Keio Associated Repository of Academic resouces

Title	ソーシャル・キャピタルからみたスポーツの価値:
	スポーツの教育的な価値に注目して
Sub Title	
Author	緒方, 慎
Publisher	慶應義塾大学商学会
Publication year	2022
Jtitle	三田商学研究学生論文集 No.2021 ,p.95- 117
JaLC DOI	
Abstract	なぜ人々はスポーツに引き付けられるのか。スポーツの価値とは何なのか。こうした問いに答えるべく,本稿ではソーシャル・キャピタルという概念を援用し,「スポーツにはソーシャル・キャピタルを蓄積させる効果がある」という仮説を立てた。ソーシャル・キャピタルとは,人々の信頼関係や協力関係を資本として捉える概念である。この仮説を立証するために,本稿では,習い事とソーシャル・キャピタルに関する独自のアンケート調査を行い,スポーツとソーシャル・キャピタルの関係性を分析した。分析の結果,団体スポーツにはソーシャル・キャピタルを蓄積させる効果があること,英会話などの語学学習についても同様の効果があること,団体スポーツ・語学学習と比較すると個人スポーツや塾,芸術活動はそのような効果が弱いことを明らかにすることができた。近年,日本の教育界では知識偏重からの脱却が模索され,「生きる力」や「人間性」を育むこと・年まらの関連が強く,こうした観点からもスポーツの価値を再認識し,活用していくことが重要であると結論づけられる。
Notes	論文
Genre	Journal Article
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AN00113 718-00002021-0095

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

三田商学研究 学生論文集 2021年度号

ソーシャル・キャピタルからみたスポーツの価値

――スポーツの教育的な価値に注目して――

緒 方 慎

<要 約>

なぜ人々はスポーツに引き付けられるのか。スポーツの価値とは何なのか。こうした問いに答えるべく、本稿ではソーシャル・キャピタルという概念を援用し、「スポーツにはソーシャル・キャピタルを蓄積させる効果がある」という仮説を立てた。ソーシャル・キャピタルとは、人々の信頼関係や協力関係を資本として捉える概念である。この仮説を立証するために、本稿では、習い事とソーシャル・キャピタルに関する独自のアンケート調査を行い、スポーツとソーシャル・キャピタルの関係性を分析した。分析の結果、団体スポーツにはソーシャル・キャピタルを蓄積させる効果があること、英会話などの語学学習についても同様の効果があること、団体スポーツ・語学学習と比較すると個人スポーツや塾、芸術活動はそのような効果が弱いことを明らかにすることができた。近年、日本の教育界では知識偏重からの脱却が模索され、「生きる力」や「人間性」を育むことに重点が置かれている。「生きる力」や「人間性」といった要素はソーシャル・キャピタルとの関連が強く、こうした観点からもスポーツの価値を再認識し、活用していくことが重要であると結論づけられる。

<キーワード>

スポーツの価値、習い事、ソーシャル・キャピタル、新学習指導要領

1. はじめに

2021年7月23日,東京オリンピックが開催され、ビデオリサーチの調査によると開会式のリアルタイム視聴人数は約7326万8千人に達した¹⁾。コロナ禍ということで、大会の開催に対し、不安や疑問の声も上がっていたが、このような数値を見ると、結果として東京オリンピックは多くの人を魅了した大会であったと言える。スポーツがこれほどまでに人々を魅了する理由はどこにあるのか。こうしたスポーツの価値をさらに活用し、社会をより豊かにすることはできないのだろうか。こうした問いに対し、

¹⁾ ビデオリサーチ (2021) より。

ソーシャル・キャピタルという概念を用いて、一つの解答を提示することが本稿のテーマである。

スポーツの価値の中で、特に注目したのは、「人と人とを結びつける力」である。私たちはスポーツを通じて、連帯感や安心感、帰属意識といったものを抱くことができる。会ったこともない選手が出場する大会の開会式を、国民の半数以上が視聴した理由もここにあるのではないか。このようなスポーツがもたらす価値を可視化するために、本稿ではソーシャル・キャピタルという概念を用いた。ソーシャル・キャピタルとは、人間関係における信頼や規範意識、ネットワークなどのことで、ソーシャル・キャピタルが蓄積されている社会では、人々が公共善を意識して行動し、経済・社会・政治・教育・医療など、様々な分野で好循環が生じることが知られている。

人々が恊働し助け合うことで、社会をより豊かにできるというソーシャル・キャピタルの考えは、スポーツでしばしば用いられる「チームワーク」や「One for all, All for one」などの考えに類似している。本稿では、スポーツには「人と人とを結びつける力」があるのかどうか、言い換えれば、スポーツにはソーシャル・キャピタルを蓄積させる効果が存在するのかどうかについて考察していく。

本稿の構成としては、まず、2節において本稿のテーマを具体化するために、これまでスポーツの価値がどのように定義されてきたのかを紹介する。様々な定義があることを確認した上で、それらの定義の中から、スポーツの価値が「ソーシャル・キャピタルの蓄積」にあるのではないかという共通点を見出す。3節では、本稿で扱うソーシャル・キャピタルという概念について詳述する。4節では、ソーシャル・キャピタルについての先行研究を紹介し、どのような変数がソーシャル・キャピタルの決定要因とされているのか、ソーシャル・キャピタルとスポーツの間にはどのような関係性があるのかについて述べる。5節では、本稿で立てた仮説を示すとともに、実施したアンケート調査の概要を述べる。6節では、重回帰分析と順序ロジット分析という2つの分析手法を説明し、7節では、分析に用いた変数の定義とデータについて詳しく解説する。8節では、分析結果を示し、9節では、分析結果を基にした考察と本稿の課題について述べる。

2. スポーツの価値

スポーツの価値についてはこれまで多くの機関が研究を行い、様々な定義付けがなされている。日本オリンピック委員会(JOC)が発表している「スポーツ宣言日本一二十一世紀におけるスポーツの使命一」では、スポーツの価値を「素朴な運動の喜びを公正に分かち合い感動を共有することであり、身体的諸能力を洗練することであり、自らの尊厳を相手の尊重に委ねる相互尊敬である」²⁾ と定義している。オリンピック憲章には、「オリンピズムの目的は、人間の尊厳の保持に重きを置く平和な社会の推進を

²⁾ 日本オリンピック委員会ホームページ(2021)より。

目指すために、人類の調和のとれた発展にスポーツを役立てることである」³⁾ と明記されており、近代オリンピックの提唱者であるクーベルタンは、スポーツの価値を活用した教育改革の重要性を強く主張していた ⁴⁾。文部科学省による「スポーツ立国戦略」では、「スポーツは、私たちの「こころ」と「からだ」の健全な発達を促し、人生をより充実したものとするとともに、明るく豊かで活力に満ちた社会の形成に寄与する世界共通の人類の文化の一つである」⁵⁾ とされている。また、中西(2012)は、スポーツの本質を、「スポーツとは、…(中略)…人類が人生をより豊かに充実して生きていくために、その時代その時代に持てる英知を結集して創造してきた文化である」と定義している。さらに、中西(2012)は文部科学省の「スポーツ振興基本計画」において用いられているキーワードなどを KJ 法によって整理し、文化としてのスポーツの価値を個人的価値、教育的価値、社会・生活向上価値、経済的価値、国際的価値、鑑賞的(芸術的)価値の 6 つに分類している。

このように、スポーツの価値については様々な定義付けがなされているが、これらの定義には身体運動の総称であるはずのスポーツのうちに、精神的・社会的・文化的価値が見出されているという共通点が存在する。スポーツの価値は、身体能力を向上させることだけでなく、個人と個人を結びつけ調和のとれた豊かな社会を生み出すことにある。私たちは、スポーツに取り組むことや、試合を観戦すること、選手をサポートすることなど、様々な方法でスポーツに関わることができ、スポーツを通じて多種多様な交友関係を構築することができる。スポーツによって形成されたネットワークが広がっていくにつれて、社会全体で信頼や協調性が育まれ、社会がより豊かなものになっていく。こうした社会的な好循環を生み出すことこそがスポーツの価値と言える。

3. ソーシャル・キャピタルとは

ソーシャル・キャピタル 6 (以下、SC) とは、人と人との繋がりを資本として捉える考え方で、「信頼」「互酬性」「ネットワーク」の 3 つの要素から構成される。Putnam (2000) は、SC を「個人間のつながり、すなわち社会的ネットワークおよびそこから生じる互酬性と信頼性の規範」であると定義している。また、SC における「信頼」の役割を特に重視したフクヤマ(1996)は、現代の経済学が前提とする「個人は利己心に基づいて合理的に行動する」という仮定に異議を唱え、「人間は、しばしば功利主義的ではない目的のために、非合理的かつ集団志向的な仕方で行動する」と主張している。この「非合理的かつ集団志向的な行動」を引き起こす動機こそが SC であり、助け合いや自己犠牲の精神に基づい

³⁾ 日本オリンピック委員会ホームページ(2021)より。

⁴⁾ 日本オリンピック委員会ホームページ(2021)より。

⁵⁾ 文部科学省ホームページ (2010) より。

⁶⁾ ソーシャル・キャピタルは「社会関係資本」と訳されることが多く, 道路や橋などの社会インフラを意味する「社会資本」や「社会共通資本」とは異なる概念である。

た公共善を目的とする利他的な意識のことである。こうした観点から、フクヤマ (1996) は SC を「信頼が社会または社会のある程度の部分に広く行き渡っていることから生じる能力」と定義している。 SC が醸成された社会では人々の間で強固なネットワークが構築されるため、生産性の向上や治安の改善、取引コストの削減、幸福度の上昇などが見込まれる。

以下では、SC を構成する3つの要素について詳述する。1つ目の要素は「信頼」である。信頼は、SC を形成するために不可欠な要素である。フクヤマ(1996)は、信頼を「コミュニティの成員たちが、共有された規範に基づいて規則を守り、誠実に、そして協力的に振舞うということについてのコミュニティの内部に生ずる期待」と定義し、信頼が社会に浸透することによって生じてくる機能自体がSCであると考えた。フクヤマ(1996)は、個人が社会の利益のために利他的な行動をとる集団と、個人が自己の利益のために利己的な行動をとる集団とでは、前者の方が経済競争力や民主主義の発展度合いが高いことを、国際的な比較を通じて明らかにしている。

