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RECURSIVE BAYESIAN FORMULATION OF OPERANT

BEHAVIOR —A FRAMEWORK

Arata Kubota*

A computational framework for formulating operant behavior is proposed from the viewpoint of
conditional probability. The framework regards an operant situation as a set of dynamic relations
between recursive environments and recursive occasions in a behavioral stream. Utilizing Bayes'

Theorem as a logical and quantitative tool, it is shown that the formulation gives relations
resembling the matching law and melioration account, computational basis of reinforcement, and
a possibility to simulate operant behavior on the basis of the formulation.

Key words: operant behavior, reinforcement, schedules of reinforcement, Premack's Principle,
matching law, melioration, probability of behavior, conditional probability, Bayes' Theorem, prior
probability, posterior probability, recursive environments, recursive occasions, simulation

Life can only be understood backwards, but

must be lived forwards. —Kierkegaard

I've often seen a cat without a grin, but a

grin without a cat! —Alice

Rose is a Rose is a Rose is a Rose* • • —Stein

In 1990 I visited B. F. Skinner at his Cam

bridge home. It was a few months before he
finally retired from his brilliant research career
and the world. He had a leukemia which would

cause us to say a sad farewell to him, and I had
a computer simulation of operant behavior
which would lead me into a deadly struggle for
answers during the following several years.

The simulation had two conceptual, self-
rotating rings: repertory and runtime as shown
in Fig. 1, and nicknamed Two Ring Machine.
The repertory ring had an ad libitum organiza
tion of behavioral repertoires and the runtime
ring would have a current organization of be
havior under several reinforcement schedules.

Each segment of rings contained a behavioral
topography or unit. The main ideas of the

* Psychology, Fujita Health University, Toyoake,
Aichi, Japan, e-mail to: akubota@fujita-hu.ac.jp,
or akubota@amphora.iijnet.or.jp.
Some parts of this paper were presented in an
evening session of the Jacksonville Conference on
Behavior Dynamics, Jacksonville, Alabama, 1990,

and Society for Quantitative Analyses of Behav

ior, Chicago, Illinois, 1997.

simulation were 1) a behavior unit (for example,

eating) which had been deprived of its occasion
(food) would accumulate in the runtime ring
after it had come from the repertory ring con
stantly and repeatedly, and 2) a behavior unit
(bar pressing), which gave the eating unit the
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Fig. 1. Diagram of the simulation in 1990 (Two

Ring Machine).

The simulation has two rings: repertory and

runtime. The repertory ring had an ad
libitum organization of behavioral reper

toires and the runtime ring would have a

current organization of behavior under
several reinforcement schedules. An occa

sion-deprived behavior would accumulate in
the runtime ring after it had come from the

repertory ring, and an occasion-giving
behavior would be copied and replace one of
the accumulated behavioral units.
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Fig. 2. Cumulative record generated by the
simulation under FR100 and 200

schedules.

The post-reinforcement pause more clear

ly appeared under FR200.

occasion to occur, would be copied. The copy
would be filled into a segment of one of the
accumulated eating units that was adjacent and
followed the occasion-giving behavior. Those
were ideas hinted from Skinner's behavioral res

ervoir and Premack's Principle. The simulation
was quite successful in generating characteris
tic cumulative records specific to several rein
forcement schedules and to transient behavior

seen during changes from one schedule to an
other. Some of the simulation results are shown

in Fig. 2-4. For the results had I actually to
devise some software tricks that had not been

investigated and clarified fully in the behavior-
analytical context, and some tricks were rather

vague mathematically. The present research
began then.

About talking about probabilities

People including psychologists frequently use
a word probability, sometimes in a mathemati
cally strict meaning and sometimes in a rather
subjective, empirical manner. The exact defini
tion of probability is usually hard to give. For
instance, we talk about probability of behavior,
but it is clear that there are several different

kinds of probability for behavior. It depends
mainly on the time point considered when we
calculate probability and on the total probabil
ity space (denominator part in the calculation of
probability) against which we locate the prob
ability of the specified behavior. First, we may

Fig. 3. Cumulative record at the transition from

FR200 to FI2000 and 5000 schedules.

At the transition from FR200 to FI2000 no

obvious change in responding patterns were

observed, but after the schedule was

changed to FI5000, a temporal decrease in

response rate appeared and the scallop

developed. Note that two traces are super

imposed, and the unit of FI intervals was of

a computational time.

Fig. 4. Cumulative record under FI200, 500.

2000 and 5000 schedules.

The simulation showed typical scallops in
some of the inter-reinforcement intervals

under FI5000, in which clear scallops and

short pauses appeared alternately.

calculate probability of behavior X after we

have observed a behavioral series X, X, X, Y, Z,

Z, Y, Y, X, X, and it will be 0.5 if we calculate it

against the observed behavioral series in the
above. Since the series has actually occurred

already, the probability is firm ('firm prob
ability' is a kind of oxymoron, though). But if we
extend the calculation to unrealized future se

ries, it will be either 0.5 or not. The latter case
naturally includes a problem of estimation and
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XDY

P( x n Y )

P(X|Y) = , P(Y)>0

P(Y)

Fig. 5. Definition of conditional probability.

prediction. Second, we may calculate the prob
ability against time, but not against the behav
ioral units. Let X, Y, Z need 1, 2 and 3 second(s)

respectively. The observed series will take 17
seconds totally, and the probability of X in the
time series would be 0.29. Also, in this case we

may try to extend the series to the future. In
general, it seems reasonable to use the word
probability as referring to prediction of future,

unrealized events.

We encounter the above rather general prob

lem also in interpreting and thoroughly quanti
fying Premack's Principle. Premack's Principle
states that the probability of less probable be
havior will increase if the behavior is accompa
nied or followed by more probable behavior.
Consider how and when you estimate the prob
abilities of less and more probable behaviors. In

general, they are what you obtain in the ad
libitum situation, but when we try to extend the

principle to the food-deprived situation as a pos
sible reinforcement mechanism, a problem will

appear: the probability of eating should be low
in the food-deprived and even in the operant
experimental sessions. Is the eating behavior
more probable than the bar pressing behavior
there? As for the observed behavior, the answer

is 'the same or even less', and were it true, the

occurrence of eating behavior could never rein
force the bar pressing behavior. We should

state that the eating is more probable in the ad
libitum situation sometime in the day but it is
now deprived and not yet realized, or that the
eating behavior is more probable if and only if
its occasion (food) is available. In any case, the
probability of more probable eating is not based
on the data observed in the operant experimen

tal sessions, and should be derived from some

where else.

The present paper discusses those problems

in more detail. Utilizing Bayes' Theorem as a
convenient probabilistic tool, it proposes recur
sive occasion theory as a possible formulation of
operant behavior and tries to formulate the re
inforcement processes in some quantitative
way.

Conditional probability

Conditional probability is defined as:

P(X|Y) =
P(XDY)

P(Y)
P(Y)>0, (1.1)

where X and Y are events we would observe

and (XHY) denotes a case that both X and Y

occur simultaneously or contiguously, or any

way they occur as a set of the two events. P(X
H Y) is a joint probability of X and Y, and thus
defined P(X| Y) is a conditional probability of X
when or after Y is observed (probability of X

given Y). More thoroughly, conditional prob
ability of X given Y is a probability with which
the event X would occur under a condition that

it is known the event Y has occurred. For

convenience, hereafter let us write X,Y instead

of XHY for the notation of logical conjunction
(AND).

In relation to the above definition, there are

two important rules (See Fig. 5):

P(X U Y) = P(X) + P( Y) - P(X D Y)
—additive law or sum rule (1.2)

P(X D Y) = P(X,Y) = P(X)P(YIX) = P(Y)P(X IY)
—multiplicative law or product rule (1.3)

If the events X and Y are independent of each

other, P(X,Y) = P(X)P(Y), and, using a conditional

probability notation, this can be written as:

P(X) = P(X IY) or P(Y) = P(YIX)
—independence between events (1.4)

Those relations can be immediately extended to
a case of multiple events. For example, the
product rule in a three-events case will be
P(X,Y IZ)= P(X IY,Z)P( YIZ) = P(YI X,Z)P(X IZ).

