慶應義塾大学学術情報リポジトリ
Keio Associated Repository of Academic resouces

Title	論理的意味論と整合性証明
Sub Title	Logical semantics and consistency proofs
Author	岡田，光弘（Okada，Mitsuhiro）
Publisher	三田哲學會
Publication year	1986
Jtitle	哲學 No． 83 （1986．11），p．61－86
JaLC DOI	
Abstract	We consider the philosophical and historical significance of the consistency problem of mathematical systems，from the view point of logical semantics theories．In §1 we present a traditional problem which is related to the consistency problem，and discuss Leibniz＇s attitude to this traditional problem，from the view point of his contextual theory of meaning．In $\S 2$ we see that the tranditional problem is identified with the consistency problem in Hilbert＇s verification theory of meaning．In §3 we see that Husserl＇s treatment on the manifold－axiom system relation can be interpreted in the frame－work of the sematics－syntax relation in the sense of Tarski＇s meaning theory，and how Husserl＇s solution for the traditional problem is related to the consistency problem． In $\S 4$ we present Gentzen＇s standpoint which is based on a verification theory of meaning，and discuss the philosophical significance of his consistency proof of number theory from the view point of his meaning theory．In $\S 5$ we present Wittgenstein＇s criticism on the consistency problem from the conventionalist view，and reanalize the philosophical significance of Gentzen＇s consistency proof through the Wittgenstein＇s criticism．
Notes	
Genre	Journal Article
URL	https：／／koara．lib．keio．ac．jp／xoonips／modules／xoonips／detail．php？koara＿id＝AN00150430－00000083－ 0061

慶應義塾大学学術情報リポジトリ（KOARA）に掲載されているコンテンツの著作権は，それぞれの著作者，学会または出版社／発行者に帰属し，その権利は著作権法によって保護されています。引用にあたつては，著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources（KOARA）belong to the respective authors，academic societies，or publishers／issuers，and these rights are protected by the Japanese Copyright Act．When quoting the content，please follow the Japanese copyright act．

論理的意味論と整合性証明

田 光
弘＊

Logical Semantics And Consistency Proofs

Mitsuhiro Okada

We consider the philosophical and historical significance of the consistency problem of mathematical systems，from the view point of logical semantics theories．In § 1 we present a traditional problem which is related to the consistency problem， and discuss Leibniz＇s attitude to this traditional problem，from the view point of his contextual theory of meaning．In $\S 2$ we see that the tranditional problem is identified with the consist－ ency problem in Hilbert＇s verification theory of meaning．In §3 we see that Husserl＇s treatment on the manifold－axiom system relation can be interpreted in the frame－work of the sematics－syntax relation in the sense of Tarski＇s meaning theory，and how Husserl＇s solution for the traditional problem is related to the consistency problem．In §4 we present Gent－ zen＇s standpoint which is based on a verification theory of meaning，and discuss the philosophical significance of his con－ sistency proof of number theory from the view point of his meaning theory．In $\S 5$ we present Wittgenstein＇s criticism on the consistency problem from the conventionalist view，and reanalize the philosophical significance of Gentzen＇s consistency proof through the Wittgenstein＇s criticism．

[^0]Frege 及び Russell は論理体系の中で数学の構成を行ったが，彼らが基礎を置いた論理体系に矛盾が含まれることがまもない明かにな口た。こ れはRussell の逆理として知られている。この逆理の出現は高階論理又は集合概念により数学のすべての概念を構成し，数学を展開しよらとする当時の論理学界における中心課題に対する大きな障害となったた。そして，そ の逆理の出現をきっかけに Cantor，Frege 等が無批判に用いていた集合概念に対する批判がいろいろな立場から出された。例えば，Poincaré は一階の算術で使用される数学的帰納法の原理は，先天的総合命題でありそ の妥当性を認めらるが，一般的な集合概念の導入は彼が非可述的定義と呼 ぶ循環論的な定義の仕方を許す故に認めがたいとする。 ${ }^{(3)}$ ．Poincaré の後継者達はフランス経験主義と言われるグループを形成し，集合の導入のため の許される定義の仕方を制限して，循環論のない構成的な実数論の展開を目指した。又 Brouwer は単に集合概念の使用の仕方のみならず，Rus－ sell－Frege が用いる基本的な論理法則そのものに対する批判を加えた。 この批判は Frege 以後の現代論理学に対する批判に留まらず，論理体系 がその最も基本的な部分として内に含んでいるギリシア哲学以来のアリス トテレス形式論理学，特に排中律と言われるアリストテレス形式論理学の基本原理にまで及んでいる。Brouwer の後継者達は主にオランダを中心 に直観主義と言われるグループを形成し，排中律を用いない主観主義的立場に立った数学の再構成を目指した。一方，Russell 自身はタイプ理論を導入し，これこよって先のRussellの逆理を回避し得たと考えた。このタ イプ理論はまだ非可述的集合概念を含むあのであったため多くの批判を受 け，Russell は形式化の仕方を一部変えたが，最終的に与六られた Rus－ sell の体系は表面的には非可述的定義の形は現れていないものの本質的な問題点はそのまま残された形となった ${ }^{(4)}$ 。Frege の体系の中で導出された Russell の逆理の形の矛盾命題は，Russell のタイプ理論においては確か に同じ論法で導出されることはなく，又その後現在に至るまでタイプ理論

の中で矛盾は見い出されていないので，少なくとも経験的にはこの理論に はなんらの矛盾が含まれないよらに見える。しかしながら，注意しなけれ ばならないのは，経験的にまだ矛盾命題に出くわしていない，ということ と，原理的にこの理論に矛盾が含まれていない，といらこととの違いであ る．Russell の逆理の出現以来，特にこのことに注意したのが Hilbert で ある。Hilbert は Cantor，Frege 等の矛盾を含を理論体系に対してある種の制限を与えて経験上整合的に見える体系を再構成する，という Rus－ sell の立場だけでは満足なず，さらにその理論体系が整合的で矛盾を含ま ないことを直接証明する必要性を強調した。これが「整合性証明に関する Hilbert のプログラム」と呼ばれているもので，後の論理学界に大きな影響を及ぼすこととなる。

このよ．らに数学理論の整合性証明の運動は Russell の逆理の出現をその直接の動機として持っているのであるが，しかし実はこのような整合性証明の哲学的意義は，単にそのよらな現代論理学の一事件だけに依存してい るのではない，特に，論理的意味論の歴史との関係が深いことに注意する必要があると考える。以下本稿においていその中でも特に検証主義的意味論，及び記述理論等で代表される文脈的意味論との関係を歴必的に考察し ながら，整合性証明のプログラムの持つ哲学的意義を論理的意味論の立場 から明かにしていきたい。

