, Taiga)
Publisher	慶應義塾大学日吉紀要刊行委員会
Publication year	2023
Jtitle	慶應義塾大学日吉紀要. 自然科学 (The Hiyoshi review of natural science). No.70 (2023. 9) ,p.1- 21
JaLC DOI	
Abstract	Phylogenetic relationships among Exobasidium species were estimated by the concatenated ITS and LSU sequences of 72 isolates obtained from fresh material. The phylogenetic tree suggested 6 host-specific groups for Exobasidium spp. with high support values. A Rhododendron clade comprises three groups: Group 1 includes two witches' broom causal species, E. nobeyamense and E. pentasporium, that were phylogenetically distinguished, while E. nobeyamense, E. otanianum and E. cylindrosporum were unresolved. Group 2 comprised E. japonicum and three species that are pathogenic to subgenus Hymenanthes plants. Group 3 comprised species pathogenic to section Rhododendron and Tsutsusi plants that cause leaf blister. Group 4 comprised five species pathogenic to Vaccinioideae. Groups 5 and 6 are characterized by host specificity to Camellia and Symplocos, respectively. The six groups are independent of morphological characteristics for basidiospores and colony appearances. The concatenated ITS and LSU sequences could be used to predict host preference of Exobasidium isolates.
Notes	原著論文
Genre	Departmental Bulletin Paper
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AN10079 809-20230930-0001

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その 権利は著作権法によって保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

The Host-Pathogen Association of *Exobasidium* in Japan Inferred from Molecular Phylogeny of ITS and Large Subunit rDNA Sequences

Hideyuki Nagao, ^{*,1),2)} Taiga Kasuya ^{**}

ITS領域とrDNA D1/D2領域のシークエンスより解析した 日本産もち病菌の宿主-病原菌関連性

長尾英幸・糟谷大河

Summary — Phylogenetic relationships among *Exobasidium* species were estimated by the concatenated ITS and LSU sequences of 72 isolates obtained from fresh material. The phylogenetic tree suggested 6 host-specific groups for *Exobasidium* spp. with high support values. A *Rhododendron* clade comprises three groups: Group 1 includes two witches' broom causal species, *E. nobeyamense* and *E. pentasporium*, that were phylogenetically distinguished, while *E. nobeyamense*, *E. otanianum* and *E. cylindrosporum* were unresolved. Group 2 comprised *E. japonicum* and three species that are pathogenic to subgenus *Hymenanthes* plants. Group 3 comprised species pathogenic to section *Rhododendron* and *Tsutsusi* plants that cause leaf blister. Group 4 comprised five species pathogenic to Vaccinioideae. Groups 5 and 6 are characterized by host specificity to *Camellia* and *Symplocos*, respectively. The six groups are independent of morphological characteristics for basidiospores and colony appearances. The concatenated ITS and LSU sequences could be used to predict host preference of *Exobasidium* isolates.

Key Words: Basidiomycetes, Exobasidium, Ericaceae, Japan, molecular phylogenetic analysis

* 農業生物資源ジーンバンク(〒 305-8602 つくば市観音台 2-1-2): The NARO Genebank, Tsukuba 305-8602, Japan, 現所属¹⁾ 神奈川県立地球博物館外来研究員(〒 250-0031 小田原市入生田 499): *Present address*: ¹⁾ Visiting researcher, Kanagawa Prefectural Museum of Natural History, 499 Iriuda, Odawara 250-0031, Japan,²⁾ 慶應義塾大学自然科学研究教育センター訪問研究員(〒 223-8521 横浜市港北区日吉 4-1-1):²⁾ Visiting researcher, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku, Yokohama 223-8521, Japan. e-mail: m0ch1_byo@keio.jp ** 慶應義塾大学経済学部生物学教室(〒 223-8521 横浜市港北区日吉 4-1-1): Faculty of Economics, Keio University, 4-1-1 Hiyoshi, Kohoku, Yokohama 223-8521, Japan.

この著作物は著作権法によって保護されています/ This content is protected by the Japanese Copyright Act

1. Introduction

Members of the Exobasidiales are known as plant parasites and are classified in four families (Brachbasidiaceae, Exobasidiaceae, Cryptobasidiaceae and Graphiolaceae) based on mode of sporulation (Bauer et al. 2001). In the Exobasidiaceae, the parasitism of *Exobasidium* is recorded on different host plants in the families Escalloniaceae (Gómez and Kisimova-Horovitz, 1997, 1998), Ericaceae, Saxifragaceae, Symplocaceae and Theaceae (Nannfeldt, 1981; Savile, 1959 a; Ezuka, 1990 a, 1990 b, 1991 a, 1991 b). In Oceania and South America, Ericaceae subfamily Styphelioideae (Chlebicki and Chlebická, 2007; McNabb, 1962) is also described as including host plants. *Exobasidium* induces different types of symptoms, such as galls on leaves, buds, flowers, fruits, and trunks, leaf blisters and blast, shoestring leaf, and witches' bloom (Fig. 1). A causal relationship is not found between the plant taxa and symptoms. Rather, the symptom appearance is specific to the part of the plant infected on different host plants.

Exobasidiales is characterized by morphologically diverse taxa (Begerow et al., 1997; Bauer et al., 2001). The taxonomy of Exobasidium has been particularly controversial due to their simple morphology, the variable symptoms they induce, and their wide host range (Burt, 1915; Ezuka, 1990 b; Nannfeldt, 1981; McNabb, 1962; Savile, 1959 a; Sundström, 1964). Savile (1959 a) synonymized many Exobasidium species isolated from different host plants into a few species based on unicellular or multicellular basidiospores. Nannfeldt (1981), however, based species differentiation on the mode of basidiospore germination and cultural characteristics, which were previously studied by Sundström (1964). According to Nannfeldt-Sundström's morphological species concept, Japanese *Exobasidium* species were re-assessed by comparing the morphology of basidia, basidiospores and sterigmata, and the mode of basidiospore germination (Nagao et al. 2001, 2003 a, 2003 b, 2004 a, 2004 b, 2006). The successful inoculation tests by the isolates of Exobasidium on the cultivated plants of Camellia, Rhododendron, and Vaccinium species were reported (Ezuka, 1955; Graafland, 1960; Sundström, 1964; Nickerson and Vander Kloet, 1997). Sundström (1964) confirmed difference in pathogenicity of E. vaccinii "vit. id" to the susceptible V. vitis-idaea L.

