オーストラリアの R&D とその人材・組織の特質

日英豪の三ヶ国を比較して——

明治大学 永野 仁
アデレード大学 シェリダン京子

サロー (Thow 1996) は次のように主張する。日本で鉄鋼業が成立しているのは、決してその産業に不可欠な天然資源があったからではない。鉱石とコークスという輸入資源に頼りながらも、最も効率的に鉄鋼を生産する技術・知識を日本が開発したからである。シリコンバレーで情報産業が繁栄しているのはなぜだろうか。そこに、天然資源ではなく、それを研究する有数の研究者・技術者が集まったからで、またそれを支援する資本が投入されたこと以外のなにものでもない。

このように天然資源の有無ではなく、これら技術を生み出す技術群（1つが R&D, Research and Development）である。

R&D は、いうまでもなく人間、あるいは人間の集団によって行われる活動である。それゆえ、国により（あるいは地域により）R&D の推進の仕方が異なることが予想される。それぞれの国の R&D の特性は、その国の産業の特質や歴史や文化などの要因によって規定されてきたと考えられるからである。これらの要因の違いを考慮しながら各国の R&D の違いを理解することは、より優れた R&D を推進していくために有益であろう。

本稿では、オーストラリアを中心にしながら、日本およびイギリスを含めた三ヶ国について、R&D の人材と組織の特性を比較する。オーストラリアは、歴史的にはヨーロッパ社会、とりわけイギリスからの影響を受けた国であるが、同時に地理的にはアジア諸国と近く、そこからの移民も近年は多くなっている国である。これら三者の比較は興味深い結果をもたらすことが期待される。

しかし、オーストラリアの R&D の現状についての情報は乏しい。そこで本稿では、まずオーストラリアの R&D について概観した後、三ヶ国の比較を行うことにする。

1. オーストラリアの政策と R&D の動向

自由で平等な「ニュートリオの実現」を意図し、1901 年に連邦制に移行し新たな国家としてスタートしたオーストラリアは、一貫して「生活の質 (Quality of Life)」の高い社会の構築を目指していた。それは、歴史で裏打ちされた独特の文化が少ない社会に、アイデンティティを与える試みであったとも言える。

しかし広大な領土を抱えたからも、資本の不足と人口の少なさという構造を克服するためには、他国からその流入を促す必要があった。具体的には、前者に関しては海外資本による投資で、後者に関しては海外からの移民であった。特に前者を促すために、経済成長を高めるために、海外資本にとって魅力ある経済である必要があった。そのために、時代的な産業の設立とその効率的な運営が求められていた。それも海外からの技術移転に頼らないを得なかった。そのための技術には、国際競争力があるものは無かったからである。つまり、輸入技術による経済成長を図り、それにより新たな海外資本を呼び込むという政策であったと言えよう。

しかしこの政策は、利益配当等の海外送金を多くし、所得収支の赤字を招きとなる。それゆえ、輸入技術に刺激された国内産業や国内技術の発展がなければ、それは経済収支の悪化に結びつくことになる。

1960 年頃から、この経済収支の悪化が、オー
ストラリアの将来の行動の自由を奪いそれが「ユートピアの実現」のための障害になるという危惧が高まった。そこで、経済収支を好転させるために、オーストラリア政府による R&D の推進が提唱されるようになっている（Commonwealth of Australia 1965）。

このようにして政策的に推進された R&D であるが、オーストラリアのそれは他の先進諸国とは異なる展開となった。R&D 活動が民間企業でなく、主として政府およびその関係機関によって遂行されるからである。

政府主導であったので、オーストラリアの研究領域は、結果として基礎的な学術的研究が中心になった。オーストラリア人の科学分野でのノーベル賞受賞者は既に 7 人に達していることや、人口 100 万人あたり年間 830 本の科学論文（それは世界第 11 位）が公刊されているという事実は（Moor 1999），そのような研究が盛んなことを裏付けている。しかしそのような研究成果に関しては、個別の研究レベルは高いものの相互関連が薄いため、研究成果の実用的な活用という点で劣っているということも指摘されている（Sheehan 1994）。なお、R&D が盛んな具体的な分野を産業別に示すと、鉱業、農業、医療、医薬、化学、応用物理学、情報通信などである。

このように展開されてきた R&D であるが、政府主導の活動の非効率さが 1990 年代に入ると問題になってきた。世界を席巻した「小さな政府」や「規制緩和」の流れは、オーストラリアでも無縁ではなくて見て良い。政府の予算は民間の R&D 活動を刺激したり、あるいは政府関係の R&D 機関の保有技術や知識の民間へのスムーズな移行のために投入されるようにシフトを始めた。