$\S 1$

整合性問題は次のような伝統的な問題と密接に関連している：数学にお。 ける理想的要素の使用を我々はいかにして正当化できるか，

この問題は又次のようにも表現できる：論証過程又は計算過程に和いて理想的要素を使用することによって害在的要素についての主張が結論され る時，その主張の正当性を我々はいかにして説明できるか，

ここで言ら理素的要素と実在的要素との区別は，歴史的にはまず無理数

と有理数との区別として，次に虚数と実数との区別として，さらに徴積分学における無限概念（無限小数及び無限大数）と通常の有限概念との区別 として現われて来た。この問題に対する典型的な取ら扱かいは，Leibniz の次のよらな言葉のらちに表わされている。「（微積分学における無限大数及び無限小数の概念は）仮想的なものであるが，虚数（根）がそらである のと同様に，実数を決定するために適合する。それらは，たと方事物の側 に存在を持たなくとも，法則のように事物を規則付ける仮想的推論のらち に位置付けられる。」「無限大及び無限小の線分は厳密な形而上学的な意味 では，又実在的なものとは，ぬなされないとしても，それらは推論を短縮 する仮想的概念として疑らことなしに使用できる，と考える，それらは例圥ば $\sqrt{2}$ のよらな代数において虚数根と我々が呼がものと同じである。 それらは「虚」と呼ばれるにあかかわらず，実在的な大きさを分析的に表 わそうとする時，必要でさ充あるの先た。」
Leibniz は無限小数及び無限大数を原理的に消去可能な要素とみなし た。つまり，彼はそのような理想的要素を実体視することを強く否定し， それらは実在的要素についての命題を論証したり計算したりする場合に論証や計算の過程を短かくして論証や計算の理解を助けるために単に操作的 に用いられるそ過ぎないとしだった思，これが意味するのは，理想的要素の現れ る文脈をある仕方で書き換充れば論証過程や計算過程が長くなるとしても理想想的要素の使用を消去できる，ということだ，実際，Leibniz がこの原理的に消去可能といらことを説明しよらとする時，そのよらな理想的要素 の使用を文脈に即して解釈しよらとしていることが分かる。
「（無限小は）決して固定されたものでも規定されたものでもない。それ らは我々の幾何学的議論の中で望むだけ小さくとることができ，厳密な （意味での）無限小量（の存在を仮定すること）と同じ効果を持 ${ }^{(8)}$ 。」

この Leibniz の考ず方は石黒［16］が指摘するごとく，Frege－Russell の記述理論に代表される文脈的意味論の一形態とみなすことができる。実

際，無限小数についての Leibniz の捉方方は後に Cauchy によって確立 された近代的な極限概念及び微分概念に近いものと考えられるが，Frege及び Russell は各々この Cauchy の微分概念の定式化を彼らの記述理論 の例として挙げたのである。（10）．このような無限概念の捉六方はアリストテレ ス以来の無限概念の分類，即ち実無限と潜在的無限との区別ということを強く意識し，微積分学における無限小や無限大を潜在的無限とみなすこと を意味する。ただし注意して郝かねばならないのは，Leibniz の微積分の無限概念の分析に当たってはアリストテレスにおけるよらな存在論的傾向 よりも，より言語分析の色合いが強いといら点である。

しかしながら，この文脈的意味論に基づく鹪想想的要素の消去という考え方を Leibnizが 重視していたのは事実だとしても，やはりその定式化の仕方にはあいまいさが残り，その意味論は体系的な理論には至っていない。
特に「理惁的要素の使用によって爭在的要素だけに関する命題を論証でき れば，常に実在的要素のみを用いた論証にこれを変換できるか」という問題に完全に答えるには至っていない。

§ 2

今世紀初頭の論理学界に大きな影響力を与衣た Hilbert 学派は上の問題を整合性問題と同一視した。ここで箺在花要素と垔想想的要素との間の区別は「有限の立場」と言われるある種の検証主義的意味論をとおして立て られた。実在筸要素に関する命題（実在的命題）は有限のステップで検証可能であるように定められる。実在的要素とは例えば各自然数のような有限のステップで構成可能な対象，帰納的関数のように有限の手続で計算で きる関数であり，これらから構成される等式は先の意味での実在的命題の一例に当たる。理想的要素とは有限の手続きでは構成できない要素であ り，理想的命題とは有限の手続きでは（真偽を）検証できない命題であ る。Hilbert 自身は理想的要素の簡単な例として ε－項を挙げる。これは一

種の超越的な撰択関数と解釈されるものである。よく知られているとおり $\varepsilon-$ 項は量化論理における量化記号の役割をはたす。よって理想的命題の典型的な例として量化記号を含む命題を考えることができる。

このような有限の立場による実在的命題と理想的命題との区別に基づい て我々の先の問題を書き直すと次のよらになる。
今Aは実在的命題を表わし，Sが理想的要素を含む言語から成る形式的数学体系を表わすとする。このとき，「SトA ならば A が真」即ち「A が体系Sで証明できれば有限主義の意味論でAは真である」ということが常に言えるか？

先の問題に対するこのよらな定式化は実際，整合性問題と密接な関係を持つのである（11）${ }^{(11)}$ 「SトAならば A は真」がどんな実在的命題 A K対し ても成立しているとしょう。この時例宏ば $0=1$ といらような偽な実在的命題をAとして特にとることとする。Aは真でないからSトA が成り立 たないことになる。ところでもしSに矛盾があれば S Kおいてどんな命題も証明可能となるから，SトA が成立するはずである。よって S は矛盾を含まない，つまり整合的である。

一方，有限の立場での実在菂な，言い換兄れば倹証可能な任意の命題A に対して，「Aが真ならSトA」といら条件が満たされてさ充いれば，「S が整合的」といらことを仮定すれば，任意の実在筸命題（即ち検証可能な命題）に対して「SトAならば A が真」といら関係が導出される。 というのも，もし S 1 A でかつ A が偽とすると，Aが検証可能な命題で あることから，7A（非 A）は又検証可能（つまり実在筸）命題で，しか も真となる。よって先の条件より S 5 － A となり，結局 $\mathrm{S} \vdash \mathrm{A} \wedge$－ A が成立して体系 S は矛盾を含むことになってしまらからである。ところで， この「（任意の検証可能命題 A に対して）A が真ならSトA」という条件 はそれほど強い要請ではない。例えば実在的命題の範囲を帰納的関数及び帰納的述語から命題論理結合子を用いて構成される閉論理式，と限定する

