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Philosophy No. 66

Model Spaces

Yosaku Nishiwaki*

In this paper we shall show a general framework of.
studying some properties between relational structures
and first order languages descr1b1ng them. Recently
usual two-valued models have been quite naturally ex-
tended to the Boolean-valued models especially in set
theory when Cohen’s forcing method was studied by
the Boolean-valued method. Here we want to clarify
a general construction of Boolean-valued models using
the analogous method of a construction of Stone-Cech
compactification and ultrafilters of Boolean algebras.

- Properly speaking, the concept of compactifications is
one of the important concepts in topology, but applying
its method we can easily treat model constructlons if
we are given a Ianguage and a structure of the same
31m11ar1ty type. o

- In section 1 we will define a Boolean valued structure.
Then we study classical models in section 2. Further
we show the relations between classical models and so
called Kripke models with respect to a introduction of
constants in section 3.

1.

In this section we define a Boolean-valued structure (abbreviated
B-valued structure) and the concepts “true” and “false” in it. The
reason why we think a B-valued structure is that truth concepts in
a two-valued interpretation correspond to the ultraﬁlter in B- Valued‘
one and. then we can 1nvest1gate truth concepts algebrarcally

Let 0 be an ordinal and rew” a similarity type. A (ﬁrst order)
language with equality L consists of usual means with logical
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symbols 1,V,A,—, Y, 3 and equality symbol=, z(i)-ary predicate
symbol P.. ’

If Lisa language of type 7, a structure for L is a relational
system of type . And we denote this structure as

S)I = <A’ R?>i<p

Let L be a language and let % be a structure for L. Given a
subset C of A, we let L¢ be the language whose symbols are the
symbols of L together with a distinct constant symbol ¢, for every
acC. A structure for L¢ is a relational system of the form

QIC =<Ay R'?,l’ Cw>i<p, aecC
=<, CaYacc

The basic model-theoretical concept of a model for a sentence
may be defined by the usual method due to Tarski. Now we will
generalize the notion of an ordinary two-valued structure to that of
a B-valued structure by replacing the Boolean algebra 2 of two truth
values with any complete Boolean algebra B. Throughout this paper
let B=(B, +,:,—,0,1> be a (complete) Boolean algebra.

By a B-valued structure we mean a system

WB=CA, Ri,CDicp jca

where A is a nonempty set called the universe of %® and R; is a
n-ary function defined on A with the values in B;

R,; . Anl—ﬁB,

and ¢;:c¢;—A.
We are now going to give the definition of B-valued satisfaction.
(def. 1) Let % be any infinite sequence of elements of A. We put:

) _ . O lf hi#hj;
(1) 1|<xz-—xwh>”—{1 if hi=1h;.

(2) W(Pilmip - -+ i), W =Rillriy <+, sy
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(3) T e, Mt="lle, Al
(4) eV, Wl=ll(e, A+ I, Al
(5) 1103 mag(a), Bl = Lll(p(ws), ANV jGEi—hi=N )}

Remark. The condition (5) is well defined in any complete Boolean
algebra, but the supremum does not always exist in any (not com-
plete) Boolean algebra.

If we are given a structure B, in order to define a truth value
for closed formulas of L we first extend L to a new language L,
by introducihg the family of constants {c,|@cA}, and we define
¢eo=a. Then above definitions become as follows: " '
(def. 2)

(1) llev=el={} 5 202
(2) IPes, s el =R, -+ )
(3) 11 Tell="llel

(4) lloVoll=ligll+li¢ll
(5) I3 ze@ll= Z llelcalll

(def. 3) ABE @<= lpll=1
ABE ¢ is read “¢ is true in YB.”