2. R&D 支出の構造

オーストラリアの R&D に関連する政策と R&D の変遷を要約すると以上のようなだが、次にオーストラリアの R&D 活動の現状を、研究費つまり R&D 支出額の側面から見よう。

(1) 国際比較から見た特徴

OECD 加盟国について、それぞれの GDP に対する「R&D 費用」の比率を示したものを見ると、1996−97 年の時点で、日本、韓国、スイス、アメリカ、フィンランドという国々が 2.5％以上で、上位に並んでいる。それに対しオーストラリアは 1.68％で、それらの国々と比較するとかなり少なくなっている（ABS 1998b）。

時点は少し遅れるが 1994−95 年について、この GDP に対する R&D 支出を部門別に見たものが、図 1 である。図の左側が公共部門（政府およびその関連部門）の R&D 支出であるが、オーストラリアのそれは決して少ないわけではない。この時点では、オーストラリアの公共部門のそれは 0.84％で、OECD 諸国の中では 5 番目に位置するもので、それに対し、図の右側の民間部門の R&D 支出はかなり少ないことがわかる。なお、民間部門での R&D 支出はこの図の時点までの 10 年間は増加傾向にあった。

つまり、オーストラリアの R&D には、近年民間部門でも発展が見られるものの、それにも関わらず依然として、公共部門主導で行われていると言える。

(2) 研究機関の部門別に見た R&D 支出

1996−97 年のオーストラリアの R&D 支出額は合計 AU $86 億 9,000 万で、この支出額は研究分野ごとに細分化し、さらにそれを研究機関の部門別に示したもののが表 1 である。各研究機関の部門別に、最も支出額の多い研究分野を示すと次のようにある。民間企業は「情報、コンピュータおよび通信技術」、連邦のイジェンシーは「地学」、州のイジェンシーは「農業科学」、高等教育機関は「医療および健康科学」、そして民間非営利研究機関も「医療および健康科学」である。

なお、イジェンシーとは政府の内部組織であるが、その予算以外の資金も得て、その業務を遂行している機関である。ちなみに、連邦のイジェンシーの代表的なものに「連邦科学産業研究機構 (Commonwealth Scientific and Industrial Research Organisation: CSIRO)」があるが、その総予算 AU $7,200 万のうち外部資金は 33％
を占めている（Moor 1998）。

ともあれ、表に見るように上記の研究分野の支出額が他の研究分野と比較して著しく突出しているわけではないが、どの部門の研究機関がという点で、主たる研究分野が異なるということは興味深い事実である。このことは、どの部門の研究機関か「研究の種類（基礎研究か応用研究かなど）」が異なることを推測させる。

そこで次に、研究機関の分野別の R&D 支出額から見た「研究の種類」の構成を見てもよう。表 2 である。民間企業では「実験的開発」が 70.9% と圧倒的に多く、次いで「応用研究」の 24.2% である。それに対し、連邦のイエジェンシーは「応用研究」が 53.0% と多く、次が「戦略的基礎研究」の 30.9% である。州のイエジェンシーは「応用研究」が 67.7% で群を抜き、そして高等教育機関は「純粋基礎研究」と「応用研究」が共に 30% 以上で多くなっている。

R&D 支出額にみる限り、大学等の高等教育機関が R&D の最も上流領域に力を入れ、連邦政府の研究機関（イエジェンシー）はやや開発に近い領域を担当し、企業は開発を主として担っているという構造にあることがわかる。
表1 研究分野別 R&D 支出額（研究機関の部門別）