と，厳密な有限主義の立場での倹証可能命題と一致するが，このような実在的命題に対しては「Aが真ならばSトA」は，弱い数論を含みさえすれ ばかなり広い範囲の数学体系 S に対して成立することが知られている。

もっとも，Hilbert 自身は実在的命題の範囲として，より広い，開陳述
可能な命題に新たに自由変数が現われる場合である。このような開陳述は全称量化結合子を含さ全称命題と論理的には同様なふるまいをするので，意味解釈の上でも微妙な問題がでてくる。この点に関してHilbert は，開陳述及び全称論理式の解釈に現れる「すべての」といら表現は，実無限 （閉じた無限）ではなく潜在的無限の使用だけで説明がつくと考えた。

「有限の立場からすると，この（全称）命題は無限に多くの等式を＂かつ＂ で結びつけたもの，としてではなく，数記号が一つ与方られて初めてなに かを主張する仮定的判断としてみなすべきである。」

検証主義的意味論の立場に立つ全称命題の解釈については後に第4節で も又触れる。ただし，ここで注意しておまきたいのは，全称命題又は普遍命題における検証可能性に関しては，Hilbert 学派の有限主義の意味の検証理論に限らず，すべての検証主義的意味論において問題となるデリケート な要素を含むということである。やはり意味の検証理論をその理論の中核 として持っていた論理実証主義運動においても，科学法則の記述のために使われる普遍命題の解釈をあぐって大きな困難に陥ったととは周知のとお りである。

§ 3

我々は既に整合性問題が理想柱筸要素の数学的証明における使用に関する伝統的な問題に深く関わっていることを見た，ところでこの伝統的問題に対する典型的な定式化は，次の Husserl のテクストの中に見い出せる。彼 はここで「虚的なものを経由した計算過程の論理的意味を明かにする」こ

とを試みた。彼の問題設定は次のよらなものである。
「いかなる条件のもとに，我々は形式的な演繹体采の中で虚な概念を自由に操作できるのであるか。」「そのような操作を経て虚的なものを含まな い命題が導出されるよらな演繹がどんなときに正しいと，つまり公理から の正しい結論だと，我々は確信できるが。」

Husserl はこの数学におなる虚的なものに関する問題を彼の初期の「哲学的－数学的研究の究極的テーマ」と見なしだ ${ }^{(15)}$ ．Husserl 自身がしばしば強調するように，彼のアプローチと Hilbert のアプローチとの間には密接 な関連がある。Husserl のこの問題に対する取り組みは，彼の「算術の哲学」の継続の意味を持っていた「形式数学教義論（1890）」に和いてすでに はじまり，「論理学研究（1900）」第1巻70節においても彼はこの問題に触 れている，し17）しかしこの時点では，Husserl 自身においでは解決の方向はま だ見いだされてはいない。Husserl がこの問題の解決に至ったと考えた時期は，明かに彼が Hilbert の論理哲学に触れ，実際に Hilbert が指導する Göttingen 学派と彼が接触した時期に当たる。Husserl 自身が与えたこの問題に対する解決は，1901年から1902年に書かれた一連の論文の中に現 れており，その中には Göttingen 数学会におはる二つの講演も含まれて いる．この「解決」において重要な役割を演ずるのは，彼が導入した「規定された多様体」の概念（Begriff der ‘definiten Mannigfaltigkeit’）で ある。後の「イデー（19）j において，彼は上の虚的なものに関する問題には直接触れることなしに，「規定された多様体」の概念についての 詳しい説明を行なっている。ここにおいて彼は彼の超越論的現象学を質料的本質学 として特徴付ける目的で，同じ本質学でありながら現象学とは性格を異に する数学のよらな学との違いを明確にすることを試み，数学を形式的本質学と名付ける。その上でまずこの形式的本質学の特徴を明かにしようとす るのである．彼の結論は，形式的本質学とは「規定された」多様体につい ての学である．といらことであった。

「規定された公理系」や「完全な（vollständig）公理体系」゙といら表現 も「規定された多栐体」といら表現のかわりに使われている。より正確に言えば，Husserl は「規定された公理系」や「完全な公理体系」といら概念は統語論（シンタクス）の概念ととらえ，「規定された多樣体」の概念は意味論（セマンティクス）又は現代論理学における Carnap－Tarski 流の モデル理論的概念ととら克ていると言兄る。この後者の概念は，数学的実体に関係している。Husserl ははっきりとこの統語論と意味論の区別を立 てて，それを意識していたように見え竞る。しかし，この両者の概念は， Husserl のテクストの中ではしばしば自由に入れ換わって用いられている のに気付く，それは，あたかも Husserl が論理学上の重要な区別である統語論と意味論とを混同していたように一見みえるのであるが，実はそこ には理由があったのである。その理由とは，彼が数学の特徴付けとして与 えた「規定された」多様体といら概念に依存しているのである。ここで Husserl が用いる意味での多樣体とは数学的領域，つまりある理論で意図 された数学構造を持つ集合のことを意味しており，例兄ば，数論における加法や乗法が定義された自然数全体の集合がそれた当たる。今日の言葉で言えばこれはある数学理論に対する標準モデルを意味すると考えられる。 ところで，この数学領域が規定されているとは，フッサールによると，こ の数学領域を完全に規定する規則体系っつまり公理系が統語論の方に存す る時を言ら，数学のような形相的本質学の特徴は，多様体が規定されてい ることである，と彼が言ら時，そこで意図されているのは，その理論の領域を（又は標準モデルを）完全に規定し尽くせるよらな公理系，規則体系 が存在するといらことなのであり，ここで公理系がある領域を完全に規定 するとは，この領域の中で真となる命題がすべて公理系からも演繹され，又この領域の中で為となる命題はすべてその命題の否定形がこの公理系か ら演繹されることを意味する。よって「数学的に規定された多様体におい ては＂真＂の概念と＂公理群からの形式的導出＂の概念とは同じである」

といらことが結果する，このことから，Husserl は，公理群一モデルとい ら現代論理学の基本的な統語論一意味論の区別を前提した上で，それらの間に「証明可能性二真」といら同値関係を与良ることにより，公理系と多様体という二つの表現をしばしば入れ換えて用いても支障がなくなったわ ほである。彼は公理系が多様体を嫢定する条件として，公理系の完全性と いうことを挙げ，この等，こ完全性を又，公理系の規定性といら表現でも表わし ている。ここで公理系の完全性とは，「その公理系に現われる概念（概念形式）から純粋論理の規則に従って構成された命題（命題形式）が，公理 の分析的な（つまり純粋に演繹的な）帰結であるか，又は分析的な矛盾で あるが」である時である。つまり，公理体系 S が完全とは，（体系 S の言語で書かれた）任意の命題Aに対して， $\mathrm{S} \vdash \mathrm{A}$ 又は $\mathrm{S} \vdash$ ト A が成立する。 という場合である。（ここで 7 A は A の否定命題を表わずあのとする）。

