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1.　Introduction

　Large eddy simulation (LES) is one of turbulent models.[1, 2] In LES larger properties than a grid-scale 

(GS) are directly calculated, whereas smaller properties than the GS, that is, properties of a subgrid-scale 

(SGS) are modeled. The velocity and the pressure fields ( f ) are decomposed into the GS and the SGS 

components using a filtering procedure:

　　　　　　　　　　　　   ⑴

where G (x) denotes the filter function, and f  is the filtered or the GS component. In the filtered Navier-

Stokes equation for the GS flow field, there appears the SGS stress tensor  τij , which is defined by 

　　　　　　　　　　　　　　　   ⑵

where ui is the i-th component of velocity vector, the overbar u denotes the GS component of u, hereafter  

(Aij)Σ means the traceless matrix Aij－δij Aaa /3, and the summation convention is used for repeated 
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subscripts. The SGS stress tensor τij can be decomposed into the Leonard term Lij , the cross term Cij and 

the SGS Reynolds stress Rij as follows:

　　　　　　　　　　　　　　   ⑶

　　　　　　　　　　　　　　　   ⑷

　　　　　　　　　　　　　　　   ⑸

　　　　　　　　　　　　　　　   ⑹

where u'i denotes the SGS part of ui , defined by

　　　　　　　　　　　　　　　　　   ⑺

　The most famous and useful model is the Smagorinsky model[3] . However, some modified models to 

obtain higher performance and accuracy are proposed. Clark, Ferziger, and Reynolds[4] proposed a SGS 

model in LES, which is composed of two parts: one is the eddy-viscosity representation for the SGS 

Reynolds stress, and the other is the Clark term Lij + Cij for the sum of the Leonard and the cross terms, 

which is obtained by a Taylor expansion of the velocity fields. This model is called the Clark model, the 

gradient model, or the tensor diffusivity model. Bardina, Ferziger, and Reynolds[5] proposed a SGS 

model which is composed of also two parts: one is the eddy-viscosity representation, and the other is the 

similarity term uiuj－uiuj , which is based on a scale similarity of the velocity fields ui ≈ ui. This model is 

called the mixed model or the similarity model. The SGS eddy viscosities in the Clark model and the 

mixed model are modeled by the same expression as the Smagorinsky model[3], so that each model 

“constant” (the Smagorinsky constant) needs to be tuned depending upon the turbulent flow to be 

simulated. Vreman, Geurts, and Kuerten[6,7] proposed the dynamic Clark model (DCM) based on the 

dynamic procedure,[8] and found its better performance for the turbulent mixing layer. Shimomura[10] 

pointed out from a mathematical view point that the (dynamic) Clark model is consistent with the 

constraint of asymptotic material frame indifference (AMFI) , while most of the existing models 

including the dynamic Smagorinsky model (DSM)[8] and the dynamic mixed model (DMM)[9] are not. 

In fact, Kobayashi and Shimomura[11] have recently demonstrated a good performance of the DCM and 

an unphysical behavior of the DSM in LES of rotating homogeneous turbulence.

　Until recently, the DCM has not been applied to LES of incompressible turbulent channel flows. For 

the DCM with an isotropic filter it has been revealed that the reason is neither a negative SGS eddy 

viscosity nor an incorrect near-wall scaling, but a negative effective viscosity in the viscous sublayer for 

the Clark term.[12] Vreman commented that although above discussion is true for the DCM with isotropic 

filters, for the DCM with anisotropic filters such as channel flows the expression of the Clark term 

should be changed to the anisotropic version as follows:[13]
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The isotropic Clark term:

　　　　　　　　　　  ⑻

The anisotropic Clark term:

　　　　　　　　  ⑼

where Δ the isotropic filter width, (x1, x2, x3) = (x, y, z), (Δ1, Δ2, Δ3) = (Δ x, Δy, Δz) , the GS velocities (u1, 

u2, u3) = (u, v, w) , and x, y and z denote the streamwise, the normal and the spanwise directions of the 

channel flow, respectively. The relations between the isotropic and the anisotropic filter width are as 

follows:

The isotropic filter width:

　　　　　　　　　　　　　　　　  ⑽

The anisotropic filter width:

　　　　　　　　　  ⑾

where the last relation is usually adopted for the Gaussian or the top hat filter.[8] His comment is 

completely correct, then in its response it has been mentioned that the Clark term for the DCM with 

anisotropic filters and the similarity term for the DMM have the same leading term up to the accuracy of 

O ( Δ
2
m) , where Δm is the maximum filter width.[14]

　In the present paper, the near-wall scaling of the model coefficient for the DCM with an anisotropic 

filter is revealed. Furthermore, the performance of the DCM with an anisotropic filter, the DMM, and the 

DSM is compared in actual LES.

