Title	New proofs of some basic theorems on stationary point processes
Sub Title	
Author	南, 就将(Minami, Nariyuki)
Publisher	慶應義塾大学日吉紀要刊行委員会
Publication year	2012
Jtitle	慶應義塾大学日吉紀要. 自然科学 (The Hiyoshi review of the natural
	science). No.52 (2012. 9) ,p.37- 47
JaLC DOI	
	We give new proofs of three basic theorems on stationary point processes on the real line-theorems of Khintchine, Korolyuk, and Dobrushin. Moreover we give a direct construction of
	the Palm measure for a class of point processes which includes stationary ones as special cases.
Notes	研究ノート
Genre	Departmental Bulletin Paper
	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AN10079809-20120930- 0037

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

New Proofs of Some Basic Theorems on Stationary Point Processes

Nariyuki MINAMI*

Summary—We give new proofs of three basic theorems on stationary point processes on the real line—theorems of Khintchine, Korolyuk, and Dobrushin. Moreover we give a direct construction of the Palm measure for a class of point processes which includes stationary ones as special cases.

1. Introduction

The purpose of this note is to give new proofs, based on a same simple idea, to some basic theorems on stationary point processes on the real line \mathbf{R} , as stated in standard treatises on point processes such as Daley and Vere-Jones (see §3.3 of [3]).

To begin with, let us introduce necessary definitions and notation. By M_p , we denote the set of all integer-valued Radon measures on **R**. Namely M_p is the totality of all measures N(dx) on **R** such that for any bounded Borel set B, N(B) is a non-negative integer. Let us call any such measure a *counting measure*. For a counting measure $N \in$ M_p , let us define

$$X(t) := N((0, t]) \quad (t \ge 0), \qquad := -N((t, 0)) \quad (t < 0).$$
(1)

Then the function X(t) is right-continuous, integer-valued, locally bounded and nondecreasing. Hence X(t) is piecewise constant on **R** and the set Δ , finite or countably infinite, of its points of discontinuity has no accumulation points other than $\pm\infty$. Thus the points in Δ can be ordered as

 $\cdots < x_{-1} < x_0 \le 0 < x_1 < x_2 < \cdots$,

so that if we let $m_n := X(x_n) - X(x_n - 0)$, then N(dx) can be represented as

$$N(dx) = \sum_{n} m_n \delta_{x_n}(dx), \qquad (2)$$

where δ_a denotes the unit mass placed at *a*. Each m_n is a positive integer and is called

^{*} 南就将, 慶應義塾大学医学部数学教室(〒223-8521 横浜市港北区日吉 4-1-1): School of medicine, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan [Received Mar. 3, 2012]

the *multiplicity* of the point x_n . In general, either $N([0, \infty))$ or $N((-\infty, 0))$ can be finite, in which case either $\{x_n\}_{n>0}$ or $\{x_n\}_{n\leq 0}$ is a finite sequence. If in the former [resp. latter] case $\{x_n\}_{n>0}$ [resp. $\{x_n\}_{n\leq 0}$] terminates with x_v , then we will set $x_n = \infty$ [resp. $x_n = -\infty$] for n > v [resp. n < v]. When $m_n = 1$ for all n such that $x_n \neq \pm \infty$, the counting measure N is said to be *simple*. For each $N \in M_p$ with representation (2), let us associate a simple counting measure N^* defined by

$$N^*(dx) = \sum_n \delta_{x_n}(dx).$$
(3)

In order to make M_p a measurable space, we define \mathcal{M}_p to be the σ -algebra of subsets of M_p generated by all mappings of the form

$$M_p \ni N \mapsto N (B) \in [0, \infty] \tag{4}$$

for all Borel sets $B \subset \mathbf{R}$. Then we see that x_n , m_n and N^* are all measurable functions of N, as the following lemma shows.

