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New Proofs of Some Basic Theorems on
Stationary Point Processes

Nariyuki MiNAMI*

Summary——We give new proofs of three basic theorems on stationary point processes
on the real line——theorems of Khintchine, Korolyuk, and Dobrushin. Moreover we
give a direct construction of the Palm measure for a class of point processes which
includes stationary ones as special cases.

1. Introduction

The purpose of this note is to give new proofs, based on a same simple idea, to some
basic theorems on stationary point processes on the real line R, as stated in standard
treatises on point processes such as Daley and Vere-Jones (see §3.3 of [3]).

To begin with, let us introduce necessary definitions and notation. By M,, we denote
the set of all integer-valued Radon measures on R. Namely M, is the totality of all
measures N (dx) on R such that for any bounded Borel set B, N(B) is a non-negative
integer. Let us call any such measure a counting measure. For a counting measure N €

M, let us define
Xt :=N (0, ¢t]) (t=0), :=-N({t 0) (t<0). (1)

Then the function X(¢) is right-continuous, integer-valued, locally bounded and non-
decreasing. Hence X(¢) is piecewise constant on R and the set A, finite or countably
infinite, of its points of discontinuity has no accumulation points other than +co. Thus

the points in A can be ordered as
X << 0 <, <A<,
so that if we let m, := X(x,) — X(x, — 0), then N (dx) can be represented as
N(dx) = myby, (dx), (2)
n

where §, denotes the unit mass placed at a. Each m, is a positive integer and is called
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the multiplicity of the point x,. In general, either N ([0, o)) or N ((—oo, 0)) can be finite,
in which case either {x,},., or {x,),« 1s a finite sequence. If in the former [resp. latter]
case {x, },.o [resp. {x,),-] terminates with x,, then we will set x,, = oo [resp. x,= —oo] for
n >wv [resp. n < v]. When m, =1 for all n such that x, # +oo, the counting measure N is
said to be simple. For each N € M, with representation (2), let us associate a simple

counting measure N* defined by

= by, (dx). 3)

In order to make M, a measurable space, we define 9, to be the o-algebra of subsets

of M, generated by all mappings of the form
M, > N~ N (B) € |0, x| (4)
for all Borel sets B c R. Then we see that x,, m, and N* are all measurable functions of
N, as the following lemma shows.
Lemma 1 (i) The set
C:={NeM,:N (-, 0]) =N (0, ©) =} ={N e M, : x, is finite for all n}

belongs to M,,.
(ii) For each integer n, x, and m, are M,-measurable functions of N.
(iit) The mapping M,> N — N* € M, is M,/M,-measurable.

Proof. (i) The assertion is obvious from the definition of %, since we can write

-y

(ii) The measurability of x, follows from the relation

(N eM,: N(-n,0])>k N(O,n)>k).

i Cg

(INeM,:x, >t} ={NeM,:N(0, ) =0},
which holds for all £ > 0. Now for each k£ > 1, define
o J
= Z z—nl((.f—m/zn,j/zn](xl) + 0 1y —0)
i1

Then we see that ¥ is measurable in N and that 2"\ x, as k — o. By the right-continuity
of X(¢) = N ((0, ¢]) at t > 0, we have, as k — oo,

=S}

Layeo) =3 Lz (@)X |

Jj=

| — X(@) = m,

09| ~.

which shows the measurability of m, in V.
). This is measurable in N for all ¢ > 0, since

Next let X (6) := X(¢) — X(¢ A x,
38
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X(tAx) = X(t)l(xlzt) + X(xl)l(xlq;-

If we apply the above argument to X (¢) instead of X(¢), we can verify the measurability
of x, and m, in N, and the argument can be iterated to give the measurability of all x,
and m,,.

(iii) For eachj =0, 1, 2,. .. and ¢ > 0O, the sets
INeM,:N* (0, t]) =j} =(NeM,:x;,<t<x;,)
and
INeM,: N ((=t, 0) =j} ={NeM,:x_;<t<x_;}

belong to M,. Now for each n > 1, let G, be the class of all Borel subsets B of [-n, n]

such that the mapping
M,> N+~ N* (B) € [0, ) (5)
is measurable. Then @, is seen to be a A-system which contains the class of intervals
IT:={0,¢:0<t<tu{(-t,0]:0<t<n)

which forms a z-system. Hence by Dynkin’s z-A theorem (see e.g. Durrett [2]), G,
contains all Borel subsets of [-n, n]. Since n > 1 is arbitrary, and since we can write N*

(B) = lim,, ., N* (B n [-n, n]), the mapping (5) is measurable for all Borel subsets of R.