　In Sec. 2., the model expressions of the DSM, the DCM, and the DMM for the SGS stress tensor are 

described. Moreover, the asymptotic behaviors of the DSM, the DCM, and the DMM in the viscous 

sublayer of turbulent channel flows are given in Sec. 3.. In Sec. 4., the analytical results are numerically 

checked for a turbulent channel flow with LES at Reτ = 590. Section 5. presents the conclusions that can 

be drawn fromthe present work.

2.　Expressions of Dynamic Models

　First, let us remember the model expressions of the DSM, the DCM, and the DMM for the SGS stress 

tensor. The derivation is referred to, for example, Kobayashi and Shimomura.[11] In the following, CD is 

the model parameter, and is denoted for each model as CDSM, CDCM, and CDMM for the DSM, the DCM, 
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and the DMM, respectively. They are dynamically evaluated by using the least squared method.[15] The 

GS rate of strain tensor Sij and its magnitude S  are defined by

　　　　　　　　　　　　　　  ⑿

　　　　　　　　　　　　　　　　　  ⒀

 is the test-filtered field of f, and  is the test-filter width. The filter width and the test-filter width are 

related to the double-filter width  by 

　　　　  ⒁

In the following, the repeated subscript  (a) means the special summation convention:

　  ⒂

The DSM:

　　　　　　　　　　　　　　　  ⒃

　　　　　　　　　　　　 　　 　　  ⒄

The DCM:

　　　　　　  　　　  ⒅

　　　　　　　　　　　　　　　  ⒆

The DMM:

　　　　　　　　　　　  ⒇

　　　　　　　　　　　　　　　  21

In the above expressions,
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　　　　　　　　　　　　  　　　  22

　　　　　　　　　　　  　　  23

　　　　  　　　　  24

　　　　　  　　　　　  25

3.　Asymptotic Behaviors

　Next, the asymptotic behaviors of the DSM, the DCM, and the DMM in the viscous sublayer of 

turbulent channel flows are studied. The coordinate (x1, x2, x3) = (x, y, z) and the GS velocities (u1, u2, u3) 

= (u, v, w) are normalized by the channel half-width δ and the wall-friction velocity uτ, which give the 

Reynolds number Reτ = uτδ/v with the kinematic viscosity v. Again, x, y and z denote the streamwise, the 

normal and the spanwise directions of the channel flow, respectively. 

　Each component of the GS velocities has the asymptotic form in the viscous sublayer (y+ = Reτy < 5) 

as follows:

　　　　　　　　　    26

　　　　　　　　　　　　   27

　　　　　　　　　　　　  28

where

　　　　　　　　　　　　　　  29

It is noted that the incompressibility condition requires the relation between a1, b2, and c1

　　　　　　 　　　　　　　　　  30

From Eqs. 26 , 27 and 28 , the gradients of the GS velocities are
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31

where the ～ means the leading-order-equality in a Taylor expansion with regard to y ≪ 1. The 

following relations of the anisotropic filters width in channel flows are usually realized:

　　   　　　　  32

　Let us evaluate the resolvable tensors Lij, Mij, Gij, and Hij. For the filtering in all directions (3-D 

filtering) , we assume the Gaussian or the top hat filter function.[11] Then a Taylor expansion of the fields 

f  and g gives the following formulae 

　　　　　　　  　　　　  33

　　　  　　　　　　　  34

   35

where C1-C4 are numerical constants. As mentioned in the next section, since the filtering and the 

derivatives are evaluated by the finite difference method with the fourth-order accuracy of the  or the 

mesh width in actual LES, the fourth-order terms derivable from the Taylor expansion are 

indistinguishable from the numerical truncation error. Hence, the important matter in Eq. 35  is not the 

numerical constants but the asymptotic behavior. 