Lemma 1 (i) The set

 $C := \{N \in M_p : N ((-\infty, 0]) = N ((0, \infty)) = \infty\} = \{N \in M_p : x_n \text{ is finite for all } n\}$

belongs to \mathcal{M}_p .

(ii) For each integer n, x_n and m_n are \mathcal{M}_p -measurable functions of N. (iii) The mapping $M_p \ni N \mapsto N^* \in M_p$ is $\mathcal{M}_p/\mathcal{M}_p$ -measurable.

Proof. (i) The assertion is obvious from the definition of \mathcal{M}_p , since we can write

$$C = \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \{ N \in M_p : N((-n, 0]) > k, N((0, n]) > k \}$$

(ii) The measurability of x_1 follows from the relation

$$\{N \in M_p : x_1 > t\} = \{N \in M_p : N ((0, t]) = 0\},\$$

which holds for all $t \ge 0$. Now for each $k \ge 1$, define

$$x_1^{(k)} := \sum_{j=1}^{\infty} \frac{j}{2^n} \mathbf{1}_{((j-1)/2^n, j/2^n]}(x_1) + \infty \cdot \mathbf{1}_{\{x_1 = \infty\}}.$$

Then we see that $x_1^{(k)}$ is measurable in N and that $x_1^{(k)} \searrow x_1$ as $k \to \infty$. By the right-continuity of X(t) = N((0, t]) at t > 0, we have, as $k \to \infty$,

$$\mathbf{1}_{\{x_1 < \infty\}} \cdot X(x_1^{(k)}) = \sum_{j=1}^{\infty} \mathbf{1}_{((j-1)/2^n, j/2^n]}(x_1) X\left(\frac{j}{2^k}\right) \longrightarrow X(x_1) = m_1$$

which shows the measurability of m_1 in N.

Next let $\tilde{X}(t) := X(t) - X(t \wedge x_1)$. This is measurable in *N* for all $t \ge 0$, since 38

$$X(t \wedge x_1) = X(t) \mathbf{1}_{\{x_1 \ge t\}} + X(x_1) \mathbf{1}_{\{x_1 < t\}}.$$

If we apply the above argument to $\tilde{X}(t)$ instead of X(t), we can verify the measurability of x_2 and m_2 in N, and the argument can be iterated to give the measurability of all x_n and m_n .

(iii) For each $j = 0, 1, 2, \ldots$ and t > 0, the sets

$$\{N \in M_p : N^* ((0, t]) = j\} = \{N \in M_p : x_j \le t < x_{j+1}\}$$

and

$$\{N \in M_p : N^* ((-t, 0]) = j\} = \{N \in M_p : x_{-j} \le t < x_{-j+1}\}$$

belong to M_p . Now for each $n \ge 1$, let G_n be the class of all Borel subsets B of [-n, n] such that the mapping

$$M_p \ni N \mapsto N^* (B) \in [0, \infty) \tag{5}$$

is measurable. Then G_n is seen to be a λ -system which contains the class of intervals

$$I := \{(0, t] : 0 < t \le t\} \cup \{(-t, 0] : 0 < t \le n\}$$

which forms a π -system. Hence by Dynkin's π - λ theorem (see e.g. Durrett [2]), G_n contains all Borel subsets of [-n, n]. Since $n \ge 1$ is arbitrary, and since we can write N^* (*B*) = $\lim_{n \to \infty} N^*$ ($B \cap [-n, n]$), the mapping (5) is measurable for all Borel subsets of **R**.

Remark 1. By an argument similar to (iii), it is easy to show that M_p is generated by mappings $M_p \ni N \mapsto X(t)$ for all t, where X(t) is defined in (1).

Definition 1 A point process N_{ω} is a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and taking values in the measurable space $(M_{\nu}, \mathcal{M}_{\nu})$.

Definition 2 A point process N_{ω} is said to be crudely stationary if for any bounded interval I and for any $x \in \mathbb{R}$, $N_{\omega}(I)$ and $N_{\omega}(I + x)$ are identically distributed. Its mean density is the expectation value $m := \mathbb{E}[N_{\omega}((0, 1])] \leq \infty$.

