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- Phtlosophy No. 74

Basic Construction of a System of Logic
 Based on Identity and Demonstratives

Toshiharu Waragei*

§.1. An A_nalysis of Identity

I begin this paper with a discussion about some logical nature of
identity, or in other words with an analysis of the logical condi-
tion under which the verb ‘is’ in a sentence of the form ‘A is B’
is used in the sense of ‘is-identical-with’, where ‘A’ and ‘B’ are
supposed to be general names. Let us call this ‘is’ of identity the
verb ‘is’ in the role of identity. - e |

Whenever the verb ‘is’ is used in the role of \identity in a sin-
gular sentence ‘A is B’, the 'folloWing conditions are ‘évidentliy met :

C.1. some object is A,
C.2. some object is B,
C.3. - at most one object is A,
- C.4. at most one object is B,
C.5. whatever is Ais B,
C.6. whatever is B is A. |

In reverse, if there hold between the terms ‘A’ and ‘B’ the
conditions C.1.-C.6., then the sentence constructed by means of ‘A’,
‘B’ and ‘is’, i.e. ‘A is B’ states just as much as ‘A is-identical-
with B’; for if the terms ‘A’ and ‘B’ meet the conditions C.1.-
C.6., then they are clearly designative (C.1., C.2.) and singular
(C.3., C.4). From this consideration' we arrive to the following
equivalence: '

E.1. A is-identical-with B if and only if C.1.-C.6. hold.

* Tokushima University and the University of Fribourg, Switzérland.
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Taking now again into consideration that both ‘A’ and ‘B’ are
singular and designative as far as they sa_tisfy the conditions C.1.-
C. 4., we can be sure that the ‘is’ appearing in C.1.-C.6. is used in
the sense of ‘is-identical-with’. This fact allows us to restate E.1.
in the following way :
E.2. A is-identical-with B if and only if
some object is-identical-with A (C.1.)
some object is-identical-with B (C. 2.)
at most one object is-identical-with A (C. 3.)
at most one object is-identical-with B (C. 4.)
whatever is-identical-with A is-identical-with B (C.5.)
whatever is-identical-with B is-identical-with A (C.6.)
Since what is meant by ‘=’ in its usual understanding is just that
it is a formal substitute of the verb ‘is-identical-with’, we now
substitute ‘=" in place of ‘is-identical-with’ in E. 2., and we obtain;
E.3. A=B.=.(3x)(x=A). (3@x)(x=B). (%, y)x=A.y=A. D.x=Y).
x,y)Xx=B.y=B. D.x=y). ®X)E=A. D.x=B). ®)(x=B. D.
x=A),

assuming here that we follow for the moment referential reading
of quantifiers. Later this reading in this case will be justified. E. 3.
axiomatically expresses the condition under which the verb ‘is’ is

used in the role of identity.

§2. Axiom of Identity

We can take here one more step and simplify E. 3. as follows:
E.4. A=B.=.3x)(x=A). (X, y)x=B.y=B. D.x=y). X)(x=A.
D.x=B)
Indeed from E.4. are the following obtainable:
Th.1. A=B. D.(3x)x=B)
Th.2. A=B.D.x,y)x=A.y=A.D.X=Y)
Proof. 1. A=B (Sup.)
2. x=A.yv=A (Sup.)
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3. X)(x=A.D.x=B) (1., E.4.)
4. x=A.D.x=B 3)
5. y=A.D.y=B G) N
6. x=B.y=B (2,4,5)
7. (X, 7)(x=B.y=B. D.x=y) (1,E.4)
8 x=B.y=B.D.x=y . N
9. x=y (6, 8)
Th.3. A=B.D>.x)x=B.2.x=A)
Proof. 1. A=B (Sup.)
2. x,y)x=B.y=B.>.x=y) (1,E.4)
3. x=B.A=B. O.x=A (2;Aly)
4, x=B.D.x=A . 3, 1)
5. (X)x=B.D2.x=A) 4) .
Th. 4.

A=B. D.(3Ex)(x=A). (Ix)(x=B). (X, y)(x=B. y=B. .
x=v). (X, ) X=A.y=A. D.x=y). X)(x=A. D.x=B).
(x)(x=B. 2.x=A) (E.4., Th.1., Th.2.,, Th.3.)

Th.5. (@x)(x=A).(Ix)(x=B). (x,y)(x=B.y=B. D.x=y).(X,¥)
x=A.y=A.D.x=Yy). X)(x=A. D.x=B). X)(x=B. D.

x=A). D.A=B | (E.4.)