<table>
<thead>
<tr>
<th>研究分野</th>
<th>計</th>
<th>民間企業</th>
<th>連邦のイ・ ジェンシー</th>
<th>州の イ・ ジェンシー</th>
<th>高等教育機関</th>
<th>民間非営利研究機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>(自然科学・技術、工学計)</td>
<td>7,954.0</td>
<td>4,116.4</td>
<td>1,207.2</td>
<td>791.9</td>
<td>1,678.0</td>
<td>160.5</td>
</tr>
<tr>
<td>材料科学</td>
<td>100.6</td>
<td>11.9</td>
<td>31.6</td>
<td>1.5</td>
<td>55.7</td>
<td>--</td>
</tr>
<tr>
<td>物理学</td>
<td>235.8</td>
<td>43.5</td>
<td>87.5</td>
<td>1.0</td>
<td>102.3</td>
<td>1.4</td>
</tr>
<tr>
<td>化学</td>
<td>369.5</td>
<td>177.9</td>
<td>70.9</td>
<td>9.8</td>
<td>109.8</td>
<td>1.0</td>
</tr>
<tr>
<td>地学</td>
<td>463.6</td>
<td>91.5</td>
<td>232.0</td>
<td>28.4</td>
<td>110.0</td>
<td>1.6</td>
</tr>
<tr>
<td>情報、コンピュータ</td>
<td>1,591.6</td>
<td>1,183.2</td>
<td>163.4</td>
<td>15.0</td>
<td>139.3</td>
<td>0.7</td>
</tr>
<tr>
<td>および通信技術</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>応用科学、技術</td>
<td>1,453.4</td>
<td>1,170.1</td>
<td>178.6</td>
<td>12.0</td>
<td>92.2</td>
<td>0.4</td>
</tr>
<tr>
<td>一般工学</td>
<td>1,406.0</td>
<td>1,121.7</td>
<td>105.0</td>
<td>14.6</td>
<td>163.3</td>
<td>1.5</td>
</tr>
<tr>
<td>パイオロジー</td>
<td>611.6</td>
<td>58.4</td>
<td>155.9</td>
<td>83.9</td>
<td>286.3</td>
<td>31.6</td>
</tr>
<tr>
<td>農業化学</td>
<td>825.8</td>
<td>80.6</td>
<td>157.2</td>
<td>459.6</td>
<td>127.8</td>
<td>0.6</td>
</tr>
<tr>
<td>医療および健康科学</td>
<td>981.7</td>
<td>177.5</td>
<td>25.0</td>
<td>166.1</td>
<td>491.4</td>
<td>121.7</td>
</tr>
<tr>
<td>(社会科学、人文科学計)</td>
<td>739.0</td>
<td>7.5</td>
<td>58.4</td>
<td>32.7</td>
<td>20.1</td>
<td>10.9</td>
</tr>
<tr>
<td>合計</td>
<td>8,693.0</td>
<td>4,123.9</td>
<td>1,265.6</td>
<td>824.6</td>
<td>2,307.6</td>
<td>171.4</td>
</tr>
</tbody>
</table>

表2 研究機関別の「研究の種類」

<table>
<thead>
<tr>
<th></th>
<th>AU $'000</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>計</td>
<td>純粋</td>
</tr>
<tr>
<td>民間企業</td>
<td>4,123,854</td>
<td>100.0</td>
</tr>
<tr>
<td>連邦のイ・ ジェンシー</td>
<td>1,265,758</td>
<td>100.0</td>
</tr>
<tr>
<td>州のイ・ ジェンシー</td>
<td>824,614</td>
<td>100.0</td>
</tr>
<tr>
<td>高等教育機関</td>
<td>2,307,578</td>
<td>100.0</td>
</tr>
<tr>
<td>民間非営利研究機関</td>
<td>171,370</td>
<td>100.0</td>
</tr>
<tr>
<td>合計</td>
<td>8,692,994</td>
<td>100.0</td>
</tr>
</tbody>
</table>

出所：表1 と同じ

3. CRC と民間企業

既述したようにオーストラリアでは、これまでの基礎研究のR&D から、その成果の実用化を目指し、研究の下流領域へ力を入れてきている。その中心的な担い手は、CRC と民間企業であるので、順にそれらを説明しよう。

(1) 市場との架け橋を択ったCRC
CRC (Cooperative Research Centre) については、Steering Committee (1998) が詳しいので、ここではその記述を紹介しよう。
CRC とは、1990年からスタートした政策プロ

グラムに基づく組織で、政府の研究エイ・ ジェンシーおよび大学などの公的研究機関と、産業界や企業が連携することにより、より実用化を意識した研究活動を展開するものである。CRC の基金のうち連邦政府によるものは 30% 以下に抑えられ、残りは各 CRC への中核的参加者である大学、CSIRO、企業などが提供している。
現在 67 の CRC が、「製造技術」、「情報通信技術」、「鉱業・エネルギー」、「農業および関連製造業」、「環境」、「医療科学技術」の 6 つの産業分野にある。CRC は、CRC 委員会 (CRC Committee) の助言に基づき産業科学技術大臣が選定するが、特定の基準に基づいた競争的な過程を経て選定される。CRC の最終目的は「経済社会の発展への寄

この文書は、日本語をベースにした研究に関する摘要を記載しています。表1と表2は、研究分野別のR&D支出額と研究種類別の割合を示しています。3章では、CRCと民間企業の関係について述べ、CRCの定義、目的、およびその構成について説明しています。
与」、「教育と訓練の強化」、「R&D の有効性の向上」、「R&D の効率性の向上」であるので、その主な活動には、研究のみならず教育（大学院レベルの研究）や訓練（知識の移転や意識の高揚を図るユーザー志向のもの）も含まれている。

