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"CONCEPT FORMATION" AND CATEGORIZATION

BY PIGEONS

Sheila Chase*

Statement of the Problem

A large number of experiments done during
the past half-century were intended to deal with
the question of whether non-human animals
form "concepts." Most of these experiments
were done with pigeons but some have used
monkeys and apes. In typical experiments on
concept formation the animals are presented
with examples of instances and non-instances of
the concept (e.g. photographs including people
or not including people) and are trained to make

one response to instances and an alternative

response to non-instances. In a subsequent test
they are shown new exemplars of instances and
non-instances. These new instances are categor

ized at greater than chance accuracy. The evi
dence is not controversial. Non-humans per

form such tasks successfully (e.g., Herrnstein;

1979, D' Amato & Van Sant, 1988). What is

needed now is an understanding of how such

behavior comes about.

In further consideration of his matter it is

important to keep in mind that the terms "in
stances" and "non-instances" used in the previ

ous paragraph refer to entire photographs.
Though the pigeons' successful performance in
the categorization task is not in question, the

assumption that the pigeons' responses are nec
essarily controlled by the rule the experimenter

used in categorizing the stimuli is.
There is evidence that categorization of new

exemplars may be based on details of the photo
graphs other than those that governed the

experimenter's category assignments. For ex
ample, Greene (1983) has shown that conceptu
ally irrelevant aspects of the photographs, such

as the background, may have control over the

(pigeons') behavior. To give another example:

D'Amato and Van Sant (1988) analyzed mis-

classifications in an experiment with monkeys

in which good transfer to new exemplars was

* Hunter College of the City University of New
York, New York

found. Their analysis "raised serious questions
about the degree to which their transfer behav

ior was governed by conceptual processes." (p.

43). For example, they found that photographs
which to humans clearly do not show a person,

e.g. a marine creature with two red spots on its
body, were consistently classified as persons. In

many of the photographs showing humans

there were red patches on clothing, suggesting

to D'Amato and Van Sant that exposure to these

photographs was the source of misclassifica-

tions of non-person photographs having red

patches.

It may well be that in many experiments the
animals' categorization of stimuli is indeed
based on the category specified by the experi
menter, but that is usually very difficult to dem

onstrate. I will argue that the results discussed
above can be accounted for by the notion that

the subjects in these experiments memorize a

large number of exemplars and classify new
exemplars on the basis of their similarity to

those in memory. In offering this account I do
not mean to exclude the possibility that orga

nisms may be genetically predisposed to catego
rize ecologically significant events or objects. It

is possible that a number of different processes
affect categorization. The task now is to under

stand these processes. In this paper I will show

how our model, the Heinemann-Chase model of

memory and decision processes, deals with cate
gorization of complex stimuli by treating con

cept formation as a problem in pattern recogni

tion. While this model has not yet been tested

on the type of pictorial stimuli used in most
concept formation experiments, it has been

shown to describe recognition of outline figures

by pigeons in precise quantitative detail. We

are currently extending our model to treat early

vision (Heinemann & Chase, 1995), the proce

sses through which the physical stimulus is tra
nsformed into sensations. We intend to use this

model in the analysis of the pictures used in
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Fig. 1. Proportion of errors as a function of

training. The stimuli were colored

photographs. The response correct in

the presence of each slide remained

constant. There was no unifying con

cept. Half of the photographs as

signed as correct for each key show

ed one or more persons, the other

half did not. Eighty slides were pres

ented during a session. Exposures

refers to number of times each slide

was seen. The data are shown for

the two birds trained under this

condition.

concept formation experiments.

The ability of pigeons to categorize an amaz
ingly large number of colored photographs on
the basis of rote memory is well documented

(Vaughan & Greene, 1983; Vaughan & Greene,

1984). In a related experiment using choice
rather than rate of response as dependent vari

able, Heinemann, Ionescu, Stevens, and Neider-

bach (unpublished) showed pigeons photo

graphs of natural scenes projected on a small

screen located between two choice keys. The

pigeons were rewarded for pecking either the
left or right choice key. Half of all pictures
shown were randomly assigned for reward if
the right key was pecked, the other half for
reward if the left key was pecked. During the

course of the experiment the number of pictures

presented was increased in large steps from 80
to 640, at which point the pigeons were per
forming at a level of about 85 percent correct.

Although the experiment was terminated at
that point, there was no evidence that the pi
geons were approaching a limit to the number

of photographs they could categorize. The pro
portion of errors made by these birds somewhat
before training was terminated are shown in

Fig. 1.
This experiment, and those of Greene (1983)

and Greene and Vaughan (1983; 1984), among

others, show that an underlying rule is not nec
essary for categorization of colored photo

graphs. However, when the photographs are

unified by a rule (concept) that is meaningful to
humans, categorization may be somewhat facili

tated (Herrnstein, 1979).