Molecular analyses of the nuclear LSU rDNA have supported the monophyly of this group (Begerow et al. 1997; Bauer et al. 2001), whereas those from 18 S rDNA did not, even when only three species of *Exobasidium* were examined (Döring and Blanz 2000). A controversial species on *Saxifraga, Arctiomyces warmingii* (Rostr.) Savile, was placed in Exobasidiaceae using LSU molecular analysis (Begerow *et al.*, 2002). Savile (1959 b) erect-

Fig. 1. Symptoms caused by *Exobasidium*. A. Gall on leaves of *Rhododendron*, B. Gall on flower of *Vaccinium*, C. Leaf blister of *Rhododendron*, D. Leaf blister blight of *Camellia*, E. Witches' broom of *Rhododendron*, F. Shoot blight of *Symplocos*, G. Fruit deformation of *Symplocos*, H. Gall on leaf of *Rhododendron*.

ed the new genus *Arctiomyces* based on the intermediate morphological characteristics between *Exobasidium* and *Kordyana*. The legitimate name for this species is *Exobasidium warmingii* Rostr. according to its morphology (Donk, 1966; Müller, 1977). Even though Begerow et al. (2002) did not refer to these studies, molecular analysis supported the position of this species in Exobasidiaceae with 78 % bootstrap value by neighbor-joining analysis. On the other hand, *Exobasidium lauri* Geyl. on *Laurus novocanariensis* Rivas Martínez, Lousã, Fernández Prieto, Días, Costa & Aguiar was excluded and moved to *Laurobasidium* in Cryptobasidiaceae supported by molecular re-assessments (Begerow et al. 2002). *Laurobasidium hachijoense* (Y. Otani, Kakish. & Iijima) Kakish., Nagao & Denchev is recently legitimately described as the new combination of *E. hachijoense* Y. Otani *et al.* by the morphological evidence and molecular analysis (Kakishima et al., 2017). The phylogenetic position of this species has been placed in Cryptobasidiaceae (*Clinoconidium* spp. and *L. lauri*) by other researchers in the provisional name of '*Laurobasidium hachijoense*' (Maier et al., 2006; Wang et al., 2015).

Piątek et al. (2012) chose the way of Nannfeldt-Sundström's morphological analyses (Nannfeldt, 1981; Sundström, 1964) and applied the concatenated ITS+LSU sequence tree for the speciation of *Exobasidium darwinii* M. Piatek & M. Lutz, which systemically infects *Vaccinium reticulatum* Sm. The concatenated ITS+LSU sequence tree resolved the relationships within the cluster of six species that were unresolved using only LSU sequences. Kennedy et al. (2012) adopted the concatenated ITS+LSU sequence tree for the identification of new species *Exobasidium ferrugineae* Minnis, Kenn. & Goldberg on flowers of *Lyonia ferrugineae* (Michx.) G.S. Torr.

For species identification, Nannfeldt-Sundström's morphological analyses was supported by the molecular analysis using the concatenated ITS+LSU (Kennedy et al., 2012; Piątek et al., 2012), whereas two different pathogenic *Exobasidium* species were recognized on one host plant either *Rhododendron* or *Vaccinium* (Nannfeldt, 1981). Japanese *Exobasidium* species on *Rhododendron* species were much better documented than those on *Vaccinium* species. We picked up the examples on *Rhododendron* species and *Symplocos lucida* Sieb. et Zucc.; i.e. *E. japonicum* Shirai, *E. pentasporium* Shirai, and *E. japonicum* var. *hypophyllum* Ezuka on *R. kampferi* Planch., *E. yoshinagae* P. Henn. and *E. nobeyamense* Nagao & Ezuka on *R. wadanum* Makino, *E. yoshinagae* and *E. otanianum* Ezuka emend. Nagao on *Rhododendron* subgen. *Tsutsusi, E. cylindrosporum* Ezuka and *E. kawaense* Ezuka on *R. macrosepalum* Maxim., and *E. symploci-japoniccae* Kusano & Tokubuchi and *E. symploci-japoniccae* var. *caprogenum* Nagao & S. Ogawa on *S. lucida*. The focus of the present study was to clarify the host-parasite and phylogenetic relationships with Japanese *Exobasidium* isolates using ITS and LSU sequences adopted by Piątek et al. (2012).

2. Materials and methods

Eighty-eight Japanese *Exobasidium* isolates and 7 Cryptobasidiales, i.e., four isolates of *Clinoconidium* spp. and three isolates of *L. hachijoense*, were used to extract DNA as described below. A total of 70 ITS and 82 LSU sequences were prepared (Table 1). Twen-ty-six sequences were retrieved from the GenBank (Table 2). ITS (Acc. No. AY854090) and LSU (Acc. No. L20287) data of *Ustilago maydis* (DC.) Corda were used as an outgroup.

The fungal DNA was extracted using the sodium dodecvl sulfate (SDS) extraction procedure by Suyama et al. (1996) and PCR amplification profiles by Virtudazo et al. (2001) and Takeuchi and Nagao (2004) were used with slight modifications. Fungal samples were scraped from the surface of 14-day-old colonies and incubated in 20 μ L extraction buffer containing 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl₂, 50 mM KCl, 0.01 % Proteinase K, and 0.01 % SDS for 1 h at 37 °C and then held for 10 min at 95 °C. The extract was then centrifuged at 6,000 rpm and the supernatant was subsequently used as the template for PCR amplification. PCR was performed using a HotstartTag master Mix (Qiagen, Hilden, Germany). The primers ITS 1 F (Gardes and Bruns, 1993) and ITS 4 (White et al. 1990) were used for the ITS regions and NL1 and NL4 (O'Donnell, 1993) for the D1 / D2 regions of LSU rDNA (Table 3). The PCR amplification profile was set as follows: an initial denaturation step for 15 min at 95 °C; followed by 35 cycles of 30 s denaturation at 94 °C, 1 min annealing at 55 °C, and 1 min extension at 72 °C; with a final extension period of 10 min at 72 °C. PCR products were then electrophoresed on 1 % (w/v) agarose gels containing 0.5 µg/mL ethidium bromide in TAE buffer composed of 40 mM Tris, 20 mM sodium acetate, and 1 mM EDTA, pH 7.4, to confirm successful amplification. PCR products were purified with MicroSpin columns S-400 HR (Amersham Biosciences Corp., Piscataway, NJ, USA) according to the manufacture's protocol. Amplified products were sequenced with a BigDye dye terminator kit (Applied Biosystems, Foster City, CA, USA). AutoSeq G-50 (Amersham Biosciences Corp., Piscataway, NJ, USA) was used to remove excess fluorescent dye-terminators from cycle sequencing reactions prior to analysis on an ABI 377 or ABI 3100 automated DNA sequencer (Perkin Elmer Co., Foster, CA, USA).

Multiple DNA sequences were initially aligned independently for both genes using Clustal W ver. 2.1 on the BBDJ web site (http://clustalw.ddbj.nig.ac.jp/index.php?lang=-ja) with default settings and the results were output to a NEXUS file. Phylogenetic analysis was conducted by PAUP* 4.3. 99.169.0 (Swofford, 1998). Gaps in sequences were treat-