CRC の中核的参加者には、大別して研究教育機関と新知識のユーザーの 2 種類がある。後者のユーザーには政府の省庁や産業界、個別企業などが含まれるが、ユーザーは CRC に研究上の資源を提供するのみならず、全過程のマネジメントにも参加する。中核的参加者には、35 の大学（全ての産業分野の CRC に関わっているが、最も多いのは情報通信技術）、250 社以上の民間企業（環境や農業関連の CRC には少ない）。24 全ての CSIRO の部門（全ての産業分野に関わっているが、鉱業・エネルギーが最も多く、情報通信技術と医療が少ないと）、8 の CISRO 以外の連邦のイジェンシー、61 の州政府部門とイジェンシー、産業界（AMIRA: Australian Minerals Industries Research Association Ltd など）などが参加している。

CRC は通常 7 年契約であり、各 CRC の運営は小さな会社のような在っていて、各取締役会が統治している。年次報告が求められ、また 3 年目と 5 年目に CRC 委員会による審査が行われる。なお、海外の企業や研究組織も CRC での参加は可能である。

これまでの CRC の活動によって、既にいくつかの重要な技術開発や多くの部門への技術移転が図られたのは事実だが、その当時の評価にはまだ数年間必要なるようである。少なくとも CRC は、企業や研究組織の R&D に対する態度や視野を変えつつあると評価されている。

(2) 民間企業の R&D

では、次に民間企業の R&D を見よう。既述したように、民間企業の R&D 支出は 90 年以降ほぼ増加傾向にある。しかし増加したとはいえ、既述したように個別的にはその支出水準は決して高くはない。

ともあれ、1996-97 年の民間企業の R&D 支出額の合計は、AU $41 億 2 千万であるが、その産業別内訳を示すと表 3 となる。産業分類では、製造業が 59% を占め最も多いがこれは R&D の特性だろう。そこでこの表では、製造業は中分類まで細分化して示している。それによると、最も支出額が多いのは「電気・電子機器製造業」で、次に「鉱業」が多く、以下の不動産および企業サービス業」、「自動車等輸送用機器製造業」、「金属製品業」、「石油・石炭・化学業」およびその関連製品製造業」、「飲食物業およびタバコ」と続いており、「電気・電子機器」が多いのはハイテク時代の特質と考えれば、この中では、鉱業や「石油・石炭・化学」などの資源関連の産業で多くなっていることが目立つ。なお、民間部門の R&D が開発中心ということは、既述したとおりである。

増加傾向が見られる民間企業の R&D であるが、実際に R&D を行っていない企業は極めて少数派で、全体の 2% 以下の企業しか R&D を行っていないという（AusIndustry 1997a）。また、1993-94 年の製造業の技術革新に対する調査データの分析は、過去 3 年間の間に製品や製造工程での技術革新が 33.7% の企業で発生したが、

<table>
<thead>
<tr>
<th>番</th>
<th>民間企業の R&D 支出の産業別構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>造業 (鉱業サービス業を含む)</td>
</tr>
<tr>
<td>2</td>
<td>製造業計</td>
</tr>
<tr>
<td>3</td>
<td>飲食物およびタバコ</td>
</tr>
<tr>
<td>4</td>
<td>繊維、衣料、靴および革製品</td>
</tr>
<tr>
<td>5</td>
<td>木材および紙製品</td>
</tr>
<tr>
<td>6</td>
<td>食品、出版および情報メディア</td>
</tr>
<tr>
<td>7</td>
<td>石油、石炭、化学業およびその関連製品</td>
</tr>
<tr>
<td>8</td>
<td>非金属ミネラル製品</td>
</tr>
<tr>
<td>9</td>
<td>金属製品</td>
</tr>
<tr>
<td>10</td>
<td>自動車等輸送用機器</td>
</tr>
<tr>
<td>11</td>
<td>写真および科学的機器</td>
</tr>
<tr>
<td>12</td>
<td>電気・電子機器</td>
</tr>
<tr>
<td>13</td>
<td>産業用機器および設備</td>
</tr>
<tr>
<td>14</td>
<td>その他の製造業</td>
</tr>
<tr>
<td>15</td>
<td>買穫・小売業</td>
</tr>
<tr>
<td>16</td>
<td>金融・保険業</td>
</tr>
<tr>
<td>17</td>
<td>不動産およびビジネスサービス業</td>
</tr>
<tr>
<td>18</td>
<td>科学的調査</td>
</tr>
<tr>
<td>19</td>
<td>その他</td>
</tr>
<tr>
<td>20</td>
<td>合計</td>
</tr>
</tbody>
</table>

出所：表 1 と同じ。
小企業（従業員 20 人未満）ではそれが 29.1% に過ぎないが、中企業（20 人〜99 人以下）では 53.9% で、大企業（100 人以上）では 79.3% に達すると報告している（ABS 1997）。