There is no necessity to introduce constants for all the elements of
A. But by doing so, it becomes quite simple to treat models. It is
sufficient that the introduced constants are able to construct a
Boolean algebra. This Boolean algebra will be one of the subalgebras
of a Boolean algebra of L. | . '
‘Theoretically we may restrict constants introductions countably
many, for any Boolean algebra can be embedded in a countably
generated Boolean algebra. | |
In a B-valued structure defined above, usual axioms of predicate
calculas are also true and further,
(theorem 1)
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If ¢ is a closed formula of L, then ¢ is true in every B-valued

structure iff ¢ is logically valid. .
Now let % be a complete homomorphism of B into 2 and F be

an ultrafilter for B. Then one of the well known results of a
Boolean algebra is the following theorem :
(theorem 2) - | '
(1) If Fis an ultrafilter for B and
L if xef
h(“’):{o if ze B—F,
then % is a homomorphism from B to 2.
(2) If 4 is a homomorphism from B to 2 and F={xe B|Ai(z)=1},
then F' is an ultrafilter for B.
From this theorem we clearly get,
(theorem 3) '

WBE=p & Allell) =1
& llolle F

From above theorems, we can say that ¢ is true in UB iff there
is an ultrafilter for B such that |¢}| is included in it and that ¢ is
valid iff for any ultrafilter F for B it includes ||¢}|. Thus we shall
concentrate our attention upon the family of ultrafilters for B in

the next section.

2.

From section 1 if we fix a language L4 and a structure descrived
by it then a model for a sentence ¢ of L, is given _aé follows. From
all ultrafilters for B which include the B-value of ¢, we select any
one and then its ultrafilter is a model of 0.

Now we set a model family generally such as:

(def. 4) A model family for L, is the set

{QUB, Fdli < B}
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where UB is a B-valued structure, each £} is an ultrafilter for B and
- p=2BI, _
Now we show that for each z< B, M= <"21B Fpis a canomcal
model of ¢s such that |j¢||eF;. To this proof we define the notion
of .consistency property. , E - :
(def. 5) A consistency property for L, is a set S of sets s such.that
each seS'is a set of sentences of L, and such that all the followings
hold for every seS:.

(1) ges>Topds
(2) oA¢ges>sUlp, ¢}eS
(3) eVges>sU{pleS or sU{gleS S
(4) Vap(z)es=>sU{p(c)leS for each constant ¢ of L. =
(5) Fap(z)es>sU{p(c)}eS for some constant ¢ of L.
(6) 1. (ci=cpes=>sU{(ci=cylesS.
2. olca), (ci=cj)es=sU{p(c;)}eS.
From (def. 5) we can get the usual model existence theorem.
_,E_xt,ending this theorem to a B-valued structure, we can get .;the
existence of sd_me M;. | |
(theorem 4) ,
For each sentence ¢ of L,
Tle|le Fy for some i< f&=pes for some seS::
(prbof)' This. proof is quite the same as usual p'roéf if we COnéider
a non- mﬁmtary language. And its proof con51sts of showmg that
for any seS there is a max1ma1 consistent s’eS and its existence is
proved by Lindenbaum lemma. Then clearly from theorem 2 and
theorem 3, ABE < ||¢||e ' pes’ for some F,s’.

~ But the language L, might be uncountable. For if the universe
A is not countable the set of constants {colae A} is not countable,

too. But L, does not contain any infinite logical conjunction and
disjunction in this case. Hence the difference from the ordinary

structure
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@B = <A3 -R—i>'13<()
is only the addition of constants. So its structure become
9IB=<-‘4-) R’I:: 60:>?5<p« acd

We show that these constants can be replaced by unary predicate
symbols as is done by the following construction.
Let L™ be a language such that it is obtained from L by adding

the unary predicate symbols {@,|r<|A|}. Suppose
m]g = <Ax Ri: Qr>i<p. r<id]

be a structure for L*. Here @,={¢,}. We associate with each
formula ¢ (¢,1, -+, ¢m) 0f L4 the formula ¢+ of L* where

ot = V- V-’%(Qﬂ(%)/\ T Aan(xn)—>90($1, Y, 3771))
Then for any AeA¥ |

(e, A)l|€F; in B ||(pF, M)]|eFy in AT

Therefore our proof may be reduced to the model existence theorem
about the set of ¢* type formulas of L*. The meaning of this
reduction consists upon the fact that any formula is finite and the
number of occurrences of constants in a formula is also finite.
Now we shall consider a general framework of models in L,
and their B-valued structures.®® Let S(B)=the set of all ultrafilters
of B. Then S(B)<2'Bl.
(def. 6) For a Boolean algebra B we denote by ¢m, or simply by ¢,
the function from B to P(S(B)) defined by