	Table 1. List	of Japanese Exc	<i>obasidium</i> examined in this study.			
Isolate	Species	Voucher	Host plant	Locality	GenBank a	cession No.
					dl /d2	ITS
EOS44 (K44)	Exobasidium otanianum		Rhododendron dilatatum var. satsumense	Kagoshima Pref.	AB178257	AB180373
EU259 (K59) IFO 30151	Exooasiaium otanianum Frobasidium shiraiamum		Knododenaron auatatum Vat. satsumense Rhododendron dearronianum	Kagosnima Prei. Ianan	AB175505 AB177505	AB1803/4
IFO 30152	Exobasidium bisporum		Eubotruoides grayana var. oblongifolia	Japan	AB177596	AB180368
IFO 30393	Exobasidium reticulatum		Camellia sinensis	Japan	AB177569	AB180369
IFO 30394	Exobasidium reticulatum		Camellia sinensis	Japan	AB177570	
IFO 30756	Exobasidium japonicum		Rhododendron lateriticum	Japan		AB180370
IFO 7/90	Exobasidium symploci-japonicae var. symploci-japonicae		Symptocos lucida	Japan	AB177597	AB180363
IFO 9942	Exobasidium bisporum		Eubotryotaes grayana var. gtabra	Japan	AB177500	AB180364
IFO 9959 IFO 0060	Exooustatan yostanayae Evobacidinm otanianum		Kuououenuron rencuuuum Phododondron rahuvulatum f rahuvulatum	Тарап	AB177600	AD 100505 AB 180366
IFO 9961	Exolosidium nieridis-ovalifoliae		Inouvenus on remainment 1. remainment Inomin onalifolia ssn. neziki	Japan	AB177601	AB180367
IFO 9962	Exobasidium kishianum		Vaccinium hirtum var. pubescens	Japan	AB177602	
MAFF 238175	Exobasidium japonicum	TSH-B0009	Rhododendron obtusum var. kaempferi	Shizuoka Pref.		AB178941
MAFF 238176	Exobasidium japonicum	TSH-B0011	Rhododendron indicum	Ibaraki Pref.	AB177548	AB180315
MAFF 238177	Exobasidium cylindrosporum	TSH-B0127	Rhododendron macrosepalum	Shizuoka Pref.	AB176713	
MAFF 238178	Exobasidium cylindrosporum	TSH-B0015	Rhododendron × pulchrum	Gunma Pref.	AB178243	
MAFF 238179	Exobasidium pentasporum		Khododendron obtusum var. kaempferi	Nagano Pret.	00100101	AB180316
MAFF 238330	Laurobasianum nachijoense		Cimnamomum japonicum	Tokyo Metropol.	AB177560	100010
MAFF 2385/8	Exobasiatum cametuae	TOLD DOLD	Cameuta Japonca	Unibar Pref.	AB1/0/12	AB180317 AD100210
MAFF 230519	Exobacidium cyunurosporum Exobacidium darhium	TCLI D0074	Dhododondwon nodoonse wer nodoonse f nodoonse	Holdan FICL. Holdando Drof	0170949	01ch01dk/
MAFF 236581	Exobasidium duotum Evokasidium dubium	TSH-B0076	Niououeriurone yeuoense van yeuoense 1. yeuoense Dhododendron yedoense vor yedoense f yedoense	Holdraido Frei. Holdraido Draf	AB170250	
MAFE 220501	Exobacidium dubium Evokacidium dubium	TSH-B0070	Dhododandron judoonee var. judoonee f. judoonee	Holdroido Prof	AB177669	A B 1 90 2 1 0
MAFF 238582	Exooustaanti auotanti Evokasidinen minokai	TSH-B0017	Niououenurone yeuvense van yeuvense 1. yeuvense Phododondron drumiente	Tolaro Matronol	AB177650	AB160319 AB180320
MAFF 238585	Exobasidium aracile	TSH-B0108	Camellia sasanana	Shizuoka Pref.	000111001	AB180321
MAFF 238586	Exobasidium gracile	TSH-B0069	Camellia sasangua	Tokvo Metropol.		AB180322
MAFF 238587	$Exobasidium\ japonicum$	TSH-B0046	Rhododendron obtusum var. kaempferi	Nagano Pref	AB177586	AB180323
MAFF 238588	Exobasidium japonicum	TSH-B0063	Rhododendron obtusum var. kaempferi	Kyoto Pref.		AB180324
MAFF 238589	$Exobasidium\ japonicum$	TSH-B0072	Rhododendron obtusum var. kaempferi	Hokkaido Pref.	AB177571	AB180325
MAFF 238590	Exobasidium japonicum		Rhododendron obtusum var. kaempferi	Ibaraki Pref.	AB178246	
MAFF 238591	Exobasidium japonicum	Forod Tiper	Rhododendron obtusum var. kaempferi	Ibaraki Pref.	AB177568	AB180326
MAFF 238592	Exobasidium Japonicum	TSH-B0125	Rhododendron kuusianum	Kagoshima Pret.	1 D177661	AB180327
MAFF 238505	Exooustatum miyaoet Evobasidinm miyabai	TSH-B007	Niououenuron auuricum Rhododendron dauricum	Hokkaluo Frei. Hokkaido Pref	AB177570	AD100320 AR180330
MAFF 238596	Exobasidium nobenamense	TSH-B0001	Rhododendron madamum	Nagano Pref.	AB178247	AB180329
MAFF 238597	Exobasidium nobeuamense	TSH-B0002	Rhododendron wadanum	Nagano Pref.	AB177582	AB180331
MAFF 238598	Exobasidium nobeyamense	TSH-B0004	Rhododendron wadanum	Nagano Pref.	AB177583	AB180332
MAFF 238599	Exobasidium nobeyamense	TSH-B0003	Rhododendron wadanum	Ibaraki Pref.	AB177585	AB180333
MAFF 238600	Exobasidium pentasporium		Rhododendron obtusum var. kaempferi	Nagano Pref.	AB177581	AB180334
MAFF 238601	Exobasidium pentasporium		Rhododendron obtusum var. kaempferi	Nagano Pref.	AB177567	AB180335
MAFF 238602	Exobasidium shiraianum	TSH-B0023	Rhododendron degronianum	Nagano Pref.	AB177549	AB180336
MAFF 238604 MAFF 238604	Exobasianti shiratanun Evohasidinm shiratanum	1511-B0024 TSH-B0025	киоиоиепштоп иедгопципит Rhododendron degronigmum	Nagano Prei. Nagano Pref	AB178248 AB178248	AB180337 AB180338
MAFF 238605	Exobasidium sumploci-japonicae var. sumploci-japonicae	TSH-B0040	Symplocos lucida	Shimane Pref.	AB176711	AB180339
MAFF 238606	Exobasidium yoshinagae		Rhododendron wadanum	Nagano Pref.	AB177551	AB180340
MAFF 238607	Exobasidium yoshinagae		Rhododendron wadanum	Nagano Pref.	AB177590	AB180341
MAFF 238608	Exobasidium cylindrosporum	TSH-B0012	Rhododendron sp.	Aomori Pref.	AB178245	