他方、表は示していないが、1997 年時点の R&D 投資金額の多い上位 10 社を見ると、通信業が 4 社、鉱業と自動車製造業が各 2 社という構成になっている。また従業員一人あたりの R&D 投資金額の多い上位 10 社を見るとその多くは、R&D サポートに特化した会社大企業の R&D 分社である。産業別のその 10 社の構成は、鉱業関連と製薬・医療が各 3 社である（Ausindustry 1997b）。

通信や鉱業、自動車関連の企業で大規模な R&D 活動が行われている一方、企業規模は小さいが、鉱業や製薬・医療などの分野では、R&D に特化した企業があることが推測される。

4. オーストラリアの R&D 人材

これまでの統計から、支出金額に基づいてオーストラリアの R&D を見てきたが、次にその人材について見よう。

オーストラリアの R&D 人材は増加傾向にある、1996-97 年時点で 90,519 人いて、そのうち「自然科学、技術および工学系」が 74,365 人と推定されている。この 74,365 人の所属研究機関別構成は、高等教育機関が 37.2%，企業が 35.0%，連邦のイジェンシーが 13.1%，州のイジェンシーが 11.9%，民間非営利機関が 2.7% である（ABS 1998b）。

また、「社会科学、人文科学系」を含んだ R&D 人材（90,519 人）の職業別構成は、研究者が 67.3%，テクニシャンが 16.4%，他のサポートスタッフが 16.8% となっている（ABS 1998a）。職業別構成が「自然科学、技術および工学系」でも同じと仮定すると、約 5 万人が自然科学系の研究者である。

このような R&D 人材の供給源には 2 種類ある。1 つは大学等の高等教育機関で、他の 1 つは移民である。1995 年時点のデータでは、同年に約 37 の大学等から、約 14,600 人の科学学士、約 5,900 人の工学学士が誕生し、840 人の科学博士、310 人の工学博士が生まれた。また最近 9 年間にオーストラリアでは 30,700 人の民の受け入れが発生したが、そのうち 22,000 人はエンジニアであった。この移民による技術系人材の増加量は、6 つの大学の卒業生数に相当するという（Moore 1998）。

移民に代表されるような、海外からの人材がオーストラリアの R&D にかなり大きな寄与をしていることが推測される。

5. 質問紙調査の三ヶ国比較

これまでの記述で明らかのように、オーストラリアの民間企業の R&D はそれほど活発ではない。しかし、他の国の調査データと整合性を確保するために今回は、民間企業に勤務する研究開発者を対象に質問紙調査（研究開発者に対する意見調査（慶應大学 R&D 研究会））を実施し、59 人から有効回答を得た。少数サンプルではあるが、2,584 人の日本調査、および 767 人のイギリス調査の結果を比較してみよう。

ただし、この調査の設問は多岐にわたるため、ここでは調査回答者の基本的な属性を紹介した後、その能力開発や人材育成に焦点をあて分析することにする。この点を着目するのは、専門的な訓練を受けた研究開発者とあい、その成果を高めるためには絶えずその能力を向上させることが必要であり、あるいは科学技術の先端にいるからこそそれが必要とも言えるからである。

a. 年齢・性・国籍および学歴

この調査の回答者の平均年齢は、日英豪の 3 カ国がほぼ同じで、約 36.5 歳であった。しかし現在の会社での勤続年数は、日本が約 11 年、イギリスが約 10 年であるのに対し、オーストラリアは約 6 年であった。後述する転職の多さの影響があると見て良だろう。性別構成は日豪が共に約 9 割が男性であるのに対し、イギリスはそれが約 8
割であった。

調査対象者の国籍は、日本は100% 日本人であったが、イギリスはイギリス人が87.8%、オーストラリアではオーストラリア人が91.4%であった。この点は、オーストラリアのR&Dには移民の貢献が大きいという前記の記録と符合しない。実はオーストラリアに関しては、国籍の欄に「中国系オーストラリア人」のように○○系オーストラリア人と記載した人がいて、彼らを別カテゴリーとすると、オーストラリア人の割合は86.4%となる。調査ではこのような回答方法を求めなかったので、実際には○○系オーストラリア人がもっと多くなり、純粋なオーストラリア人の割合は少なくなるだろう。○○系は移民や移民の子孫であるので、移民の貢献はこのデータより大きいと考えられる。

学歴構成（学位レベル）は、表4のように、日本は修士が53.5%と最も多いのに対し、イギリスは博士と学士が共に35%以上を占め、オーストラリアは学士が61.0%で最も多くなっている。ただし、オーストラリアの学士の中には6.8%のGraduate Diplomaの人が含まれている。この資格は、特定の単位についての修士レベルの修了を意味するので、この表示ではオーストラリアについては学位レベルが実際より低くなっている。とは言え、この3カ国の中ではオーストラリアの学歴構成が低いこととは変わらない。