この完全性の概念に関しては，Husserl 自身が［15］の中で，この概念 が Hilbert の完全性の概念と同じものであり，Husserl は虚的なものに対 する彼の問題の探究の中で，Hilbert とはまったく独立に同じ概念に到達 した，と述べている．S．Bachelard はこの Husserl の説明をもとに，実 は Husserl の公理系の完全性の概念は，Hilbert の完全性の概念と何ら直接的な 関係はなく，よって Husserl の上の指摘は 彼の誤りである，と結論している。確かに Bachelardが指摘するように，Husserl が自分の完全性の概念を Hilbert の（実数論等における）完全性の公理と結びつけ て，Hilbert の完全性の概念と自分の完全性の概念とがまったく同じだ， と説明する時，Husserl は Hilbert の完全性の公理の意味を見誤まってい ると言える。 しかしながら，そのことがすぐに Husserl が強調する Hil－ bert 学派との共通性といらことの基盤を崩すことにつながると考えるの は間違いであろら，実際 Hilbert はこの「完全性の公理」といら概念と は別に＂統語論的な＂「公理系の完全性」といら概念も使用してお告う，（28）と の意味での完全性は Husserl の用法と一致すると考えられる。

ここで注意しなければならないのは，この公理系の完全性といらこと が，Husserl の意図した規定された多様体の特徴付けのための必要条件で はあるが，まだ正確な意味での十分条件とは言えないといら点である．そ こには二つの暗黙の前提が隠されている。一つはある数学理論に対する多様体がその理論に対する公理系のモデルに実際になっていること，言い換 えると，その公理群自体（及びその公理群からの論理的帰結）がすべてこ の多様体の上で真となっていること，であり，他の一つは，このことと密接に結びついていることであるが，この公理系が整合的である，というこ とである。 つまり，体系 S が完全で，任意のAに対して $\mathrm{S} \vdash \mathrm{A}$ 又は $\mathrm{S} \vdash$ 7 A が成立しても，この「又は」を排他的な意味の「又は」ととらない限 り，ある A に対して S ト A へ 7 A つまり矛盾命題が S から証明される ことも起こりらるわけである。この「及は」が排他的である，といら条件 がまさに体系 S の整合性を意味しているわけである。

規定された多様体と対応する公理系との関係について，Husserl は完全性の概念の他に志向性といら彼の現象学の基本用語を用いて説明する場合 がある：例えば，規定された多様体のことを公理規則が志向される対象領域として捉えている。

「比の（規定された多様体の）概念の意図には或る隠された志向的意味が含まれている。多様体とは，本来，或る無限的な対象領域の形式理念を思念したものであり，その対象領域にとって理論的説明の統一，又は，或る法則論的学の統一（つまり形式的公理体系）が存することを思念したもの である」

本稿では彼の用いた志向性概念についての現象学的考察に深入りするこ とは避けるが，ある理論の公理体系とその理論の標準モデルとの関係の考察の場面での志向性概念の導入といった Husserl の方法論が現代論理学 においても決して見落とすことのできない重要さを含んでいることだけを指摘しておきたい。

今まで見て来たとおり，Husserlの考察は公理系と標準モデル，又公理系におねる演繹可能性と標準モデルにお䄧ける真理性，といった統語論（シ ンタクス）と意味論（セマンティクス）の二つの概念の正確な区別といら点にその基本があると考えられる。このよらな（メタ）論理学的考察にお ける統語論と意味論の区別の立て方は，Carnap－Tarski 流のモデル理論的意味論の考立方と類似なものと考えられる。よって，先の我々の分析を とおしてモデル理論的表現を用いて言い直せば，規定された多様体とは，完全性と整合性といら条件を満たす公理系の標準モデルといらことにな る。

ここで我々はもとの問題，つまり「数学における虚的なものの使用がい かにして正当化できるか」といら問題に対する Husserl が与穴た解答に触れてみよう。

Husserl の解答は，公理系が規定されているならば，つまり整合的で完全ならば虚的なものの使用を正当化し得る，といらものであっだ。

今 S^{*} をある虚的要素，即ち前節までの用語で言えば理想的学要素を含む数学体系とし，又 S は S＊そ現われる虚的な要素を除いた部分体系とす る．さらに今，S と S＊は共に規定されているとする。 つまり，整合的で完全であるとする。このとき，体系 S の任意の命題（つまり前節の意味 での実在的命題）Aに対して，

$$
\begin{equation*}
\mathrm{S}^{*} \vdash \mathrm{~A} \Rightarrow \mathrm{~S} \vdash \mathrm{~A} \tag{}
\end{equation*}
$$

が成立する。即ち， S^{*} で A が証明できれば，A はすでに部分体系 S で証明できる。そして，このことが虚的な要素の使用の正当化を表わしてい る，と Husserl は考えたわけである。（＊）が意味しているのは，虚的なも のを経由して実在的命題を演繹できれば，原理的には常に虚的なものを用 いずに同じ実在的命題を演繹できる，といらことである。

ところでS と S＊が共に規定されている，という Husserl の与衣た条

件のもとで，Husserl の結論（＊）は次のように論証される。
もし $\mathrm{S}^{*} \vdash \mathrm{~A}$ が成立し，かつ $\mathrm{S} \vdash \mathrm{A}$ が成立しないとすると， S が完全 であることから SトフA が成立する。一方， S^{*} は S の拡大体系である ことから， $\mathrm{S} \vdash 7 \mathrm{~A}$ より $\mathrm{S}^{*} \vdash 7 \mathrm{~A}$ も成立することが分かる。よって， S^{*} ト $\mathrm{A} \wedge$ フA，つまり S^{*} は矛盾体系であることになって， S^{*} が整合的で あるという我々の仮定に反する。よって（＊）が成立することが分かる。

以上我々は，Husserl においては理想的ものに関する問題を自己の論理哲学研究の最重要課題と考衣，Carnap－Tarski 流の論理的意味論，つま り形式体系－外延的モデルという関連のもとでの意味論に基づいて，形式的体系に完全性と整合性といら仮定を課することによって，この問題の解決を計った，といらことを見たわけである。