慶應義塾大学日吉紀要・自然科学

6

Isolate	Species	Voucher	Host plant	Locality	GenBank ac	cession No.
					d1 /d2	ITS
MAFF 238609	Exobasidium cylindrosporum	TSH-B0014	$Rhododendron \times pulchrum$	Gunma Pref.	AB178244	
MAFF 238610	Exobasidium woronichinii	TSH-B0022	Rhododendron brachycarpum	Nagano Pref.	AB177588	AB180342
MAFF 238611	Exobasidium otanianum	TSH-B0058	Rhododendron hyugaense	Miyazaki Pref.	AB177576	AB180343
MAFF 238612	Exobasidium otanianum	TSH-B0059	Rhododendron hyugaense	Miyazaki Pref.	AB177554	AB180344
MAFF 238613	Exobasidium otanianum	TSH-B0061	Rhododendron retuculatum f. glabrescens	Miyazaki Pref.	AB177593	AB180345
MAFF 238614	$Exobasidium \ dubium$	TSH-B0078	Rhododendron yedoense var. yedoense f. yedoense	Hokkaido Pref.	AB177564	AB180346
MAFF 238616	$Exobasidium\ inconspicuum$	TSH-B0080	Vaccinium hirtum var. pubescens	Hokkaido Pref.	AB177556	AB180347
MAFF 238617	Exobasidium woronichinii	TSH-B0081	Rhododendron brachycarpum	Hokkaido Pref.	AB177557	AB180348
MAFF 238618	Exobasidium woronichinii	TSH-B0085	Rhododendron brachycarpum	Hokkaido Pref.		AB180349
MAFF 238619	$Exobasidium\ inconspicuum$	TSH-B0086	Vaccinium hirtum var. pubescens	Hokkaido Pref.		AB180350
MAFF 238620	Exobasidium symploci-japonicae var. caprogenum	TSH-B0090	Sumplocos lucida	Fukuoka Pref.	AB177559	AB180351
MAFF 238621	Exobasidium pachusporum	TSH-B0121	Vaccinium uliainosum	Tochigi Pref.	AB177573	AB180352
MAFF 238622	Exobasidium woronichinii	TSH-B0018	Rhododendron brachucarpum	Nagano Pref.	AB178240	
MAFF 238623	$Exobasidium\ kishianum$	TSH-B0070	Vaccinium hirtum var. pubescens	Aomori Pref.	AB177577	AB180353
MAFF 238624	Exobasidium kishianum	TSH-B0071	Vaccinium smallii	Aomori Pref.	AB177555	AB180354
MAFF 238625	Exobasidium woronichinii	TSH-B0116	Rhododendron brachycarpum	Tochigi Pref.	AB177572	AB180355
MAFF 238662	Exobasidium cylindrosporum	TSH-B0128	Rhododendron macrosepalum	Shizuoka Pref.	AB177589	AB180356
MAFF 238663	Exobasidium cylindrosporum	TSH-B0129	Rhododendron × mucronatum	Shizuoka Pref.	AB177580	AB180357
MAFF 238664	Exobasidium japonicum	TSH-B0049	Rhododendron obtusum var. kaempferi	Nagano Pref.	AB177587	AB180358
MAFF 238665	Laurobasidium hachijoense	TSH-B0068	Cinnamomum japonicum	Tokyo Metropol.	AB177562	AB180359
MAFF 238666	Exobasidium woroničhinii	TSH-B0083	Rhododendron brachycarpum	Hokkaido Pref.	AB177578	AB180360
MAFF 238667	Exobasidium woronichinii	TSH-B0114	Rhododendron brachycarpum	Tochigi Pref.	AB177565	AB180361
MAFF 238668	Exobasidium vaccinii	TSH-B0120	Vaccinium vitis-idaea	Tochigi Pref.	AB177560	AB180362
MAFF 238674	Exobasidium gracile	NIAES1471008	Camellia sasangua	Ibarak Pref.		AB180684
MAFF 238677	Exobasidium otanianum	NIAES20561	Rhododendron retuculatum f. retuculatum	Hiroshima Pref.		AB180683
MAFF 238810	Exobasidium symploci-japonicae var. symploci-japonicae	NIAES20520	Symplocos lucida	Fukuoka Pref.		AB180677
MAFF 238811	Exobasidium symploci-japonicae var. symploci-japonicae	NIAES20521	Symplocos lucida	Fukuoka Pref.	AB178255	AB180678
MAFF 238824	Exobasidium japonicum	NIAES20571	Rhododendron obtusum var. kaempferi	Aomori Pref.	AB178251	AB180679
MAFF 238826	Exobasidium japonicum	NIAES20572	Rhododendron obtusum var. kaempferi	Aomori Pref.	AB178253	AB180681
MAFF 238830	Exobasidium caucasicum	NIAES20542	Rhododendron aureum	Nagano Pref.	AB178254	AB180682
MAFF 239439	Exobasidium nobeyamense	INM2-15278-052254	Rhododendron wadanum	Tochigi Pref.	AB180378	AB180375
MAFF 239440	Exobasidium nobeyamense	INM2-15278-052256	Rhododendron wadanum	Tochigi Pref.	AB180379	AB180376
MAFF 239441	Exobasidium vexans	INM2-15278-052298	Camellia sinensis	Shizuoka Pref.	AB180380	
MAFF 239442	Exobasidium reticulatum	INM2-15278-052327	Camellia sinensis	Shizuoka Pref.	AB180381	AB180377
MAFF 306193	Exobasidium pieridis		Lyonia ovalifolia ssp. neziki	Shizuoka Pref.	AB177575	
MAFF 306194	Exobasidium pieridis-ovalifoliae		Lyonia ovalijolia ssp. neziki	Shizuoka Pref.	AB177552	
MAFF 306198	Exobasiatum cytinarosporum		Khododenaron oomurasaki	Shizuoka Frei.	AB177574	
TUN-EUZ	Laurooasianum nacnyoense		Cunanomum Japonicum	1 OKYO IMEUTOPOL	AB1/0/15	
TUK-EII	Exobasiatum nemisphaericum		Knoaoaenaron oracnycarpum	Yamanashi Prei.	AB177716	
TUK-E13	Exobasiatum nemisphaericum		Knodođenaron bracnycarpum	Yamanashi Pref.	AB170714	
TUN-E26	Exobasidium gracue Evolacidium crasilo		Cametua susunyaa Camettia sasamma	Ibarak Fiel. Ibarah Drof	AD1/0/14	A P190271
TUR-E30	Eurousiuiun yi ucue Evokacidinan aracilo		Camella sasanga Pamalla sasanga	Ibarah Draf	A B177609	TICODICU
TUIK-E44	Exobasidium nieridis-ovalifoliae		Luonia - onalifolia ssp. neziki	Niigata Pref.	AB176710	
TUK-MA01	Clinoconidium alobosum		Cinnamomum daphnoides	Kagoshima Pref.	AB178259	
TUK-MA02	Clinoconidium globosum		Cinnamomum daphnoides	Kagoshima Pref.	AB178260	
TUK-S703	Clinoconidium onumae		Cinnamomum japonicum	Kagoshima Pref.	AB178258	
TUK-S720	Clinoconidium onumae		Cinnamomum japonicum	Kagoshima Pref.	AB177594	
EOS: Laboratoi TUK: Laboratoi	y of Plant Pathology, Faculty of Agriculture, Kagoshima vy of Plant Parasitic Mycology, Institute of Agriculture and	University; IFO: Insti I Forestry, University	tute of Fermantation, Osaka; MAFF: Genebank in N of Tsukuba	Vational Institute of	' Agrobiologic	al Sciences;
						-

7

Species	Host	DDBJ Acc. No.
Exobasidium arescens	Vaccinium myrtillus	AF352057
E. bisporum	Eubtryoides grayana	AF487386
E. vaccinii	Vaccinium vitis-idaea	AF487398
E. japonicum	Rhododendron indicum = Rhododendron lateritium	AF487388
E. karstenii	Andromeda polifolia	AF487389
E. myrtilli	Vaccinium myrtillus	AF487390
E. oxycocci	Vaccinium oxycoccos	AF487391
E. pachysporum	Vaccinium ulginosum	AF487392
E. pieridis-ovalifoliae	Lyonia ovalifolia= Lyonia neziki	AF487393
E. rhododendri	Rhododendron ferrugineum	AF009856
E. rostrupii	Vaccinium oxycoccos	AF009857
E. shiraianum	Rhododendron degronianum	AF487395
E. sundstroemii	Andromeda polifolia	AF487396
E. symploci-japonicae	Symplocos sp.	AF487397
E. vaccinii	Vaccinium vitis-idaea	AF009858
E. vaccinii	Vaccinium vitis-idaea	AJ406400
E. warmingii	Saxifraga bryoides	AF487380
E. yoshinagae	Rhododendron reticulatum	AF487399

Table 2. List of the referance species and its accession number of Large subunit rDNA.