表4 調査対象の学位別構成

<table>
<thead>
<tr>
<th></th>
<th>博士</th>
<th>修士</th>
<th>学士</th>
<th>その他</th>
<th>無回答</th>
<th>計 (実数)</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーストラリア</td>
<td>23.7</td>
<td>10.2</td>
<td>61.0</td>
<td>3.4</td>
<td>1.7</td>
<td>100.0</td>
</tr>
<tr>
<td>イギリス</td>
<td>38.5</td>
<td>19.9</td>
<td>36.9</td>
<td>3.9</td>
<td>0.8</td>
<td>100.0</td>
</tr>
<tr>
<td>日本</td>
<td>22.7</td>
<td>53.5</td>
<td>19.8</td>
<td>3.5</td>
<td>0.5</td>
<td>100.0</td>
</tr>
</tbody>
</table>

b. 仕事内容

このような学歴構成の違いは、同じR&Dとは言え、その仕事内容の違いを連想させる。そこで、現在の仕事の分野を尋ねた結果から、それぞれの上位三位までの結果を紹介しよう。表5である。

日英と比較すると、オーストラリアの調査回答者は「開発・設計」というR&Dの中では下流、すなわちより市場に近い領域を担当している人が多いことがわかる。オーストラリアの民間企業のR&Dは、基礎研究の研究が少ないことは既述したが、そのことに合格する結果である。

ともあれ、基礎研究や応用研究が少ないことが、学歴構成の違いにも現れていると見て良いだろう。

表5 現在の仕事の内容

<table>
<thead>
<tr>
<th></th>
<th>第一位</th>
<th>第二位</th>
<th>第三位</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーストラリア (n=59)</td>
<td>開発・設計 (61.0%)</td>
<td>その他 (13.6%)</td>
<td>応用研究 (6.8%)</td>
</tr>
<tr>
<td>イギリス (n=767)</td>
<td>応用研究 (40.2%)</td>
<td>開発・設計 (24.1%)</td>
<td>基礎研究 (10.2%)</td>
</tr>
<tr>
<td>日本 (n=2,164)</td>
<td>応用研究 (43.4%)</td>
<td>開発・設計 (26.2%)</td>
<td>基礎研究 (21.2%)</td>
</tr>
</tbody>
</table>

c. 転職経験

現在の会社に就職するまでに、転職した経験がある人は、日本では6.5%と極めて少ないのに対し、イギリスでは43.7%，オーストラリアではさらに多く54.2%である。しかも転職経験者の平均転職回数は、日本は2.2回、イギリスで2.1回だが、オーストラリアは2.9回である。実際、オーストラリアでは転職経験者のうち3回以上の転職をした人が46.9%と半数近くを占めている（イギリスでは29.0%）。オーストラリアでは転職が多いと言ってよいだろう。

ただし、そのことはこれからも彼らが転職し続けること必ずしも意味していない。将来の働く場所を問うたところ、「現在の会社」と答えた人が、日本がやや多かったものの、いずれも7割前後がそう答えていたからである。

なお、このような転職経験の違いもあってか,
現在の会社に就職した経緯は、日本では「大学の先生の紹介」が44.3％と多いのでに対し、イギリスやオーストラリアでは「自分から直接企業を訪問」や「会社案内や広告による応募」が多くなっていた。

(2) 有効な能力開発方法
では、彼らはどのような能力開発方法が有効だと考えているのだろうか。この調査では15項目を示し、主なもの3つの回答を求めている。回答の多かった上位三項目を表6に示す。
いずれの国も「先輩や上司に服される指摘・OJT」と「責任の重い仕事の経験」という項目の回答が多くなっていて、特にオーストラリアでの回答が多くなっている。仕事をしながら先輩や上司の指導を受けながら能力を高めていくというの、いわば「能力開発の王道」であるので、このような結果は当然のことのように思える。

むしろここで注目する必要があるのは、日本では「専門分野の学会に出席」の項目が豊富にあてはまるもので、要するに、そのようなだろう。

既述したように、日本では転職経験者が少なくて、また指導教授の紹介による就職もかなり見られた。似たような背景を持つ人々が集まってR&Dが展開されていることが推測される。そのような形は効率性を発揮するかもしれないが、独創的な研究成果が生まれしにくくなるかもしれない。新たな発想が生まれにくいように思われるからである。もしそうだとするならば、新たな発想を刺激するために社外の情報に触れることが必要で、その結果「専門分野の学会に出席」が重要な能力開発の機会となることが考えられる。それにに対し、異なる背景を持つ人が集まってR&Dを展開しているオーストラリアでは、仕事を通じての日常的な接触が能力開発の機会となり得るのかもしれない。