ところが 1931 年，つまり Husserl の Formale und Transzendentale Logik の発表のほんの 2 年後に現われた Gödel の不完全性定理は，上の Husserl の解決策とは両立しないものであった。Husserl は公理系に整合性と完全性という2つの条件を置いたと考えられるのであるが，Gödel の不完全性定理の示すところによれば，この 2 つの条件は両立しないもの なのである。Gödel の不完全性定理は，「整合的ならば完全ではありえな い」といらことを示したのである。このことは，Husserl の解決の方針が実際には遂行し得ないことを示している。

一方，この Gödel の不完全性定理は又，有限主義的な意味の検証理論 に根ざす Hilbert の先の問題解決のプログラム，つまり，有限主義的整合性証明といらプログラムをも実行不可能にするものにみえた。というの も，第二不完全性定理と呼ばれる Gödel の不完全性定理の別な表現によ ると，たとえある公理体系が整合的であっても，その事実を証明するに は，その公理系で使用を許されている論法よりもさらに強い論法を用いざ るを得なく，よって Hilbert の有限主義で意図されたような初等的な論法 だけでは整合性を証明することはできない，と考えられるからである。

§ 4

Gödel の不完全性の出現にもかかわらず，Gentzen は1936年に自然数論の整合性証明を発表する。では，この整合性証明はいかなる意味で Gödel の不完全性定理と両立するのであろらか？この点に関しては Gent－ zen が繰り返し説明している。大ざっぱに言ってしま充ば，その理由は Gentzen の立場は Hilbert の本来の有限の立場よりも制限がずっと弱い からなのである。別な言い方をすれば，Gentzen の立場では Hilbert の立場よりもずっと強い論法を許すからなのである。ただし注意すべきこと は，そのような拡張された有限主義においても，意味論を形成するに当た っては，Gentzen は基本的には Hilbert の検証主義的意味論を踏襲して いる，という点である．ここで，Hilbert との違いは，主に有意味性の検証基準の違いとして現われて来る。Hilbert の理惁想的要素と穾在的要素と の区別で言えば，検証基準に従って有意味と分かる命題が実在的命題であ り，そうでないものが理想的命題ということになるわけであるが，Gent－ zen の場合には Hilbert の有限主義の立場に比べて，有意味性の検証基準の制約を弱く採っているため，実在的と認めらる命題の範囲が Hilbert の場合よりもずっと広くなっているのである。第 2 節でも述べたよらに， Hilbert の場合には有意味な命題とは，高々決定可能な（即ち㑴納的な）述語，決定可能な（帰納的な）関数，及びそれらと命題論理結合子とを組み合わせて構成される開陳述（open sentence）に限られていたと考克られる が，Gentzen においては，Hilbert が理想的要素と考党た量化子も笑在花的要素と考えられていた。よって，全称量化子や存在量化子を数多く含む命題も場合によっては有意味と成り得るのである。ただし量化子を持つ命題 がさらに合意によってつながれている時には Gentzen の立場においても命題は常に無意味に，即ち珸フ想符命題となるのである。 つまり，Gentzen にあっては，量化子が理想笖筸要素なのではなく，含意が理想笖筸要素と考え

られるわけなのである。その理由はもちろん彼の有意味性の基準の置き方 にあるのである。［7］において彼の立てる有意味性の基準つまり検証可能性概念は，彼が定式化した自然演繹体系と呼ばれる論理体系におかほる各論理結合子の導入に関する推論規則の形に基づいている。Gentzen は論理結合子導入規則から論理結合子の自然な解釈が得られることを主張する。
［7］に㣘ける論理結合子の解釈は構成主義的な形態を持って牤 り，実際 Brouwer 等の直観主義者の解䣋と類似のものとなっていることが分かる。 このよらな論理結合子導入規則に基づいた検証主義的意味論は，この Gentzen による展開の他に，最近も Dummett，Prawitz 及び Martin－ Löb 等によっても研究されて来だ（87）我々はこの一群の意味論を「論理結合子導入規則に基づく意味論」と名付けることにする。この意味論の特色 の一つは，論理結合子の解釈に当たって，証明可能性概念又は論証可能性概念に言及するといら点にある。つまり，有意味性や真といった意味論 （セマンティクス）の概念と証明可能性といった構文論（シンタクス）の概念とが互いに絡み合って定義されているということである。実際，主観の側から真理性の検証基準を与えようとすれば，当然それは論証や証明の概念と深く結びついてくるはずである。論理や数学の命題の真理性をどのよ らにして知るかといら間いは「証明」についての間いであるはずだからで ある．感覚与件を問題にする経験命題と違って，論理－数学的命題におるけ る真理性の確認の手段はなんらかの形の論証又は証明とならざるを得ない からだ，この点は，前節に䉼いて触れた Husserl流の，又は Carnap－ Tarski 流のモデル論的意味論と大きく違った点である。例えば Hus－ serl においては，最終的には「証明可能性」という 統語論的概念と「真」 といら意味論的概念とは一致すると考えるとしても，それら二つの概念は独立だとみなされている。 ところが，Gentzenをはじめとする「論理結合子導入規則に基づく意味論」に婞いてはこの点で Husserl や Tarski の意味論と大変違っているわけである。

Gentzen の立てた数論に対する意味論及びより一般的な体組の中での「論理結合子導入規則による意味論」の特徴に関しては拙著［22］に詳しく述べたので，本稿においては繰り返すことは避け，数論に対する意味論の中核となる部分の一部を要約するに留める。
次の条件は，（1）論理結合子の解釈，（2）文の有意味性の基準，（3）正 しい主張，いいか穴れば正しい論証の構成の基準，を同時に表わしている あのとみなせる。
（1） $\mathrm{A} \wedge \mathrm{B}$ が有意味で正しく主張されるのは， A 及び B の各々が既に有意味で正しく主張されると分かっている時に限る。
（2）AVBが有意味で正しく主張されるのは，A が既に有意味で正し く主張されると分かっているか，Bが既に有意味で正しく主張される と分かっている時に限る。
（3）$\forall x F(x)$ が有意味で正しく主張されるのは，自然数の構成手続きに従ってaに自然数を順次代入していく時，そのような任意の代入に対 して $\mathrm{F}(\mathrm{a})$ が有意味で正しく主張されると分かる時に限る。
（4） $\operatorname{\exists xF}(\mathrm{x})$ が有意味でかつ正しく主張されるのは，ある自然数 n が具体的に見いだされて $\mathrm{F}(\mathrm{n})$ が有意味で正しく主張されると分かる時に限る。