2つ目の要素は「互酬性」である。互酬性とは、広義では物の交換のことであり、SCでは特に、自分にとって利益のないことでも、将来的には利益が自分に返ってくるだろうという期待や相手への配慮を基に利他的に行動すること、見返りを求めずに互いに支え合うことを意味する。交換する対象は物的なものに限らず、挨拶や感謝など観念的なものも含まれる。現時点での見返りを必ずしも求めない互酬性を一人ひとりが持つことによって社会全体の効率が向上する。

3つ目の要素は「ネットワーク」である。ネットワークとは、人間関係や交友関係を意味し、「コネ」や「~派閥」などと似た意味を持つ。ネットワークには、上司と部下の関係性のように上下関係が存在する垂直的ネットワークと、学校のクラスのような水平的ネットワークが存在する。Putnam (1993) は、南北イタリアの比較調査を通じて、水平的ネットワークの密度が高まるほど社会的な信頼関係が強まり、人々が自分自身の利益よりも相互の利益のために協働するようになることを明らかにしている。

SCの代表的な分類としては「結束型 (bonding)」と「橋渡し型 (bridging)」がある (Putnam, 2000)。 結束型とは、特定の組織やグループ内部での信頼や協力のことで、同質的な人同士の結びつきを意味し、家族やクラスメイト同士の関係などがこれに該当する。結束型 SC では、非常に強固な関係性が築ける一方で、こうした特徴が強すぎると閉鎖的・排他的な性格を持った集団になりやすい傾向がある。結束型 SC を構成する要素としては「特定化信頼」「特定化互酬性」「閉じたネットワーク」がある。橋渡し型とは、結束型 SC と比べてより外部に開かれた横断的な関係性のことで、異質なもの同士の結びつきを意味し、個人と社会との関わり合いや NPO 活動による繋がりなどがこれに該当する。橋渡し型 SC を構成する要素としては「一般化信頼」「一般化互酬性」「開いたネットワーク」がある。

SC の各要素について、結束型と橋渡し型の間で「特定化」と「一般化」の違いがあるが、両者の相違点は、前者は特定の個人や組織に対してのみ適用されるもので、後者は社会全般に対して普遍的に適用されるものであるという点にある。「特定化信頼」とは、友人や自らが所属する組織に対して抱く信頼やそこから生じる愛着のことであり、「一般化信頼」とは、自らの交友関係の範囲を超えて社会全体

に対して感じる信頼や愛着のことである。「特定化互酬性」とは、特定の相手に対してのみ適用される利他的な交換のことであり、「一般化互酬性」とは、どのような相手に対しても適用される利他的な交換のことである。「閉じたネットワーク」とは、限られた人や組織内でのみ構築される情報網や人間関係のことであり、「開いたネットワーク」とは、より広範囲に開放された情報網や人間関係のことである。

4. 先行研究

SCの機能や効果については、社会学、政治学、経済学、経営学、犯罪心理学など多くの分野で研究が進んでいる。本稿では小学生に対するアンケート調査を基に議論を進めていくため、まず、SCと教育学の関係性を分析した研究を紹介する。Putnam(2000)はSCの減少が教育の質の低下をもたらすこと、SCと子供の学力・就学継続率との間に正の相関関係が存在することを示している。Goddard(2003)はSCと学生生活の関係性を分析し、SCと数学や国語などの成績との間に、正の相関関係が存在していることを示している。Anderson(2008)は、生徒間のSCが学力向上に大きく寄与することを示し、テストのためのカリキュラムを作成することよりも、生徒同士が互いに学び合えるような環境を作ることを重視すべきだと主張している。

また、SCの決定要因を分析した研究も多数行われている。White & Gager (2007) はSCの代理変数として課外活動への参加状況を用い、性別・年齢・居住地・家族構成・人種などがSCに影響を与えることを明らかにしている、Turney & Kao (2009) はSCの代理変数として保護者の学校への関与度合を用い、SCに影響を与える変数として両親の同居・兄弟姉妹の数・時間的余裕・母親の就労形態・親の教育水準・親の所得水準などを挙げている。また、Aston & McLanahan (1994) は引っ越し回数が多くなると高校退学率が上昇することを明らかにしている。

SC とスポーツとの関係性を分析した研究としては、Putnam (1993) や Lee & Cornwell & Babiak (2012)、Seippel (2006) が挙げられる。Putnam (1993) は、イタリアの各州の「市民共同体」度合いを調査する中で、地域サッカークラブへの参加が SC の向上に大きく寄与していることを示している。 Lee & Cornwell & Babiak (2012) は、大学生を対象にスポーツへの参加度と SC の蓄積との関係性を分析している。スポーツへの参加を、地域スポーツへの参加,個人スポーツへの参加,テレビ観戦の 3 つに分類し、地域スポーツへの参加度が高いほど SC が蓄積されやすい傾向があることを明らかにしている。 Seippel (2006) は、スポーツがどのような社会的・政治的効果をもたらしているのかを分析し、ボランティアの特徴を併せ持つスポーツチームのメンバーであることは、一般化信頼と政治的コミットメントを向上させる働きがあることを示している。

5. アンケート調査の概要

(1) 調査の目的

本稿では以下のような仮説を立てた。

仮説:スポーツにはSCを蓄積させる効果がある。さらに、スポーツの性質やSCの要素によって、その効果の程度は異なる。

スポーツの性質とは、団体スポーツと個人スポーツのことであり、SCの要素とは、結合型の「特定化信頼」「特定化互酬性」「閉じたネットワーク」、橋渡し型の「一般化信頼」「一般化互酬性」「開いたネットワーク」のことである。

この仮説を検証するために、本稿では2021年6月から7月の期間で東京都港区と神奈川県横浜市港 北区の小学校の小学6年生、計939名に対し、独自のアンケート調査を実施した。調査はアンケート 票を小学校に郵送する形式で行った。調査する地区として港区と港北区を選んだ理由は、同地区に慶應 義塾大学のキャンパスがあるため、調査に対する信頼度が上がりアンケート回収率が高まると考えたた めである。本稿では44校に調査を依頼し、内12校から協力を得ることができた(回収率27%)。調査 対象を小学生6年生とした理由は2つある。1つ目の理由は、アンケートの回答率を高めるためである。 アンケートを回答するためには、一定水準の論理性と客観的に自身を把握できる力が必要であるため、 最高学年である6年生を調査対象とした。実際に、アンケートの回答率は93%と高い水準だった。2 つ目の理由は、内生性の問題を考慮するためである。本稿の分析では、元来明るく、社交性の高い人ほ どスポーツをする、といった関係性が存在する場合、逆の因果による内生性の問題が生じてしまう。一 般的に、社交性の高い人ほどスポーツをする傾向が強いという主張にはある程度の妥当性が存在するが、 小学生の場合には必ずしもそうとは言えない。なぜなら、小学生がスポーツや習い事を始めるきっかけ として、保護者の意向が大きく影響していると考えられるためである⁷⁾。小学生の場合は、自身の社交 性よりも、彼らの保護者の判断の方がスポーツを始めるかどうかに影響を与えると考えられる。そのた め、元来、社交性が高いためにスポーツを始めるようになる、という傾向は小学生においてはそれほど 強くないと推測できる。このような理由から、本稿では調査対象として小学6年生を選択した。

(2) 調査の内容

実施したアンケート票を、表1にまとめている。アンケートではまず、先行研究でSCの決定要因として挙げられていた、性別、兄弟姉妹の有無、転校の有無に関する質問を行った。次に、現在行っている、または、これまでに行ったことのある習い事と、その中でも最も力を入れて取り組んできた習い事を3つ答えてもらう形としている。スポーツに限定せず、習い事全般についての質問を設定した理由は、

⁷⁾ バンダイこどもアンケートレポート (2019) より。

表1 アンケートの内容

設問	回答
問 1	
1. あなたの性別は?	1. 男子 2. 女子 3. その他
2. 兄弟・姉妹はいますか?	1. はい 2. いいえ
3. 転校したことはありますか?	1. はい 2. いいえ
4. 学級委員・クラス委員・代表委員・生徒会委員などをやった事はありますか?	1. はい 2. いいえ
問 2	
1. あなたはどんな習い事をしていますか? または、した事がありますか?	サッカー, 野球, ソフトボール, バレーボール, バスケットボール, ラグビー, アメフト, テニス, 卓球, ゴルフ, バドミントン, 水泳, 体操, 陸上, ダンス, 柔道, 剣道, 空手, 音楽, 書道・習字, バレエ, 絵画, 学習塾, 英会話, そろばん, プログラミング, その他, 習い事はしていない, のうちから回答してもらったその他には, チアリーディング, ボーイズ/ガールズスカウト, 柔術, レスリング, 料理, ボクシング, ボーリング, ボルダリング, フィギュアスケートなどがあった
2. 最も力を入れて取り組んでいる習い事を3つまで選んで答えてください。	問 2.1 で答えてもらった習い事の中から、特に力を入れて取り組んでいるものを 3 つ選んでもらった
問 3	
1. あなたが通う学校は良い学校だと思いますか?	 まったくそうは思わない あまりそうは思わない どちらかと言えばそう思う 大変そう思う
2. 学校でのあいさつについて教えてください。	 まったくしない あまりしない どちらかといえばする 必ずする
3. よく遊ぶ友人は何人くらいいますか?	1. 0~5人 2. 5~10人 3. 11~20人 4. それ以上
問 4	
1. 一般的に,人は信頼できると思いますか? それとも,用心が必要だと思いますか?	 常に用心が必要だ どちらかと言えば用心が必要だ どちらかと言えば信頼できる 完全に信頼できる
2. 一般的に,人は他人の役に立とうとしている と思いますか?それとも,自分のことを優先し て考えていると思いますか?	1. 常に自分のことを優先して考えている 2. どちらかと言えば自分のことを優先して考えている 3. どちらかと言えば他人の役に立とうとしている 4. 常に他人の役に立とうとしている
3. あなたには、どのような友人がいますか? (複数回答可)	同じ学校の人 学校は違うが同じ市区町村に住んでいる人 異なる市区町村に住んでいる人 異なる都道府県に住んでいる人 海外に住んでいる人