この調査は多岐にわたる事項を命題の形で問い、それに賛成か（妥当か）、反対か（妥当しないか）を、どちらと言えないを含む5段階で問っている。この5段階を、肯定側が点数が多くなるような1～5点に点数化し、その平均値を国別に比較した結果を紹介しながら、以下ではこのような見方があてはまるか否かを見てみよう。

(3) R&D研究所の様子
a. 人材の組み合わせ
まず、R&D研究所人材の組み合わせに関連する結果を見る。

「研究開発プロジェクトを組む際に異質な人材の組み合わせが重要されている」という命題が妥当するか否かに対しては、妥当というスコアは、オーストラリアが最も高く、日本が最も低かった（英3.54，英3.24，日2.21，平均値の大きさ順，以下同様）。「社外の研究開発部門や大学からの第一線の研究開発者の採用が多い」という命題に対して妥当とするというスコアは、英豪の間に差はなく日本のみが低かった（英3.09，豪2.95，日2.35）。「有能な人材のスカウト」が研究成績を高めるのに重要だとするスコアも、英豪は高く日本は低かった（英4.33，豪4.25，日3.74）と。そして、その項目に対する満足度も、英豪は高く日本は低くなっていた（英3.39，英3.33，日2.66）。
また、「人材の多様性・異質性が研究成果を高め

<table>
<thead>
<tr>
<th>表6 有効な能力開発の方法</th>
<th>（MA回答の多かった上位三項目）</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーストラリア (n=59)</td>
<td>先輩や上司による指導・OJT (79.7%)</td>
</tr>
<tr>
<td>イギリス (n=767)</td>
<td>先輩や上司による指導・OJT (57.8%)</td>
</tr>
<tr>
<td>日本 (n=2,164)</td>
<td>先輩や上司による指導・OJT (59.7%)</td>
</tr>
</tbody>
</table>
のに重要だとするスコアは（英 3.89、日 3.78、豪 3.69）、日英間のみ有意な差が見られたがわずかのもの、その項目に対する日本と英豪、豪の満足度は、英豪より低くなっていた（豪 3.60, 英 3.49, 日 2.77）。

既述した転職経験者の数とこれらの結果を合わせると、確かに日本では類似の背景を持つ人々が集まっているのに対し、英豪、とりわけオーストラリアではかなり異質な背景の人々が R&D 研究所に集まっていると言えよう。

b. 社外との接触
次に社外との接触である。
「社外や社内の研究開発者を呼んで、情報交換の機会が数多く設けられている」という命題が妥当であろうというスコアは、大きい順に英日豪で、それぞれ有意な差が見られ、「社外の研究開発部門や学会や大学との研究上の交流が奨励されている」という命題の妥当性に関しては、日英豪、オーストラリアが低下していった（前者は、英 3.18, 日 3.06, 豪 2.53, 後者は、日 3.18, 英 3.17, 豪 2.60）。また、「社外の研究者との交流」と『外部での研究開発の機会』を重要とするスコアは、前者は日本のみ高く、後者は日本が最も高くオーストラリアが最も低くなっていた（前者は、日 3.76, 英 3.65, 豪 3.31, 後者は、日 3.50, 英 3.24, 豪 2.88）。

いずれも、日本では社外の情報への接触が積極的に行われているのに対し、オーストラリアではそうではないことを示す結果である。

d. これは、社外の研究所との交流に対する満足度は、日本のみが低くなっていた（英 3.23, 豪 3.14, 日 2.77）。日本のこの面での試みは、未だ十分な成果をあげていないようである。

他方、情報交換の頻度を表す 5 段階で問うた結果は次のようであった。同様にスコア値の得られる、エンゲージメントへの影響に関しては、日本と英豪、豪の間では有意な差は見られなかったが、オーストラリアではやや有意な差が見られた（豪 4.45, 英 4.41, 日 4.16）。それぞれに対しこれまでのスコア値の情報交換の頻度は、日本が高く英豪が低くなっていた（日 2.33, 英 2.22, 豪 2.04）。また「大学の研究機関との交流」情報交換頻度は、イギリスが高く、日豪間の差は有意ではないものの、オーストラリアが低いという傾向が見られた（英 2.57, 日 2.35, 豪 2.07）。ただし「政府系研究機関の専門家」に対しては、オーストラリアが日本よりは高いと考えられていた（豪 1.98, 英 1.73, 日 1.64。これは CSIRO に代表されるような政府の R&D 機関の役割が、日本とはかなり異なっているからかもしれない。

ともあれ情報交換の頻度という側面からも、日本とオーストラリアの違いは確認できる。日本の方がより多く社外との接触を試みているということである。なお、イギリスはこの両者のほぼ中間ないし位置するようである。