Th.6. A=B.=.3x)(x=A). 3x)(x=B). X, y)(x=A.y=A. D.
Xx=Yy).(X, V) X=B.y=B. D.x=y). X)(x=A. D.x=B).
x)x=B.D.x=A) (Th.4., Th.5.)

Thus E.3. is derivable from E. 4. so that E.4. characterises the
verb ‘is’ in the role of identity. Let us call E. 3. hereafter Axiom
of Identity, for short Ax.I..»

§3 Basic Properties of ‘=’

Let us investigate some properties of the verb ‘is' in the role of
identity. It is transitive and symmetrical. Indeed: -
Th.7. A=B.B=C.>2.A=C
Proof. 1. A=B ‘ : (Sup.)
2. B=C ' (Sup.)
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3. (Ax)}x=A) 1, Ax. L)
4. x=A.D.x=B (1, Ax. 1)
5. x=B.>2.x=C - (2,Ax. L)
6. x=A.D2.x=C 4, 5)
7. X)x=A.D.x=0) (6)
8 &, )x=C.y=C.D.x=Yy) 2, Ax. L)
9. A=C (3,7,8,Ax.1.)
Th.8. A=B.>.B=A
Proof. 1. A=B (Sup.)
2. Th.1..Th.2..Th. 3. (Th.1.,Th. 2., Th. 3.)
3. @Ax=B). x,y)x=A.y=A.

D.x=y).( X)x=B. D.x=A) 1,2)
4, B=A (3, Ax.1.)
But notice that it is not reflexive. Indeed:
Th.9. Ax)x=A).D.A=A

Proof. 1. (@Ax)(x=A) (Sup.)
2. x=A.A=y.D.x=y (Th.7.)
3. Xx=A.y=A.D.x=y (2, Th.8.)
4. X, y)E=A.y=A.D.x=Y) (3)
5. X)(x=A.D.x=A) (Theorem.)
6. A=A . (1,4,5,Ax.1.)
Th.10. A=A.D.3Ex)x=A)
Th.11. (Ax)x=A). =. A=A (Th. 9., Th.10.)

The left-hand component of Th.11. fails if ‘A’ does not designate
an object, so that the right-hand component of Th.11. fails if ‘A’
is not singular-designative. Hence the non-reflexivity of ‘=’. To
require that ‘=’ is reflexive is tantamount to presupposing that every
name is singular-designative, which is surely a very strong onto-
logical presupposition. This fact suggests that analysis of ‘identity’
necessarily leads us to the notion of ‘non-reflexive identity’ if we
carry it out being free from any ontological presupposition.
Another type of analysis of ‘non-reflexive identity’ is to find in
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Lejewski 1967.

§4. Demonstratives

I here understand by ‘demonstratives’ pure demonstratives. They
are the particles that have the function of selecting an individual
out of a domain of individuals. ‘This’ and ‘that’ are the best re-
presentatives in English. They are by nature functional, or func-
torial : they construct unshared names in concatanation with general
name, e. g. ‘this man’, ‘that book’ etc.. Let ‘a’ be a general name,
and let ‘X’ stand for a demonstrative. Then we are able to main-
tain about ‘X’ at least that it selects just one individual from the
domain of individuals named by ‘a’. This functorial character of
demonstratives as selector or individuator is one of their most
celebrated properties. They are nowadays classified under the
heading of ‘indexical expressions’ whose logico-linguistic function is
able to be treated only in the framework of indexical semantics, but
their functorial function as selector or as individuator is in reality
to be treated as a logically constant function which can have its
own place in the framework of formal systems.

In must be noticed that the demonstratives constitute a proper
part of the expressions of the semantic category ‘z/n#’ because of
their specific logico-linguistic character. Let ‘F’ be a usual adjective.
Using ‘Xa’ properly, we select an object out of the domain of a’s,
which we in principle cannot do by using ‘Fa’. And the proper
use of ‘Xa’ usually presupposes the existence of a, while the mere
use of ‘Fa’ does not. In order to mirror this fact in a logical
language, let us accept a special category ‘d’ of the demonstratives
constituting a proper part of #/n. From this consideration we see
that 1) every expression of d is of =/n, but 2) the expressions of
nfn are in general mot substitutable for the variables of d. Let us
express this relation between d and »n/z as dc#/xn.