　With the aid of Eqs. ⒁ and 33 - 35 , we obtain

　　　　　　　   　　　  36
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　　　　　　　　　　  　　　　  37

　　　　　　　　　
 

 38

Hence, Eqs. 36 and 38 give

　　　 　　 　　　　　　　  39

From Eqs. ⑿ , ⒀ , 31 , 32 , and 36 - 39 ,

　　　　　　　 　　　　　　　　　　  40

　　　　　　　　　　　　　　  41

　　　  
42

　　　　 　　　
 

 
 43

　　　 　 　　　
 

 44

where C, C', and C5 - C10 are numerical constants.

　Now, we are ready to evaluate the model parameters from Eqs. ⒄ , ⒆ , 21 , and  41 - 44 as follows:

　　　　　　　　  45

　　　  　　　　　　　  46
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　　　　　　 　　　　  47

It is well known that the DSM is numerically stable with the positive CDSM, which indicates the sign of 

the factor on the right-hand side of Eq. 45 as

　　　　　 　　　　　　　  48

As it should be, CDSM is asymptotic to y3 in the vicinity of the wall. On the other hand, CDCM with an 

isotropic filter shows negative value with the incorrect scaling of y [12], but Eq. 46 for an anisotropic filter 

shows the correct scaling of y3 as mentioned in Ref. [13]. Eq. 46 is very similar to Eq. 47 , and both CDCM 

and CDMM have the same scaling of y3. However, it is unknown without carrying out actual LES whether 

CDCM and CDMM near the wall are positive or not. 

4.　Numerical Evaluation by LES

　Let us numerically check the above analytical results for a turbulent channel flow with Reτ = 590. For 

the DSM, the DCM, and the DMM we carry out LES with the grid-points 32×64×32 and the 

computational domain 2�δ×2δ×�δ for numerical evaluation. The filtering and the derivatives are 

evaluated by the finite difference method with the fourth-order accuracy of the  or the mesh width. The 

time marching scheme is a third-order Adams-Bashforth method, and the coupling between the velocities 

and the pressure is calculated by the MAC scheme. The normalized time step is 1.0×10-5 and the 

statistics are obtained by averaging over 10 non-dimensional time units.

　I also confirmed that LES for the DCM with an anisotropic filter can be carried out, although that with 

Fig.1　Asymptotic scalings of CDΔ2 for the DSM, the DCM, and the DMM near a wall.
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an isotropic filter could not be carried out as mentioned before. Figure 1 shows the asymptotic behavior 

of CDΔ2 for the DSM, the DCM, and the DMM near the wall. The DCM with an anisotropic filter has the 

correct scaling of y+3, although that with an isotropic filter has the scaling of y+. The DCM with an 

anisotropic filter has the same scaling as the DSM and the DMM. All of these results agree with the 

analysis of the asymptotic behavior.

　Figures 2, 3 and 4 how the profiles of the mean velocity, the shear stress, and the root mean square  

(rms) of the velocity fluctuations for the DSM, the DCM, and the DMM with the result of direct 

numerical simulation  (DNS) [16], respectively. The profiles of the DCM and the DMM completely 

overlap each other, and the performance of both models are very similar. The mean velocity and the rms 

of the DSM are slightly overestimated in comparison with the others in Figs. 2 and 4. On the other hand, 

Fig.2　Mean velocity profiles for the DSM, the DCM, and the DMM.

Fig.3　Profiles of the shear stress for the DSM, the DCM, and the DMM. 
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the shear stress of the DSM is underestimated in Fig. 3. This is why the DCM and the DMM indicate the 

higher performance than the DSM. 

5.　Conclusion

　In the present paper, the near-wall scaling of the model coefficient for the DCM with an anisotropic 

filter has been revealed, then the performance of the DCM with an anisotropic filter, the DMM, and the 

DSM has been compared in actual LES. By improving the isotropic filter-width for the Clark term of the 

DCM into the anisotropic one, the DCM can be applied to turbulent channel flows. Then, the near-wall 

scaling of the model coefficient for the DCM is also corrected as y3. The performance of the DCM is the 

almost same as that of the DMM. 
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