Remark 1. By an argument similar to (iii), it is easy to show that M, is generated by

mappings M, > N — X(¢) for all ¢, where X(t) is defined in (1).

Definition 1 A point process N, is a random variable defined on a probability space

(Q, F, P) and taking values in the measurable space (M,, M,).

Definition 2 A point process N, is said to be crudely stationary if for any bounded
interval I and for any x € R, N,(I) and N,(I + x) are identically distributed. Its mean

density is the expectation value m := E[N,, ((0, 1])] < co.

Definition 3 A point process N,, is said to be stationary if for any C € M, and x € R,
one has the identity

PWN,() € O) = PN, (x + -) € O).
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Obviously, N, is crudely stationary if it is stationary.

Remark 2. By another application of z-A theorem, one can show without difficulty
that N, is stationary if and only if for any finite family of Borel subsets B,,. . ., B, of R,

and of non-negative integers ki,. . . , k,, the identity
PN,B) =k,i=1,...,n)=PWN,(x+B;)=k,i=1,...,n)

holds for any x € R.
2. Basic theorems and their proofs

Our argument is based on the following lemma, which is an immediate consequence of

Definition 2.

Lemma 2 Let the point process N, be crudely stationary. Then for any bounded

interval I and for any non-negative integer k,
1 1
P(N,(I)= k)= / P(Ny(x+1) = k)dx=E [/ I{Nw(1+1):k)d'1{| :
0 0
Proposition 1 (Khintchine’s theorem) For any crudely stationary point process N,,, the limit
e im L
A= }3{% 7P (No((0, hj) > 0)

exists and satisfies A <m. A is called the intensity of the point process N,,.

Proof. Let N, be represented as (2) and define the point process N by (3). If we set

v(w) := N, (0, 1], it satisfies x, (,, (w) < 1 <, (.1 (w). Obviously we have

{xe(0,1]: Ny((x, x+ h) >0 =(0,1]n [
J

(Gt

(@) ~ h, (@) ]

1

Y(w)+1

y(w)+1
= ©.un[ Y ] = > [0unupmNgem)],
Jj=1

Jj=1

where we have set J*(h) := [x{(w) - h, x{(w)) and J, = . Hence

1
1 / loweer-ode = 337 (0,110 UM\ I () |
0

{IAxw) - OV _1(w) vV(ygw) -~ .,

> —
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where for a Borel subset B of R, |B| denotes its Lebesgue measure and for a real
number a, a, := av0 = max{a, 0} denotes its positive part. Now it is easy to see that for

1 SJS V(w),

HUAZ @) = OV G-1) V(@) - P} 7]

as h \\ 0, and that forj = v(w) + 1,

%{ (I A Zyye1 @)) = OV 20 (@) V (Zy)e1 (W) — M) 4

is bounded by 1 and tends to 0 as A “\ 0. Thus we can apply the monotone convergence
theorem, the dominated convergence theorem and Lemma 2, to obtain

y(w)+1

FPNO.H) > 0) = B[ 30 (0.0 U ()]

Jj=1

~ B[} 1] = E[Ny0,1)],

as h ™\, 0. Thus the desired limit A exists and is equal to E[N} ((0, 1])]. Clearly it satisfies
the inequality A < E[N,, (0, 1])] = m.

Corollary 1 If N, is simple, then A = m. When m < oo, the converse is also true.

Proof. N, is simple if and only if N = N, almost surely, which obviously implies A

= m. On the other hand, if A = m < o, then
E[N, (0, 1]) = N2 (0, 1)l =m - A = 0.

But N, ((0, 1]) = N, ((0, 1]) > 0 in general, so that N, ((0, 1]) = N, ((0, 1]) almost surely.
The same argument is valid if the interval (0, 1] is replaced by (n, n + 1], so that N, ((n,

n + 1]) = NJ ((n, n + 1]) almost surely for all integers n, and the simplicity of N, follows.