Definition 3 A point process N_{ω} is said to be stationary if for any $C \in \mathcal{M}_p$ and $x \in \mathbf{R}$, one has the identity

$$\mathbf{P}(N_{\omega}(\cdot) \in C) = \mathbf{P}(N_{\omega}(x + \cdot) \in C).$$

Obviously, N_{ω} is crudely stationary if it is stationary.

Remark 2. By another application of π - λ theorem, one can show without difficulty that N_{ω} is stationary if and only if for any finite family of Borel subsets B_1, \ldots, B_n of **R**, and of non-negative integers k_1, \ldots, k_n , the identity

$$\mathbf{P}(N_{\omega}(B_i) = k_i, i = 1, ..., n) = \mathbf{P}(N_{\omega}(x + B_i) = k_i, i = 1, ..., n)$$

holds for any $x \in \mathbf{R}$.

2. Basic theorems and their proofs

Our argument is based on the following lemma, which is an immediate consequence of Definition 2.

Lemma 2 Let the point process N_{ω} be crudely stationary. Then for any bounded interval I and for any non-negative integer k,

$$\mathbf{P}(N_{\omega}(I) = k) = \int_{0}^{1} \mathbf{P}(N_{\omega}(x+I) = k) dx = \mathbf{E}\left[\int_{0}^{1} \mathbf{1}_{\{N_{\omega}(x+I) = k\}} dx\right].$$

Proposition 1 (Khintchine's theorem) For any crudely stationary point process N_{ω} , the limit

$$\lambda := \lim_{h \searrow 0} \frac{1}{h} \mathbf{P}(N_{\omega}((0, h]) > 0)$$

exists and satisfies $\lambda \leq m$. λ is called the intensity of the point process N_{ω} .

Proof. Let N_{ω} be represented as (2) and define the point process N_{ω}^* by (3). If we set $v(\omega) := N_{\omega}^*$ (0, 1], it satisfies $x_{v(\omega)}(\omega) \le 1 < x_{v(\omega)+1}(\omega)$. Obviously we have

$$\{ x \in (0,1] : N_{\omega}((x,x+h]) > 0 \} = (0,1] \cap \left[\bigcup_{j=1}^{\infty} [x_{j}(\omega) - h, x_{j}(\omega)) \right]$$
$$= (0,1] \cap \left[\bigcup_{j=1}^{\nu(\omega)+1} J_{j}^{\omega}(h) \right] = \sum_{j=1}^{\nu(\omega)+1} \left[(0,1] \cap (J_{j}^{\omega}(h) \setminus J_{j-1}^{\omega}(h)) \right],$$

where we have set $J_i^{\omega}(h) := [x_i(\omega) - h, x_i(\omega))$ and $J_0 = \emptyset$. Hence

$$\begin{split} \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_{\omega}((x,x+h])>0\}} dx &= -\frac{1}{h} \sum_{j=1}^{\nu(\omega)+1} |(0,1] \cap (J_j^{\omega}(\mathbf{h}) \setminus J_{j-1}^{\omega}(h))| \\ &= -\sum_{j=1}^{\nu(\omega)+1} \frac{1}{h} \{ (1 \wedge x_j(\omega)) - (0 \vee x_{j-1}(\omega) \vee (x_j(\omega) - h)) \}_+ \end{split}$$