One of the interesting behavioral implications
of the concept of conditional probability be
comes apparent if that concept is applied to the

probability of eating when a food is available
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P(C) .

P(Clfood)

food

P(C I food)

food

P(C I food)

P(C)

(probability of eating the available food). Nor
mally, eating is NOT independent of food avail

ability and therefore P (eating Ifood) =£ P (eating).
In a usual and real situation, it is hard to think

of the probability of eating per se when there is
no food available, but here let us think of two

probabilities P(eating) and P(food) as if we could
estimate P(eating) separately from food avail
ability. For example, P(eating) is higher in an
animal that loves to eat than in an animal that

does not like to eat. On the other hand, it is

obvious that food availability varies from situa
tion to situation. We can think then of the

conditional probability of eating available food.
Note some interesting relations between P (eat

ing) and P (food).
In Fig. 6, two aspects of the conditional prob

ability of eating available food are shown. The

45 1997

food

Fig. 6. Characteristics of
P(eating Ifood).

In the middle row, P

(eating) is fixed and P

(food) varies. If the

food availability gets

lower, the P(eatingl
food) gets higher. If

we allow P(eating) to

get higher in this

situation, we will get

other hyperbolic curv

es that are nearer to

the point (1,1). In the

bottom row, P(food) is

fixed and P(eating)

varies. We get a sim

ple, linear relation

ship between P(eating

Ifood) and P(eating),
and it will stand up
from the diagonal line

to the lines nearer to

the vertical axis,

when the food avail

ability gets lower.

The two aspects can

be integrated into the
top, three-dimensional

plot. Note that P

(eating Ifood) is indi
cated as P(C|food) in
the plots.

middle row shows the cases where P(eating) is

fixed and P (food) varies. If the food availability
gets higher, the P(eating Ifood) will be lower,
and on the contrary, as the food availability
gets lower, the P(eating Ifood) gets higher.
Thus, we get a hyperbolic curve for one fixed
value of P(eating). If we allow P(eating) to get
higher in the above situation, we will get other
hyperbolic curves that are nearer to the point (1,
1). Any hyperbolic curve formulates the prob
ability with which eating behavior would occur
along the food availability, deprivation/satia
tion continuum. In an environment with low

food availability, an animal will immediately
eat after it has found food. On the contrary, in
an environment with high food availability, it is
more likely that an animal will be engaged in
the other activities without eating. The bottom
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row shows the cases where P(food) is fixed and P

(eating) varies. We get a simple, linear relation
ship between P(eatinglfood) and P(eating) for
one fixed value of P(food), and it will stand up

from the diagonal line to the lines nearer to the

vertical axis, when the food availability gets
lower. The two aspects are not independent of
each other as we have seen, and they can be

integrated into the top, three-dimensional plot.

Now is a good time to define two different
occasions by means of conditional probability.

Since we cannot eat without food, that is, P

(eating) is fully included in P(food), the food is a

hard occasion for eating. This case can be writ
ten as P(eatinglfood) = P(eating, food)/P(food) =
P(eating)/P(food). See Venn diagrams in Fig.6.
The other kind of occasion is a soft occasion, and
when we let the occasion be an event 0, P

(eating) is not fully included in P(0). Sometimes

the event O leads to eating, sometimes not, and
sometimes eating can occur without the event

O. See a Venn diagram of Fig. 5.

Recursive environments

Let us go back to our assumption that P(eat-
ing) can be estimated separately from food ava
ilability. As behavioral researchers, we would

try to know P(eating) indirectly from P(eating|
food) usually. Since P(eating) itself cannot be

observed directly, it would be estimated by vary

ing P(food) and observing P(eatinglfood). This
is an experimental way of thinking. Premack's
Principle does not depend mainly on this experi
mental thinking, but it basically depends on the

ad libitum probability of eating, that is, it is
based on an observational approach to behavior

when food is always available or only softly
deprived by setting on wheel-running some de
pendency for food availability. In a sense, the
Premack's experiment, on which Premack's
Principle is based, is a subtle and clever combi

nation of experimental and observational ways
of thinking.

Some difficulty will appear when we try to

apply this principle directly to a fully experi
mental situation, in which we deprive animals

of food as an explicit experimental operation.
As mentioned before, P(eating) should be more
probable than P(bar-pressing) if we expect that

Premack's Principle can verbatim formulate the

reinforcement of bar-pressing behavior after it
has occasioned the presentation of deprived
food and the occurrence of eating behavior. But

it is never true unless we use the ad libitum

probability of eating in the application of Pre

mack's Principle to experimental situations, in
which descriptive probability of eating is actu
ally the same or less than the probability of bar
pressing.

It is now obvious that it is necessary to over
come the gap if we like to have a logically and

mathematically clear relationship between the

'more probable eating' in the ad libitum situa

tion and 'less probable (less frequent) eating' in
the experimental sessions. How can it be done at
all?

The only way to the solution is to allow a few
different probabilities of behavior and arrange

them rationally in some sophisticated manner.
Honestly, the secret solution is really simple and

corresponds to what we usually do. We do not

do it sub rosa, but we are not well aware of it.

Let us think of two environments: an ad libitum

environment (ALE) and an experimentally con
trolled environment (ECE). Also let us think of

a few different probabilities of eating. One can
be understood simply and it is an ad libitum

probability (Padlib). This probability is based
on the behavior observation and it is only de

scriptive and, by itself, never predictive for fu

ture occurrence of the behavior. Another is also

descriptive, but describes the probability of the
behavior that has actually occurred in the ex
perimental sessions (Pexp). Padlib corresponds
to ALE and Pexp to ECE. Note that both Padlib
and Pexp are based on the observed data and

fixed at the moment they are calculated, but the

third probability has a different meaning. The
third probability of behavior, Ppotent, is simply
Padlib divided by Pexp:

Ppotent = Padlib/Pexp (2.1)

or in a logarithmic notation:

log Ppotent = log Padlib - log Pexp (2.2)

In order to understand what Ppotent means,

consider the case of ad libitum eating and food
deprivation. In ALE, an animal can eat any time
because food is always available. The probabil

ity of eating will simply conform to the P(eat-
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ad libitum environment (ALE)

Fig. 7. Experimentally controlled environment
(ECE) within ad libitum environment
(ALE).

The occasion deprivation and schedule

restrictions make ECE nested within ALE.

As for the occasion-deprived behavior, Pexp
<Padlib, and Ppotent is Padlib divided by
Pexp. After a considerably long time period
in experimental sessions, Padlib can be
updated by taking Pexp into account, which
reflects the consequences in the experi

mental sessions. Small arrows show the

direction of parameter passing.

ing) and it is Padlib (eating). Then, if we deprive
the animal of food, the hard occasion for eating,

the animal may try to eat but cannot and, there

fore, Pex/>(eating) will be almost zero. The Pexp
in an operant experiment is simply calculated
on the basis of observed eating behavior that
actually occurs when a food is presented. Usu
ally this Pexp is also less than the Padlib. (Note
the division would give a Ppotent value more

than 1 in most cases. I will come back to this

calculation method later.)

When Padlib is fixed, the less Pexp becomes,

the more Ppotent would be, and the more Pexp
becomes, the less Ppotent would be. Now we
may notice that Ppotent is a kind of drive under
situations where the access to food is restricted,

and it is simply based on the two descriptive
probabilities of behavior.