Remark 3. In the treatise by Daley and Vere-Jones [3], for example, Proposition 1 is
proved in the following way: If we define @ (h) := P(V,, ((0, h]) > 0), then by the crude

stationarity, we have for any positive h, and h,,

@ (hy + hy) = PIN,((0, hy + hy]) > 0) = P(N,((0, ii]) + N, ((hy, hy + hy]) > 0)
< PIN,((0, hul) > 0) + PN, ((Ry, Ay + ho]) > 0) = @ (M) + @ (),

so that @ (h) is a sub-additive function defined on [0, o) satisfying ¢ (0) = 0. To show
the existence of the intensity A, it suffices to apply the following well known lemma.
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Lemma 3 Let g(x) be a sub-additive function defined on [0, o) such that g(0) = 0. Then

one has

limM = supM <o,

RSN >0 X

However, this argument does not provide the representation A = E[N; ((0, 1])], so that
the proof of Corollary 1 requires some extra work. Our proof above is closer to that of
Leadbetter [5]. See also Chung [1].

Definition 4 A crudely stationary point process N, is said to be orderly when
P(N,((0, h]) = 2) = o(h) (h "\, 0).

Proposition 2 (Dobrushin’s theorem) If a crudely stationary point process N, is simple
and if A < oo, then N, is orderly.

Proof. By Lemma 2, we can write
1
PV, 1) 2 2)= B[ [ Vinuioromsn de]
0

As can be seen from the proof of Proposition 1, we have

1 1
1 1
71/ vy (marhpz2 dr < 71/ L vy hps 0 X
0 0

v(w)
= > % 10, LI (J(R) \ T2, () [+ %l 10, 110 (Jywy1 (M \ Ty (W]
j=1

N0, 1) + 1,

IN

and

1

}zi{%ﬁ ; Linyqmarmy=2de=4{j : 2j(w) € (0,1], mj(w) = 2} .

Since E[N; ((0, 1])] = A < oo, we can apply the dominated convergence theorem, to obtain

.1 .
&%EP(N‘“((O’ hl) = 2) = E[gj : 2(w) € (0,11, my(w) = 2}],
which is equal to 0 if N, is simple.

Remark 4. The condition A < co cannot be dropped. For a counter example, see
Exercise 3.3.2 of [3].

Proposition 3 (Korolyuk’s theorem) A crudely stationary, orderly point process is simple.
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Proof. By Fatou’s lemma and the orderliness of N,,,

Eltlj : () € (0,11, m;(w) = 2]

Lt
E [hg{})nfl_l/() Lin, (o my=2) dx}

IA

N |
hnm\{)nti_zp(N‘“((O’ hl)>2)=0,

so that with probability one, N, has no multiple points in (0, 1]. By crude stationarity,
the above argument is also valid if (0, 1] is replaced by (n, n+1] for any integer n.

Hence N, is simple.
Proposition 4 For a crudely stationary point process N, with finite intensity A, the limits
Ap 1= %%%LP(I < N,((0, h]) < k)
exists for k = 1, 2,. . ., and satisfy A, /" A as k — o. Moreover for k =1, 2,. . .,
1= L = P N0, 1]) = K [ N0, 21) > 0).

A

where we set 1, := 0.

Proof. As before, one has
1
l_ll/o L en, (mrrmendr < 1T+ N0, 1]),
and

1! .
}111{%71/0 Lenvo(marmede=t{j : 2 (w) € (0,1], my(w) <k} .

Since A = E[N,* ((0, 1])] < oo, we can apply the dominated convergence theorem and

Lemma 2, to obtain
1 ! )
A =lim 2B | /0 Lienyaeemen 42 =B 2 3(@) € (0,11, my() < k)]
This representation of A, immediately gives
lim A = B[t/ 2 % (w) € (0, 1} = EIN*((0, 1] = 4,

by the monotone convergence theorem. The last statement of the proposition is obvious.

Corollary 2 For a crudely stationary point process with finite intensity, we have

Aiknk = B[N, ((0,1D] =m .

k=1
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3. The Palm measure

Let us assume that the probability space (Q, F, P), on which our point process N, is
defined, is equipped with a measurable flow {6},.y. Here a measurable flow {6} is, by

definition, a family of bijections 6, : QO — Q such that

(a) 6, is the identity mapping, and for any s, ¢ € R, 6,0 8, = 6,,, holds;
(b) the mapping (¢, w)~ 6,(w) from R x Q into Q is jointly measurable with respect to
BR) x F, where B(R) is the Borel ¢-algebra on R.