他の習い事と比較することでスポーツの価値を解釈しやすくするため,スポーツ以外にも SC を蓄積させる効果がある習い事が存在するかどうかを調べるためである。SC についての質問は,結合型 SC (問3)と橋渡し型 SC (問4)の 2 つの視点から計 6 問行った(それぞれの設問の妥当性については 7 節を参照)。 問 3, 問 4 では SC の蓄積度をそれぞれ 4 段階で評価している。評価スケールを拡大すれば分析の精度を高めることができるが,調査対象が小学生であることを考慮し,評価スケールはできる限り小さく設定した。

6. 分析手法 8)

本稿では2種類の分析を行った。1つ目の分析ではスポーツがSCの各要素に与える詳細な影響を、2つ目の分析ではスポーツがSCに与える総合的な影響を調査した。

1つ目の分析では、特定化信頼・一般化信頼・特定化互酬性・一般化互酬性・閉じたネットワーク・開いたネットワークそれぞれを被説明変数、男子ダミー・兄弟姉妹ダミー・転校ダミー・習い事の数・団体スポーツダミー・個人スポーツダミー・芸術ダミー・塾ダミー・語学ダミーを説明変数とした順序ロジット分析を行った(各変数についての詳細は7節を参照)。例えば、特定化信頼については、

(特定化信頼) = (定数項) + β_1 (男子ダミー) + β_2 (兄弟姉妹ダミー) + β_3 (転校ダミー) + β_4 (習い事の数) + β_5 (団体スポーツダミー) + β_6 (個人スポーツダミー) + β_7 (芸術ダミー) + β_8 (塾 ダミー) + β_9 (語学ダミー) + (誤差項)

という推定式を立てて順序ロジット分析を行った。順序ロジット分析では、係数の数値をそのまま解釈 することができないため、それぞれの限界効果を計算し、SCの構成要素に対する変数の影響度合いを 調べた。

2つ目の分析では

(SC スコア) = (定数項) + β_1 (男子ダミー) + β_2 (兄弟姉妹ダミー) + β_3 (転校ダミー) + β_4 (習い事の数) + β_5 (団体スポーツダミー) + β_6 (個人スポーツダミー) + β_7 (芸術ダミー) + β_8 (塾 ダミー) + β_9 (語学ダミー) + (誤差項)

という、SC スコアを被説明変数、男子ダミー・兄弟姉妹ダミー・転校ダミー・習い事の数・団体スポーツダミー・個人スポーツダミー・芸術ダミー・塾ダミー・語学ダミーを説明変数とした重回帰分析を行った(各変数についての詳細は7節を参照)。SC に対し、どの変数が有意な影響を与えているのかを調べた。

⁸⁾ 分析には統計解析ソフトの R (version 4.0.5) を使用した。

7. 変数とデータの説明

(1) 被説明変数

1) 特定化信頼

特定化信頼とは特定の組織内で生じる信頼や愛着のことであるため、表 1 の問 3.1「あなたが通う学校は良い学校だと思いますか?」を基に、「大変そう思う」と回答していた場合を 4、「まったくそうは思わない」と回答していた場合を 1 とする 4 段階のダミー変数を代理変数とした。学校という特定の組織の中で、クラスメイト・教師・学校制度などと、どのような関係性を構築できているのかを調べるために、問 3.1 では通っている学校に対し、どれだけ愛着があるかを尋ねた。

2) 一般化信頼

一般化信頼とは社会全体に対する信頼度のことであるため、表 1 の間 4.1 「一般的に、人は信頼できると思いますか?それとも、用心が必要だと思いますか?」を基に、「完全に信頼できる」と回答していた場合を 4、「常に用心が必要だ」と回答していた場合を 1 とする 4 段階のダミー変数を代理変数とした。間 4.1 では社会に対し、信頼感を抱いているのか、それとも、不信感を抱いているのかを尋ねた。統計数理研究所が 5 年ごとに実施している「日本人の国民性調査」でも、「たいていの人は信頼できると思いますか、それとも、用心するにこしたことはないと思いますか?」 9 という質問が設けられており、間 4.1 はこの設問を参考に作成した。

3) 特定化互酬性

特定化互酬性とは特定の相手にのみ発揮される利他性のことであるため、表1の問3.2「学校でのあいさつについて教えてください。」を基に、「必ずする」と回答していた場合を4、「まったくしない」と回答していた場合を1とする4段階のダミー変数を代理変数とした。特定化互酬性を測る尺度として特定の人との挨拶の頻度に注目し、通っている学校の中でどれだけ挨拶を行っているかを調べた。挨拶に関しては、稲葉(2013)の研究では、挨拶をされたときにだけ挨拶を返す場合が特定化互酬性であり、誰にでも挨拶を返す場合は一般化互酬性であると区別されているが、本稿では回答のしやすさを考慮し、単に学校内でどれだけ挨拶をするかを尋ねることとした。

4) 一般化互酬性

一般化互酬性とは社会全体に対して発揮される利他性のことであるため、表1 の問4.2 「一般的に、人は他人の役に立とうとしていると思いますか?それとも、自分のことを優先して考えていると思いますか?」を基に、「常に他人の役に立とうとしている」と回答していた場合を4、「常に自分のことを優先して考えている」と回答していた場合を1とする4 段階のダミー変数を代理変数とした。問4.2 は、間4.1と同じく統計数理研究所が実施している「日本人の国民性調査」でも設けられている質問であり、

⁹⁾ 統計数理研究所ホームページ (2016) より。

「日本人の国民性調査」では「たいていの人は、他人の役にたとうとしていると思いますか、それとも、自分のことだけに気をくばっていると思いますか?」¹⁰⁾という質問が設定されている。問 4.2 はこの設問を参考に作成し、社会全体に対し、どれだけ利他的な精神を抱いているかを調べた。

5) 閉じたネットワーク

閉じたネットワークとは限られた範囲内での人間関係や情報網のことであるため、表1の問3.3「よく遊ぶ友人は何人くらいいますか?」を基に、「それ以上」と回答していた場合を4、「 $0\sim5$ 人」と回答していた場合を1とする4段階のダミー変数を代理変数とした。日ごろの小学生の行動範囲は、徒歩もしくは自転車で移動することができる、ある程度限定されたものであると考えられるため、問3.3ではよく遊んでいる友人の人数を質問した。

6) 開いたネットワーク

開いたネットワークとは広く開放された人間関係や情報網のことであるため、表 1 の間 4.3 「あなたには、どのような友人がいますか?」を基に、「同じ学校の人」と回答していた場合を 1、「学校は違うが同じ市区町村に住んでいる人」と回答していた場合を 1.1、「異なる市区町村に住んでいる人」と回答していた場合を 1.2、「異なる都道府県に住んでいる人」と回答していた場合を 1.3、「海外に住んでいる人」と回答していた場合を 1.4 として合計値を集計した。この合計値を基に(合計値 ≥ 4.75)の場合は 1.4 として合計値 ≥ 4.75)の場合は 1.5 に合計値 ≥ 4.75)の場合は 1.5 に住んでいるかを尋ね、友人がより遠方に住んでいるほど高いウエイトをかけた。

7) SC スコア

本稿では、SC の各要素だけでなく SC がどれだけ蓄積されているのかを総合的に扱うために、SC スコアという変数を定義した。SC スコアは、特定化信頼・一般化信頼・特定化互酬性・一般化互酬性・閉じたネットワーク・開いたネットワークのスコアの合計値とした。各項目は $1\sim4$ の値を取るため、SC スコアは最小値が 6、最大値が 24 となる離散変数である。SC は、信頼・互酬性・ネットワークの 3 つの要素が互いに補完し合いながら形成されるものであるため、各要素の合計値をとることで総合的な SC の蓄積度を測定できると考えられる。

(2) 説明変数

本稿では、説明変数として男子ダミー・兄弟姉妹ダミー・転校ダミー・習い事の数・団体スポーツダミー・個人スポーツダミー・芸術ダミー・塾ダミー・語学ダミーを使用した。習い事に関するダミー変数の設定方法は表 2 に示している。表 3 は説明変数同士の相関関係を示している。

先行研究からもわかるように、上記の説明変数以外にも親の所得水準などは本稿で扱う被説明変数に対し、何らかの影響を与える可能性が高い。本来含まれるべき変数を推定式に含めていない場合、欠落

¹⁰⁾ 統計数理研究所ホームページ (2016) より。

変数バイアスによる内生性の問題が生じてしまう。しかし、今回の調査では保護者の所得水準についての設問を用意しなかった。なぜなら、回答の精度や回答に要する時間、倫理的な観点を考慮すると、保護者の所得水準についての質問を小学生に行うことは適切でないと考えたためである。

表2 習い事に関する変数の定義

	定義
団体スポーツダミー	習い事のうち、サッカー、野球、ソフトボール、バレーボール、バスケットボール、ラグビー、アメフト、チアリーディング、フットサル、セパタクロー、アイスホッケーのいずれかを問 2.2(最も力を入れて取り組んでいる習い事を 3つまで選んで答えてください)で 1つ目に選んだ場合=1、それ以外=0
個人スポーツダミー	習い事のうち、テニス、卓球、ゴルフ、バドミントン、水泳、体操、陸上、ダンス、柔道、剣道、空手、柔術、レスリング、トライアスロン、テコンドー、自転車、なぎなた、ボクシング、トランポリン、ボーリング、少林寺拳法、合気道、ボルダリング、フィギュア、スポーツクラブ、馬術、フラフープ、ローラースケート、ビリヤード、ヨガ、スケボー、フラダンス、スカッシュのいずれかを問 2.2 で 1 つ目に選んだ場合=1、それ以外=0
芸術ダミー	習い事のうち、音楽、書道・習字、バレエ、絵画、料理、日本舞踊、琴、生け花、茶道、ミュージカル、園芸、工作のいずれかを問 2.2 で 1 つ目に選んだ場合=1、それ以外=0
塾ダミー	習い事のうち、学習塾、そろばん、プログラミング、ロボットのいずれかを問 $2.2\ { m c}\ 1$ つ目に選んだ場合= 1 、それ以外= 0
語学ダミー	習い事のうち、英会話、中国語のいずれかを問 2.2 で 1 つ目に選んだ場合= 1 、それ以外= 0