As Pexp is a result of some restricting opera
tion added to Padlib, so the ECE is a result of the
same operation added to the ALE. In other
words,

Pexp = a-restricting-function (Padlib) (2.3)
ECE = a-restricting-function (ALE) (2.4)

From 2.1 and 2.3,

Ppotent=Padlib/Pexp
= Pad/f6/a-restricting-function (Padlib).

(2.5)

Thus Ppotent becomes what reflects the re
stricting function well. If we assume that Ppo
tent is the higher probability of Premack's 'more
probable behavior', the logical problem de
scribed above will be settled.

Since the ECE is generated through a restrict
ing function of ALE, it is contained in the ALE
diagrammatically (Fig. 7). But, since many as
pects other than the restricting function are
identical in both the ECE and ALE, ECE and

ALE are similar to each other. The diagram
with two squares can be extended to a diagram
with more than two squares, that is, more than
two nested environments. Let us come back to

this later again. Because of the reasons to be
mentioned then, a word recursive does not sim

ply mean repeating in succession along time, but
repeatedly nested as a structure.

P(Ei) • P(F I Ei)

P'(Ei|F) =

£°°i =iP(Ej) .P(F| Ej)

Ex E3 E5

E4

E2

Fig. 8. Bayes' Theorem.

P (Ei) denotes an absolute or prior
probability of the i-th event E„ and I," , P(Ej)
= 1. F is another kind of event, and P(F|Ei)
denotes probability of F given Ei, in other
words, likelihood of F given Ej. P(EilF) is
called posterior probability of E; given F and
sometimes called probability of E\ as a
possible cause of F. For convenience,
probability as a possible cause is denoted
with ' added: HE,IF). Note that P'(E;|F) is
essentially a conditional probability though
it has a few different names.
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In the above relations between Ppotent, Padlib
and Pexp (2.1), I used a division operator without

specifically mentioning why it should be divi

sion but not other operators, for example, sub
traction, etc. It was simply based on the defin
ition of conditional probability and for some
convenience, and the idea that Ppotent, should

be what reflects the difference or ratio between

Padlib and Pexp. Therefore it has not always
been necessary to limit the operator to division

up to now.

It is good now to notice that a hard occasion,

for example food, would reverse the restricting
function to a certain but limited degree. Thus,

the hard occasion would make the ECE nearer

to the ALE.

occasions = a-restricting-function (2.6)

The point is that, while we tend to think that
an occasion is only what gives behavior a
chance to occur in an environment, it actually

changes the situation with two different envi
ronments and their relationship. Saying in a
little bit exaggerated way, an occasion changes

the world.

Bayes' Theorem

Bayes' Theorem or rule is simply another
form of the definition of conditional probability

in 1.1. From 1.1 and the product rule in 1.3, we

obtain:

P(EilF) =
P(Ei)P(F|Ej)

Er=iP(Ej)P(FlEj
(3.1)

where P(Ei) denotes an absolute or prior prob
ability of the i-th event Ei, and I"i P(Ej)=l. All
E's are mutually prime (independent). In this
case Ei is a discrete event and therefore the sum

operator Z is used, and for a continuous event

an integral operator J will be appropriate (Con
sider a case where the word behavior has no

plural form). F is another kind of event, and P(F
IEj) denotes probability of F given Ei, in other
words, likelihood of F given Ei. See Fig. 8 for

details of relations among F and Ei, E2 • • • En.

From those we obtain P(Ei IF), probability of E;
given F. This P(Ei IF) is called posterior probabil
ity of Ei given F and sometimes called probability
of Ei as a possible cause of F. For clarity and

convenience, probability as a possible cause is

sometimes denoted with' added: P'(EilF), which
will also be used hereafter in the present paper.

Note that P'(EilF) is essentially a conditional
probability though it has a few different names.

The event F in Fig. 8 can occur after Ei~E5.
Probabilities of Ei~E5 may be different from

each other and the likelihood of F given Ei~E5

is indicated as parts of Ei~Es contained in the
circle F (more in detail, those parts of Ei~E5
divided by Ei~Es). Those parts divided by F
are posterior probability of Ei~E5 given F. In
the sample situation of Fig. 8, E4 is the main

cause of F.

Bayes' Theorem is a convenient tool in Bay-
sian inference, where often Ei is a hypothesis
among several hypotheses (E's), its reliability or,
sometimes, belief of a person who infers. It
depends on the observation or realization of
event F. Reliability of a hypothesis will be up
dated and increases each time an event which is

favorable and supportive for the hypothesis has
occurred and been observed. One posterior prob
ability after a related event has been observed

would be another prior probability in the next
time. This is a frequently used method, and
called Bayesian updating. It is natural to specu
late that this updating can occur in the acquisi
tion of a specified response in an operant experi
ment.

Bayesian updating as a model of

reinforcement mechanism

In order to verify the speculation, let us con
sider the following situation. Let B be the be
havior under consideration, for example, bar
pressing, ~B (not B) be behavior other than B,

and C be consummatory behavior or conse
quence. In order to assure that eating will occur

immediately after a food presentation, P(eatingl
food) should be high, and to clearly show it, the

bold C will be used to indicate a conjunction or
joint event of food presentation and eating, that
is, C = eating,food (or C = eating D food).

Several relationships in operant experimenta
tion can be written in a form of conditional

probability:

P(eating Ifood) + P(~eating Ifood) = 1,
P(eating Ifood) gets higher after food depriva

tion, as shown already,
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P(food|B)=l if we set dependency on B for
food (or in erf),

P(food|B)>0 and P(foodl~B)>0 if we set
contingency on B for food,

Pn(eating|food)<Pn-i(eatingifood) if some
amount of food has been given,

and so on. The subscripts in the last relation,
n and n— 1, denote the steps along the time
course. In most cases the subscript denotes the

updating steps, n after an instance of rein

forcement, n-1 before it, and so on.

Regarding that reinforcement is Pn(B)>Pn-i
(B), and that, as in the Bayesian updating, Pn(B)
= P'n-i(B|C), the reinforcement process should
include:

P„(B) = P,„-i(B|C)>P„-i(B) (4.1)

Now let us seek a condition for making the
relation in 4.1 true. From 4.1 and Bayes' Theo
rem,

P'(BIC)

= P(B)

P(B)P(C|B)
P(B)P(C IB) + P(~B)P(C I~B)

P(CIB)
P(B) P(C IB) + P(~B)P(C I~B)

(4.2)

(4.3)

and therefore in order to make 4.1 true, P(C IB) >
P(B)P(C IB) + P(~B)P(C I~B). Moving P(B)P(C IB)
of the right hand to the left and using P(~B)= 1

—P(B), we immediately obtain:

or

P(C|B)>P(C|~B),

P(CIB)
P(CI~B)

>1.

(4.4)

(4.5)

This is the very condition we have sought for
making Pn(B)>Pn-i(B). What this condition

means is self-evident. But if we add some expla

nation, this condition tells that, for one behavior

being reinforced and its probability being in
creased, the probability with which that behav

ior occasioned eating.food joint event should be

higher than that with which the other behavior

occasioned the joint event. This rule should
sound very reasonable to us behavioral re

searchers.

The relationship in 4.1 also applies to the
behavior other than B, that is, ~B. The ~B

version of 4.1 will be:

P(~B)P(CI~B)
P'(~B|C):

P(B)P(C IB)+ P(~B)P(C I~B)
(4.6)

and from 4.1 and 4.6, since the denominator

parts of them are identical, we obtain:

P'n(BlC) P„-i(B)P„_, (CIB)
P'n(~B|C) Pn-,(~B)P„-, (CI~B)

. (4.7)

The left hand side of equation 4.7 is a ratio
between new P(B) and P(~B) as mentioned

above, and it is a product of the old P(B) /P(~B)
and just updated P(C|B)/P(CI~B) after C has
occurred. P(B) and P(~B) are response rates for
behavior B and ~B, and P(C|B) or P(C|~B) can
be considered to represent reinforcement rates
for behavior B and ~B. More accurately, for
some reasons that I have not yet mentioned, P(C
IB) and P(C|~B) are not exactly the same as
reinforcement rates, and therefore let us here

call the ratio likelihood ratio. Equation 4.7 is our
formulation of the reinforcement process at this

moment.