Table 3. The primers used in this study.

ITS1 (White et al., 1990)	TCCGTAGGTGTAACCTGCGG
ITS1F (Gardes and Bruns, 1993)	CTTGGTCATTTAGAGGAAGTAA
ITS4 (White et al., 1990)	TCCTCCGCTTATTGATATGC
D1 /D2	
NL-1 (O'Donnelle, 1993)	GCATATCAATAAGCGGAGGAAAAAG
NL-4 (O'Donnelle, 1993)	GGTCCGTGTTTCAAGACGG

ed as "missing". All molecular characters were unordered and given equal weight. Phylogenetic trees were examined in the default setting by neighbor-joining (NJ) method and maximum parsimony (MP) analysis under a heuristic search. Bootstrap values for branch support were assessed with 1000 bootstrap pseudo-replicates with 10 random taxon additions per bootstrap replicate (Felsenstein, 1985). Maximum likelihood was also applied and evaluated by quartet puzzling analysis with 1000 puzzling steps (Schmidt and von Haeseler, 2003; Reaz et al., 2014). The quality of the data is evaluated by a support value. A higher support value corresponds to a greater confidence of the bipartition (Schmidt and von Haeseler, 2003).

3. Results

3-1 Phylogenetic analysis for LSU (D1 /D2)

The alignment included 635 total characters of which 406 are constant (proportion = 0.63937), 76 variable characters are parsimony uninformative, while 153 characters are

parsimony informative. Neighbor-joining analysis for the datasets of D1 /D2 regions indicated that *Exobasidium* is distinguished from Cryptobasidiaceae (*Clinoconidium* and *Laurobasidium*) with high bootstrap value but the resolution among *Exobasidium* species is poor (Fig. 2). A group composed of *Exobasidium symploci-japonicae* pathogenic to *S. lucida* was supported by high bootstrap value with 99 %, whereas *Exobasidium* spp. pathogenic to *Camellia, Rhododendron, Saxifraga*, and Vaccinioideae were phylogenetically paraphyletic supported by moderate bootstrap value in the neighbor-joining analysis. These groupings were recognized in both the maximum parsimony and the maximum likelihood analyses (Figure is not presented). Some *Exobasidium* spp. pathogenic to *Rhododendron* appeared to be polyphyletic.

3-2 Phylogenetic analysis for ITS regions

The alignment included 822 total characters of which 369 are constant (proportion = 0.448905), 139 variable characters are parsimony uninformative, while 314 characters are parsimony informative. Twice as many parsimony–informative characters were found in the ITS regions as in the D1 /D2 regions of LSU. Topology of neighbor-joining, maximum parsimony and maximum likelihood analyses were similar to those of the D1 /D2 region of LSU but showed higher bootstrap values (Fig. 3). *Exobasidium otanianum* pathogenic to *Rhododendron* spp. appeared to be polyphyletic. One group was pathogenic to *R. dilatatum* Miq. var. *satsumense* T.Yamaz. and *R. hyugaense* (T. Yamaz.) T. Yamaz., and another was pathogenic to *R. reciculatum* f. *reciculatum* D. Don ex G. Don in the maximum likelihood analysis. However, the quartet-puzzling value didn't support two groups.

3-3 Phylogenetic analysis for concatenated ITS+LSU sequences

The alignment included 1479 total characters of which 847 are constant (proportion = 0.572684), 229 variable characters are parsimony uninformative, while 403 characters are parsimony informative. As shown in the phylogenetic tree of ITS regions, the concate-nated sequences also produced a similar topology of neighbor-joining, maximum parsimony, and maximum likelihood analyses with higher bootstrap and quartet-puzzling values (Fig. 4). From the phylogenetic tree, the following host-specific groups are recognized; Group 1 composes *E. nobeyamense, E. otanianum, E. cylindrosporum* and *E. pentasporium*, Group 2 *E. japonicum, E. shiraianum, E. caucasicum,* and *E. woronichinii.* Group 3 *E. dubium, E. miyabei*, and *E. yoshinagae*, Group 4 *E. bisporum, E. pieridis-ovalifoliae, E. pachysporum, E. inconspicuum, E. kishianum*, and *E. vaccinii*, Group 5 *E. camelliae* and *E. reticulatum* and Group 6 *E. symploci-japonicae*. Groups 1 to 4 are pathogenic to Ericaceae and supported by high bootstrap and quartet-puzzling values.

Fig. 2. Topology obtained by neighbor-joining analysis of D1 /D2 domain of LSU rDNA sequences of Japanese isolates of *Exobasidium* and relatives rooted with *Ustilago maydis*. NJ bootstrap values of 1000 replicates are indicated. Values smaller than 50 % are not shown.

Fig. 3. Topology obtained by maximum likelihood analysis of ITS sequences of Japanese isolates of *Exobasidium* and relatives rooted with *Ustilago maydis*. Quartet puzzling support value of 1000 puzzling steps is indicated above the branch and NJ and MP bootstrap values of 1000 replicates are indicated below the branch from left to right. Values smaller than 50 % are not shown.

Fig. 4. Topology obtained by maximum likelihood analysis of the concatenated ITS+LSU sequences of Japanese isolates of *Exobasidium* and relatives rooted with *Ustilago maydis*. Quartet puzzling support value of 1000 puzzling steps is indicated above the branch and NJ and MP bootstrap values of 1000 replicates are indicated below the branch from left to right. Values smaller than 50 % are not shown.

4. Discussion

By concatenating the sequences from the LSU and ITS regions, the most parsimony-informative characters are available among these sequence alignments in this study. Therefore, the phylogenetic analysis of maximum likelihood showed clades depended on the species with high quartet-puzzling support values except *E. nobeyamense, E. otanianum*, and *E. cylindrosporum*. In general, six proposed phylogenetic groups were resolved by neighbor-joining, maximum parsimony and maximum likelihood analyses with high bootstrap and quartet-puzzling support values. Previously, concatenated ITS+LSU data were reported to resolve relationships within clades with high bootstrap values (Piątek et al., 2012; Fig. 2, Wang et.al., 2015; Fig. 2 D). Even with a concatenated ITS+L-SU data tree, missing ITS data may lead to different results or a topology like an LSU tree (Kennedy et al., 2012). In our concatenated ITS +LSU trees, *E. hemisphaericum* in Group 2 and *E. vexans* in Group 5 were excluded because ITS data for these isolates were not obtained.