6. 結論と残された課題

本稿ではオーストラリアの R&D の現状を紹介した後、日英豪三ヶ国の研究開発者に対する質問票調査の結果を能力開発に関連する項目に絞って分析した。

オーストラリアの R&D は、これまでの政府主導型から民間主導型に移行を始めたところであった。それゆえ、まだその中心は公共部門にあると見て良い。そのことを考慮すると、今回分析に用いたデータはオーストラリアの研究開発者を捉えるには必ずしも十分でなかったかもしれない。CSIRO や CRC という非民間企業が、調査対象から除外されているからである。特に後者の CRC は、公共の研究機関と民間企業の間の連携にあり、その成果が注目される機関である。それらの非民間企業も調査対象に加えることは、残された課題である。

このような限定のある三ヶ国比較ではあったが、能力開発や人材育成に結って分析した結果、特にオーストラリアと日本は問題で違いが大きいことが明らかになった。すなわち、日本では同質的な人材が集まり R&D を行っているが、独創的な研究に必要な新たな発想を刺激するために、学会等を通じた外部との接触が重視されていたのに対し、オーストラリアではむしろ異質な人材を集めその内での交流を通じて人材が育成される仕組みであると考えることができた。そして、イギリスはこの両国の中間に位置することが確認でき
た。
この結果から、オーストラリアと日本それぞれに対して提言してみよう。
まずオーストラリアに関しては、R&Dをより強化するという観点から分析結果をみると、これ
からは学会等を通じた外部との接触の機会を増や
すことが望ましいと言えるだろう。新たな発想が
異質な情報との接触によって刺激されると考えた
場合、異質人材の組織内への流入だけでは、移民
の国とはいえ、限られてしまうからである。
他方、日本に関しては外部との接触の機会は現
状でも意義的に設けられているようだが、これ
を充実・拡大していくことが必要である。その成
果が必ずしも充分とは思えないからである。現状
の方法が、形骸化している可能性も否定できない
と。それと同時に、異質な人材を組織内に取り込
む努力が必要のように思われる。
異質人材の採用に関して、調査では、「オープン
的な組織風土」がR&Dにとって重要か否か、ま
たその現状に満足しているか否かを問っていたの
で、その結果を紹介しよう。結果は、重要とする
スコアが日豪が同じでイギリスが低くなっていた
が、満足度スコアはオーストラリアが最も高く、
日本が最も低いというものであった。日本は、
オープンな組織風土をしたいと思っているが、そ
れが実現していっていないようだ。
それならば、そのような組織風土となっている
オーストラリアでは、研究開発者に対してどのような
的なリソースが展開されているのだろうか。
どのような人的リソースがそのような組織風土を
生み出すのだろうか。またそもそも、上記のような
国別の差異はなぜ発生するのだろうか。これら
は、これから明らかにすべき課題である。

注
1) ただし、代表的なエイジェンシーCSIROの力が
高等教育機関より、より上流領域の研究を行って
いるともいわれている。
2) オーストラリア調査は、アデレード大学の協力の
のもとで、シェリダンと永野によって、1998年12
月から1999年3月にかけて実施された。調査の
方法は、他国の調査と同様に企業にその研究開
発者に対する調査票の配布と回収を依頼する方
法を採用したが、一部は調査担当者の個々の
ルートで研究開発者に直接調査票を配布し
回収した。調査票は15社250人に送付さ
れ、7社59人からの回答を得た。回答ベースの
回収率は23.6%であった。
3) 日本調査のデータは、1994年実施の有効回答
965人のデータと、1997年実施の有効回答
1,217人のデータを統合したものである。前者の
結果を含む分析したものが、石田・守島（1996）
である。
4) イギリス調査は、共にクランフィールド大学との
協力のもとに実施した。1997年の有効回答192
人のデータと、1998年の有効回答575人のデー
タを統合したものである。両者の結果を分析した
ものが、永野・中原（1996）である。
5) 1994年実施の日本調査の調査票は、他の調査の
それとはいくつかの設問が異なっている。そのた
めに、以下の分析では日本調査のサンプルが変動
することがある。
6) 調査では、3つの3人を1～3の順位に付けた
回答を求めている。ここで第一順位の上の
順位を無視した集計結果を用いている。
7) これらの記述は、国別の平均スコアを－1元配
置分析により検定した結果に代表している。具
体的には、分散分析と多重比較の結果であるが、
後者に関してはBonferroni検定の5%有意水
準を用いている。
8) 調査票では、頻度の程度を5段階で問っている。
その回答を数値が大きいほど頻度が高くなるよ
うな1～5点に点数化し、スコアを求めた。

参考文献

• 石田英夫, 守島嘉博, 佐野陽子編『研究人材マネジメント: そのキャリア・意識・実績』(『組織行動研究』慶應大学, No. 26) 1996年3月。

• 永野 仁, 岡崎和子, 「研究開発人材とそのマネジメントの日英比較」『慶應経済論集』近刊。