Now let us compare it with a few of already
established behavioral laws. First it is very simi
lar to the Matching Law of the initial form:

_Bl
B2 C2

(4.8)

But equation 4.7 includes a P(B)/P(~B) ratio on
the right hand side. Since the P(B)/P(~B) ratio
at one moment is the result of the former rein

forcement processes, 4.7 can be re-written as:

P'n(BlC)
P'n(~B|C) Pn

Pn-l(B)Pn-l(C|B)
-,(~B)P„-, (CI~B)

Pn-2(B)Pn-2(C|B) Pn-,(C|B)
Pn-2(~B)Pn-2(C|~B) Pn-,(C|~B) '

(4.9)

Thus, the likelihood ratio of step n —2 and n-1
are included in the ratio of the current P(B) and

P(~B). It is obvious that equation 4.9 will be
expanded to recursively include the likelihood
ratio at steps n —3, n —4, and so on. Therefore,
4.9 will be:

P'n(B|C) = Pq(B) Pn-l(ClB)
P'n(~B|C) Po(~B) ' P„-,(C|~B)

Pn-2(C|B)
Pn-2(C|~B)

Po(ClB)
Po(CI-B)

(4.10)
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and in case that all the likelihood ratios of steps
0 to n-1 are identical (though this may not be an

appropriate assumption when we think of the
actual acquisition processes),

P'n(BlC) Po(B)

P„(~B|C) Po(~B) \P(C|~B)
P(C|B)

(4.11)

To our surprise, this equation resembles the

generalized form of the matching law:

B2
=KI (4.12)

Although I do not like to insist that our formu

lation 4.7 is identical to any of the two forms of
the matching law at this moment, it is clear that
our formulation can approximate them from a

somewhat different viewpoint. The main differ
ence is the time span with which we obtain and
calculate the ratio of B and ~B. The Matching
Law is an empirical law based on the behavioral
data observed in a certain period, a session, for

example. But our formulation has been derived
rather theoretically and it concerns a more mo

mentary time point, each time the reinforce
ment occurs.

If the main difference is of such a time, what

can we say about on the relationship between
our formulation and the Melioration account?

The Melioration account tells that an organism
allocates time to two or more response classes
so that all local reinforcement rates are equal.
Though it mainly concerns time allocation rat

her than response rates, the main logic of the
Melioration account is a dynamic re-allocation

of time for behavior, depending on the local
reinforcement rate. In that sense, melioration

occurs so that

Time for Bi local Ci

Time for B2 local C2
(4.13)

But, since it is a dynamic process, 4.13 may
better be written as:

Time for Bi at time n/Time for Bi at time n— 1

Time for B2 at time n/Time for B2 at time n —1

_ local Ci at time n—1

local C2 at time n— 1 '

Immediately from 4.7, we obtain:

(4.14)

P„(B)/P„-,(B) Pn-l(ClB)
Pn (~B)/P„- -B) Pn-itCl-B)'

(4.15)

and therefore, if we assume that P(C|B) and P
(C|~B) represent local reinforcement rates, and
P(B) and P(~B) represent time allocations for B

and ~B, equation 4.15 is almost identical to
4.14. At least, the dynamic aspect of the Meliora
tion account also exists clearly in our formula
tion, and ours looks more precise in the time
course than the Melioration account.

Starting from considering whether Bayesian
updating can model reinforcement mechanisms

and hence acquisition processes, we have found
that our formulation has a deep and strong
relationship to the Matching Law and Meliora

tion account. Of course, as we have discussed, if

P(C|B)>P(C|~B), then P(B) will increase, and it
is suitable for an acquisition model. The Bayes
ian updating formulation of the reinforcement
process is thus worth further study, but the
above mentioned formulation is simply a proto
type for constructing a model or formulation of
more reality.

For example, the Bayesian updating formula
tion in 4.7 or 4.10 can be extended to multiple
behavior situations, as the conditional probabil
ity and the single-step Bayes' Theorem can be
easily extended to the multiple, successive e-
vents situations. That extension should have a

close relation to behavioral chains and a possi
ble formulation of the discriminative stimulus.

There remain some subtle problems surround
ing what P(B), P(C IB) and the power in equation
4.11 actually represent in real experimental sit
uations. Further, those equations are merely a
logical product in a sense, and we need some

detailed, mathematical/computational frame
work in order to verify the logic in more realis
tic manners. I will discuss those problems in
later sections, after we have integrated the re
cursive environments account and the above

Bayesian updating mechanism.

From single realization to distribution

In the earlier section a non-descriptive prob
ability Ppotent has been introduced in order to
overcome the gap between observational and

experimental approaches to the probability of
behavior, that is, the problem we would encoun-
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ter when we try to apply Premack's Principle to
the food-deprived experimental settings. Ppotent
was defined as Padlib/Pexp. Since both Padlib
and Pexp are calculated on the basis of the ob
served, realized behavioral data up to the time
point of calculation, they are determined to
have a single value. This indicates that Padlib
and Pexp can be regarded also as realized and
observed values. They seem to be fixed at a
certain moment and to deterministically gener

ate the probabilities on the next steps. A similar
point can be made concerning Bayes' Theorem
and the probability updating based on it. How
about the non-descriptive Ppotent? Although it
is a probability concerning future events and
not yet realized, it seems to be fixed as a single
value as if it were a realized value, because we

obtain Ppotent simply with Ppotent=Padlib/
Pexp.

Is it really reasonable to think that those sin
gle values are the most appropriate ones to
represent the real situations? Here is a very
fundamental, probabilistic problem. If we ob
served a behavioral series X, X, X, Y, Z, Z, Y, Y,

X, X, and we get 0.5 for P(X) based on the
observed data, is it reasonable to think that the

value 0.5 really represents P(X)? In our statisti
cal convention, the above behavioral series

should be regarded just as a sample realization
of the probabilistic X, Y and Z. It is possible to
obtain X, X, X, Y, Z, Z, Y, Y, X, Y in another

observation and X, X, X, Y, Z, Z, Y, X X, X in the
other. We need to estimate a distribution of X,

Y and Z, from which each realization is drawn,

as we usually do in most of the conventional
statistical tests. Now is an appropriate time to
step up from the single-valued probabilities of
behavior to the probabilistic distributions of
behavioral probabilities for a more realistic for
mulation of operant situations.

Each behavioral unit has two values, to occur

and not to occur, and a behavioral series X, X, X,

Y, Z, Z, Y, Y, X, X can be expressed as X, X, X, ~
X, ~X, ~X, ~X, ~X, X, X from the viewpoint of
one behavior X. Similarly, a behavioral series B,
B, B, B, B, B, B, B, B, B occasions C sometimes in
a manner of C, C, C, ~C, ~C, ~C. ~C, ~C, C, C.
Therefore it is natural to regard that probability
of X to occur x times in a total of n behavioral

occasions, or probability of B to occasion C x
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Fig. 9. Changes in shape and expectation of
beta distribution for various sets of the

two parameters.