1 should here mention another type of coping with demonstratives.
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Prof. C. Lejewski proposed in his “Proper names” to treat them as
a kind of proper name of special character : |

Demonstrative pronouns can be used as unshared names of any

object. They are introduced into language axiomatically, as it

were. .. The expression ‘that rose’ can be regarded as a con-

junction or product of two names. (pp. 251-2)
This is in spite of its artificiality one of the most proper ways in
treating demonstrative pronouns as well as pure demonstratives in
the framework of Le$niewski’s Ontology:.. The logical relations
subsisting between my treatise and his treatise will be discussed in
another work in preparation.

Let ‘X7, ‘Y’,... be the variables of the semantic category ‘d’

whose logical behaviour is ruled by the following axioms:

Ax.D. 1. a=a. D.a=Xa?®

D. ach. =. (AX)(@a=Xb)

Ax.D. 2. (Ax)(xea). D. Xa=Xa

AxiD. 3. X,Y)Xa=Ya). D.a=a
I will explain their intuitive sense. As will be clear in §6, ‘a=a’
states just ‘a is an individual’. Now Ax.D.1. reads as follows:

Ax.D.1* if a is an individual, then it is unindividuatable.
Before explaining the intuitive sense of D., I have to remark on the
reading of quantifiers which bind the expressions of demonstratives.
In this case, I do not follow the referential reading, but I simply
read them as ‘for some particular’ and ‘for every particular’. This
reading will be justified in §6. By D. the symbol ‘¢’ is introduced.
Its reading is simply ‘is’ or ‘is-a’. The whole has the following
reading :

D. * a is(-a) b if and only if a is-identical-with a certain

7 particular b.
An example: Socrates is(-a) man, since Socrates is-identical-with a
certain particular man. It is clear that the reading of ‘ (AX)(IAX)(x=
Xa)’ is ‘some individual is a certain particular a’, or simply ‘a
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if a exists, then every particular a is an individual.

An example : man exists, so #4is man is an individual.

Ax, 3*

if no individuation affects a, then a is an individual.

Let us enumerate some theses obtainable on this base.
Th.12. a=b. D.ach. bea

(Sup.)

Proof. 1. a=b
2. b=a (1, Th. 8.)
3. b=b (2, Th.9.)
4. b=Xb (3, Ax.D. 1.)
5. a=Xb (1,4, Th.7.)
6. (IAX)(@a=XDb) ®)
7. asb (6,D.)
8. bea (cf. 1-7)
9. acb. bea (7, 8)
Th.13. ach.bea. D.a=b ,
Proof. 1. acb (Sup.)

2. bea ' (Sup.)
3. @AX)(a=Xb) o - (1,D),
4. AY)(b=YDh) 2,D.)
5. b=Y*a 4) |
6. Y*a=Db (5, Th. 8.)

7. b=b 6, Th.9.)
8. a=X*b 3 .
9. b=X*Db (7,Ax.D.1.)

10. X*b=Db 9, Th. 8.)

11. a=b (8,10, Th.7.)

Th.14. a=Dhb. =. ach. bea (Th.12., Th.13.)
Th.14. is accepted in Ontology. as the definition for introducing
‘=""by means of ‘s’.

Th.15. a=a.=.aea (Th.14.)
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§5. Basic properties of ‘¢’

Now I pass on to proving one of the main result of this paper:
the symbol ‘e’ introduced by means of D. satisfies the sole axiom
of Ontologyr. This fact says that Ax.D.1.-Ax.D.3. are sufficient
as a formal characterisation of selector or individuator, and that
these functorial components have a logically well founded right to
find a fixed place in a syntactically well regulated formal system.

Th.16. aeb. D.aca

Proof. 1. aeb (Sup.)
2. (3AX)(@a=Xb) 1,D.)
3. a=X*b (2)
4. X*b=a (3, Th.8.)
5. a=a (4, Th.9.)
6. a=Xa (5,Ax.D.1)
7. (AX)(a=Xa) (6)
8. aea

Th.17. aeb. D. (3x)(xea)
Th.18. aeh. D. (X, y)(Xea. yea. D. Xey)

Proof. 1. asb (Sup.)

2. Xea (Sup.)

3. yea (Sup.)

4. (AX)(a=XDb) - (L,D)

5. AY)(x=Ya) : 2,D.)

6. (AZ)(yv=Za) 3,D.)

7. a=X*b @

8. x=Y*a (5)

9. y=Z*a (6)
10. a=a (7, Th.8.,Th.9.)
11. a=Y*a (10, Ax.D. 1)
12. Y*a=a _ (11, Th. 8.)
13. x=a 8,12, Th.7.)
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14.
15.
16.

Th. 19.
Proof.

10.
11.
12.
13.