Rapid separation of the Exobasidiomycetidae into several groups was suggested by the short internal distances and the small bootstrap values obtained from LSU analysis (Begerow et al., 1997). Begerow et al. (2002) proposed a plausible evolutionary scenario for *Exobasidium*. In the interpretation of a topology obtained by LSU with 18 *Exobasidium* spp., *Exobasidium* is presumed to arise as a pathogen on the Ericaceae ancestor (Begerow et al., 2002). In their interpretation of an LSU phylogenetic tree, the dichotomy occurred between the *Exobasidium* species on Theales and on the Ericaceae, and further between the *Exobasidium* species on *Rhododendron* and those on Vaccinioideae. Even though the two groupings for the species pathogenic to Vaccinioideae were demonstrated by different studies (Begerow et al., 2002; Piątek et al., 2012; Brewer et al., 2014; and Wang et al., 2015), we wonder whether the results from less informative sequences are reliable. We agree with the statement of Brewer et al. (2014) that molecular phylogenetic studies have supported Nannfeldt's species concept (Begerow et al. 2002; Kennedy et al. 2012; Piątek et al. 2012). However, the phylogenetic tree of LSU alone did not resolve the relationships of *Vaccinium* parasites (Fig. 2).

As more distinctive grouping can be proposed by the concatenated ITS+LSU, we focused on the concatenated ITS+LSU tree. Our results also suggested a possible dichotomy between *Camellia* and the Ericaceae but support values were not significant, while a dichotomy between *Symplocos* and the Ericaceae had high support value.

Multiple gene analysis and protein-coding genes including RPB1, RPB2, and TEF1

(Wang et.al., 2015;Figs. 1 and 3) didn't suggest a remarkable difference compared with a concatenated ITS+LSU. Further examination should be applied with more informatic and protein-coding genes to identify crucial branching points.

Nannfeldt (1981) compiled the available information for *Exobasidium* in Europe and sifted through the host-specific and omnivorous infections in the Ericales. Referring to Sundström (1964), Nannfeldt (1981) proposed nine new species and a new combination from the examinations of E. vaccinii sensu auctt. p.p. and others. Exobasidium pathogenic to Vaccinioideae often attack a few species and different part(s) of their hosts. As ITS data of *Exobasidium* pathogenic to Ericaceae was not sufficient to resolve the clades, we also added LSU data of those *Exobasidium* species for the further analysis. The concatenated ITS+LSU of those *Exobasidium* may resolve the phylogenetic distinction. Ezuka (1991 b) disputed the host range of *Exobasidium bisporum* Sawada ex Ezuka since Sawada (1950) reported two different genera as host plants; i. e. Vaccinium axillare Nakai, Eubotryoides grayana (Maxim.) H. Hara var. oblongifolia (Miq.) Ohwi, and E. grayana var. glabra (Komatsu ex Nakai) H. Hara. Ezuka (1991 b) added E. grayana var. hypoleuca (Nakai) H. Hara and V. oldhamii Miq. as new host plants. Morphology and cultural characteristics of isolates from both Vaccinium spp. and Eubotryoides spp. were indistinguishable (Sawada, 1950; Ezuka, 1991 b). In our study *E. bisporum* from *Vaccinium* spp. was not available.

In the Ericaceae host plants, *Exobasidium* pathogenic to the Vaccinioideae forms Group 4, which involves at least three genera and causes leaf blister and leaf blight. Basidiospores are 0-1 to multi-septate and germinate or bud. Consequently, colonies are composed of pseudo-hyphae or yeast-like cells. Despite such diverse characteristics, *Exobasidium* pathogenic to the Vaccinioideae forms a group with high support value. On the contrary, *Exobasidium* pathogenic to *Rhododendron* is divided into three groups. Groups 1 and 2 may have a common ancestor and show similar morphology in terms of 0-1 to multi-septate basidiospores, germ-tube type, and pseudo-hyphal growth, while the pathogenicity is diverted in Group 1. Four Exobasidium infect four Rhododendron with three different symptoms. Among them, Exobasidium pentasporium (Group 1) and E. japonicum (Group 2) infect Rhododendron kaempferi var. kaempferi and cause witches' broom and leaf gall, respectively. The same result by phylogenetic analysis using the concatenated ITS+LSU was recently published (Shibata and Hirooka, 2022). The phylogenetic tree supported independent causal agents. In Group 2, Exobasidium pathogenic to the subgen. *Hymenathes* cause leaf blight. Group 3 shows a common pathogenicity as leaf blister with small round, flat symptom, and similar morphology. Host plants belong to subgen. Rhododendron and Tsutsusi. Exobasidium pathogenic to Camellia is placed in

Group 5 with higher bootstrap and support values in NJ, MP, and ML analyses. *Exobasidium* pathogenic to *Symplocos* is placed in Group 6 with higher values. Both groups involve a variety of modes of infection, modes of basidiospore germination, and colony growth. Host specificity and multi-septate basidiospores are common features in these two groups.

The outstanding issue of two different virulence types of *Exobasidium* species on *Rho-dodendron* host plants were explained by placing *Exobasidium* species in different clades, i. e. *E. japonicum* (Group 2) and *E. pentasporium* (Group 1) on *R. kampferi, E. yoshinagae* (Group 3) and *E. nobeyamense* (Group 1) on *R. wadanum, E. yoshinage* (Group 3) and *E. otanianum* (Group 1) on *Rhododendron* subgen. *Tsutsusi.* The supporting values on the point of dichotomy for Group 1 and 2 from Group 3 were 95 / 100 / 96 by ML, NJ, and MP, respectively. But those for separating Group 1 from Group 2 were relatively moderate, 53 /—/ 96 by ML, NJ, and MP, respectively. Hence, two different virulence types of *Exobasidium* species remain on the same genus of host plant but belong to different concatenated ITS+LSU clades. The case of *E. symploci-japoniccae* and *E. symploci-japoniccae* var. *caprogenum* on *S. lucida* will be investigated whenever *Symplocos*-specific *Exobasidium* species are found. The rarely recognized species *E. japonicum* var. *hypophyllum* and *E. kawaense* will be examined when available.

As Begerow et al. (2002) showed the position of *E. warmingii* pathogenic to *Saxifraga* in Exobasidiaceae, our LSU tree also supported placing *E. warmingii* in the Ericaceae clade, but all clades in Ericaceae were paraphyletic. A homology search retrieved on 13 Nov. 2022 indicated the top five choices as *A. warmingii* (Acc. No. MT223875), *Exobasidium* sp. (Acc. No. OP374143), *Exobasidium* sp. (Acc. No. ON557301), *E. rhododendri* (Acc. No. OP763657), and *E. cylindrosporum* (Acc. No. CP096880). Wang et al. (2015; Fig. 4) and Crous et al. (2020; Fig. 1) also presented the position of *E. warmingii* in Exobasidiaceae in an LSU tree. Crous et al. (2020) picked up the closest hits of ITS, LSU, and *tef*1 from a megablast search of NCBI's GenBank nucleotide database and considered that closely related to species are *Exobasidium* and *Muribasidiospora*.

