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An Experimental Study of Rolling Disks （E. Yokoyama, Y. Ito, and Y. Shimomura）

An Experimental Study of the Exponents in the Power-Law 
Behaviors of Rolling Disks

Eisuke YOKOYAMA*, Yui ITO*, and Yutaka SHIMOMURA**

Summary―The dependence of the exponents in the power-law behavior of a rolling 
disk on its mass and on its aspect ratio, which is defined as the ratio of the diameter 
to the thickness of the disk, is experimentally studied with the help of a high-speed 
video system.  The exponents overall do not depend so much either on the mass or on 
the aspect ratio of the disk.  However, for relatively thick disks whose aspect ratios are 
smaller than 5, we find a tendency for the magnitudes of the exponents both of the 
inclinations angle and of the precession rate to increase as the aspect ratio increases, 
which means a thicker disk halts more abruptly than a thinner one.  These results 
suggest that the air viscosity does not essentially contribute to the energy dissipation.
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1. Introduction

When we happen to drop a coin on a hard ground, we hear the familiar sound that 
becomes higher and higher as it comes to rest.  This kind of sound is generally produced 
by a circular disk rolling on a horizontal surface.  Until recently, this kind of rolling 
motion has drawn little attention even though its physical mechanism is not well 
understood.  However, a commercial toy named the Euler’s disk1) revived more interests 
in the rolling disk.

The Euler’s disk is a carefully crafted disk, which is a 3” wide chrome-plated, cast iron 
cylinder steel disk and spun on a concave mirror base.  The Euler’s disk is designed to 
maximize the duration of a motion and sonic hum, and the surface that the disk spins 
on is slightly concave so that the amount of time needed for the disk to come to rest is 
well over sixty seconds.

It was a paper2) by Moffatt that invoked many theoretical interests in the Euler’s disk.  
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For a circular disk shown in Fig.1, he took into account the friction due to the air 
viscosity between the rolling disk and the surface to theoretically show the finite-time 
singularity of the precession rate Ω, which means the divergence of Ω in the limit of the 
abrupt halt of the disk.  It was pointed out3) later by Engh, Nelson, and Roach that the 
air viscosity has little effect on the final whirling motions.  However, Moffatt’s important 
finding was the condition for a rate of energy dissipation to lead to a finite-time 
singularity: under the adiabatic approximation, a finite-time singularity will occur for a 
rate of energy dissipation proportional to a power of the inclination angle θ, whose 
exponent is less than one.4)

Following papers5)-11) studied other mechanisms of energy dissipation such as a rolling 
friction, a slipping friction, or vibrations of a deformable disk, which could produce the 
familiar sound and lead to a loss of contact with the surface.  

Among them, the references 6) and 9) measured with the help of high-speed video 
imaging the exponents in the power-law behaviors of rolling disks, which are expressed by
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where n the component of the angular velocity about the axis of symmetry, t the time, t0 
the time for the disk to halt, Cθ, CΩ, Cn the constants, and aθ, aΩ, an are the exponents.  
They reported the results for different cases with several disks and surfaces, and 
supported the claim by Engh, Nelson, and Roach.3)  However, they did not so much 
focus on the dependence of the exponents either on the mass or on the aspect ratio of 
the disk.

In the present paper, with the help of two high-speed cameras, which take two images 
from different angles, and an image-processing software (Move-tr/3D), the temporal 
evolutions of θ, Ω, n are measured.  In order to seek for the origin of energy dissipation, 
we study the dependence of the exponents aθ, aΩ, an on the mass m of the disk and on 
the aspect ratio r, which is defined as the ratio 2a/b of the diameter 2a to the thickness 
b of the disk.  In section 2, the experimental method is explained, and in section 3 the 
results are presented, and finally in section 4, the main conclusions are summarized and 
some discussions about the results are given. 

2. Experimental method

In the present study, we study the dependence of the exponents aθ, aΩ, an on the mass 
m and the aspect ratio r=2a/b of the disk.  The temporal evolutions of θ, Ω, n are 
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measured to determine each exponent, which is done three times for a disk and the 
average of the three results is presented as the exponent in the following.  We use 
eleven different disks, all of which are made of brass, so that the total number of our 
experiments is 33.  The diameter of the disk ranges 30mm to 80mm, the thickness does 
1mm to 20mm, the mass does 5.88g to 845g, and the aspect ratio does 1.5 to 80, as 
shown in Table 1 in section 3.