Dotted curves in each graph represent Be
(10, 10), and values of expectation of the
distributions (average) are also shown below

the tags of Be(a, B), which is shown in solid
curves. In Be(l, 1) the shape of the
distribution is flat, and it assures also high

probability values. When a consequence
favorable for the hypothesis comes out, the
value of a increases and the distribution

will be skewed to the higher probability direc
tion (right). An unfavorable consequence
increases the value of yS and hence

transforms the distribution to the lower

probability direction.

times in a total of n occurrences of B, conforms

to a binomial distribution Bi(n, 6). When 6 is a

parameter of the binomial distribution,

/(x|0) = nCx0x(l-0)n", x = 0, 1,2, •••,n. (5.1)

The distribution version of Bayes' Theorem in
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3.1 can be written as:

(o'(9,\z)-
w(0i)/(zia:

SjW(W(z|0j)

where co(9) and oo'(9\z) are probabilistic distribu
tions of prior and posterior probabilities of 9,
respectively, and/(z|0) is a likelihood function.
Since the denominator of 5.2 is evident, and

regarding it is omissible, 5.2 can be written
more simply as:

oj\9x\z)^oi(9{)f(z\9),

(5.2)

(5.3)

and/(z |0) transforms the prior probability dis
tribution u)(0\) to the posterior probability distri
bution o)(9\ Iz).

Since the likelihood function, which repre
sents the probabilistic distribution of observed
data, is a binomial function in 5.1, in order to

select an appropriate prior and posterior distri
butions (o(6) and (o\9\z), it is reasonable to look

for them in a natural conjugate family of the
binomial distribution. It is convenient and ap

propriate to select beta distribution for the prior
and posterior distributions. Let them be beta

distribution Be(a, 3),

oj(9)= Be(a,B) = e"-](l-9sf-l/B(a,B),0<e<l,
(5.4)

where B(s, t) is a beta function and B(s, t) = J?us_1
(l-uy-ldu. By 5.4, 5.3 will simply be:

0+(n-x)-la>'(9\x)oz9a+x-i(l-9) (5.5)

co'(9\x) = 9a+x-\l-9)f3Hn-*)-i/B(a + x,8 + (n-x)).
(5.6)

Since the posterior distribution o)'(9\ x) is Be(a +
x, /3+(n —x)), the updating simply transforms a
to a + x and B to B+(n —x) in the same beta

distribution.

For example, in the case of B, B, B, B, B, B, B, B,

B, B occasioning C sometimes in a manner of C,

C, C, ~C, ~C, ~C, ~C, ~C, C, C, the updating
will start from Be(l,l) as the first prior probabil
ity, and the first occurrence of C converts it to

Be(2, 1). In the same manner, it will be succes

sively Be(3,l), Be(4,l), Be(4,2), Be(4,3), Be(4,4), Be

(4,5), Be(4,6), Be(5,6) and Be(6,6). The distribu

tion of the first prior probability has a flat
shape, and it will change as shown in Fig. 9.
Note that the expectation E(9) of the beta distri

bution (average) is:

ti=a/(a+0). (5.7)

and it also changes while the updating of the

distribution progresses.
This rather convenient updating process is

realized by selecting a beta distribution for the
distribution of the prior and posterior probabili
ties. There could be other, more theoretically

appropriate distributions for it, but in the pres

ent paper let us utilize the beta distribution as
the most appropriate example at this moment.

Recursive environments with

Bayesian updating

We have seen the updating of a probabilistic
distribution in the example of B occasioning C
and the change in the shape of distribution,

which reflects the observed behavioral data.

The same operation can be applied to the prob
ability of C itself. Note that C is a joint event of
eating and food presentation. If food is not
available at all as in the deprivation period, the
beta distribution of C will be skewed to the left,

lower probability, that is, C becomes unlikely to
occur. This corresponds to the lower Pexp(C). If

we have a flat Be(l,l) or beta distribution some

what similar to a normal distribution in its

shape, for example Be(100, 100), as a Padlib
distribution, we will be able to obtain the distri

bution of Ppotent by dividing Padlib by Pexp, for
example Be(50, 1). Also in this operation, the
beta distribution is very convenient because its
divisions by the same beta distribution simply
become subtraction operations on the parame
ters a and 6 of Be(a, B). In the above example,
Ppotent will be Be (50, 99), and the distribution

of Ppotent will be skewed to the right, higher
probability. This means that eating is more
probable if there is a food available.

The mechanical determination of Ppotent is
now put in the center of nesting of the experi
mentally controlled environment (ECE) within
the ad libitum environment (ALE). ECE is nest

ed in ALE by means of really mathematical

transformations. It is important to note that
Padlib and Pexp are based on the observed, re
alized behavioral data in the real experiment
and also in a possible simulation. In the simula
tion we can prepare one behavior, for example,
eating, and examining whether there is food
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Fig. 10. Recursive occasion-setting environ

ment (ROSE) diagram.

The recursive structure of the environments

of ALE, ECE and CRE is shown by nested

squares. Long arrows show directions of
the nesting caused by occasion deprivation

and schedule restrictions and of the returns

from inner environments. Small arrows

show the direction of parameter passing.

Inheritance and update of the probabilities
are almost identical to those in Fig. 7. The

state of the behavioral system gets into ECE

when some experimental controls are added,

and gets back to ALE when the

experimental controls have ended.

Similarly, the behavioral system gets into
CRE immediately after a deprived occasion

is given, and gets back to ECE when

another deprived occasion is given. The
recursive occasion formulation assumes that

the actual occurrence of behavior X

conforms to the distribution of the highest

Prunpotent(X->).

available or not, and if there is no food available,
we add 1 to B in Be(a, B) of Pexp(C), because

eating cannot occur without food.

If we consider that the Padlib has been deter

mined after a considerably long period of obser
vation, it is reasonable to assume that Padlib

will stay unchanged in the deprivation and ex
perimental periods and that it is constant for a
considerably long time period. While Padlib
stays unchanged and if Pexp changes, then Ppo
tent will also change systemically. Of course, if

deprivation or experimental sessions continue

for a much longer time period than the period
for which we have obtained Padlib, Padlib itself

will change in accordance to the behavioral
data obtained in the deprivation and experi

mental periods. Let us call this kind of change
in Padlib an upward updating of Padlib by Pexp.
This updating does not occur so frequently in
usual situations.

As I have already mentioned in an earlier
section, the most important and fascinating
point of the recursive environments account is
to allow another nesting of environment within
the experimentally controlled environment
(ECE). Tentatively, let us name the third envi
ronment within ECE the current runtime envi

ronment (CRE). CRE has Prun probabilities of

behavior, as ECE has Pexp's. Prun inherits a

distribution of behavioral probability from

Pexp, as Pexp does from Padlib. But, leaving
Pexp unchanged, Prun will be updated precisely
during an inter-reinforcement interval. The up
dating will occur after each occurrence of one
behavioral unit, for example, B, and examina
tion of its consequence, that is, for example,
whether C occurs or not. Here also will be an

upward updating of Pexp by Prun after a consid
erable session time. This upward updating is

likely to occur more frequently than the up
ward updating of Padlib by Pexp. For example,
it may occur after each occurrence of C, or after
an experimental session has ended, etc. Note
that an exact value for several 'considerably

long time periods' has not been given.
It is highly important to point out that there

is another probability Prunpotent, at the edge of
the nesting of CRE within ECE. Prunpotent
corresponds to Ppotent at the nesting of ECE
within ALE. Prunpotent is calculated with Prun
potent— Pexp/Prun, and it will change precisely
as Prun changes while Pexp and therefore also
Ppotent stay unchanged for a considerably long
time period. For example, Prun (eating, food I
bar-pressing) decreases by each occurrence of
bar pressing without getting food in an inter-
reinforcement interval of an intermittent rein

forcement schedule, and accordingly, Prunpotent
(eating, food Ibar-pressing) will gradually in
crease. This may have an important role in the
non-homogeneous scattering of bar pressing
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along the time course after an instance of rein
forcement (Consider such a situation as an FI

scallop).