表 3 説明変数同士の相関係数

	1	2	3	4	5	6	7	8
1. 男子ダミー								
2. 兄弟姉妹ダミー	0.000							
3. 転校ダミー	-0.059	0.000						
4. 習い事の数	-0.010	-0.051	0.004					
5. 団体スポーツダミー	0.262	0.082	-0.045	0.075				
6. 個人スポーツダミー	-0.044	0.060	-0.047	-0.013	-0.247			
7. 芸術ダミー	-0.176	-0.004	-0.054	0.004	-0.152	-0.168		
8. 塾ダミー	-0.076	-0.075	0.056	0.139	-0.380	-0.421	-0.259	
9. 語学ダミー	-0.062	-0.050	0.074	-0.031	-0.093	-0.103	-0.063	-0.159

(3) 基本統計量とヒストグラム

基本統計量に関しては表 4、表 5 にまとめた。サンプルサイズが変数によって異なっているのは,無回答や判別不可能な回答が存在したためである。基本統計量を概観すると,特定化信頼と特定化互酬性は平均的に $3.2 \sim 3.3$ という高い値をとっており,閉じたネットワークと開いたネットワークに関してはどちらもばらつきが大きくなっていることがわかる。性別に関しては,偏りの小さい結果となっているが,兄弟姉妹の有無と転校の有無に関しては,兄弟姉妹有り,転校無しが多いという結果となっている。

	平均	最小	最大	標準偏差	尖度	歪度	標本サイズ
特定化信頼	3.309	1.000	4.000	0.733	0.722	-0.938	921.000
一般化信頼	2.471	1.000	4.000	0.918	-0.842	-0.124	924.000
特定化互酬性	3.276	1.000	4.000	0.702	0.179	-0.687	924.000
一般化互酬性	2.675	1.000	4.000	0.791	-0.415	-0.136	919.000
閉じたネットワーク	2.132	1.000	4.000	1.003	-0.769	0.539	925.000
開いたネットワーク	2.351	1.000	4.000	1.164	-1.423	0.207	924.000
SCスコア	16.218	6.000	24.000	2.883	-0.007	-0.180	902.000

表 4 基本統計量(被説明変数)

= [其木統計量	/ 号台 ロロ オた 米た \

	平均	最小	最大	標準偏差	尖度	歪度	標本サイズ
男子ダミー	0.500	0.000	1.000	0.500	-2.004	0.000	938.000
兄弟姉妹ダミー	0.789	0.000	1.000	0.408	0.011	-1.418	938.000
転校ダミー	0.151	0.000	1.000	0.359	1.800	1.948	938.000
習い事の数	3.475	0.000	17.000	2.505	3.355	1.448	939.000
団体スポーツダミー	0.182	0.000	1.000	0.386	0.724	1.650	939.000
個人スポーツダミー	0.214	0.000	1.000	0.410	-0.050	1.397	939.000
芸術ダミー	0.094	0.000	1.000	0.292	5.811	2.793	939.000
塾ダミー	0.393	0.000	1.000	0.489	-1.811	0.439	939.000
語学ダミー	0.037	0.000	1.000	0.190	21.991	4.893	939.000

図1は被説明変数と習い事の数のヒストグラムである。SC スコアのヒストグラムを見ると正規分布に近い形状となっていることがわかる。また、習い事の数のヒストグラムを見ると右裾が長い分布となっており、2つから3つの習い事を行っている子供が多かった。図2はSC の各要素に関するレーダーチャートである。これを見ると特定化信頼、特定化互酬性、閉じたネットワークから成る結合型SC の方が、一般化信頼、一般化互酬性、開いたネットワークから成る橋渡し型SC よりも大きな値をとっていることがわかる。これは小学生にとって学校内での人間関係が非常に重要であることを示している。図3は、行っている、または行ったことのある習い事を上位から並べたものである。図3を見ると「学習塾」が最も多く、2番目に多い「水泳」の約2.5倍という結果となった。「学習塾」が突出した値を示している背景としては、分析対象とした小学6年生は中学校受験を控えていることが大きな影響を与えていると考えられる。

11.5.78.70 , 175,195 , 19521.5 $6 \quad 8 \quad 10 \quad 12 \quad 14 \quad 16$ SCスコア 習い事の数 特定化信頼 特定化互酬性 閉じたネットワーク

一般化互酬性

開いたネットワーク

一般化信頼

図1 ヒストグラム

図2 レーダーチャート

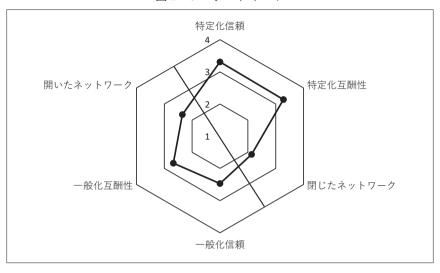
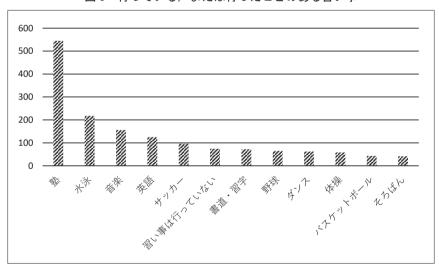



図3 行っている。または行ったことのある習い事

8. 分析結果

(1) 順序ロジット分析・特定化信頼

特定化信頼に関しては、有意に影響を与える変数は存在しなかった(表6の(1)式を参照)。この理由 としては、8割以上の子供が「あなたが通う学校は良い学校だと思いますか?」という質問に対し、「ど ちらかと言えばそう思う」または「大変そう思う」と答えていたため、習い事による差異が生じなかっ

表 6 分析結果

			1X 0 /J1/I/I/I	-			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
男子ダミー	-0.216	0.149	0.041	-0.002	0.541***	-0.209*	0.037
	(0.136)	(0.123)	(0.134)	(0.129)	(0.125)	(0.126)	(0.196)
	[0.005]	[-0.022]	[-0.001]	[0.000]	[-0.116]	[0.046]	
	[-0.053]	[0.016]	[0.010]	[0.000]	[0.063]	[-0.038]	
兄弟姉妹ダミー	-0.104	0.214	0.079	-0.063	-0.161	-0.292*	-0.080
	(0.158)	(0.147)	(0.162)	(0.139)	(0.154)	(0.154)	(0.232)
	[0.003]	[-0.031]	[-0.001]	[0.004]	[0.034]	[0.064]	
	[-0.026]	[0.023]	[0.019]	[-0.008]	[-0.019]	[-0.053]	
転校ダミー	0.078	0.094	0.025	0.044	0.051	0.148	0.199
	(0.176)	(0.159)	(0.184)	(0.177)	(0.159)	(0.158)	(0.236)
	[-0.002]	[-0.014]	[0.000]	[-0.003]	[-0.011]	[-0.032]	
	[0.019]	[0.010]	[0.006]	[0.005]	[0.006]	[0.027]	
習い事の数	-0.031	-0.027	0.076***	-0.013	0.109***	0.191***	0.176***
	(0.028)	(0.031)	(0.027)	(0.025)	(0.029)	(0.027)	(0.040)
	[0.001]	[0.004]	[-0.001]	[0.001]	[-0.023]	[-0.042]	
	[-0.008]	[-0.003]	[0.018]	[-0.001]	[0.013]	[0.035]	
団体スポーツダミー	0.387	0.951***	0.877***	0.714**	0.469*	0.462	1.832***
	(0.318)	(0.290)	(0.292)	(0.292)	(0.320)	(0.288)	(0.423)
	[-0.009]	[-0.137]	[-0.012]	[-0.043]	[-0.100]	[-0.101]	
	[0.096]	[0.101]	[0.212]	[0.085]	[0.055]	[0.084]	
個人スポーツダミー	0.218	0.249	0.988***	0.422	0.236	0.305	1.143***
	(0.308)	(0.276)	(0.286)	(0.278)	(0.301)	(0.280)	(0.399)
	[-0.005]	[-0.036]	[-0.014]	[-0.025]	[-0.050]	[-0.067]	
	[0.054]	[0.027]	[0.239]	[0.050]	[0.028]	[0.056]	
芸術ダミー	0.289	0.676**	0.506*	0.495	0.140	0.124	1.036**
	(0.339)	(0.310)	(0.304)	(0.320)	(0.320)	(0.323)	(0.468)
	[-0.007]	[-0.098]	[-0.007]	[-0.030]	[-0.030]	[-0.027]	
	[0.071]	[0.072]	[0.122]	[0.059]	[0.016]	[0.023]	
塾ダミー	0.039	0.317	0.612**	0.310	0.094	0.374	0.846**
	(0.298)	(0.257)	(0.268)	(0.260)	(0.293)	(0.264)	(0.385)
	[-0.001]	[-0.046]	[-0.008]	[-0.019]	[-0.020]	[-0.082]	
	[0.010]	[0.034]	[0.148]	[0.037]	[0.011]	[0.068]	
語学ダミー	0.334	0.730**	1.435***	0.543	0.981**	0.341	1.936***
	(0.406)	(0.327)	(0.411)	(0.362)	(0.404)	(0.342)	(0.594)
	[-0.008]	[-0.106]	[-0.02]	[-0.033]	[-0.210]	[-0.075]	
	[0.083]	[0.078]	[0.347]	[0.065]	[0.115]	[0.062]	
決定係数	0.004	0.012	0.019	0.004	0.023	0.033	0.052
サンプルサイズ	921	924	924	919	925	924	902