1
2
3
4.
5.
6
7
8
9

y=a
X=y
Xey

aeb. D. (x)(Xea. D. xeb)
aecb
Xea
asa
a=a
AX)(x=Xa)
x=X%*a
a=X*a
X=a
@AX)(a=Xh)
a=X**b
x=X**b
@AX)(x=Xh)
Xeb '

Philosophy No. 74

9,10 ; cf. 10-13)
(13,14, Th. 8., Th.7.)
(15, Th. 14.)

(Sup.)

(Sup.)

(1, Th. 16.)
(3, Th. 15.)
2,D.)

®)

(4, Ax.D.1.)
(6,7, Th. 7., Th.8.)
1,D.)

9)

(8,10, Th.7.)
(11)

(12,D.)

Th. 20. ach. D (HX)(Xea). (X, ¥)(Xea. yea. D. Xey). (X)(Xea. D. Xeb)

Proof.

Obvious from Th.17, Th. 18, Th. 19.

Notice that one need make use of Ax.D.1.in proving Th.20., while

the remaining two axioms are not used.

Th.21. (@x)(xea). (X, V)(Xea. yea. D. Xey). (X)(Xea. D.Xeb). D ach

Proof.

S o oo

(Ix)(xea)

(X, V)(Xea. yea. D. Xey)
(xX)(Xea. D.Xeb)

(X, y)(Xea. yea. D. yex)

(X, y)(Xea. yea. D.X=Y)
%, YEX)(x=Xa). (IY)
(v=Ya). D.x=Yy)

v, X, Y)(x=Xa. y=Ya.
D.X=Y)

(Sup.)

(Sup.)

(Sup.)-.

(2) » ,
(2,4, Th.15) =
(5,D.)

6)

Xa=Xa.Ya=Ya.D>.Xa=Ya (7)
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9. Xa=Xa (1, Ax.D.2))
10. Ya=Ya (1,Ax.D.2)
11. Xa=Ya (8,9, 10)

12. X, Y)Xa=Ya) - (11)

13. a=a (12, Ax.D.3.)
14. aea : (13, Th.15.)
15. aea. D.ach ‘ (3)

16. aeb (14, 15)

Th.22. aeb. =. (AX)(Xea). (X, ¥)(Xea. vea. D. Xey). (X)(Xea. D. Xea)
Proof. Obvious from Th. 20, Th. 21.
Th. 22. shows that the symbol ‘¢’ introduced by D. satisfies the
sole axiom of Ontology:. Notice that in proving Th.21. we made
use of Ax.D.2. and Ax.D. 3., while Ax.D.1. was not needed.

§6. System LID

I will construct in this chapter a logical system which I call ‘a

system of logic based on identity and demonstratives’, for short
LID, and prove a metatheorem concerning it.
1. Construction: LID has as its basic semantic categories ‘n’, ‘s’
and ‘d’, which stand for ‘general name’, ‘sentence’ and ‘demon-
strative’ respectively. As for the compound semantic categories, we
stipulate that they are composed only of ‘»’ and ‘s’. The relation
dCnfn 1s accepted. '

Let us construct LID in the following successive way. At first,
we construct its beginning status B. B has:

1. wvariables of s; p,q,... S
2. variables of #; a,b,c,...,X,v,2,A,B,C,...
3. constant of sin,n;= ‘
4. variables of d; X,Y,Z,...
and as the rules of inference;
R.1. modus ponens

- R.2. substitution
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R. 3. quantification
R.4. propositional definition

~R.5. propositional extension,

with four axioms and one definition ;

Ax.1,Ax.D.1,,D. Ax.D.2., Ax.D. 3, 4
where the definition D. is garanteed by R.4.. Now we extend B
by adding stepwise the theses to it until we reach Th.22. Now at
this stage we add the following rule of inference stated in terms of |
‘¢’ to LID: _

“R.6. nominal definition.

The status thus obtained constitutes the basic status of LID from
which LID will be developed. Let us call this status S.

2. Metatheorem: At S we single out Th.22., accepting R. 1.-R. 6.

as the rules of inference. Let us call the status thus obtained S..

Its only thesis is: ' ‘ '
Ax.0.(=Th.22) (a, b)(@sh. =. (Ix)(Xea). (X, y)(Xea. yed. D. XeY).

(X)(xea. D.Xeb)) :

The system developed on the basis of S, is evidently OntologyL

without the rule of mominal extensionality®. Hence the following

metatheorem :

Theorem: LID is an extension of Ontology: (without the rule of
- nominal extensionality).