上の条件は Gentzen［7］の § 10 に基づいて与克たものであるが，これ に続いて § 11 において彼は含意の解釈に対する検討を加えている。例え ば，彼は次のよらな候補を提出してみせる。
（5）AつBが有意味でかつ正しく主張されるのは，仮定 A から結論 B へ至る証明を構成することができる時に限る。

Gentzen の意味論に焃ける突在的要素と理想的要素との区別の問題に関して重要なのはこの点である。Gentzen は自分の立てた拡張さえた有

限主義の意味論をもとにして，直観主義算術の推論規則の正当化を試み る。Gentzen は，連言，撰言，全称量化子，存在量化子に関するすべての直観主義論理推論規則及び数学的帰納法規則は本質的に上の（1）～（4）と同等な条件のもとで正当化できるが，上の（5）の形の含意に関する正当化手続きのらちには循環論が含まれる，といの，といことを指摘した。 さらに（5） の変形を考察し，Gentzen は含意の解釈を証明概念（又は論証概念）と関連させて与えようとすると，どらしても困難に至らざるを得ない，という事実を指摘した。（この議論の分析については，拙著［22］を参照のこと。） このことから，Gentzen に特いては，含意概念が理想的要素とみなされる わけである。Gentzen はこの含意に関する 推論規則の正当化手続きのら ちに現れる循環論を分析し，これがまさに集合論における Frege－Russell の逆理とまったく同じ状況に当たると主張する。そしてここに自然数論 （一階の算術）におほる整合性証明の哲学的意義を見るのである．（41）このよう な含意概念のもつ 循環論的性格については Dummett も指摘している。 Gentzen，Dummett，Prawitz，Martin－Löb の「導入規則に基づく意味論」の各々の哲学的立場にはかなりの違いがみられる（この点に関しても拙著［22］に譲ることとする）．ただ，ここで再び強調して蚆きたいのは， これらが共通して，ある種の検証主義的意味論の立場に立っているといら ことである。

ところで，検証主義的意味論といえば，論理実証主義の意味論もその典型である。では「導入規則に基づく意味論」とこの論理実証主義者の意味論との違いはどんな点にあるのであろうか，又，整合性問題との関わり方 はどのように違っているのであるらか。

論理実証主義者は有意味な命題を観察可能な経験命題と数学や論理学に おねる形式命題とに分ける。これは伝統哲学におかる分類（例えば Leib－ $n i z$ の事実の真理と理性の真理といっった分類）に対応する。そして，経験命題に対しては，意味の検証理論を適用する。一方形式命題に対しては，

その真理性を分析性に還元する。ここである命題が分析的に真とは，与穴 られた公理系から演繹的にその命題が導出される，といらことを意味して いる。これは，伝統哲学における理解，例えば，カントにおける「述語概念が主語概念に含まれる」といら理解の一つの自然な拡張と考吂られる。 カントにおける主語－述語関係を新たに公理一定理関係と見直した時の自然な再解釈となっているからである。これに対して，Gentzen 等の「導入規則に基づく意味論」においては，対象ははじめから形式命題だけであ り，しかもその形式命題に対して意味の検証理論を適用するわけである。論理実証主義者は形式命題に対する検証といらことの可能性に気付かなか ったとも言える。この意味で Hilbert－Gentzen 等の検証理論は論理実証主義の検証理論の一種の拡張とも言える。ここでの検証は，知覚的な観察 をとおしてではなく，与充られた規則の適用やカウンティングの操作に従 った検証であり，それ故，それら規則の適用やカウンティングの操作の有限性といらことが検証にとって重要となってくる。これが Hilbert－Gent－ zen の有限主義の動機と考えられる。

ところで，観察命題も論理結合子を用いて複合的にすることができる が，このよらに観察命題における論理結合子の解釈に関しては，論理実証主義者は，真理関数による解釈，即ち，実在主義的（又はプラトン主義的）解釈を採用する。 この点でも論理実証主義の意味の検証理論と Gentzen流の意味の検証理論との間の違いが見いだされる。ここで，実在的主義又 はプラトン主義的意味論とは，真理性や意味が，我々の主観（言い換兄れ ば，我々の認識手続）とは独立に，対象又は事態の側に属する，といら考 え方に立ったものであり，真理条件は二値論理に基づく（例えば Wittgen－ stein の「論考」にあるような）真理関数によって表現される。そして，論理結合子の意味はこの真理条件のことと考える。前節で触れたモデル理論的意味論もこの考六方を基本にしていると言える。

次に整合性問題との関わり方について考克てみよう。論理実証主義にお

いては，形式命題の真理性を単に分析性ということで片付けてしまらた め，論理実証主義者は，形式命題に対しては形式主義的意味論の立場に立 つと考えられる。ここで，形式主義的意味論の立場とは，形式的体系にお ける演繹可能性概念を真理概念と同一視する立場である。このように数学 を単なる規約的又は形式的規則と考える立場に立った時，その理論の最小 の要請となるのは，この形式的規則間の整合性ということであろう．よっ て，このような論理実証主義の立場に立つと，その理論体采の整合性とい らことが非常に重要となって来ることが分かる。つまり，論理実証主義に あっては，形式命題の意味論に関しては形式主義的立場を採ることとな り，その結果，この形式主義的意味論の成立のための要請として，整合性証明が必要となる和けである。 これに対して，Hilbert－Gentzen の立場に あっては，形式命題に対する意味論として検証主義的意味論を採用してお。 り，この検証主義的意味論に基づく分析から，Hilbert にあっては，量化子（及び ε－項）の使用法に，又 Gentzen にあっては，直観主義含意の使用法に問題点を見い出し，そのことが彼らにとっての各々の整合性証明の必要性の動機となったのである。

一方 Gentzen は，順序数の到達可能性という 概念のある仕方での使用 を，数論の範囲を越えた高階概念であるにもかかわらずっ疑わしくない推論として認める（［22］を参照のこと）．Gentzen は自然数論（一階算術） の整合性証明を，本質的に含意（及び否定）を含まない自然数論に順序数 の到達可能性に関する推論を加えた体采の中で遂行した。つまり，Gent－ zen が彼の整合性証明で成したことは，自然数論（一階算術）において使用される含意に関する論理規則を正当化する問題を，到達可能性という高階概念に還元することであった。この意味で Gentzen の整合性証明は，彼自身が繰り返し強調するように，「相対的」整合性証明なのであウ，そ れ故，Gödel の不完全性定理とも両立しているわけである。