注)(1) \sim (6) 式は特定化信頼,一般化信頼,特定化互酬性,一般化互酬性,閉じたネットワーク,開いたネットワークを被説明変数とする順序ロジット分析,(7) 式は SC スコアを被説明変数とする重回帰分析による推定結果。推定値下の 1 つ目のカッコ内にロバスト標準誤差を記入した。(1) \sim (6) 式における推定値下の 2 つ目,3 つ目のカッコ内には,被説明変数=1 となる確率に対する限界効果,被説明変数=4 となる確率に対する限界効果を記入した。***, **, * はそれぞれ 1%, 5%, 10%の有意水準で有意であることを表す。決定係数とは,(1) \sim (6) 式は疑似決定係数,(7) 式は自由度修正済み決定係数のことを表す。

たからだと考えられる。

(2) 順序ロジット分析・一般化信頼

一般化信頼に関しては、団体スポーツダミー、芸術ダミー、語学ダミーが有意にプラスの影響を与えている(表6の(2)式を参照)。特に、団体スポーツダミーの限界効果が大きいことが見て取れる。団体スポーツをすることには「一般的に、人は信頼できると思いますか?それとも、用心が必要だと思いますか?」という質問に対し、「完全に信頼できる」と答える確率を10.1%だけ上昇させ、反対に、「常に用心が必要だ」と答える確率を13.7%だけ下降させる効果があることがわかった。これは、チームワークが重要な役割を果たす団体スポーツをする子供は、普段の生活の中でも他者との信頼関係を重視する傾向にあることを示唆している。

(3) 順序ロジット分析・特定化互酬性

特定化互酬性に関しては、習い事に関するすべての変数が有意にプラスの影響を与えている(表 6 の (3) 式を参照)。特に、団体スポーツダミー、個人スポーツダミー、語学ダミーの限界効果が大きく、こうした習い事には「学校でのあいさつについて教えてください」という質問に対し、「必ずする」と答える確率を $21 \sim 34\%$ だけ上昇させる効果があることがわかった。この要因としては、スポーツには試合前に対戦相手に挨拶をする習慣があること、英会話などの語学学習では相手とのコミュニケーションが重視されていることなどが考えられる。

(4) 順序ロジット分析・一般化互酬性

一般化互酬性に関しては、団体スポーツダミーのみが有意にプラスの影響を与えているという結果となった(表 6 の(4)式を参照)。限界効果を見ると、団体スポーツには、「一般的に、人は他人の役に立とうとしていると思いますか?それとも、自分のことを優先して考えていると思いますか?」という質問に対し、「常に他人の役に立とうとしている」と答える確率を 8.5%だけ上昇させ、「常に自分のことを優先して考えている」と答える確率を 4.3%だけ下降させる効果があることがわかる。この結果は、団体スポーツをすることによって、相手への配慮や社会全体に対する利他性が身に付くことを示唆している。

(5) 順序ロジット分析・閉じたネットワーク

閉じたネットワークに関しては、男子ダミー、習い事の数、団体スポーツダミー、語学ダミーが有意にプラスの影響を与えている(表6の(5)式を参照)。特に、語学ダミーの限界効果が大きく、語学学習には、「よく遊ぶ友人は何人くらいいますか?」という質問に対し、「それ(20人)以上」と答える確率を11.5%だけ上昇させ、「 $0\sim5$ 人」と答える確率を21%だけ下降させる効果があることがわかる。

(6) 順序ロジット分析・開いたネットワーク

開いたネットワークに関しては、男子ダミー、兄弟姉妹ダミーが有意にマイナスの影響を、習い事の数が有意にプラスの影響を与えていることがわかる(表6の(6)式を参照)。男子ダミーについては、閉じたネットワークに対してはプラスの影響を与えていたが、開いたネットワークに対してはマイナスの影響を与えるという結果となった。今回の調査では、コミュニティ内部での関係性構築は男子の方が得意であり、コミュニティ外部での関係性構築は女子の方が得意であるという傾向を示すこととなった。また、兄弟姉妹ダミーについて見ると、兄弟姉妹がいない子供の方が、積極的にコミュニティ外部の人との関わりを持とうとする傾向にあることがわかった。

(7) 重回帰分析・SC スコア

SC スコアを被説明変数とした重回帰分析の結果は表 6 の (7) 式に示した。表から、習い事をすることが SC の蓄積に対し、プラスの影響を与えていることがわかる。特に、団体スポーツダミーと語学ダミーの係数が 1.832、1.936 と高く、人と関わる機会の多いスポーツや習い事をしているほど SC が蓄積されやすいという傾向が見て取れる。また、今回の研究では性別や兄弟姉妹の有無、転校の有無といった変数は SC に対し、有意な影響を与えていなかった。

(8) まとめ

本稿で行った7つの分析それぞれについて VIF を確認したところ,最小値が1.014,最大値が4.572 であった。Chatterjee & Price (1977)によると, VIFが10以上の場合に多重共線性が疑われるとされているため,本稿では多重共線性の問題は発生していないと考えられる。

表7は重回帰分析と順序ロジット分析の結果をまとめたものである。結果として、団体スポーツをすることには、一般化信頼、特定化互酬性、一般化互酬性、閉じたネットワーク、SC スコアの5つの要素に対し、プラスの影響を与える効果があることがわかった。これは、子供たちが団体スポーツを通じて協力や助け合いの大切さを学び、他者との関係性や繋がりを日常生活でも重視するようになるためだと考えられる。一方で、個人スポーツには、団体スポーツ程の効果を確認することはできなかった。これは、自分自身のパフォーマンスに集中することや他者に対し、過度な干渉をしないことが求められる武道や個人競技の精神を反映した結果であると考えられる。さらに、語学学習にも一般化信頼、特定化互酬性、閉じたネットワーク、SC スコアの4つの要素に対し、プラスの影響を与える効果があることがわかった。これは、人との対話を中心とした語学学習には他者への理解力や適応力を育む効果があることを示している。習い事を細かく分類したことで、それぞれの習い事が持つ特性やSC に対する影響度の違いを確認することができた。また、先行研究では、性別や兄弟姉妹の有無、転校の有無はSC に対し、有意な影響を与えるとされているが、本稿の調査では大きな影響を与えていなかった。

	特定化信頼	一般化信頼	特定化互酬性	一般化互酬性	ネットワーク	ネットワーク	SCスコア
男子ダミー	_	_	_		0	×	_
兄弟姉妹ダミー	_			_	_	×	_
転校ダミー				_	_		—
習い事の数	_		0	_	0	0	0
団体スポーツダミー	_			0		_	0

 \circ

 \bigcirc

 \bigcirc

 \bigcirc

表 7 各分析のまとめ

 \circ

(9) 頑健性

塾ダミー

ここでは、本稿で行った分析結果の頑健性を確認する。本稿 7 節、(2) でも述べている通り、本稿で行った分析には保護者の所得水準などについての変数が含まれておらず、分析結果に欠落変数バイアスが生じている可能性が高い。そこで、野崎、樋口、中室、妹尾(2018)の分析を基に、子供の通塾率と保護者の所得水準には正の相関関係があると考え、分析対象を塾に通っていない小学生 ¹¹⁾ に限定した分析を行った。サンプルを限定することで保護者の所得水準のばらつきを調整し、サンプルを限定する前とサンプルを限定した後で分析結果に差異が生じているかどうかを確認した。また、順序ロジット分析の疑似決定係数が低かったため、その点についても改善されているかどうか確かめた。

分析結果は表 8 の通りである。通塾していない小学生に限定したデータのサンプルサイズは 570 であった。データを限定する前後の分析結果を比較すると、一般化信頼((ii) 式)において転校ダミー・個人スポーツダミーが有意となっていること、開いたネットワーク((vi) 式)において男子ダミーが有意でなくなっていること、といった若干の違いが生じている。その他、有意水準や限界効果に多少の違いはあるものの、上記以外の点で両者の間に目立った差異は見受けられなかった。この結果は、本稿で行った分析が頑健なものであることを示している。一方で、(i)~(vi)式の疑似決定係数を見るとデータ限定後の方がわずかに数値が上昇しているものの、その上昇幅は依然として低く、データを調整したとしても疑似決定係数を十分に高めることはできなかった。