Pa)={FeS(B)|acF}

The Stone topology on S(B) is the topology determined by the
subbase J[B].
(def. 7) The model space Mg of B is the set

{QUB,F)| FeS(B)}
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with the Stone topology on S(B).
Remark. In above definitions we do not define for a complete
Boolean algebra. The difference of definitions will be clear im-

mediately.

Let B(S(B)) be the set of all clopen sets of S(B) and let R(S(B)) be
the set of all regular open sets of S(B). Then clearly B(S(B)) cR(S((B)).
(lemma 1) |

¢ is a Boolean algebra isomorphism from B onto B(S(B)).
(proof) We first show ¢[B]CB(S(B)). From the definition of the
topology of S(B), every element of ¢[B] is open.. Then ' ‘

S(B) — @) =¢(” a)GB(S(B))

for aeB, so that ¢{B]cB(S(B)). And ¢ is a Boolean algebra
homomorphlsm_ Hence ¢ is a Boolean algebra embedding of B into
B (S(B)). Now if AeB(S(B)) then by the fact that ¢[B] is a base
for S(B) there is {a;liel}CB such that A= U {¢(a;)|iel}. Since A is
compact there are n<w and izel for <z such 'that

=¢(dot e+ an) €GB
If X is a totally disconnected space and peX then
{ae]B(X)|pea eS(B(X)) | |
(def. 8)
" hi X — SOB(X))
M) =laeBX)pea)

(lemma 2) : ,

If Xisa compact, totally dlsconnected space then h is a homeo-
morphism from X onto S(B(X)). ) |
(proof) To prove this.lemma we show that (1) if X is ze10-
dimensional then % is a homomorphism from AX onto S(B(X))
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where % :pX — S(B(X)) is the Stone extension of % (8X=the Stone-
Cech compactification of X) and (2) if X is a compact space then X
is -disconnected iff X zero-dimensional. From: above two statements
and compactness of X, it follows that % is a homemorphism X onto
S(B(X)). S S g

(1) ‘Since gX is compact we have A[X]=S(B(X)) and it is
enough to prove that 2 is one to one. If p,gepX and p=rq then
there are A, BeZ(X) such that Aep, Beq, and ANB=¢. (Z(X)=the
family of all zero-sets of X) Since X is zero-dimensional there are
C, DeB(X) such that AcC, BcD, and CND=¢, and from h(p)=
pPNB(X) for gepX, we have h(p)=h(g).

(2) If X is zero-dimensional then B(X ) is a base for X. Then
clearly X is totally disconnected. Assume X is totally disconnected.
Let A, BeZ(X) with- ANB=¢. Then there is A, ,€B(X) such that
peA,, and g4 A, , for pcA, geB. The family {4, ., pecA} is an
open cover of the compact set A, and thus there are #(g)<w and
Dos -y Prep €A such that

ACApy.qU-UAp, 0 for geB.

We set B,=X—(Ap,qU-"UAp,.a» S0 that geB,eB(X) for
geB. The family {By|lgeB} is an open cover of B, and thus there
are n<w and ¢qo, -+, gn€B such that

BC By, U+ U By,

We put C=B, U---UBg. Then CeB(X), BcC and ANC=¢.
(def. 9) Let ¢:B’— B be a Boolean algebra homomorphism. The
function S(p) is defined on S(B) by

S(e))=laeBly@)cp)

Let f X — 4Y be é continuous functioh between compact, totally
disconngcted space. B(f) is defined on B(Y) by

B )(B)=s~(B)
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Philosophy- No. 66