We put three markers (one on the center, two on the edges of the upper surface of the 
disk making a 90-degree angle) on each of the disks, so that the image-processing 
software (Move-tr/3D) can recognize the configuration of the disks.  The two images 
taken from separate video systems are synchronized.  We set the shutter speed at 
1/2000 second, and the filming speed at 300 frames per second.  After we collect the 
images, Move-tr/3D calculates the three-dimensional configuration of the disks.  From 
the temporal series of the three-dimensional positions of the three markers, their 
velocities, which are their time-derivatives, are also numerically estimated by using the 
central difference method.  From these data, we evaluate the Euler angles (θ, φ, ψ) and 
their time-derivatives (θ

4

, φ4 , ψ4 ), from which we derive (θ, Ω, n), by the method given in 
Appendix.

3. Experimental Results

Thirty-three sets of the temporal evolutions of θ, Ω, n are obtained by the method 
explained in section 2.  Fig. 2 shows the time developments of θ, Ω, n in the rolling 
motion of the disk No. 2 in Table 1 whose diameter is 70mm and thickness is 20mm, as 
a typical case.

In order to determine the exponents aθ, aΩ, an, we fit the obtained data in the power-

Fig. 1.  A circular disk rolling on a horizontal surface.
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law formulae (1), (2), and (3) by using the least square method, after converting the 
original data into their logarithm.  The component n of the angular velocity about the 
axis of symmetry often becomes negative by an error, since it is a small quantity 
calculated by the subtraction of a large number from a almost-equal large number.  So, 
we ignore the data of n that have negative values, assuming (3).  The precession rate Ω 
rarely becomes negative, but when it gets negative by an error, the datum is taken into 
account by using its absolute value.  On the other hand, the inclination angle θ 
measured in the experiments is always positive in accordance with (1).  The red curves 
in Fig. 2 are the fitting functions obtained by these procedures.  As described in section 
2, we adopt the average of three results for each disk to get its exponents aθ, aΩ, an, 

Fig. 2.  Time development of θ, Ω and n in the rolling motion of the disk No. 2 in Table 1.
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which are presented in Table 1.
Fig. 3 shows the dependence of the exponent a, which represents one of aθ, aΩ, an, on 

the mass m.  It is observed that even though the mass varies, the exponent a is almost 
constant.  So, there is no obvious dependence of the exponent on the mass.

Fig. 4 shows the dependence of the exponent a on the aspect ratio r.  As in Fig. 3, the 
exponent a is roughly constant, and there is no clear dependence to be seen.  However, 
in this figure, the relation between the exponent a and the aspect ratio r smaller than 5 
is hard to observe.

Fig. 5 zooms in the part of Fig. 4 for r smaller than 5, excluding the results for r larger 
than 5 (corresponding to cases for the disks No. 9, 10, and 11 in Table 1).  We notice a 
tendency that the magnitudes both of aθ and of aΩ become larger as r increases.  This 
may suggest that there are linear dependences of the exponents aθ and aΩ on the aspect 
ratio r, as shown by the red lines, though the accuracy of an is not enough for definite 
comments about it.  If the linear dependence is extrapolated to the region at larger r, 
the exponent aθ, for example, should be around 2.0 at r = 30, 3.0 at r = 50, and 4.5 at r 
= 80.  However, these extrapolations clearly do not agree with Fig. 4, where aθ is around 
0.6 all at r = 30, 50, and 80.

No. 2a (mm) b (mm) m (g) r = 2a/b aθ aΩ an

1 80 20 845.00 4.0 0.72 -0.23 -0.04 

*2 70 20 672.00 3.5 0.64 -0.24 0.09 

3 60 20 480.98 3.0 0.62 -0.20 0.15 

4 50 20 333.86 2.5 0.56 -0.20 0.19 

5 40 20 213.65 2.0 0.56 -0.15 0.13 

6 30 20 122.11 1.5 0.52 -0.17 0.04 

7 50 10 168.22 5.0 0.68 -0.26 -0.26 

8 40 10 106.20 4.0 0.57 -0.20 0.18 

**9 80 1 41.90 80.0 0.62 -0.28 -0.16 

**10 50 1 16.50 50.0 0.62 -0.26 -0.09 

**11 30 1 5.88 30.0 0.59 -0.19 -0.18 

Table 1.  The circular disks used in the experiment and the measured exponents aθ, aΩ, an in 
their power-law behaviors.  The diameter, the thickness, the mass, and the aspect ratio of a 
disk are denoted by 2a, b, m, and r=2a/b, respectively.
* The temporal evolution of the disk No. 2 is shown in Fig. 2. 
** The exponents for the disks No. 9, 10, and 11 are excluded in Fig. 5.
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Fig. 3.  The dependence of the exponent a on the mass m.