40

where for a Borel subset *B* of **R**, |B| denotes its Lebesgue measure and for a real number *a*, $a_+ := a \lor 0 = \max\{a, 0\}$ denotes its positive part. Now it is easy to see that for $1 \le j \le v(\omega)$,

$$\frac{1}{h}\left\{\left(1 \wedge x_{j}(\omega)\right) - \left(0 \vee x_{j-1}(\omega) \vee (x_{j}(\omega) - h)\right)\right\}_{+} \nearrow 1$$

as $h \searrow 0$, and that for $j = v(\omega) + 1$,

$$\frac{1}{h}\left\{\left(1 \wedge x_{\nu(\omega)+1}\left(\omega\right)\right) - \left(0 \vee x_{\nu(\omega)}\left(\omega\right) \vee \left(x_{\nu(\omega)+1}\left(\omega\right) - h\right)\right)\right\}.$$

is bounded by 1 and tends to 0 as $h \searrow 0$. Thus we can apply the monotone convergence theorem, the dominated convergence theorem and Lemma 2, to obtain

$$\begin{split} \frac{1}{h} \mathbf{P}(N_{\omega}((0, h]) > 0) &= \mathbf{E}\left[\frac{1}{h} \sum_{j=1}^{\nu(\omega)+1} |(0, 1] \cap (J_{j}^{\omega} \setminus J_{j-1}^{\omega}(h))|\right] \\ &\longrightarrow \mathbf{E}\left[\sum_{j=1}^{\nu(\omega)} 1\right] = \mathbf{E}\left[N_{\omega}^{*}((0, 1])\right], \end{split}$$

as $h \searrow 0$. Thus the desired limit λ exists and is equal to $E[N_{\omega}^*((0, 1])]$. Clearly it satisfies the inequality $\lambda \leq E[N_{\omega}((0, 1])] = m$.

Corollary 1 If N_{ω} is simple, then $\lambda = m$. When $m < \infty$, the converse is also true.

Proof. N_{ω} is simple if and only if $N_{\omega}^* = N_{\omega}$ almost surely, which obviously implies $\lambda = m$. On the other hand, if $\lambda = m < \infty$, then

$$\mathbf{E}[N_{\omega} ((0, 1]) - N_{\omega}^* ((0, 1])] = m - \lambda = 0.$$

But N_{ω} ((0, 1]) $-N_{\omega}^{*}$ ((0, 1]) ≥ 0 in general, so that N_{ω} ((0, 1]) $=N_{\omega}^{*}$ ((0, 1]) almost surely. The same argument is valid if the interval (0, 1] is replaced by (n, n + 1], so that N_{ω} ((n, n + 1]) $= N_{\omega}^{*}$ ((n, n + 1]) almost surely for all integers n, and the simplicity of N_{ω} follows.

Remark 3. In the treatise by Daley and Vere-Jones [3], for example, Proposition 1 is proved in the following way: If we define $\varphi(h) := \mathbf{P}(N_{\omega} ((0, h]) > 0)$, then by the crude stationarity, we have for any positive h_1 and h_2 ,

$$\begin{split} \varphi(h_1 + h_2) &= \mathbf{P}(N_{\omega}((0, h_1 + h_2]) > 0) = \mathbf{P}(N_{\omega}((0, h_1]) + N_{\omega}((h_1, h_1 + h_2]) > 0) \\ &\leq \mathbf{P}(N_{\omega}((0, h_1]) > 0) + \mathbf{P}(N_{\omega}((h_1, h_1 + h_2]) > 0) = \varphi(h_1) + \varphi(h_2), \end{split}$$

so that $\varphi(h)$ is a sub-additive function defined on $[0, \infty)$ satisfying $\varphi(0) = 0$. To show the existence of the intensity λ , it suffices to apply the following well known lemma.

Lemma 3 Let g(x) be a sub-additive function defined on $[0, \infty)$ such that g(0) = 0. Then one has

$$\lim_{x\searrow 0}\frac{g(x)}{x}=\sup_{x>0}\frac{g(x)}{x}\leq\infty.$$

However, this argument does not provide the representation $\lambda = E[N_{\omega}^{*}((0, 1))]$, so that the proof of Corollary 1 requires some extra work. Our proof above is closer to that of Leadbetter [5]. See also Chung [1].