For a summary of a slightly complicated set
of nesting and upward relations, see Fig. 10.
ALE contains ECE, and ECE contains CRE. The

differences between ALE and ECE are the occa

sion-restricting functions or operations, which
are, for example, food deprivation and other
operant experimental settings including sched
ules of reinforcement. The difference between

ECE and CRE is slightly subtle. Both ECE and
CRE concerns experimental situations, but CRE
concerns events in a short period such as an
inter-reinforcement interval, and ECE concerns

the history so far realized in a session or over
sessions. The gap between ECE and CRE would
clearly appear, for example, in the difference
between overall reinforcement rate and local

reinforcement rate, or difference between aver

aged reinforcement rate over several sessions
and a current situation where an animal has not

yet gained a food even after it has responded
frequently. Anyway, CRE concerns the current,
real-time system of behavior.

ALE has a set of Padlib's of many behavioral
topographies or units. ECE has a set of Pexp's,
which first inherit and correspond to Padlib's
but are updated separately on the basis of the

actual behavioral occurrences (and non

occurrences). In the same manner, CRE has a set
of Prun's, which first inherit Pexp's but are up

dated separately on the basis of the current
behavior stream. As Padlib/Pexp and Pexp/
Prun, Ppotent and Prunpotent have been defined.
Ppotent may represent a hunger level or such in
an experimental session, and Prunpotent may
represent more local changes in Ppotent. Padlib
and Pexp will be updated after a considerably
long time period upwards by Pexp and Prun,
respectively.

Now the recursive structure of three nested

environments should have become clearer. It is

a simple interpolation of nesting to get a three-
level nested structure from a two-level nested

structure, even though the latter sounds more

usual than the former. The three environments

are almost isomorphic, and different slightly
only in the functions connecting any two envi
ronments. This structure of recursive environ

ments is the first milestone of our recursive occa

sion theory.

What the reinforcement actually does

Let us see what the reinforcement actually

does in the framework mentioned so far. We

have referred to a few changes accompanying

the reinforcement. One of the changes is that a
new probability of B becomes higher than the
old probability of B. This has been expressed
that a posterior probability of B, or probability
of B as a possible cause of C, becomes higher
than the prior probability of B. We have util
ized Bayes' Theorem and the Baysian updating
convention to formulate the relation between

the prior and posterior probabilities of B. There,

we have substituted P'(B IC) for P(B). Now let us
examine this substitution more thoroughly.

See Fig. 8 again, in which let E4 be B, and

therefore P(E4) stands for P(B). Let F be C, and

therefore P(F) stands for P(C). P'(E41F) stands for
P'(BIC). Accordingly, substituting P'(B|C) for P
(B) is substituting P'(E41F) for P'(E4). P'(E41F) is
actually a ratio of E4,F and F, or simply E4,F/F.
Similarly, P(E4) is E4/(Ei + E2+ E3+ E4). What
does the substitution of E4,F/F for E4/(Ei+E2+
E3 + E4) mean? In a sense, it substitutes the con

tribution of a part of E4 inside F for P(E4). Back
to B and C, the updating substitutes the contri

bution of a part B inside C for P(B). This is
neither that we substitute a part of E4 inside F
for E4 itself nor that a part of B inside C for B
itself. The substitution occurs beyond the level
difference between P(E4) and P'(E4|F) and be
tween P(B) and P'(BIC). The level difference
means, in this case, that P(E4) and P'(E4|F) have
different total probability spaces. Now we rec
ognize that the substitution does not occur in a

single dimension, but it may better consider

that the substitution occurs from ad libitum

context to C(or F)-oriented context. Is it just a
baseless trick or a merely temporizing proce
dure for the formulation and a planned com

puter simulation? No.

Substituting P'(B|C) for P(B) is not simply to
amplify P(B), but it is to temporarily re-organize
the behavioral space (for example, Ei + E2 + E3 +

E4), which has been independent of C, to a new
C-oriented behavioral space. It corresponds to
the characteristic of our formulation that ECE is
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nested within ALE by means of C-deprivation,
and the food occasion reverses the nesting up
wards. P'(B IC) can replace P(B) only within the
C-oriented environment, that is, only within
ECE (hence, also within ALE). Actually, this is

the core concept on reinforcement in our formu
lation: the reinforcement does not occur within

one environment but occurs beyond the border

of environments.

This is not special only in our formulation. As
described in the section on 'from single realiza

tion to distribution', a variable corresponding to

P(B) is usually a hypothesis in the Bayesian con
vention, and usually it is not a mere probability
of one event. It naturally includes some rela
tions in it. Generally, substituting a probability

of X as a cause of Y for the probability of X

should mean that X has intrinsically some sig

nificance on Y. This is assumed in Bayesian
conventions concerning belief or hypothesis

verification.

In our case, P(B) starts as a simple probability
of one event B. But, once it has been associated

with C, P(B) is no longer a probability of such an

isolated entity. B has become involved in a be
havioral context or stream for C. Once B has

been involved, yes, even once is enough, the
updating of B is simply of a hypothesis that B
occasions C, as in the Bayesian convention. The
reinforcement process should be regarded as

such a process. In a sense, reinforcement gives a
new meaning to behavior B and its probability.

Let us call the behavior that has not yet been

involved in a behavioral context or stream a

stream-free behavior, and the behavior that has
been involved a stream-bound behavior. The

reinforcement process has two aspects: to make
a stream-free behavior stream-bound, and to
cause the changes in probability of the stream-
bound behavior. As for the case of the hunger-

eating-barpressing relation, some sensation re
lated to hunger has a discriminative role and
that discriminative property heads the C-bound
behavior stream. When hunger goes away, the
C-bound behavior stream will be decomposed.

Let us briefly examine the main logic of Pre
mack's Principle in relation to the above core
concept. Although we feel that both 'less prob
able behavior' and 'more probable behavior' be
long to an identical single environment, it is not

45-*§• 1997

true. If they belong to an identical environment,
we should be able to compare 'more probable

behavior' and 'less probable behavior' directly,
but it is impossible, as we have thoroughly dis
cussed. More probable eating appears in a form
of Ppotent, and bar pressing in a form of Pexp. If

we compare them directly, F and E4 must ap
pear in the same probability space competi
tively and they will never have an intersection

or conjunction part in Venn diagrams like Fig.
8. We should consider that the reinforcement

process naturally requires such epistemological
conversion of the concept of behavioral prob

abilities.

Once we have admitted this core concept, we
will be able to have a rather mechanistic reason

why reinforcement can occur only in the situa

tion where the more probable behavior accom
panies less probable behavior as Premack has
formulated. As mentioned above, the reinforce

ment process converts a stream-free behavioral
space to a stream-bound (in this case, C-bound)
one in our formulation. That is, the reinforce

ment process converts P(C) to the new total
probability space and P(C,B) to the new P(B) as a
part of the new total probability space:

P„(B) «- P„-i(C,B)
1 Pn-l(C)

= P,„.i(BlC)>P„-1(B).
(6.1)

If originally P„-i(B)>P„-i(C) and if Pn-i(B) in
cludes Pn-i(C) completely, then Pn(B) will be 1
after the conversion. This is unusual in a behav

ioral system and impossible. When Pn-i(B) does
not include PR-i(C) completely, and if Pn-i(C,B) is
still higher than Pn-i(C, B2), Pn-i(C,B3), etc., P„(B)
becomes larger than Pn(B2) and Pn(B3), etc., and
reinforcement will occur. But, after several rein

forcements, P(B) will finally come to include P
(C), and then Pn(B) will again be 1. This is
unusual in a behavioral system and is impossi

ble. Only if P„-i(C, B) is lower than Pn-,(C,B2),
Pn-i(C,B3), etc., that is, reinforcement will not
increase P(B), will it be assured that Pn(B) will

not be 1.