Then it is clear that: , .
Sle) S(B’) — S(B)
B(/): B(Y) — B(X)

And by lemma 1, 2, we use the notation /% and ¢ to denote
respectively the homeomorphism and the Boolean algebra isomor-
phism . ‘

h: X — SB(X)) and ¢:B — B(S(B))

From these definitions and lemmas, we get the following theorem
(theorem 5) - T SR R T P
‘Let ¢: B’ > B be a Boolean homomorphlsm and let f: XY be
a continuous function between compact, totally -disconnected: spaces:.
Then ‘ : - ‘
- (1) ¢ is an embedding = S(p) is an onto function -
@ is an-onto function = S(p) is one to one m
B’=B and: ¢ is the 1dent1ty function.. > S(p)- is. the
1dent1ty function - R T
(2) B(f) is a Boolean algebra homomorphism- -
(3) f is one to one = B(f) is an .onto function
f is an onto function = B(f) is one to one
X=Yandf is the 1dent1ty funct10n > B( f ) is the 1den
tity function ‘
(4) the dlagrams

]B’-—-~—~——>]B : . X ———— Y
g7 '¢ B T L
B(S(B’)) l ‘, l‘ S(B(F)) l
BESB)) ——>BS(B)) S<B<X>>——~—~>S<B<Y>>

comm,ute

Collecting above results, we can say about the model family for
L, that if we are given some B, the family “of " truth sets of each
model is R(S(B)). And this is a kind of geometrization of models.
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Further a relation of two model spaces will be shown as such;

D RTTTROR A

‘QlIB __90———> B’

b 250 L
3.

- In section' 2, in order to speak of the algebraic relation of all
the models of classical logic we did not alter the language L,.and
the structure AB. Only the kinds of ultrafilters were the subject of
our inquiry. But in this section conversely we fix an ultrafilter
and consider many languages.

Let L be a language with any constants and let % be a struc-
ture of the same similarity type. We shall consider the method of
the introduction of new constants to L. Then there may be many
methods, say, the method of introducing new constants one by one
to L cumulatively. Then the sequence '

where L;=L;_1U{c;} is obtained. Of course, it is not nécessary that
the introduction is done by a totally ordering. Further there might
be the process of erasing the constants. Hence there are very many
methods of getting new languages by the introductions, the erasures
or their complex. But here we consider on the process of the
introduction of constants. By this assumption we can say that at
least the process of introductions is a partial order. Various algebraic
structures of constants introductions can be considered, for éxample,

1. a poset with L, L4 be zero and unit -
2. a lattice ”
3. a Boolean algebra ”

Before considering the subject, we notice some remarks.
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* By the introduction of constants only the language may
be changed but the structure is invariant through it.
* The order of a introduction is quite free and there is no
relation with our real methods of it. -
* The family of sets of new constants are g1ven a priori
and we can use them with no restriction.
Although there are quite many mtroductmn methods in this
paper we restrict them to the followmg sets ;

C*:{C(B)]BQA/\IB] =w}

where C(B) is the set of constants of all elements of B. This
restriction is only by the results of non-classical models already
constructed, so there is no logical necessity of such a restriction.
Now we define the Kripke-type models with our languages. First
we fix A the universe of AB and an ultrafilter /. Then let set

the following sequence:

...... ’I|JB:“ , [IJBz, PPN I|JB”’ [IJA
...... , <UBL, F1>  <WB2 F2> weoves) <ABn, "> o) <UB F >

Now. we shall characterize this sequence. . For that purpose we
consider the factors of the sequence respectively as follows:

8 Bl, By, Bs, - B, oo
y Fl, F2 R .. 0 (n<w)
1. the sequence «
From the definition of C* for any B, all the elements of B,
have their names and C(B,) is the set of them. A relation R of Cc*

is defined by many ways. For example, R can be defmed by the
set inclusion relation < of the set

{Br|C(By)eC*}
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Then in this case the relation R is a partial ordering relation and
at least it is transitive and reflexive.