注) ○はプラスに有意, ×はマイナスに有意, —は有意ではないこと表す。

¹¹⁾ 塾ダミーが1となる場合を通塾している、塾ダミーが0となる場合を通塾していないとみなした。

表 8 通塾していない小学生に限定した分析結果

### Parameters								
日本語画学学学学院 日本語画学学学院 日本語画学学学院 日本語画学学学院 日本語画学学院 日本語画学学院 日本語画学学院 日本語画学院 日本語学院 日本語画学院 日本語画学院学院 日本語画学院学院学院 日本語画学院学院 日本語画学院 日本語画学院学院 日本語画学院学院 日本語画学院学院 日本語画学院 日本語画学院 日		(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)
日の001 日の001 日の001 日の001 日の002 日の002 日の002 日の002 日の003 日の003 日の003 日の003 日の003 日の003 日の003 日の002 日の003 日の	男子ダミー	0.064	0.209	0.091	-0.168	0.448***	-0.128	0.123
日本学学学 日本学学 日本学学学 日本学学学学 日本学学学学 日本学学学学 日本学学学学 日本学学学学 日本学学学学 日本学学学学 日本学学学学 日本学学学学学学 日本学学学学 日本学学学学 日本学学学学 日本学学学学 日本学学学学学学学 日本学学学学 日本学学学学 日本学学学学学学学学 日本学学学学学学学学学学		(0.180)	(0.157)	(0.174)	(0.169)	(0.160)	(0.168)	(0.254)
兄弟姉妹ダミー		[-0.001]	[-0.030]	[-0.001]	[0.012]	[-0.094]	[0.029]	
(0.214)		[0.016]	[0.026]	[0.022]	[-0.020]	[0.057]	[-0.023]	
「一のの11	兄弟姉妹ダミー	0.033	0.300	0.122	-0.056	-0.158	-0.460**	-0.095
下ののの		(0.214)	(0.191)	(0.226)	(0.171)	(0.203)	(0.208)	(0.308)
with がきる。		[-0.001]	[-0.043]	[-0.002]	[0.004]	[0.033]	[0.103]	
(0.226)		[0.008]	[0.037]	[0.030]	[-0.007]	[-0.020]	[-0.081]	
できる は	転校ダミー	-0.045	0.390**	0.052	0.252	-0.046	0.037	0.147
[一0.011]		(0.226)	(0.197)	(0.241)	(0.242)	(0.216)	(0.225)	(0.307)
習い事の数		[0.001]	[-0.056]	[-0.001]	[-0.017]	[0.010]	[-0.008]	
(0.036)		[-0.011]	[0.048]	[0.013]	[0.030]	[-0.006]	[0.006]	
$\begin{bmatrix} [0.001] \\ [-0.011] \end{bmatrix}$ $\begin{bmatrix} [-0.001] \\ [0.001] \end{bmatrix}$ $\begin{bmatrix} [0.001] \\ [-0.002] \end{bmatrix}$ $\begin{bmatrix} [-0.015] \\ [0.009] \end{bmatrix}$ $\begin{bmatrix} [-0.041] \\ [0.032] \end{bmatrix}$ $\begin{bmatrix} [-0.011] \\ [-0.012] \end{bmatrix}$ $\begin{bmatrix} [-0.002] \\ [0.009] \end{bmatrix}$ $\begin{bmatrix} [0.032] \end{bmatrix}$ $\begin{bmatrix} [-0.041] \\ [0.032] \end{bmatrix}$ $\begin{bmatrix} [-0.011] \\ [0.337) \end{bmatrix}$ $\begin{bmatrix} [-0.01] \\ (0.290) \end{bmatrix}$ $\begin{bmatrix} [-0.01] \\ (0.301) \end{bmatrix}$ $\begin{bmatrix} [-0.074] \\ (0.327) \end{bmatrix}$ $\begin{bmatrix} [-0.088] \\ (0.388) \end{bmatrix}$ $\begin{bmatrix} [-0.011] \\ [-0.011] \end{bmatrix}$ $\begin{bmatrix} [-0.055] \\ [-0.055] \end{bmatrix}$ $\begin{bmatrix} [-0.121] \\ [-0.074] \end{bmatrix}$ $\begin{bmatrix} [-0.110] \\ [-0.086] \end{bmatrix}$ $\begin{bmatrix} [-0.041] \\ [-0.086] \end{bmatrix}$ $\begin{bmatrix} [-0.041] \\ [-0.086] \end{bmatrix}$ $\begin{bmatrix} [-0.041] \\ [-0.086] \end{bmatrix}$ $\begin{bmatrix} [-0.042] \\ [-0.086] \end{bmatrix}$ $\begin{bmatrix} [-0.042] \\ [-0.032] \end{bmatrix}$ $\begin{bmatrix} [-0.042] \\ [-0.042] \end{bmatrix}$ $\begin{bmatrix} [-0.042] \\ [-0.042] \end{bmatrix}$ $\begin{bmatrix} [-0.042] \\ [-0.088] \\ [-0.088] \end{bmatrix}$ $\begin{bmatrix} [-0.086] \\ [-0.007] \end{bmatrix}$ $\begin{bmatrix} [-0.031] \\ [-0.032] \end{bmatrix}$ $\begin{bmatrix} [-0.042] \\ [-0.032] \end{bmatrix}$ $\begin{bmatrix} [-0.031] \\ [-0.032] \end{bmatrix}$ $\begin{bmatrix} [-0.031] \\ [-0.032] \end{bmatrix}$ $\begin{bmatrix} [-0.031] \end{bmatrix}$ $\begin{bmatrix} [-0.035] \end{bmatrix}$ $\begin{bmatrix} [-0.031] \end{bmatrix}$ $\begin{bmatrix} [-0.035] $	習い事の数	-0.043	0.007	0.065*	-0.020	0.072*	0.183***	0.151***
[-0.011 [0.001 [0.016 [-0.002 [0.009 [0.032]		(0.036)	(0.040)	(0.036)	(0.031)	(0.042)	(0.034)	(0.054)
団体スポーツダミー 0.341 $0.822***$ $0.884***$ $0.794***$ $0.578*$ 0.490 $1.892***$ (0.337) (0.290) (0.301) (0.302) (0.327) (0.308) (0.441) $[-0.007]$ $[-0.018]$ $[-0.011]$ $[-0.055]$ $[-0.121]$ $[-0.110]$ $[0.086]$ $[0.101]$ $[0.216]$ $[0.094]$ $[0.074]$ $[0.086]$ $[0.086]$ $[0.322)$ (0.276) (0.294) (0.279) (0.306) (0.297) (0.410) $[-0.005]$ $[-0.005]$ $[-0.025]$ $[-0.012]$ $[-0.031]$ $[-0.066]$ $[-0.078]$ $[0.064]$ $[0.022]$ $[0.246]$ $[0.052]$ $[0.040]$ $[0.061]$ $[0.061]$ $[0.061]$ $[0.086]$ $[-0.098]$ $[-0.098]$ $[-0.088]$ $[-0.007]$ $[-0.033]$ $[-0.042]$ $[-0.032]$ $[-0.031]$ $[-0.042]$ $[-0.039]$ $[-0.098]$ $[-0.088]$ $[-0.007]$ $[-0.033]$ $[-0.042]$ $[-0.039]$ $[-0.031]$ $[-0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.031]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.031]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.035]$ $[0.031]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.057]$ $[0.035]$ $[0.031]$ $[0.057]$ $[0.035]$ $[0.031]$ $[0.057]$ $[0.035]$ $[0.031]$ $[0.0596]$ $[-0.009]$ $[-0.009]$ $[-0.009]$ $[-0.018]$ $[-0.035]$ $[-0.216]$ $[-0.085]$ $[-0.085]$ $[0.110]$ $[0.077]$ $[0.355]$ $[0.060]$ $[0.131]$ $[0.066]$ $[0.066]$		[0.001]	[-0.001]	[-0.001]	[0.001]	[-0.015]	[-0.041]	
(0.337)		[-0.011]	[0.001]	[0.016]	[-0.002]	[0.009]	[0.032]	
$\begin{bmatrix} -0.007 \\ [0.085] \end{bmatrix}$ $\begin{bmatrix} -0.118 \\ [0.101] \end{bmatrix}$ $\begin{bmatrix} -0.011 \\ [0.216] \end{bmatrix}$ $\begin{bmatrix} -0.055 \\ [0.094] \end{bmatrix}$ $\begin{bmatrix} -0.121 \\ [0.074] \end{bmatrix}$ $\begin{bmatrix} -0.110 \\ [0.086] \end{bmatrix}$ $\begin{bmatrix} -0.086 \\ [0.086] \end{bmatrix}$ $\begin{bmatrix} -0.025 \\ [0.086] \end{bmatrix}$ $\begin{bmatrix} -0.029 \\ [0.029 \\ [0.064] \end{bmatrix}$ $\begin{bmatrix} -0.008 \\ [0.022] \end{bmatrix}$ $\begin{bmatrix} -0.012 \\ [0.046] \end{bmatrix}$ $\begin{bmatrix} -0.031 \\ [0.052] \end{bmatrix}$ $\begin{bmatrix} -0.066 \\ [0.040] \end{bmatrix}$ $\begin{bmatrix} -0.078 \\ [0.061] \end{bmatrix}$ $\begin{bmatrix} -0.066 \\ [0.052] \end{bmatrix}$ $\begin{bmatrix} -0.040 \\ [0.061] \end{bmatrix}$ $\begin{bmatrix} -0.066 \\ [0.061] \end{bmatrix}$ $\begin{bmatrix} -0.088 \\ [0.086] \end{bmatrix}$ $\begin{bmatrix} -0.088 \\ [0.086] \end{bmatrix}$ $\begin{bmatrix} -0.090 \\ [0.087] \end{bmatrix}$ $\begin{bmatrix} -0.033 \\ [0.087] \end{bmatrix}$ $\begin{bmatrix} -0.042 \\ [0.035] \end{bmatrix}$ $\begin{bmatrix} -0.039 \\ [0.036] \end{bmatrix}$ $\begin{bmatrix} -0.035 \\ [0.036] \end{bmatrix}$ $\begin{bmatrix} -0.036 \\ [0.03$	団体スポーツダミー	0.341	0.822***	0.884***	0.794***	0.578*	0.490	1.892***