Definition 4 A crudely stationary point process N_{ω} is said to be orderly when

$$\mathbf{P}(N_{\omega}((0, h]) \ge 2) = o(h) \quad (h \searrow 0).$$

Proposition 2 (Dobrushin's theorem) If a crudely stationary point process N_{ω} is simple and if $\lambda < \infty$, then N_{ω} is orderly.

Proof. By Lemma 2, we can write

$$\mathbf{P}(N_{\omega}((0,h]) \ge 2) = \mathbf{E}\left[\int_{0}^{1} \mathbf{1}_{\{N_{\omega}((x,x+h]) \ge 2\}} dx\right].$$

As can be seen from the proof of Proposition 1, we have

$$\begin{split} &\frac{1}{h} \int_0^1 \mathbf{1}_{\{N_{\omega}((x,x+h]) \geq 2\}} dx \leq \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_{\omega}((x,x+h]) > 0\}} dx \\ &= \sum_{j=1}^{\nu(\omega)} \frac{1}{h} \left| (0,1] \cap (J_j^{\omega}(h) \setminus J_{j-1}^{\omega}(h)) \right| + \frac{1}{h} \left| (0,1] \cap (J_{\nu(\omega)+1}(h) \setminus J_{\nu(\omega)}(h) \right| \\ &\leq N_{\omega}^*((0,1]) + 1 \ , \end{split}$$

and

$$\lim_{h\searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_{\omega}((x,x+h])\geq 2\}} dx = \#\{j : x_j(\omega) \in (0,1], m_j(\omega) \geq 2\}.$$

Since $E[N_{w}^{*}((0, 1])] = \lambda < \infty$, we can apply the dominated convergence theorem, to obtain

$$\lim_{h \searrow 0} \frac{1}{h} \mathbb{P}(N_{\omega}((0, h]) \ge 2) = \mathbb{E}[\sharp\{j : x_{j}(\omega) \in (0, 1], m_{j}(\omega) \ge 2\}],$$

which is equal to 0 if N_{ω} is simple.

Remark 4. The condition $\lambda < \infty$ cannot be dropped. For a counter example, see Exercise 3.3.2 of [3].

Proposition 3 (Korolyuk's theorem) A crudely stationary, orderly point process is simple.

Proof. By Fatou's lemma and the orderliness of N_{ω} ,

$$\begin{split} \mathbf{E}[\sharp\{j: x_j(\omega) \in (0,1], \ m_j(\omega) \ge 2\}] &= \mathbf{E}\left[\liminf_{h \searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{N_\omega((x,x+h]) \ge 2\}} dx\right] \\ &\leq \liminf_{h \searrow 0} \frac{1}{h} \mathbf{P}(N_\omega((0,h]) \ge 2) = 0 \;, \end{split}$$

so that with probability one, N_{ω} has no multiple points in (0, 1]. By crude stationarity, the above argument is also valid if (0, 1] is replaced by (n, n+1] for any integer n. Hence N_{ω} is simple.

Proposition 4 For a crudely stationary point process N_{ω} with finite intensity λ , the limits

$$\lambda_k := \lim_{h \searrow 0} \frac{1}{h} \mathbf{P}(1 \le N_{\omega}((0, h]) \le k)$$

exists for k = 1, 2, ..., and satisfy $\lambda_k \nearrow \lambda$ as $k \rightarrow \infty$. Moreover for k = 1, 2, ...,

$$\pi_k := \frac{\lambda_k - \lambda_{k-1}}{\lambda} = \lim_{h \searrow 0} \mathbf{P}(N_{\omega}((0, h]) = k \mid N_{\omega}((0, h]) > 0)$$

where we set $\lambda_0 := 0$.