It is easy to think that Pn(B)= 1 is unusual in a
behavioral system, but is it still easy to regard it
as impossible? It appears to be impossible only
because of the requirements of our formulation.
However, it is impossible not only in our formu-
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lation but also in the real behavioral system. If

P(B)= 1, then probabilities of other behaviors, P

(B2), P(B3), etc. will be 0. In that situation, B2, B3,
etc. are completely deprived of occasions to oc
cur. Now, B2, B3, etc. will become highly oc

casion-deprived and they become like C, and
then B2(or B3, etc.)-bound stream will appear and

P(B) will decrease. Generally Pn(X)=l should

and can not occur because of the reasons given

above. Probably, due to the long evolutionary
history of behavior, behavior systems may have
come to reject a process that brings about a
situation in which one behavior has a probabil
ity 1 (This may be related to the extinction
process). P(B) should thus be less than P(C)
originally, which will assure that a new P(B)
falls in a normal range.

Standing on the above viewpoint on the rein
forcement process, let us examine which of

mere P(B) and P'(B|C) should be our main con
cern. That is actually the question of wheth

er stream-free or stream-bound probabilities
should mainly concern us. Consider a simula
tion of behavior. We prepare probabilities of

behavior A, X, Y, Z, that is, P(A), • • • P(X), P(Y), P

(Z). Usually we tend to think that P(X) or such
probability changes in the behavioral system.
We can think of another kind of probability like

a probability with which behavior Z follows
behavior Y, for example. P(B) at the beginning

is a simple probability like P(X), but after P(B)
has been involved once, that is, after it has

become P'(B|C) in C-bound stream, it comes to
look like a transition probability such as P(Y IZ),
and so it is, by definition.

Since P(X) can be written as P(X Itotal-
probability-space), conditional probability is
more the general expression of probability.
Therefore, a probability like P(Y|Z) may be
more a general form than a simple probability,

especially in systems like a behavioral system.
Now we may consider that we should mainly
concern ourselves with conditional probabilities

like P'(B IC) rather than P(B), if P(B) can be ex
pressed in a form like P'(B|C). As a notation it is
easy, and we need to know whether it is possible

as an expression of a distribution. Luckily, the
beta distribution has a special shape when it is
Be(l,l), that is, a flat distribution. The flat distri

bution with both parameters equal to 1 can be

regarded to represent a probability like P(B),
because it is the original distribution before any
updates have occurred. Once behavior B is in
volved, parameters a and 3 will be more than 1.
Thus, it is possible and reasonable to think that
a simple probability like P(B) can be expressed
as the same distribution as P'(B IC).

We have paid a special attention to the appar

ently minor difference between P(B) and P'(B IC).
This is not only because we consider that the

difference is closely related to, and even the core

of, our reinforcement process, but also because
we have recursive environments (ALE and ECE)

and they deeply concern the difference between
ad libitum, simple probabilities and experimen
tal stream-bound probabilities.

There are different transitions of one behav

ior X. For example, X^A, X^B, X^C, X—D, etc.
We can think of Padlib (X—A), Padlib(X^B), etc.

and also Pexp(X^A), Pexp(X-*B), etc. Therefore,

we can think of Ppotent(X^A), Ppotent(X-*B),
etc, also, and so forth for Prun and Prunpotent.

While Padlib remains constant for a consider

ably long time period, Pexp will be updated after
reinforcements, etc., and therefore Ppotent will
also change systematically. Now suppose that

the behavioral system is C-bound, Pexp{X-^-C) is

low because the system is deprived of food and
there are several restriction for C to occur due to

reinforcement schedules, though it is already

C-bound and not so low as in a simple depriva
tion period. There, Ppotent would be high, and

in a very similar manner, Prunpotent would be

high, especially just before the reinforcement
would occur.

There are different Ppotent's and Prunpotent's
of the transition from behavior X. For example,

Prunpotent(X-^-A), Prunpotent(X-^B), Prunpotent
(X-*C), etc. Among them, if the behavioral sys
tem is C-bound, Prunpotent(X^-C) should be hav
ing the highest value.

Now let us make a seemingly bold assump
tion, which is actually the most important, key,

assumption in our formulation. That is, the
occurrence of behavior X conforms to the probabil

istic distribution of the highest Prunpotent(X-^-).
Here X-» denotes X-* (some behavior) and does

not mean I made a mistake to drop A, B or such

a character. The highest Prunpotent (X-*-) is, in a

C-bound behavioral system, Prunpotent(X-^C).
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Although it might sound usual that the occur

rence of behavior X conforms to Prunpotent (-*•
X), we take Prunpotent(X—). It might sound

strange, but really it is not, because, as we have

thoroughly discussed earlier in this section, the

reinforcement process tells us that we should

substitute Prunpotent(X-^"), and not Prunpotent
(-*X), for Prunpotent(X). We have substituted P'

(BlC)andnotP(ClB), for P(B).
Several people say that the reinforcement

process is a process of selection by consequence,

as evolution is. This is a simple but beautiful
statement, and I like to fully agree with it. But a

statement that one behavior is selected by con

sequence is subtle and not so simple. Selecting
one behavior by consequence has two aspects:
making that behavior bound to a specific behav

ior stream and making that behavior more prob

able in that stream.

Recursive occasion theory of operant behavior

As for a recursion, there is a famous computa

tional example: calculation of factorial of a natu
ral number n. A computer program of the facto

rial function in a LISP dialect is:

(define factorial

(lambda (n)

(if (zero? n)

1

(* n (factorial (- n 1))))))

The algorithm is simple. When this factorial
function is made to work with n being passed as

an argument for it, as in a form of factorial(n),
the function first examines if n is 0 or not. If n

= 0, then from definition of factorial it returns 1.

If n is not zero, it would try to return a value of
n times factorial (n— 1), but the value factorial

(n—1) has not been fixed, the function cannot

return an exact value of n times factorial(n —1).

So, the function calls itself downwards to know

the value of factorial(n— 1). Recursively called,

the function first examined if n, which is actu

ally n—1 this time, is 0 or not, and the same

operations will be repeated until a recursively
called factorial meets n = 0. If it reaches n = 0

then it returns 1.

This is an interesting example, and people

tend to understand the algorithm intuitively
when they come to the above 'If it reaches n = 0

then return 1'. But the story has not yet ended.

The returned 1 will be multiplied by 2, 3, • • \ or

n each time the called function goes back to the
one-level upwards, and at the initial level, it
returns the final value of factorial of n. The

reason why this is possible is that each level of
the function has kept a value passed as an argu

ment to that level. The higher level passes a
current value of the argument n when it calls
itself downwards, it continues until n = 0 is

reached, and the function gets back step by step
to the original level while it returns a current
value of the answer.

Wise readers would now recognize that this is
a leading metaphor for the recursive environ
ments account. Each environment passes prob

abilities to its inner environment while it main

tains their original values, and when a criterion

is reached, each environment returns the result

so far obtained to its outer environment. The

criterion to be reached is, of course, that the

highest Prunpotent(X-*) is realized as a concrete
occurrence of X-*- (some behavior). What are

the operations like n-passing factorial(n) and
result-returning n times factorial (n-1) in the
behavioral world? The answer is now slightly

clearer: they are to deprive and give occasions
for behavior, and the reinforcement in which

they act to calculate result probabilities in a
Bayesian way and put them back.

The recursive nature of the nested environ

ments should have been found also in the be

havior stream, because it is organized in the
interactions with the environments. In other

words, the environment and behavioral system

are mutually recursive. The key factor of the
mutual recursion is an occasion, which mediates

the environmental and behavioral, mutual re

cursions, and should be also recursive. There

fore it is suitable to call it a recursive occasion,
the name of our formulation. The final part of

the present paper is not to show results of the
simulation based on the above formulation,

but to touch recursive occasions in a behavior

stream and their implications for understanding
the behavioral chain.