個人スポーツダミー $\begin{bmatrix} 0.085 \end{bmatrix}$ $\begin{bmatrix} 0.101 \end{bmatrix}$ $\begin{bmatrix} 0.216 \end{bmatrix}$ $\begin{bmatrix} 0.094 \end{bmatrix}$ $\begin{bmatrix} 0.074 \end{bmatrix}$ $\begin{bmatrix} 0.086 \end{bmatrix}$ $\begin{bmatrix} 0.086 \end{bmatrix}$ $\begin{bmatrix} 0.218 \end{bmatrix}$ $\begin{bmatrix} 0.088 \end{bmatrix}$ $\begin{bmatrix} 0.088 \end{bmatrix}$ $\begin{bmatrix} 0.088 \end{bmatrix}$ $\begin{bmatrix} 0.259 \end{bmatrix}$ $\begin{bmatrix} 0.176 \end{bmatrix}$ $\begin{bmatrix} 0.276 \end{bmatrix}$ $\begin{bmatrix} 0.088 \end{bmatrix}$ $\begin{bmatrix} 0.442 \end{bmatrix}$ $\begin{bmatrix} 0.314 \end{bmatrix}$ $\begin{bmatrix} 0.348 \end{bmatrix}$ $\begin{bmatrix} 0.321 \end{bmatrix}$ $\begin{bmatrix} -0.005 \end{bmatrix}$ $\begin{bmatrix} -0.025 \end{bmatrix}$ $\begin{bmatrix} -0.012 \end{bmatrix}$ $\begin{bmatrix} -0.031 \end{bmatrix}$ $\begin{bmatrix} -0.066 \end{bmatrix}$ $\begin{bmatrix} -0.078 \end{bmatrix}$ $\begin{bmatrix} -0.066 \end{bmatrix}$ $\begin{bmatrix} -0.078 \end{bmatrix}$ $\begin{bmatrix} 0.064 \end{bmatrix}$ $\begin{bmatrix} 0.022 \end{bmatrix}$ $\begin{bmatrix} 0.246 \end{bmatrix}$ $\begin{bmatrix} 0.052 \end{bmatrix}$ $\begin{bmatrix} 0.040 \end{bmatrix}$ $\begin{bmatrix} 0.061 \end{bmatrix}$ $\begin{bmatrix} 0.061 \end{bmatrix}$ $\begin{bmatrix} 0.352 \end{bmatrix}$ $\begin{bmatrix} 0.310 \end{bmatrix}$ $\begin{bmatrix} 0.310 \end{bmatrix}$ $\begin{bmatrix} 0.325 \end{bmatrix}$ $\begin{bmatrix} 0.322 \end{bmatrix}$ $\begin{bmatrix} 0.336 \end{bmatrix}$ $\begin{bmatrix} 0.348 \end{bmatrix}$ $\begin{bmatrix} 0.481 \end{bmatrix}$ $\begin{bmatrix} -0.008 \end{bmatrix}$ $\begin{bmatrix} -0.088 \end{bmatrix}$ $\begin{bmatrix} -0.007 \end{bmatrix}$ $\begin{bmatrix} 0.133 \end{bmatrix}$ $\begin{bmatrix} 0.057 \end{bmatrix}$ $\begin{bmatrix} 0.025 \end{bmatrix}$ $\begin{bmatrix} 0.031 \end{bmatrix}$ $\begin{bmatrix} 0.031 \end{bmatrix}$ $\begin{bmatrix} 0.444 \end{bmatrix}$ $\begin{bmatrix} 0.624 \end{bmatrix}$ $\begin{bmatrix} 0.320 \end{bmatrix}$ $\begin{bmatrix} 0.413 \end{bmatrix}$ $\begin{bmatrix} 0.367 \end{bmatrix}$ $\begin{bmatrix} 0.402 \end{bmatrix}$ $\begin{bmatrix} 0.354 \end{bmatrix}$ $\begin{bmatrix} 0.354 \end{bmatrix}$ $\begin{bmatrix} 0.369 \end{bmatrix}$ $\begin{bmatrix} -0.009 \end{bmatrix}$ $\begin{bmatrix} -0.009 \end{bmatrix}$ $\begin{bmatrix} -0.090 \end{bmatrix}$ $\begin{bmatrix} -0.018 \end{bmatrix}$ $\begin{bmatrix} -0.035 \end{bmatrix}$ $\begin{bmatrix} -0.216 \end{bmatrix}$ $\begin{bmatrix} -0.085 \end{bmatrix}$ $\begin{bmatrix} 0.110 \end{bmatrix}$ $\begin{bmatrix} 0.077 \end{bmatrix}$ $\begin{bmatrix} 0.355 \end{bmatrix}$ $\begin{bmatrix} 0.060 \end{bmatrix}$ $\begin{bmatrix} 0.131 \end{bmatrix}$ $\begin{bmatrix} 0.066 \end{bmatrix}$ $\begin{bmatrix} 0.066 \end{bmatrix}$		(0.337)	(0.290)	(0.301)	(0.302)	(0.327)	(0.308)	(0.441)
個人スポーツダミー 0.259 0.176*** 1.008*** 0.442 0.314 0.348 1.221** (0.322) (0.276) (0.294) (0.279) (0.306) (0.297) (0.410) [-0.005] [-0.025] [-0.012] [-0.031] [-0.066] [-0.078] [0.064] [0.022] [0.246] [0.052] [0.040] [0.061] [0.066] [0.061] [0.066] [0.061] [0.066] [0.061] [0.066] [0		[-0.007]	[-0.118]	[-0.011]	[-0.055]	[-0.121]	[-0.110]	
		[0.085]	[0.101]	[0.216]	[0.094]	[0.074]	[0.086]	
	個人スポーツダミー	0.259	0.176***	1.008***	0.442	0.314	0.348	1.221**
芸術ダミー $\begin{bmatrix} 0.064 \end{bmatrix}$ $\begin{bmatrix} 0.022 \end{bmatrix}$ $\begin{bmatrix} 0.246 \end{bmatrix}$ $\begin{bmatrix} 0.052 \end{bmatrix}$ $\begin{bmatrix} 0.040 \end{bmatrix}$ $\begin{bmatrix} 0.061 \end{bmatrix}$ $\begin{bmatrix} 0.061 \end{bmatrix}$ $\begin{bmatrix} 0.402 \end{bmatrix}$ $\begin{bmatrix} 0.613** \\ (0.352) \\ (0.310) \\ (0.310) \\ (0.310) \\ (0.310) \\ (0.325) \\ (0.325) \\ (0.322) \\ (0.322) \\ (0.336) \\ (0.348) \\ (0.348) \\ (0.481) \\ (0.408) \\ (0.408) \\ (0.320) \\ (0.413) \\ (0.413) \\ (0.367) \\ (0.402) \\ (0.402) \\ (0.352) \\ (0.367) \\ (0.402) \\ (0.352) \\ (0.367) \\ (0.402) \\ (0.354) \\ (0.354) \\ (0.596) \\ (0.596) \\ (0.101) \\ (0.077) \\ (0.355) \\ (0.060) \\ (0.131) \\ (0.066) \\ (0.035) \\ (0.035) \\ (0.066) \\ (0.063) \\ (0.063) \\ (0.063) \\ (0.063) \\ (0.063) \\ (0.063) \\ (0.063) \\ (0.063) \\ (0.061) \\ (0.081) $		(0.322)	(0.276)	(0.294)	(0.279)	(0.306)	(0.297)	(0.410)
芸術ダミー 0.402 $0.613**$ $0.546*$ 0.480 0.200 0.175 $1.134*$ (0.352) (0.310) (0.310) (0.325) (0.322) (0.336) (0.481) $[-0.008]$ $[-0.008]$ $[-0.007]$ $[-0.033]$ $[-0.042]$ $[-0.039]$ $[0.100]$ $[0.075]$ $[0.133]$ $[0.057]$ $[0.025]$ $[0.031]$ $[0.975]$ $[0.025]$ $[0.031]$ $[0.089]$ $[0.0444]$ $0.624*$ $1.454***$ 0.506 $1.031**$ 0.378 0.37		[-0.005]	[-0.025]	[-0.012]	[-0.031]	[-0.066]	[-0.078]	
(0.352)		[0.064]	[0.022]	[0.246]	[0.052]	[0.040]	[0.061]	
	芸術ダミー	0.402	0.613**	0.546*	0.480	0.200	0.175	1.134*
語学ダミー $\begin{bmatrix} 0.100 \end{bmatrix}$ $\begin{bmatrix} 0.075 \end{bmatrix}$ $\begin{bmatrix} 0.133 \end{bmatrix}$ $\begin{bmatrix} 0.057 \end{bmatrix}$ $\begin{bmatrix} 0.025 \end{bmatrix}$ $\begin{bmatrix} 0.031 \end{bmatrix}$ $\begin{bmatrix} 0.444 \end{bmatrix}$ $0.624*$ $1.454***$ $0.506 \\ (0.408)$ (0.320) (0.413) (0.367) (0.402) (0.354) (0.596) $\begin{bmatrix} -0.009 \end{bmatrix}$ $\begin{bmatrix} -0.090 \end{bmatrix}$ $\begin{bmatrix} -0.018 \end{bmatrix}$ $\begin{bmatrix} -0.035 \end{bmatrix}$ $\begin{bmatrix} -0.216 \end{bmatrix}$ $\begin{bmatrix} -0.085 \end{bmatrix}$ $\begin{bmatrix} 0.110 \end{bmatrix}$ $\begin{bmatrix} 0.077 \end{bmatrix}$ $\begin{bmatrix} 0.355 \end{bmatrix}$ $\begin{bmatrix} 0.060 \end{bmatrix}$ $\begin{bmatrix} 0.131 \end{bmatrix}$ $\begin{bmatrix} 0.066 \end{bmatrix}$ 決定係数 $\begin{bmatrix} 0.003 \end{bmatrix}$ $\begin{bmatrix} 0.017 \end{bmatrix}$ $\begin{bmatrix} 0.026 \end{bmatrix}$ $\begin{bmatrix} 0.026 \end{bmatrix}$ $\begin{bmatrix} 0.007 \end{bmatrix}$ $\begin{bmatrix} 0.020 \end{bmatrix}$ $\begin{bmatrix} 0.035 \end{bmatrix}$ $\begin{bmatrix} 0.063 \end{bmatrix}$		(0.352)	(0.310)	(0.310)	(0.325)	(0.322)	(0.336)	(0.481)
語学ダミー 0.444 (0.408) (0.320) (0.320) (0.413) (0.367) (0.402) (0.354) (0.596) 1.031** (0.367) (0.402) (0.354) (0.596) [-0.009] [-0.090] [-0.018] [-0.035] [-0.216] [-0.085] [0.110] (0.066] [0.110] [0.077] [0.355] [0.060] [0.131] [0.066] 決定係数 0.003 0.017 0.026 0.007 0.020 0.035 0.063		[-0.008]	[-0.088]	[-0.007]	[-0.033]	[-0.042]	[-0.039]	
		[0.100]	[0.075]	[0.133]	[0.057]	[0.025]	[0.031]	
[-0.009] $[-0.090]$ $[-0.018]$ $[-0.035]$ $[-0.216]$ $[-0.085]$ $[0.110]$ $[0.077]$ $[0.355]$ $[0.060]$ $[0.131]$ $[0.066]$ 決定係数 0.003 0.017 0.026 0.007 0.020 0.035 0.063	語学ダミー	0.444	0.624*	1.454***	0.506	1.031**	0.378	2.021***
[0.110] [0.077] [0.355] [0.060] [0.131] [0.066] 決定係数 0.003 0.017 0.026 0.007 0.020 0.035 0.063		(0.408)	(0.320)	(0.413)	(0.367)	(0.402)	(0.354)	(0.596)
決定係数 0.003 0.017 0.026 0.007 0.020 0.035 0.063		[-0.009]	[-0.090]	[-0.018]	[-0.035]	[-0.216]	[-0.085]	
		[0.110]	[0.077]	[0.355]	[0.060]	[0.131]	[0.066]	
サンプルサイズ 536 533 537 530 538 532 548	決定係数	0.003	0.017	0.026	0.007	0.020	0.035	0.063
	サンプルサイズ	536	533	537	530	538	532	548