Proof. As before, one has

$$\frac{1}{h} \int_0^1 \mathbb{1}_{\{1 \le N_{\omega}((x,x+h]) \le k\}} dx \le 1 + N_{\omega}^*((0,1]),$$

and

$$\lim_{h \searrow 0} \frac{1}{h} \int_0^1 \mathbf{1}_{\{1 \le N_{\omega}((x,x+h]) \le k\}} dx = \#\{j : x_j(\omega) \in (0,1], m_j(\omega) \le k\}.$$

Since $\lambda = E[N_{\omega}^* ((0, 1])] < \infty$, we can apply the dominated convergence theorem and Lemma 2, to obtain

$$\lambda_k = \lim_{h \searrow 0} \frac{1}{h} \mathbb{E} \left[\int_0^1 \mathbf{1}_{\{1 \le N_\omega((x,x+h]) \le k\}} \, dx \right] = \mathbb{E} \left[\sharp \{j : x_j(\omega) \in (0,1], \ m_j(\omega) \le k\} \right].$$

This representation of λ_k immediately gives

$$\lim_{k\to\infty}\lambda_k = \mathbf{E}[\sharp\{j: x_j(\omega) \in (0,1]\}] = \mathbf{E}[N^*((0,1])] = \lambda,$$

by the monotone convergence theorem. The last statement of the proposition is obvious.

Corollary 2 For a crudely stationary point process with finite intensity, we have

$$\lambda \sum_{k=1}^{\infty} k \pi_k = \operatorname{E}[N_{\omega}((0,1])] = m .$$

43

3. The Palm measure

Let us assume that the probability space $(\Omega, \mathcal{F}, \mathbf{P})$, on which our point process N_{ω} is defined, is equipped with a measurable flow $\{\theta_t\}_{t \in \mathbf{R}}$. Here a measurable flow $\{\theta_t\}$ is, by definition, a family of bijections $\theta_t : \Omega \to \Omega$ such that

- (a) θ_0 is the identity mapping, and for any $s, t \in \mathbf{R}, \theta_s \circ \theta_t = \theta_{s+t}$ holds;
- (b) the mapping $(t, \omega) \mapsto \theta_t(\omega)$ from $\mathbf{R} \times \Omega$ into Ω is jointly measurable with respect to $\mathcal{B}(\mathbf{R}) \times \mathcal{F}$, where $\mathcal{B}(\mathbf{R})$ is the Borel σ -algebra on \mathbf{R} .

Let us further assume that the relation

$$\int_{\mathbf{R}} N_{\theta_t \omega}(dx) \varphi(x) = \int_{\mathbf{R}} N_{\omega}(dx) \varphi(x-t)$$
(6)

holds for any $t \in \mathbf{R}$ and any continuous function φ with compact support. If the probability measure \mathbf{P} is $\{\theta_t\}$ -invariant in the sense $\mathbf{P} \circ \theta_t^{-1} = \mathbf{P}$ for all $t \in \mathbf{R}$, then by (6), our point process N_{ω} is stationary.

Definition 5 The Palm measure of a point process $N_{\omega}(dx)$ is a measure kernel $Q(x, d\omega)$ on $\mathbf{R} \times \Omega$ such that for any jointly measurable, non-negative function $f(x, \omega)$, the relation

$$\int_{\Omega} \mathbf{P}(d\,\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x,\,\omega) = \int_{\mathbf{R}} \lambda(dx) \int_{\Omega} Q(x,\,d\,\omega) f(x,\,\omega) \tag{7}$$

holds, where $\lambda(dx)$ is the mean measure of N_{ω} which is defined by $\lambda(B) = \mathbb{E}[N_{\omega}(B)]$ for $B \in \mathcal{B}(\mathbb{R})$ and which we assume to be finite for bounded Borel sets B.

Now let u(t) be a probability density function on **R**. Define a new probability measure \mathbf{P}_u by

$$\int_{\Omega} \mathbf{P}_{u}(d\,\omega)g(\omega) = \int_{\mathbf{R}} u(t)dt \Big(\int_{\Omega} \mathbf{P}(d\,\omega)g(\theta_{t}\omega)\Big) , \qquad (8)$$

where $g(\omega)$ is an arbitrary non-negative measurable function on Ω . Then the following result holds.