2. the seciuence B _
This is the sequence of Boolean algebras. What properties are
there between them? '

(1) For any n<o, B.is a subalgebra of B. .It is_clear from
the fact that B,cB and B, is a Boolean algebra.
(2) For any n<w, B, is a countably generated Boolean algebra.

Because C(B,) is countable and its elements are generated
from C(B,). '
(3) If we start our study using only the symbols of L4 then
" we can think that B is a free Boolean algebra of B-values
of sentences of L, and each B, is also a free Boolean
algebra of B-values of sentences of Lg..

3. the sequence 7
This is the sequence of ultrafilters F* which are included-in F
of B.

(1) Each F™ is an ultrafilter of B, and F"CF for any n<w.

We will be .able to understand more clearly if y is
considered such that every F” is much the same as F,

but " has one more property, i.e., every element of F"
have a name of itself. Therefore we can write

Fr={aeFic,eC(By)} for any #<w.
(2) From 1 we get easily |
B;.cB; — FicCF/  for any i, j.

We did not prove above properties, but 'thei‘r”p'recise proofs are
not so difficult. They are well known properties of Boolean algebras
without exception. "

Here we assume above properties for the next definition.
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(def. 10)

= | Lg,
nw

G ={<UBr, F">|nw}
R={<UB:, F> <UB;, 7> |B;C B}

oW o

P:G — C*
I'R4 —+  P(I<P(4)
5. [lglleF™ & kg
- 6. K=<G,R, =, P> |
(def.v 11) Definition of Kripke models“’;).

By an intuitionistic model we mean an ordered quadruple K’'=
<.G’,R’ =/, P’> where |
1 G’ is any set.
2. R’ is a transmve relatlon
3 Pisa flll’lCthI’l from G’ to C* satlsfymg the cond1t10n

I'R'4 — P(I"CSP(4)

4. E’ is a relation between members of G/ and_ sentences
of L* satisfying, for each I"eG’,

a. I'e'g,'R'd < AE’¢, for atomic
b. I'E'(pAd) <> I'e'p and T'E’¢
c. TE(pV¢) << I'E'por I'E'Y

d. I'e'1¢ <:> for each AeG’ such that FR’A not
Al= ©

e. I'e'(¢—¢) & for each 4eG’ such that I'R’4,
if 4="¢ then 4E'¢

f.. I'e'V zplx) < for each 4eG’ such that I'R'4,
4="¢(c) for each ceP'(4) -
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g. I'="3zp(x) & I'E'¢(c) for some ceP(I')
From these definitions we have the next result.

(theorem 6)

K is an intuitionistic model.
(proof) If K satisfies 1, 2, 3 and 4 in (def. 11), then the theorem is
proved. Hence we must show I',E=¢p > Fnlz’go for n<w. To prove
this let use the properties of the sequence y. From the property of
ultrafilter F, a, b and c are satisfied. In order to prove d~g, it is

sufficient to use (2) of the sequence 7.
It will be better to say that K is a Boolean intuitionistic model.

4.

In the preceding sections we investigated separately the struc-
tures of classical models and intuitionistic models by the idea of
constants introductions. If we unify the classical model space Mg
of Ly and the intutionistic model K, then we get the following
diagram: |

(unified model space)

| STV R L, ceeeeeeenees L, oreeeeeeesfoneenensens L.
LUBL, Fi>> oo UBr, FP> el <UB, Fy>
<AALP> :
<YB, F;> ...... < Bn , /.3 SUPN I <Q[B; F>
Mg

- Each column means a classical model space Mg, and each row

corresponds to an intuitionistic model K.
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NOTES

(1) To satisfy (6) we must add the following axioms to def. 2.

1. |le=c]|=1

2. |ler=cal|=]lca=c1l]

3. ller=c¢]- llea=csl| < ler=cs]]

4. For each zn-ary predicate symbol P,

llex=cy' | +llen=cn'{|-||P(e1s -y )l [ || Pley's oo en)]]|
(2) Following contents of section 2 are written more precisely in [1], [2].
(3) We took this definition from [3].
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