From behavior-analytical knowledge accu
mulated so far, we know that there are several

different kinds of behavioral chain. There is an

explicitly controlled chain, and its example is a



RECURSIVE BAYESIAN FORMULATION OF OPERANT BEHAVIOR 57

chain schedule. Suppose we like to chain behav
ior A and B, and B occasions C, where an experi

mental dependency is set on A for B,C to occur,
that is, unless A has occurred, B,C cannot follow.

In this case, A is a 100% necessary condition for

the occurrence of B,C (hard occasion). There are

other cases where the dependency is less than
100%, where A occasions B,C with a higher

probability, at least higher than the probability
with which ~A occasions B.C (soft occasion).

Probably we may use the term contingency for
those cases. In a chain schedule the dependency

is explicitly indicated by a stimulus change.
There are also other cases where the depend

ency/contingency is not explicitly indicated by
a stimulus change, as in a tandem schedule. A

tandem schedule is not a chain schedule, but

frequently B follows A and we regard that there
is an implicit behavioral chain there. Accord

ingly, there are at least four types of behavioral

chain: 1) B,C is dependent on A and it is explic

itly indicated, 2) B,C is contingent on A and it is
explicitly indicated, 3) B,C is dependent on A
and it is not explicitly indicated, and 4) B,C is

contingent on A and it is not explicitly indi
cated. It would be fine if we could formulate the

four different cases in a uniform manner. Fur

ther, since a stimulus does not behave and it is

clearly an environmental change, we may need

to differentiate the cases with and without an

explicit stimulus. Let us try.

Equation 4.2 consists of only B, ~B and C.

Now, regarding the transition B^>C as well es

tablished, let us extend 4.2 to include another

behavior A. We obtain:

F (AIB.C)
P(A)P(B,C|A)

P (A) P(B,C|A) + P(~A) P(B,C|~A)
,(7.1)

and we also obtain ~A version of 7.1. From the

~A version and 7.1, we obtain a ratio:

P'(AIB.C) P (A) P (B.C IA)
P' (~AI B,C) P(~A) P (B,C I~A)

(7.2)

This corresponds to 4.7, and in the same manner

as in 4.7, the condition for P'(A IB,C) to increase
is P(B,C|A)>P(B,C|~A). We of course get the
data for B,C from real experiments or simula

tion, and can calculate Prunpotent(A-*B,C), to
which A would conform. This extension in-

Fig. 11. ROSE diagram with more nested

squares, at the core of which we meet

the honey of reinforcement.

eludes a case in which the behavior A is actually

B. In this case P(B-»-B) will get higher. Since B,

C would almost always occur due to the high P

(C), when we replace B for A and make 7.2 an

equation on B-*B, the ratio 7.2 would approxi

mately get nearer to the ratio in 4.11, in which
the original likelihood ratio is raised to a power.

The power in the generalized matching law can

also be understood in this direction.

The ratio 7.2 has an interesting implication.
Since it is the ratio between probabilities with

which A and ~A would occur for B,C, if it is

high(for example, more than 1), it shows the
strength of the behavioral chain A-*B,C. That

is all right, but, if it is low (for example, less than
1), does that indicate the behavioral chain A-*-B,

C has been weakened? We tend to think that a

behavioral chain is first qualitatively connected

and fixed, and then only its strength will change.
But, the behavioral chain in our formulation is a

probabilistic entity from the beginning to the
end. If the probability for the chain A-*B,C gets
high, the behavior A simply overwhelms ~A. It
is not true that two chains A-*B,C and ~A-»-B,

C exist solidly and one of them is selected. If the

probability for the chain A-*B,C gets lower than
that of ~A-»-B,C, simply ~A takes over A in the

single B,C-bound stream. There is no need to

assume two chains as separate simulation enti
ties. It looks as if there were a solid chain, but it

only appears to be so.

The above extension does not include a case

in which the dependency on A for B,C to occur is
explicitly indicated by a stimulus change. An-
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other extension to include such a stimulus is

also possible. Since we have already used A, B,
and C, let it be D, but to indicate that D is a

stimulus, we write SD. Similarly we obtain:

P'(SD, A|B,C) =

P(SD,A)P(B,C|SD,A)
P(SD,A)P(B,C|SD,A) * (7l3)

+ P(~SD,A)P(B,C|~SD,A)

Note that the notation ~SD,A denotes ~(SD,A)
and it includes two cases: SD exists but ~A

occurs, and SD does not exist but A occurs. The
joint event SD,A simply means that A occurs
while SDexists, and that P(SD,A) increases means
P(A) increases under SD, because only P(A) could
change while SD is a stimulus and P(SD) does not
change for itself. As in 7.2, we can obtain a ratio

F (SD,A|B,C)/F (~SD,A|B,C), which would give
a level of stimulus control by SD.

Now we can write, in a LISP-like notation, the

cases of 7.1 and 7.3 as:

(A occasions (B occasions Q)

and

(SD occasions (A occasions (B occasions C))).

Or boldly expanding C, based on the original
meaning of it,

(A occasions (B occasions (food occasions eating)))

and

(SDoccasions (A occasions (B occasions

(food occasions eating)))).

Since SD and food are occasions themselves, the
meaning of the verb occasion may be slightly
different from the case for the behavior A and B,

but they are almost identical as an entity that
gives an occasion for the following behavior.

The above extension for the behavioral chain

and discriminative stimulus is just within the

scope of our recursive occasion formulation of
operant behavior, and no new devices need to be

added for the actual simulations. The only addi
tions we would do are new, smaller squares

within the CRE, which correspond to those pre

cise occasions mentioned above. The ROSE

diagram of Fig. 10 will have more petals toward
the center of a rose flower when we consider

such smaller and recursive occasions (Fig. 11).

At the core of a rose we will meet the honey of
reinforcement and return.

Finally we should add some technical consid
eration on the selection of behavior that would

occur actually in a simulation. The actual oc
currence of behavior conforms to the distribu

tion of Prunpotent's. There are many Prun-
potent's in the system and they would compete
for the final occurrence. If the distribution of

Prunpotent of one behavior, say M, is skewed to
the right, higher probability direction, the be
havior would occur with higher probability. If
the distribution of Prunpotent of another behav

ior, say N, is flat, and the expectation of the
probability of M is higher than that of N, M

would occur finally. But this is not always the

case, because a flat distribution assures a high

probability, too, and it can overwhelm the high
probability from the distribution of the prob
ability of M. A flat distribution assures a prob
ability of almost 1, but a bell-shaped distribu
tion like that of M does not easily give such an
extremely high probability, even when it is ske
wed to the right. This is more likely when the

skewness of the bell-shaped distribution gets
smaller. Actually, this competition between

skewed and flat distributions will contribute to

the occurrences of non-reinforced behavior, as

in the post-reinforcement pause. That is be
cause the Prunpotent distributions of stream-
free behavior are usually almost flat.

The above consideration implies that it is like
ly that we need not assume any temporal pa
rameters in the present formulation of operant
behavior. Rather, temporal factors are experi
mental free parameters we should verify in the
simulation. Recall that we have not given an

exact value for 'considerably long time periods'
in the formulation so far mentioned. It is pur

posely reserved to be determined in the ongoing
simulation work. Probably, time remains to be

an eternal mystery, which we cannot easily sim
ulate.

The main purpose of the present paper is to
give a framework to formulate operant behav
ior and reinforcement process logically and
quantitatively from the viewpoint of probabil
ity. Probabilities like Prunpotent are different
from probabilities like Pexp and Prun. Pexp and
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Prun accumulate the past data, that is, reinforce

ment history, but Prunpotent turns toward the
future. The formulation of operant behavior

and simulation based on it should grasp the
future-oriented aspects of operant probabilities,
which should be completely different from the
respondent relations. Such probabilities might
be in the simulation of 1990 in a form of accu

mulated eating units, but it was not so clear

to me when I met Skinner. The years thereafter
have been a time to struggle to answer the
question that may have been asked by Skinner
originally. He made a history and we live for
wards.
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