Fig. 4.  The dependence of the exponent a on the aspect ratio r.

Fig. 5.  The dependence of the exponent a on the aspect ratio r smaller than 5.
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4. Conclusions and Discussions

As mentioned in section 1, the different mechanisms of energy dissipation have been 
pointed out to theoretically explain the finite-time singularity of the precession rate Ω.  
We experimentally study the dependence of the exponent a on the mass of the disk m 
and its aspect ratio r, in order to find the origin of the energy dissipation.  The 
exponents do not overall vary so much for various disks, but we notice the exponents 
seem dependent on the aspect ratio below 5, where the absolute values of the exponents 
aθ and aΩ increase as the aspect ratio increases.  This means a thicker disk halts more 
abruptly than a thinner one.  The physical explanation for this feature is not clear at the 
moment, and left for future works.

However, the results of our experiments suggest that the origin of the energy 
dissipation is not the air viscosity by the reasons given in the followings.

Firstly, the motion of the disk is affected by the inertia due to the mass of the disk, 
whereas the air viscosity is not.  So, if the air viscosity is a vital factor in the energy 
dissipation, the exponents representing the dynamics would be dependent on the mass, 
which is not the case in Fig. 3 where the exponents of the disks of a different mass do 
not vary so much.  On the other hand, the friction between the disk and the surface is 
affected by the mass of the disk.  It is possible to think that the effects of the mass on 
the motion of the disk and on the friction could cancel out to result in the almost 
constant expontents shown in Fig. 3. 

Secondly, as shown in Fig. 5, the absolute values of the exponents aθ and aΩ for the 
disks No. 1 to 6 in Table 1, all of which have the same thickness 20mm, increase as the 
aspect ratio increases up to 4.  Here, according to the theory by Moffatt,2) the 
magnitudes of the exponents become smaller as the energy dissipation becomes larger.  
Therefore, this means the energy dissipation of a disk with a smaller diameter is larger.  
This contradicts the guess that the air viscosity is the main cause of energy dissipation, 
since the air viscosity would produce less dissipation of energy for a disk with a smaller 
diameter. 

Thirdly, the fact that both the exponents aθ and aΩ of the three disks No. 9, 10, and 11 
in Table 1 are almost constant again contradicts the view that the air viscosity is the 
main factor of the energy dissipation.  The three disks are all 1mm thick, and their 
diameters are 30mm, 50mm, and 80mm.  If the energy dissipation is mainly caused by 
the air viscosity, such big difference in the diameters should affect the exponents, which 
is, however, not actually observed in Fig. 4.
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Appendix

Here, we explain how to calculate the Euler angles (θ, φ, ψ) and their time derivatives 
(θ
4

, φ4 , ψ4 ) from the positions and the velocities of the two markers.
Let (X, Y, Z) and (ξ, η, ζ) be the orthogonal coordinates fixed to the laboratory and the 

disk, respectively.  The origin of the latter is the center point of the upper circular 
surface of the disk, whose position is given by (X0, Y0, Z0) in the former.  If we introduce 
a new coordinates (x, y, z) = (X－X0, Y－Y0, Z－Z0), then the origin of (x, y, z) coincides 
with that of (ξ, η, ζ).  It is well-known that they are related to each other by the following 
transformation: 
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where the matrix A is given by
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The two markers are located on the perimeter of the upper circular surface of the disk 
so that their position vectors make a right angle.  We normalize length with the radius 
of the disk to express the coordinates of the two markers as (1, 0, 0) and (0, 1, 0) in (ξ, 
η, ζ).  If we denote the corresponding coordinates in (x, y, z) as (x1, y1, z1) and (x2, y2, z2), 
respectively, the relation (A.1) gives 
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From the above relations (A.3) and (A.4), we derive the following expressions for the 
Euler angles (θ, φ, ψ) :
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We differentiate (A.5), (A.6), and (A.7) to obtain their time derivatives (θ
4

, φ4 , ψ4 ) as follows: 
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Since Ω is defined as φ4 , the component n of the angular velocity about the axis of 
symmetry is calculated from (A.9) and (A.10) by

　　　　　　　　　　　　　　　　  ψθϕ && += cosn .  (A.11)
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