§ 5

ところで，このような Hilbert 学派の整合性証明のプログラムに対し て Wittgenstein は，（特に「論考」の後の中期及び後期にかけての Witt－ genstein は）強い批判を繰り返している。Wittgenstein は「（公理体系と は）シンタクス（統語）の規則である。この統語の規則とは，何かについて の規則なのではない」と述べ，数学において我々は「決して実在を扱って いるのではない」という（45）といことを強調する。つまり彼は，数学の諸理論を統語論として見ているのである。よって，Waisman がこの話題について Wittgenstein と会話をかわした後，彼のノート・ブックル次のような覚 え書きを加えたのも，大変自然なことのように思われぞ（46）「よって，わずか な公理によって空間の多様体全体（それが「規定された多様体」）（Husserl） であるが）を取り扱らことができるといら事実の中にはなんら問題はな い。なぜなら，それは，我々の据えた言語の統語法にすぎないのだから，（00）

このように Wittgenstein 及び彼のサークルの哲学者達は，公理体系の分析に当たっては，Trarski 流の公理－モデルという対比に基づく意味論 に強く反対していたことが分かる。そして，「数学はゲームである」とい ら形式主義の方向を向いている，としばしば考えられて来た。しかしなが ら，ここで注意しなければならないのは，やはりしばしば（特に，その前期の思想に関して）形式主義ととらえられて来た Hilbert 学派の立場との違いである。その中でも最も大きな違いは，整合性問題に対する態度にあ るといえる。

Hilbert 学派は，まだ今のところ矛盾が現れていない数学体系の整合性 を証明しよらと試みる。現存する数学理論におかいては，実際にその理論自体が矛盾しているといらことが見いだされることはめったにない。Hil－ bert 及び Gentzen は，このよらな状況の中で，矛盾には出合わないまで も，彼らの有限主義の意味の検証理論の立場から疑わしいと思われる推論

が原理上は数学において存しらることを指摘し，これをもって自らの整合性証明の一つの動機としたのであった。 ᄂかし，それでは，実際の数学の場面でそのような（彼らの意味で）擬わしい推論が頻繁に使われているの だろらか，これに関しては，Gentzen は実際に自然数論の主要定理のい くつかの証明を分析した上で，自然数論の実際の証明においては，なんら疑しい推論が使われているのを見い出せなかった，と告白する。前に述べ たとおら，Gentzen にあっては，含意の複雑な使用に疑わしさが生じる もとがある，と考穴るわけであるが，現実の自然数論の展開の中には，そ のような複雑な含意の使用はまったく現れて来ない，といらわけなのであ （50）．よって，Hilbert－Gentzen にあっては，整合性証明の目的は，実際 に生じている嶷わしさを正当化するといらよりも，原理的に生じらる礙わ しさを正当化する，という色彩が強い。
このよらな状況に対してWittgenstein は「我々は，まだ自然な状態で は発現していないにもかかわらず，痛んでいない隠れた病気のごとく，隠 れた矛盾について考えている」と批判する。 Wittgensteinは 数学をゲー ムと考え，数学における矛盾をゲーム規則間の矛盾とみなすわけだが， Wittgenstein の観点からは，ゲームの諸規則は前もって整合的であると確証される必要はないのである。ここに，一般の形式主義的観点と，Witt－ genstein の形式主義的，より正確には，規約主義的観点との間の違いがあ る．一般の形式主義にあっては，数学はゲームであるからとそ整合的でな けれればならない，といらことになる。一方，規約主義的観点からは，数学 はゲームである，という同じ理由から，整合性証明を前もって行なら必要 はない，とされるのである，ここで Wittgenstein が意図しているのは次 のことである。「規則間の隠れた矛盾は決して現実のゲームのブレイの進行を妨げることはない。我々のプレイの進行が妨げられるのは，実際に矛盾に直面した時だけである。そして，そのような場合に我々が成さねね゙な らないととは非常に単純である。——新たなルールを導入するだけだ，そ

して困難は取り除かれでる。」
このような批判に対して，Gentzen は一体どのように答えるであろら か，彼は確かに彼が整合性証明を与えた自然数論の現実の展開の中に，彼 の意味で㠜わしいと思われる推論を見い出すことができなかったと認める のである。しかしながら，表面的な推論には疑わしい形が現れないが，新 たな定数や関数の導入手続の内に実は疑わしい推論が入り达んでいること を彼は見い出す。自然数論の論証において，我々は，一意存在が認められ た項や関数に名前を新たに付け，以後これをもともとあった定項や定関数 であるかのように扱らことができる。（54）このように論証の中で頻繁に現れる定項等の導入は，Russell の確定記述の理論におほる固有名辞の理論に従 っているのである。ところで，この Russell の記述理論は，前節であ指摘 したごとく，真理関数的意味論，つまり実在主義（プラトン主義）的意味論に根ざしており，例えば，論理結合子の解釈に関しては真理関数的解釈，つまり古典的実在主義的解釈を採用している。 つまり，Russell の確定記述の理論に従った定項等の導入の正当化は実在主義的意味論を前提に しているのである。Gentzen がここに通常の自然数論に現われる疑わし さを見い出したことは注目に値する。別な言い方をすれば，導入された定項を含む文脈を Russell の記述理論に従って論理結合子を用いて定項の ない文脈に還元していく時，論理結合子が複雑に現われ，特に含意も複雑 に現われて来るわほである。よって，はじめは一見疑わしい複雑な含意を含む推論など現われていないようにみえる証明にも，実際には疑わしい推論が隠されていることがあるのだ。

このよらに，現実の自然数論の通常の論証手続きのらちに無意識のらち に文脈的意味論，つまり Frege－Russell の記述理論的手法が使われてい ることをGentzen は意識していたと言える，つまり，通常の論証の手法 のらちにも，例えばこのように文脈的意味論の形で，実在主義的立場が潜 んでいるわけである。こら考えると，Gentzen が 意図する整合性証明の

意義は，このような記述理論的手法をはじめとする，日常の論証に自然に現れる理想へ箱手法，言い換えると実在主義を前提とした手法，の自由な使用が整合的であることを確証することにあったと言える。