注)(i) \sim (vi) 式は特定化信頼,一般化信頼,特定化互酬性,一般化互酬性,閉じたネットワーク,開いたネットワークを被説明変数とする順序ロジット分析,(vii) 式は SC スコアを被説明変数とする重回帰分析による推定結果。推定値下の1つ目のカッコ内にロバスト標準誤差を記入した。(i) \sim (vi) 式における推定値下の2つ目,3つ目のカッコ内には,被説明変数=1となる確率に対する限界効果,被説明変数=4となる確率に対する限界効果を記入した。***, **, *はそれぞれ1%,5%,10%の有意水準で有意であることを表す。決定係数とは,(i) \sim (vi) 式は疑似決定係数,(vii) 式は自由度修正済み決定係数のことを表す。

9. 考察と課題

本稿では、以下の3つのことを明らかにすることができた。

- ①習い事をしている子供の方が、SC が高くなる傾向にある
- ②特に、団体スポーツ・語学学習をしている子供の方が、SC が高くなる傾向にある
- ③団体スポーツ・語学学習と比較すると個人スポーツや塾,芸術活動にはそのような傾向が見られない

こうした結果を踏まえると、本稿の仮説通り、スポーツにはSCを蓄積させる効果があると評価することができる。ただし、それは団体スポーツに限ったことであり、個人スポーツにはそのような効果は確認できなかった。また、特に団体スポーツには互酬性を高める傾向が他の習い事に比べて強いことがわかった。加えて、英会話をはじめとする語学学習についても同様に、SCを蓄積させる効果を確認することができた。

本稿の新規性は大きく分けて3点ある。1点目は日本の小学生を対象にスポーツの価値をSCの側面から計量的に分析した点である。SCに関する研究の多くは欧米諸国で行われており、調査対象も大学生や社会人であることが多い。そのため、調査対象を日本の小学生としている本稿の意義は大きいと考えられる。2点目は、SCの各構成要素と、SCの総合的な蓄積度を測るSCスコアを区別した分析を行った点である。両者を区別せずに分析を行っている研究も多いが、SCとは各構成要素が互いに影響し合いながら酸成されるものであるため、本稿では両者を分けて分析を行った。結果として、SCの各構成要素によって有意に影響を与える変数が異なることを明らかにすることができた。3点目は、スポーツやその他の習い事を、その特性によって団体スポーツ・個人スポーツ・芸術・塾・語学の5つに分類し、分析を行った点である。スポーツや習い事への参加は、地域活動への参加という一つの変数として処理されることが多いが、地域活動の特性によって人と関わる質や量は異なるはずである。こうした点を考慮したことで、スポーツの中でも団体スポーツと個人スポーツとでは、SCに対する影響度合いが異なることを示すことができた。

2020年度から導入されている新学習指導要領では、「社会に開かれた教育課程」の実現や「生きる力」・「人間性」の育成が重視され、「よりよい学校教育を通じてよりよい社会を創る」という理念が掲げられている ¹²⁾ が、この理念と SC は類似する点が多い。本稿の分析結果を基にすれば、新学習指導要領の理念実現に向けて、スポーツを学校教育の場でさらに活用していくことが重要であると言える。学校は SC の向上を目標とし、スポーツは SC の向上を強みとしているのであれば、両者が協力することのメリットは大きい。そのためには、学校と地域スポーツクラブが意見交換できる仕組みづくりなど、制度面の整備を進めていく必要があると言える。

¹²⁾ 小学校学習指導要綱 (2017) より。

図3でも見られたように、現状では勉強することだけが極端に重視され、スポーツの価値が十分に認識されているとは言いがたい。図4は、習い事別にSCスコアを比較したものであるが、語学と団体スポーツの高さが際立つ反面、塾のSCスコアが著しく低いことがわかる。図3と図4を比較すると、勉強することはたしかに重要であるが、勉強だけでは偏差値に表れないSCなどの重要な要素を身に付けることは困難であることが推察できる。こうした問題を解決するためにも、スポーツの価値を多くの人が再認識し、SCの向上に向けた取り組みを促進していくことが重要であると考えられる。

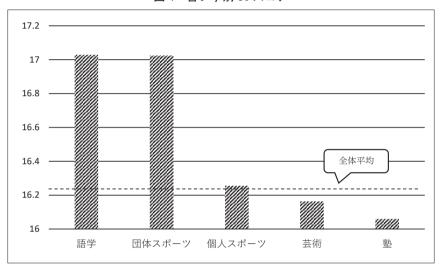


図 4 習い事別 SC スコア

最後に本稿の課題について述べる。1つ目は,調査した小学校の数が12校と少なく,地域にも偏りが生じてしまっていることである。各小学校や地域の特性によるバイアスを考慮するためには,全国的な調査を実施する必要がある。2つ目は,各項目の評価スケールが $1\sim4$ と小さく,分析の精度が高くないことである。今回のアンケート調査では対象者が小学生であることを考慮し,質問の難易度を下げるために評価スケールを小さく設定したが,より精度の高い分析を行うためには,評価スケールを拡大することが必要である。わかりやすく,かつ,精度の高い分析結果を得られるような質問を設定することが求められる。3つ目は,新型コロナウイルスによるバイアスを考慮できていないことである。ウイルスの感染拡大に伴う自粛生活は,小学生のSC蓄積に対し,何らかの影響を与えているはずである。このバイアスを考慮するためには,コロナ収束後に同様の調査を実施する,もしくは,今回の調査対象者に対し,追跡調査を行うことが必要である。

参考文献

<書籍>

- 稲葉陽二,大守隆,近藤克則,宮田加久子,矢野聡,吉野諒三(2011)『ソーシャル・キャピタルのフロンティア 一その到達点と可能性一』ミネルヴァ書房。
- フランシス・フクヤマ (1996) 『「信」無くば立たず』 (加藤寛訳) 三笠書房。
- Chatterjee, S. & Price, B. (1977) "Regression Analysis by Examples", John Wiley & Sons. (佐藤隆光, 加納悟訳「1981」『回帰分析の実際』新曜社)。
- Putnam, R.D. (1993) "Making Democracy Work: Civic Traditions in Modern Italy", *Princeton University Press*. (河田潤一訳 [2001]『哲学する民主主義―伝統と改革の市民的構造―』NTT 出版)。
- Putnam, R.D. (2000) "Bowling Alone: The Collapse and Revival of American Community" (柴内康文訳 [2006] 『孤独なボウリング―米国コミュニティの崩壊と再生』柏書房)。

<論文>

- 稲葉陽二 (2013) 「『暮らしの安心・信頼・社会参加に関するアンケート調査』二〇一〇年社会関係資本全国調査の概要」『政経研究』, 第 50 巻第 1 号。
- 中西純司(2012)「「文化としてのスポーツ」の価値」『人間福祉学研究』,第5巻第1号。
- 野崎華世,樋口美雄,中室牧子,妹尾渉(2018)「親の所得・家庭環境と子どもの学力の関係:国際比較を考慮に 入れて」『NIER Discussion Paper Series No. 008』
- Anderson, J.B. (2008) "Social Capital and Student Learning: Empirical Results from Latin American Primary Schools" *Economics of Education Review*, 27, pp. 439–449.
- Aston, N.M. & S.S.McLanahan (1994) "Family Structure, Residential Mobility, and School Dropout: A Research Note", Demography, 31(4), pp. 575-584.
- Goddard, R.D. (2003) "Relational Networks, Social Trust, and Norms: A Social Capital Perspective on Students' Chances of Academic Success", Educational Evaluation and Policy Analysis, 25(1), pp. 59– 74
- Lee, S.P. & T.B.Cornwell & K.Babiak (2012) "Developing an Instrument to Measure the Social Impact of Sport: Social Capital, Collective Identities, Health Literacy, Well-Being and Human Capital", Journal of Sport Management, 27(1), pp. 24-42
- Seippel, Ø. (2006) "Sport and Social Capital", Acta Sociologica, 49(2), pp. 169-183
- Turney, K. & G.Kao (2009) "Barriers to School Improvement: Are Immigrant Parents Disadvantaged?", *The School Community Journal*, 18(2), pp. 119–146
- White, A.M & C.T.Gager (2007) "Idle Hands and Empty Pockets: Youth Involvement in Extracurricular Activities, Social Capital, and Economic Status", Youth & Society, 39(1), pp. 5-111.

<ウェブサイト>

- 小学校学習指導要領(平成 29 年告示)。https://www.mext.go.jp/content/1413522_001.pdf
- 統計数理研究所 日本人の国民性調査。https://www.ism.ac.jp/kokuminsei/
- 日本オリンピック委員会(JOC) JOC について スポーツ宣言日本一二十一世紀におけるスポーツの使命一。 https://www.joc.or.jp/about/sengen/
- 日本オリンピック委員会(JOC) オリンピズム オリンピック憲章 2020 年版。 https://www.joc.or.jp/olympism/charter/pdf/olympiccharter2020.pdf

日本オリンピック委員会(JOC) オリンピズム クーベルタンとオリンピズム。

https://www.joc.or.jp/olympism/coubertin/

バンダイこどもアンケートレポート Vol. 252「子どもの習い事に関する意識調査」。

https://www.bandai.co.jp/kodomo/pdf/question252.pdf

ビデオリサーチ。https://www.videor.co.jp/press/2021/210726_02.html

文部科学省 スポーツ立国戦略。https://www.mext.go.jp/a_menu/sports/rikkoku/1297182.htm