Theorem 1 For any probability density u(t) on **R**, the Palm measure $Q_u(x, d\omega)$ exists for the point process N_{ω} defined on the probability space $(\Omega, \mathcal{F}, \mathbf{P}_u)$.

Proof. Let $f(x, \omega) \ge 0$ be jointly measurable on $\mathbb{R} \times \Omega$. Then we can rewrite the left 44

hand side of (7) in the following way:

$$\int_{\Omega} \mathbf{P}_{u}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x, \omega) = \int_{\mathbf{R}} u(t) dt \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_{t}\omega}(dx) f(x, \theta_{t}\omega) \\
= \int_{\mathbf{R}} u(t) dt \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} \mathbf{N}_{\omega}(dx) f(x-t, \theta_{t}\omega) \\
= \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) \int_{\mathbf{R}} u(t) dt f(x-t, \theta_{t}\omega) \\
= \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) \int_{\mathbf{R}} u(x-s) ds f(s, \theta_{x-s}\omega) \\
= \int_{\mathbf{R}} ds \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x-s) f(s, \theta_{x-s}\omega). \quad (9)$$

At this stage, take $f(x, \omega) = \varphi(x)$. Then (9) reduces to

$$\int_{\mathbf{R}} \varphi(s)\lambda(ds) = \int_{\mathbf{R}} \varphi(s)\ell_u(s)ds \tag{10}$$

with

$$\ell_u(s) = \int_{\Omega} \mathbf{P}(d\,\omega) \int_{\mathbf{R}} N_\omega(dx) u(x-s) \,. \tag{11}$$

If we define, for each $s \in \mathbf{R}$, the measure $Q_u(s, d\omega)$ on (Ω, \mathcal{F}) by

$$\int_{\Omega} Q_u(s,d\omega) g(\omega) = \frac{\mathbf{1}_{(0,\infty)}(\ell_u(s))}{\ell_u(s)} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_\omega(dx) u(x-s) g(\theta_{x-s}\omega) , \qquad (12)$$

then (9) takes the form of (7), and the theorem is proved.

When **P** is $\{\theta_t\}$ -invariant, then we have $\mathbf{P}_u = \mathbf{P}$ for any probability density *u* on **R**, and

$$\ell_{u}(s) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_{s}\omega}(dx) u(x) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x) =: \ell > 0$$

is a constant. Moreover one can compute as

$$\int_{\Omega} Q_{u}(s, d\omega) g(\omega) = \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_{s}\omega}(dx) u(x) g(\theta_{x}\omega)$$
$$= \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\theta_{s}\omega}(dx) u(x) g(\theta_{x-s}(\theta_{s}\omega)) = \frac{1}{\ell} \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) u(x) g(\theta_{x-s}\omega) .$$

Hence if we define a measure $\hat{\mathbf{P}}\left(d\omega\right)$ on $(\Omega, \ \mathcal{F})$ by

$$\int_{\Omega} \hat{\mathbf{P}}(d\omega) g(\omega) = \int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbb{R}} N_{\omega}(dx) u(x) g(\theta_x \omega) ,$$

then we get

$$Q_u(s,d\,\omega) = rac{1}{\ell}(\hat{\mathbf{P}}\circ\, heta_s)(\,d\,\omega) \;,$$

and (7) can be written in the form

$$\int_{\Omega} \mathbf{P}(d\omega) \int_{\mathbf{R}} N_{\omega}(dx) f(x, \omega) = \int_{\mathbf{R}} dx \int_{\Omega} \hat{\mathbf{P}}(d\omega) f(x, \theta_{-x}\omega) , \qquad (13)$$

which is the defining relation of the Palm measure in the stationary case (see [6]). (13) shows in particular that the definition of $\hat{\mathbf{P}}$ is independent of the choice of u.