After having reached the correspondent of Th. 22., we could supply
LID (at S) with the rule of nominal extensionality as well as the
rule of nominal definition. Let us call it L/D*. Just as the addition
of the rule of nominal extensionality radically changes the logical
relations holding between theses in Ontology.®, its addition to LID
directly affects the logical relation holding between the axioms of
LID and the axiom of Ontology.. Indeed, Ax.D.1. and D. suffice
to prove the axiom of Ontology: in LID*. 1 do not go further on
this point here, and leave it to another occasion. ' For the time
being, let us confine our study to LID.
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3. On quantifier-reading in LID: Notice that thanks to Th. 15. and
Theorem, what ‘a=a’ states is just ‘a is an object’®. In LID the
following are theses:

E.3.1. Ax)(x=A). =. @AX)E=Xx.x=A)

E.3.2. x,V)x=B.y=B. D.x=vy). =. (X, 7)(X=X.y =Y.

x=B.y=B. D.x=y

E.3.3. X)x=A.>2.x=B). =. X)x=x.x=A. D.x=DB),
thanks to:

Th.9* Xx=A.D.xX=X,
which is a variant of Th.9.. Clearly the quantifiers in E. 3. 1.-E. 3. 3.
may be interpreted to run over the domain of individuals. Thus
the referential reading in §1 is justified.

1 follow here provisionally what I called in Waragai 1980 categorial
reading of quantifiers as the official version in LID with the fol-
lowing categorial conventions as to names and demonstratives :

C(n): a name indefinitely names the object which falls under
the extension of the name, and if ‘=’-relation holds of
the name, it designates an individual.

C(d): a demonstrative selects just one individual out of the ex-
tension of the name to which it is concatanated.

That we may supply LID with C(d) as the categorial convention of
demonstratives is a matter to be proved. I skip the proof of it in
this paper;

The general form of quantifier reading in LID is as follows:

CRQ (a@)(...a...) for every expression ‘a’ of the categorial

convention C:...a...
In general, we supply with an appropriate categorial convention to
the expressions whose semantic function we need to state explicitely.
Otherwise, we do not state it, and follow the substitutional reading
of quantifiers. Thus the quantification over the demonstratives is
justified, and we -are able to quantify every expression appearing in
LID.
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§7. Problems untouched

There are some problems left untouched in this paper. I list up
three of them which seem to be interesting.

1. A very natural problem that follows Theorem in § 6 is whether
LID is a proper extension of Ontology.. The answer to this ques-
tion seems to be positive, since the demonstratives constitute a
proper part of the expressions of the semantic category ‘u/n’.
Adjectives are of the category ‘z/n’. But what are bound by ‘X,
‘Y’ in the axioms are demonstratives, for which the adjectives are
not substitutable. The axioms of LID characterise the logical role
of a proper part of the expressions of the semantic category ‘nfxn’,
so that LID is able to treat a proper part of the expressions of the
semantic category ‘#/#’, separating it from the other parts of the
expressions of the same semantic category, which Ontologyy cannot
do. A positive answer to this problem will be given with a proof
in a paper in preparation. ‘

2. The second point to be considered is the relation between the
treatment of demonstratives in LID and that proposed by Prof C.
Lejewski. I point out a logical fact concerning this point. The
following holds: under some condition, what can be expressed by
means of a demonstrative can be expreésed without ' it.

3. What is interesting is how the indefinite and definite articles
are incorporated into LID. By some appropriate way, they are in-
corporatable into LID as the expressions of the semantic category
‘d’. As a byproduct of this survey, the following theorem was
obtained : if we restrict the property-expressions to non-empty ones,
the quantifiers are eliminable.

Remarks

1) Notice the resemblence of Ax. I to the axiom of Ontologyi, i.e. Th. 22..
Ax.I. can be shortened to “(a,b):a=b. =.(3x).a=x.x=Db’ which is the sole
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axiom of Lejewski 1967. Notice that this again resembles to the shortest
axiom of Ontologyy, i.e. ‘(a, b): aeh. =. (Ix). aex. xeb’. Through the analysis
of ontological commitment free identity, I reached Ax.I. without realising
its equivalence to Lejewski’s axiom.

2) That dc#=fn is here of essential importance, since this prohibits such
a substitution as ‘*{(x)/X’, where the functor ‘*’ is introduced by the
definition ‘ae*(h)(c). =.aeb.asc’. If this substitution were to be allowed,
then Ax.D.1. leads to a contradicition.

3) On this rule and R.1.-R.6., cf. Lejewski 1958, 1967 as well as Stupecki
1955.

4) Cf. Sobocinski 1934. ,

5) For a philosophical discussion on this point, cf. Waragai 1980.
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