注

（1）Frage［5］の後書きをあよ．cf．Russell［24］．
（2）この「中心課題」そついては Russell［24］参照．
（3）Poincaré［23］．
（4）Russell［26］．還元の公理の導入がこれに当たる．
（5）Leibniz［21］，III．pp．499－500．
（6）Leibniz［18］．
（7）例忘ば Leibniz［20］，§ 16.
（8）Leibniz［18］．又弁神論［19］§70 とおいては，「（無限大数や無限小数は）フ ィクションにすぎない。……無限大や無限小は，誤差が指定したあのよりも小さくなることを示すよらに，望むだけ大きく，又は望きだけ小さくとるこ とができる大きさを表わすにすぎない。」と述べている。
（9）Ishiguro［16］参照．
（10）Frege［4］§60．Russell［26］Ch．III の不完全記号の理論．cf．Ishiguro ［16］．
（11）Hilbert［9］，Kreisel［17］参照．
（12）Hilbert［9］．
（13）Husserl［15］ 31 節．
（14）Husserl［15］ 31 節．
（15）Husserl［15］ 31 節．
（16）Husserl［14］72節も参照のこと．
（17）Husserl［13］I． 70 節．
（18）Husserl［12］の付録参照．
（19）Husserl［4］ 72 節．
（20）多様体をモデル諭的な領域と考六て，これを形式的公理体系と対置させてい たことは例总ば「15］31節の次の引用から分かる。「無規定な……多様体を公理諸形式の体系によって規定されたと考えるならば，この樣な多様体に対 して妥当する学の全形式は純粋演繹に喲いて遵出され得る。」
（21）このことから，しばしば，Husserl そおいては意味論と統語論との明確な区

別が成されていなかった，という指摘がなされて来た。例衣ば Bachelard ［1］参照．
（22）Husserl［14］ 72 節．
（23）Husserl［15］ 31 節．
（24）Husserl［15］ 31 節．
（25）Husserl［15］ 31 節．
（26）Bachelard［1］ 3 節．
（27）Husserl［15］31 節．
（28）例衣ば，Hilbert［10］IV．
（29）カッコ内は筆者注．
（30）Husserl［15］ 31 節．
（31）Husserl［14］ 31 節．
（32）Gödel［8］．
（33）Gentzen［7］．
（34）Gentzen［7］ 10 節．
（35）Gentzen［6］．
（36）Gentzen［6］ 5 節．
（37）Dummett［2］ 7.2 節，Dummett［3］，Prawitz［24］参照．
（38）Gentzen［7］ 10 節．
（39）Gentzen［7］ 11 節．
（40）Gentzen［7］ 11 節．
（41）Gentzen［7］III．
（42）Dummett［2］ 7.2 節．
（43）Gentzen［7］ 14 節．
（44）Wittgenstein［28［．
（45）Wettgenstein［28］．
（46）Wettgenstein［28］．ただし引用のカッコ内の Wisman による．
（47）それ故に Russell の逆理等の出現が大きな衝撃を与えたと言える。
（48）その一例が Gentzen［7］の4節に見られる。
（49）Gentzen［7］ 11.4 節．
（50）ここで否定 7 A は A つ人（つまり「 A ならば矛盾する」）という形の含意 と考える。
（51）Gentzen［7］．11．4節の終り参照．
（52）Wettgenstein［27］，Part II．
（53）Wittgenstein［27］，Part II．
（54）Gentzen［7］6． 3 節．
（55）Gentzen［7］．8．12節において，定数や関数の導入に関する疑わしさが，論理結合子の使用に関する欵わしさに還元されることを指摘し，11節において論理結合子の使用における嶷わしさについて議論している。

参 考 文 献

［1］S．Bachelard，A study of Husserl＇s formal and transcendental logic， transl．by Cairns，Martinus Nijhoff， 1967.
［2］M．Dummett，Elements of Intuitionism，Oxford Univ．Press， 1977.
［3］M．Dummett，The philosophical basis of intuitionism，in Logic， Mothodology and Philosophy of Science V，5－40，North Holland， 1978.
［4］G．Frege，Die Grundlagen der Arithmetik，Breslau，1884，
［5］G．Frege，Grundgesetze der Arithmetik，Vol．2，Jena， 1903.
［6］G．Gentzen，Unterschungen über das logische Schliessen，Math．Z． 39 （1935），176－210，405－431．
［7］G．Gentzen，Die Wideaspruchsfreiheit der reinen Zahlentheorie，Math． Ann． 112 （1936）．，493－565．
［8］K．Gödel，Über formal unentscheidbare Sätze der Principia Mathe－ matica und verwandter System I，Monats．für Math．u．Phys． 38 （1938）， 173－198．
［9］D．Hilbert，Uber das Unendliche，Math．Ann． 95 （1926），134－151．
［10］D．Hilbert，Probleme der Grundlegung der Mathematik，Math．Ann． 102.
［11］D．Hilbert and P．Bernays，Die Grundlagen der Mathematik，Springer vol． 1 （1939），vol． 2 （1939）．
［12］E．Husserl，Husserliana XII，Philosophie der Arithmetik（1980－1901）， Matrinus Nijhoff， 1970.
［13］E．Husserl，Logische Untersuchungen，Halle 1900.
［14］E．Husserl，Ideen zu einer reinen Phänomenologie und Phänomono－ logischen Philosophie，Erstes Buch，Halle 1913.
［15］E．Husserl，Husserliana XVII，Formale und Transzendentale Logik， Martinus Nijhoff，1974．（形式的論理学と先験的論理学」山口等澍訳，和広出版）．
［16］H．Ishiguro，La notion dite confuse de l＇infinitesimal chez Leibniz， Studia Leibniziana（to appear）．
［17］G．Kreisel，Hilbert＇s program，Dialetica 12 （1958），346－372．
［18］G．W．Leibniz，Lettre à Varignon， 2 février， 1672.
［19］G．W．Leibniz，Essais de Théodicée， 1710.
［20］G．W．Leibniz，Nouveaux Essais．
［21］G．W．Leibniz，Mathematische Schriften，ed．Gerhardt，Berlin，1899－ 55.
［22］M．Okada，論理記号導入規則による論理的意味論について，科学基礎論研究，近刊．
［23］H．Poincaré，科学と仮説（河野伊三郎訳），岩波文庫．
［24］D．Prawitz，Proofs and meaning and completeness of the logical con－ stants，in Essays on Mathematical and Philosophical Logic，ed．Hin－ tikka，25－40，Reidel， 1978.
［25］B．Russell，Principles of Mathematics，Norton， 1903.
［26］B．Russell and A．N．Whitehead，Principia Mathematica，Cambridge Univ．Press， 1913.
［27］L．Wittgenstein，Philosophical grammar，Part II，On logic and mathe－ matics，ed．Rhees，transl．Kenny，Univ．of California Pree， 1974.
［28］L．Wittgenstein，Wittgenstein and the Vienna Circle，recorded by F． Waismann，transl．Schulte and McGuinness，Basil Black Well， 1979.
［29］L．Wittgenstein，Remarks on the foundations of mathematics，MIT Press，1978，

[^0]: ＊應慶義塾大学大学院文学研究科博士課程（哲学）