Our consideration of the probability measure \mathbf{P}_u is motivated by the following observation.

Proposition 5 *The probability measure* **P** *is* $\{\theta_t\}$ *-invariant if and only if the following two conditions hold:*

- (i) $P_u = P$ for any probability density function u(t) on R;
- (ii) the set *H* of all bounded measurable functions $\varphi(\omega)$ on Ω such that $t \mapsto \varphi(\theta_t \omega)$ is continuous for all $\omega \in \Omega$ is dense in $L^2(\Omega, \mathbf{P})$.

Proof. The necessity of (i) is obvious. That (ii) also follows from the $\{\theta_t\}$ -invariance of **P** is proved in [6] (see Lemma II. 3). To prove the sufficiency of (i) and (ii), fix an arbitrary $t_0 \in \mathbf{R}$ and take a sequence of probability density $\{u_n\}_n$ so that $u_n(t)dt \to \delta_{t_0}(dt)$ weakly. Now for any $\varphi \in H$, $t \mapsto \varphi(\theta_t \omega)$ is continuous and bounded by $\|\varphi\| \infty := \sup_{\Omega} |\varphi(\omega)|$. Hence we can apply the dominated convergence theorem, to get

$$\int_{\Omega} \mathbf{P}(d\omega) \varphi(\theta_{t_0}\omega) = \int_{\Omega} \mathbf{P}(d\omega) \left(\lim_{n \to \infty} \int_{\mathbf{R}} \varphi(\theta_t \omega) u_n(t) dt\right)$$
$$= \lim_{n \to \infty} \int_{\mathbf{R}} \left(\int_{\Omega} \mathbf{P}(d\omega) \varphi(\theta_t \omega) \right) u_n(t) dt$$
$$= \lim_{n \to \infty} \int_{\Omega} \mathbf{P}_{u_n}(d\omega) \varphi(\omega) = \int_{\Omega} \mathbf{P}(d\omega) \varphi(\omega)$$

by condition (i). But if *H* is dense in $L^2(\Omega, \mathbf{P})$, we can approximate an arbitrary bounded measurable function $g(\omega)$ by the elements of *H*, to obtain

$$\int_{\Omega} \mathbf{P}(d\omega) g(\theta_{t_0} \omega) = \int_{\Omega} \mathbf{P}(d\omega) g(\omega)$$

for any $t_0 \in \mathbf{R}$. This sows the $\{\theta_t\}$ -invariance of **P**.

In most cases of application, Ω itself is a topological space with \mathcal{F} the Baire σ -algebra generated by that topology and $t \mapsto \theta_t \omega$ is continuous for all $\omega \in \Omega$. In such a case, Hcontains the class $C_b(\Omega)$ of all bounded continuous functions on Ω , which is dense in L^2 (Ω , **P**). Hence condition (ii) is not as restrictive as it may appear. See [4] for a general treatment of stationary random measures on a topological group.

References

- [1] CHUNG, K. L.: Crudely stationary point processes, *Amer. Math. Monthly* **79**, (1972) 867–877.
- [2] DURRETT, R.: *Probability: theory and examples*, Second edition, Duxbury Press, Belmont, CA, 1996.
- [3] DALEY, D.J. AND VERE-JONES, D.: An introduction to the theory of point processes.
 I: Elementary theory and methods, 2nd ed., Probab. Appl. (N. Y.), Springer, New York, 2003.
- [4] LAST, G.: Modern random measures: Palm theory and related models, in *New perspectives in stochastic geometry* (W. S. Kendall and I. Molchanov, eds.), Oxford 2010.
- [5] LEADBETTER, M.R.: On three basic results in the theory of stationary point processes, *Proc. Amer. Math. Soc.* **19**, (1968) 115–117.
- [6] NEVEU, J.: Processus ponctuels, École d'Eté de Probabilités de Saint-Flour VI. Lecture Notes in Mathematics 598, 249–445, Springer, Berlin.