Let us further assume that the relation
/R NooldD)p(2) = /R N, (d)p(x - 1 ©)

holds for any ¢ € R and any continuous function ¢ with compact support. If the
probability measure P is {6}-invariant in the sense P o 6, ' = P for all t € R, then by (6),

our point process N, is stationary.
Definition 5 The Palm measure of a point process N, (dx) is a measure kernel Q(x, dw)
on R x Q) such that for any jointly measurable, non-negative function f (x, w), the relation
/ P(dw) / Nolda)f (z, w) = / Mda) | Q, dwif(x, w) 0
Q R R Q

holds, where AMdx) is the mean measure of N, which is defined by MB) = E[N,, (B)] for B

e B(R) and which we assume to be finite for bounded Borel sets B.
Now let u(f) be a probability density function on R. Define a new probability measure
P, by
[ Putdorge) = [ unar( [ Pawgow). ®)
Q R Q
where g(w) is an arbitrary non-negative measurable function on Q). Then the following

result holds.

Theorem 1 For any probability density u(t) on R, the Palm measure Q,(x, dw) exists for

the point process N, defined on the probability space (Q, F, P,).

Proof. Let f (x, w) > 0 be jointly measurable on R x 3. Then we can rewrite the left
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hand side of (7) in the following way:

/Pu dw/N - /u(t)dt/P(dw)/ Nooldr) f(2, 6:0)

/Pdw/Ndx/ tydif (x

/Rds/QP(dw)/RNw(dxuxf

At this stage, take f(x, w) = @(x). Then (9) reduces to

/ P($)A(ds) = / (5) tuls)ds
R R
s):/QP(da))/RNw(dx)u(x—s).

If we define, for each s € R, the measure Q,(s, dw) on (Q, F) by

/QQu(s,dw)g(w)— €u /P (dw) /N

then (9) takes the form of (7), and the theorem is proved.

with

/ u(nd | P dw/ N, (dx) f(x

-1 Q,a))

-t B,w)

/P dw/Nw (dx) / u(x — s)dsf (s, 05 w)
ol R R

S)f (S, Or_s ). )

(1)

- 990, sw), (12)

When P is {#}-invariant, then we have P, = P for any probability density u on R, and

tu(s) = [ P(dw) / Nuold)utw) = [ P(dw) /R No(d) u(@)

Q

is a constant. Moreover one can compute as

/ Quls, dw) g(w) P(dw) /Ngw (dr)u() g (6, w)

1/Pdw/Nde ) 9(0, (Bsw :%/Pdw/N

Hence if we define a measure P (dw) on (Q, F) by

/Qlﬁ(dw /Pdw/N 9(6.w)

Qu(s, dw) = %(15 o 6)(dw) ,

then we get

and (7) can be written in the form

=:/(>0

g6, sw) .
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/QP(dw)/RNw(dx)f(x, w) = /Rdx/QP(dw)f(x, 0..0) (13)

which is the defining relation of the Palm measure in the stationary case (see [6]). (13)

shows in particular that the definition of P is independent of the choice of u.

Our consideration of the probability measure P, is motivated by the following observa-

tion.

Proposition 5 The probability measure P is {6}-invariant if and only if the following two

conditions hold:

(i) P, = P for any probability density function u(t) on R;
(ii) the set H of all bounded measurable functions @ (w) on Q such that t — @ (6,w) is

continuous for allw € Q is dense in L? (Q, P).

Proof. The necessity of (i) is obvious. That (ii) also follows from the {6, }-invariance of
P is proved in [6] (see Lemma II. 3). To prove the sufficiency of (i) and (ii), fix an
arbitrary ¢, € R and take a sequence of probability density {u,}, so that w,(t)dt — 6, (dt)
weakly. Now for any ¢ € H, t = @ (6,w) is continuous and bounded by ||l oo := sup,

|@(w)|. Hence we can apply the dominated convergence theorem, to get

P (dw) p(6:,0 /P (dw) (hm/ (H[w)un(t)dt>
Q
= lim < P(dw)(o(etw)) w, () dt
n=e Jr \Ja
= lim Pu, (dw) @ /P (dw) @
n—co

by condition (i). But if / is dense in L*(Q, P), we can approximate an arbitrary bounded

measurable function g(w) by the elements of H, to obtain

/Pdw (6,0) /Pdw

for any ¢, € R. This sows the {#}-invariance of P.

In most cases of application, Q itself is a topological space with F the Baire o-algebra
generated by that topology and ¢ — 6,w is continuous for all w € Q. In such a case, H
contains the class C, (Q) of all bounded continuous functions on Q, which is dense in L?
(Q, P). Hence condition (ii) is not as restrictive as it may appear.
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See [4] for a general treatment of stationary random measures on a topological group.
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