Exobasidium causes overgrowth symptoms such as gall formation on buds, fruits, and leaves, blistering, blight, and malformation on shoots, including witches' broom, shoestring, and red shoot in the different host families (Fig. 1). Li and Guo (2010) concluded that phylogenetic relationships among 22 *Exobasidium* species corresponded to the host plants and symptoms. Our studies showed that fruit malformation is caused only by *Exobasidium* pathogenic to *Vaccinium* (Brewer et al., 2014) in Group 4, *Camellia* in Group 5, and *Symplocos* in Group 6. Witches' broom is also caused on *R. wadanum* and *R. kaempferi* var. *kaempferi* as mentioned above. Leaf gall is caused on *R. kaempferi*

var. *kaempferi*, *Rhododendron* subsp. *Hymenathes*, and *Vaccinium* spp. These symptoms are neither host specific nor related with the examined sequence groups except Group 3 (leaf blister on *Rhododendron* spp.).

Although basidiospore morphology and mode of basidiospore germination were thought to be an important taxonomic character within *Exobasidium*, results of the present study show that they are poor guidelines to support phylogenetic relationships (Fig. 5). For example, basidiospores with the same number of septa were placed into several different clades. Exobasidium japonicum and E. pentasporium have 0-1-septated basidiospores, while these two species grouped in different clades (Fig. 4). Exobasidium japonicum was erroneously synonymized to E. vaccinii due to basidiospore morphology as stated previously (Savile, 1959 a). Mode of basidiospore germination also distinguished these two species (Sundström, 1964; Nannfeldt, 1981). Phylogenetic trees showed different positions of these species in Groups 2 and 4, respectively. Therefore, basidiospore size and the number of septa poorly reflect phylogenetic relationships. In addition, the mode of basidiospore germination does not reflect phylogenetic relationships. Exobasidium symploci-japonicae var. symploci-japonicae germinates via a germ-tube, whereas var. caprogenum does by budding (Nagao et al. 2003 b). These two varieties formed a monophyletic group within the phylogenetic trees (Figs. 3 and 4). In Group 2, E. woronichinii germinated by a germ-tube, whereas E. caucasicum and E. shiraianum by budding (Nagao et al. 2004 a).

Nannfeldt (1981) discussed the life cycles and symptoms of *Exobasidium* spp. and considered how to infect the host plant referring to the interior persisting mycelia. Monocarpic and polycarpic infections were explained according to a manner of symptom. Mode of basidiospore germination, either germ-tube or budding conidia, may be favorable to infection on certain host plants. For symptom development, there is no specific characteristics related to infection by budding conidia. *Taphrina* species germinate from ascospores by budding but grow in the form of pseudo-mycelium in the hypertrophied tissue (Nagao and Katumoto, 1998). Yeast-like growth of *Exobasidium* on the surface of media and leaves may be transformed to pseudo-hyphal growth in the host plant tissue. Nature of budding yeast has been known by the microtubule regulation and β -tubulin genes are related (Bode et al., 2003). Phylogenetic analysis with β -tubulin gene sequences may give insight to the common ancestor of species of *Exobasidium* with yeast-like growth.

of infection, septal number of basidiospores, mode of basidiospore germination, and colony type.

¹⁷

Acknowledgement

We thank Prof. A. P. Keinath for English revision and valuable comments. We also thank Prof. M. Kakishima for introducing *Exobasidium* taxonomical study and Prof. T. Sato for providing the facility for experiments in the NIAS Genebank. A part of this study was supported by a Post-Doctoral Fellowship 2005, Genebank, National Institute of Agrobiological Sciences (currently National Agriculture and Food Research Organization, NARO), Japan, and by a research fund of Forest Development Technological Institute.

References

- Bauer, R., D. Begerow, F. Oberwinkler, M. Piepenbring, and M. L. Berbee. 2001. Ustilaginomycetes. *In*: McLaughlin, D.J., E.G. McLaughlin, and P.A. Lemke (eds.) *Mycota VII Part B. Systematics and evolution*. pp. 57–83. Springer Verlag, Heidelberg, New York.
- Begerow, D., R. Bauer, and F. Oberwinkler. 1997. Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. *Can. J. Bot.* 75: 2045–2056.
- Begerow, D, R. Bauer, and F. Oberwinkler. 2002. The Exobasidiales: an evolutionary hypothesis. *Mycol. Prog.* 1:187–199.
- Bode, C. J., M. L. Gupta, K. A. Suprenant, and R. H. Himes. 2003. The two alpha-tubulin isotypes in budding yeast have opposing effects on microtubule dynamics in vitro. *EMBO Rep* 4 (1): 94–9. https://doi.org/ 10.1038 /sj.embor.embor716.
- Brewer, M.T., A. N. Turner, P. M. Brannen, W. O. Cline, and E. A. Richardson. 2014. *Exobasidium maculosum*, a new species causing leaf and fruit spots on blueberry in the southeastern USA and its relationship with other *Exobasidium* spp. parasitic to blueberry and cranberry. *Mycologia* 106 (3): 415–23. https://doi.org/10.3852/13–202
- Burt, E.A. 1915. The Thelephoraceae of North America. IV *Exobasidium. Ann. Mo. Bot. Gard.* **2** : 627–659.
- Chlebicki, A. and M. Chlebická. 2007. A new fungus, *Exobasidium gomezii*, from Chilean Patagonia. *Nova Hedwigia* **85**: 145–149.
- Crous, P. W., M. J. Wingfield, R. K. Schumacher, A. Akulov, T. S. Bulgakov, A. J. Carnegie, Ž. Jurjević, C. Decock, S. Denman, L. Lombard, D. P. Lawrence, A. J. Stack, T. R. Gordon, R. M. Bostock, T. Burgess, B. A. Summerell, P. W. J. Taylor, J. Edwards, 10

L. W. Hou, L. Cai, A. Y. Rossman, T. Wöhner, W. C. Allen, L. A. Castlebury, C. M. Visagie, and J. Z. Groenewald. 2020. New and Interesting Fungi. 3. *Fungal Syst. Evol.* **6**: 157–231 (75). https://doi.org/10.3114/fuse. 2020.06.09

- Donk, M. A. 1966. Check list of European hymenomycetous Heterobasidiae. *Persoonia* 4:145–335.
- Döring, H. and P. Blanz. 2000. 18 S rDNA-Analysen bei der Gattung *Exobasidium. Hoppea* **61** : 85–100.
- Ezuka, A. 1955. Artificial culture of two species of *Exobasidium: E. vexans* Massee and *E. japonicum* Shirai. *Bull. Tea Div. Tokai-Kinki Agri. Exp. Stn.* **3** : 28–53 [in Japanese].
- Ezuka, A. 1990 a. Notes on some species of *Exobasidium* in Japan (I). *Trans. Mycol. Soc. Japan* **31** : 375–388.
- Ezuka, A. 1990 b. Notes on some species of *Exobasidium* in Japan (II). *Trans. Mycol. Soc. Japan* **31** : 439–455.
- Ezuka, A. 1991 a. Notes on some species of *Exobasidium* in Japan (III). *Trans. Mycol. Soc. Japan* **32** : 71–86.
- Ezuka, A. 1991 b. Notes on some species of *Exobasidium* in Japan (IV). *Trans. Mycol. Soc. Japan* **32** : 169–185.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **6** : 227–242.
- Graafland, W. 1960. The parasitism of *Exobasidium japonicum* Shir. On Azalea. *Acta Bot. Neerl.* **9** : 347–379.
- Gardes, M. and T.D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. *Mol. ecol.* 2 (2) :113–118.
- Gómez, L. D. and, L. Kisimova-Horovitz. 1997. Basidiomycetes of Costa Rica. Exobasidiales, Cryptobasidiales. Historical notes. *Rev. Biol. Trop.* **45** : 1293–1310.
- Gómez, L. D. and, L. Kisimova-Horovitz. 1998. Basidiomicetes de Costa Rica. Nuevas especies de *Exobasidium* (Exobasidiaceae) y registros de Cryptobasidiales. *Rev. Biol. Trop.* 46 : 1081–1093.
- Kennedy, A. H., N. A. Goldberg, and A. M. Minnis. 2012. Exobasidium ferrugineae sp. nov., associated with hypertrophied flowers of Lyonia ferruginea in the southeastern USA. Mycotaxon 120: 451–460.
- Li, Z., and L. Guo. 2010. Studies of Exobasidium new to China: E. rhododendri-siderophylli sp. nov. and E. splendidum. Mycotaxon 114:271-279. https://doi. org/10.5248/114.271
- Maier, W., T. Khoza, N. Harmse, B. D. Wingfield and M. J. Wingfield. 2006. A disease

epidemic on *Zizyphus mucronata* in the Kruger National Park caused by *Coniodic-tyum chevalieri*. *Stud. in Myc.* **55** : 279–288. https://doi.org/ 10.3114 /sim. 55.1. 279

- McNabb, R. F. R. 1962. The genus *Exobasidium* in New Zealand. *Trans. Roy. Soc. N. Z.* 1:259–268
- Müller, E. 1977. Reflections on the geographical distribution of *Exobasidium warmingii*. *Kew bulletin*. **31** : 545–550.
- Nagao, H., and K. Katumoto. 1998. Leaf blister of *Quercus phillyraeoides* caused by *Taphrina caerulescens. Mycoscience* **39** (2): 173–178.
- Nagao, H., A. Ezuka, H. Ohkubo, and M. Kakishima. 2001. A new species of *Exobasidi*um causing witches' broom on *Rhododendron wadanum*. *Mycoscience* **42**: 549–554.
- Nagao, H., M. Akimoto, K. Kishi, A. Ezuka, and M. Kakishima. 2003 a. *Exobasidium dubium* and *E. miyabei* sp. nov. causing Exobasidium leaf blisters on *Rhododendron* spp. in Japan. *Mycoscience* 44 : 1–9.
- Nagao, H., S. Ogawa, T. Sato, and M. Kakishima. 2003 b. *Exobasidium symploci-japonicae* var. *caprogenum* var. nov. causing Exobasidium fruit deformation on Symplocos *lucida* in Japan. *Mycoscience* 44: 369–375.
- Nagao, H., T. Sato, and M. Kakishima. 2004 a.Three species of *Exobasidium* causing Exobasidium leaf blight on subgenus *Hymenanthes, Rhododendron* spp., in Japan. *Mycoscience* **45** : 85–95.
- Nagao, H., S. Kurogi, A. Ezuka, T. Sato, and M. Kakishima. 2004 b. Emendation of *Exobasidium otanianum* causing Exobasidium leaf blight on *Rhododendron* spp. in Japan. *Mycoscience* 45 : 245–250.
- Nagao, H., A. Ezuka, Y. Harada, T. Sato, and M. Kakishima. 2006. Two new species of *Exobasidium* causing Exobasidium diseases on *Vaccinium* spp. in Japan. *Mycoscience* 47 (5) : 277–283.
- Nannfeldt, J. A. 1981. *Exobasidium* a taxonomic reassessment applied to the European species. *Symb. Bot. Upsal.* **23** (2): 1–72.
- Nickerson, N. L. and Vander Kloet, S. P. 1997. Exobasidium leaf spot of lowbush blueberry. *Can. J. Plant Pathol.* **19**: 66–68.
- O'Donnell, K. L. 1993. *Fusarium* and its near relatives. *In*: Reynolds, D.R. and J.W. Taylor. (eds.) *The fungal holomorph: mitotic, meiotic, and pleomorphic speciation in fungal systematics.* pp. 225–233.CAB international, Wallingford.
- Piątek, M., M. Lutz, and P. Welton. 2012. Exobasidium darwinii, a new Hawaiian species infecting endemic Vaccinium reticulatum in Haleakala National Park. Mycol. Progress 11: 361–371. https://doi.org/ 10.1007 /s11557–011–0751–4
- Reaz, R., M. S. Bayzid and M. S. Rahman. 2014. Accurate Phylogenetic Tree Reconstruc-20

tion from Quartets: A Heuristic Approach. *PLoS ONE* **9** (8): e104008. https://doi. org/ 10.1371 /journal.pone. 0104008

Savile, D. B. O. 1959 a. Notes on *Exobasidium. Can. J. Bot.* 37: 641-656.

- Savile, D. B. O. 1959 b. The botany of Somerset Island, district of Franklin. *Can. J. Bot.* **37** (5): 959–1002.
- Sawada, K. 1950. Fungi from the North-Eastern region of Honshu, Japan (2) Basidiomycetes. *Tohoku Biological* 1:95–100.
- Schmidt, H.A. and A. von Haeseler. 2003. Maximum-Likelihood Analysis Using Tree-Puzzle. *Current Protocols in Bioinformatics* 1: 6.6. 1–6.6. 23. John Wiley & Sons, Inc. https://doi.org/10.1002/0471250953.bi0606 s01
- Shibata, S. and Y. Hirooka. 2022. Taxonomy and phylogeny of *Exobasidium pentasporium* causing witches' broom of *Rhododendron* species. *Mycoscience* **63** : MYC582. https://doi.org/ 10.47371 /mycosci. 2022.07.002
- Sundström, K.-R. 1964. Studies of the physiology, morphology, and serology of *Exobasidium. Symb. Bot. Upsal.* **18** (3): 1–89
- Suyama Y., K. Kawamuro, I. Kinoshita, K. Yoshimura, Y. Tsumura, and H. Takahara. 1996. DNA sequence from a fossil pollen of *Abies* spp. from Pleistocene peat. *Genes Genet. Syst.* **71** : 145–149.
- Swofford, D.L. 1998. PAUP* 4.0. Phylogenetic analysis using parsimony. Sunderland, Massachusetts: Sinauer Associates.
- Takeuchi, K., and H. Nagao. 2004. DNA sequencing for molecular identification of plant pathogens. MAFF Microorganism Genetic Resources Manual No. 17. 5–22.
- Virtudazo, E. V., H. Nakamura, and M. Kakishima. 2001.Phylogenetic analysis of sugarcane rusts based on sequences of ITS, 5.8 S rDNA and D1 /D2 regions of LSU rDNA. *J. Gen. Plant Pathol.* 67 (1): 28–36. https://doi.org/ 10.1007 /PL00012983
- Wang, Q.-M., D. Begerow, M. Groenewald, X.-Z. Liu, B. Theelen, F.-Y. Bai, and T. Boekhout. 2015. Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. *Stud. in Myc.* 81: 55–83. https://doi.org/ 10.1016/j.simyco. 2015.10.004
- White, T. J., T. Bruns, S. B. Lee, J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In* :Gelfand, M., D. Sninsky, and T. White. (eds.) *PCR protocols: a guide to methods and applications*. pp. 315–322. Academic Press, San Diego.