According to our model, this facilitatory
effect is a consequence of the fact that in a
concept-learning experiment the stimuli cate

gorized as "instances" of the concept are physi
cally more similar to each other than stimuli
randomly assigned to each category. This fac

tor accounts for the transfer to new exemplars
as well as the unifying effect of the rule.

Our approach is to treat concept formation
simply as a problem in pattern recognition.

However, many difficult problems remain to be
solved. For example, our model cannot now deal

with the findings of D'Amato and Van Sant that
transfer was based upon patches of red in pho
tographs that contained much other detail.

What principles lead to the selection of these
aspects of the photographs? This and a number
of related problems must be solved before it is
possible to say whether a theory in which trans
fer is carried by physical similarity can account
fully for the process of "concept formation" in
animals.

Applications of the Heinemann-Chase Model

to Diffuse Stimuli

Our pattern recognition model is part of a
general model of memory and decision making.
The model was originally designed to account
for generalization involving simple stimuli,
such as the intensity of a light or sound. I will
therefore start with a description of such an
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Fig. 2. Distribution of choices obtained during generalization test following training to discriminate
between levels of white noise differing by 2.3 dB. The black dots show the proportion of
responses to the high intensity key in the presence of the training stimuli. Each panel shows
the results for one pigeon.

experiment.

In this experiment (Heinemann. et al., 1969)
pigeons were trained to identify, by pecks on

the appropriate response key, two sounds that

differed only in intensity. They were rewarded
with food for making one response, Rl, when
presented with the softer sound, and an alterna

tive response, R2, when presented with the
louder sound. For one group the two sounds
differed by only 2.3 dB. After prolonged train

ing the pigeons were presented with 11 sound

intensities in addition to the two used in train

ing. During this generalization test they tended
to chose the key that had been correct (during

training) for the softer sound when presented
with any sound of intensity less than or equal to

that of the less intense training stimulus. Simi

larly, they chose the key correct for the more

intense training stimulus for all stimuli of inten

sity more than or equal to that of the training
stimulus. One could describe this choice be

havior as reflecting application of the concepts
"soft" and "loud" to the new stimuli. These data

are shown in Figure 2. Note that the proportion
of R2 responses rises gradually with sound in
tensity, following a curve that is similar to the
psychometric function one would obtain from

humans tested for intensity discrimination with

the method of single stimuli. The birds acted as

though they had learned the "rule": make Rl for
soft sounds and R2 for loud sounds.

I will present a brief account of how our

model handles these data. For a fuller account

see Heinemann (1983a; 1983b), Chase and Hei

nemann (1990) or Chase and Heinemann (1991).

Our theoretical account of these data assumes

two stages in the acquisition of a discrimina
tion. There is a presolution period (PSP), the

length of which is dependent upon the difficulty
of the discrimination. During the PSP the sub
ject is assumed to perform an analysis designed

to discover significant statistical associations
between information arriving over any of its
sensory channels and outcomes of behavior, e.g.
reward or non-reward. The formal model is

based on the Sequential Probability Ratio Test

(Wald, 1947). With respect to the present ex

periment, it is assumed that the observer discov

ers that the sensory channels over which infor
mation predictive of reward or non-reward ar

rives are the auditory channels that transmitted
the band of frequencies contained in the white

noise used in the experiment. I shall refer to

these channels as "relevant channels." Only
information arriving over relevant channels

will be processed during the second stage of
learning.

The second stage of learning involves a mem
ory that has a large but not unlimited storage
capacity. This memory will be referred to sim
ply as the long-term memory (LTM). On each trial

of an experiment the subject is assumed to de

posit in the LTM a record that contains:

(a) A representation of the stimulus information
transmitted over the relevant channel(s). In the
example under consideration, the particular
loudness experienced when the choice was

made is represented as a point on a loudness
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continuum. The physical differences in the a-
coustic stimuli determine the separations be
tween the corresponding points along the loud
ness continuum.

(b) A representation of the response made. For
the analysis described here this is represented
by a label, e.g. Rl or R2.

(c) A representation of the reward received. For

the analysis described here the records are la

beled as positive if food was delivered; negative
if it was not.

Each record is said to occupy a storage location
in LTM. The location to which each record is

sent is selected randomly and any record occu
pying a storage location will be destroyed ("ove
rwritten") when a new record is entered at that

location.

It is assumed that during each trial the sub
ject retrieves from the LTM a small random

sample of positive records (records showing
that a reward was received). Each sample con
tains from 3 to 18 records. The only informa
tion that is used in the response selection pro
cess is the information contained in this sample
of records in working memory.

The choice of response is based on a compari
son of the current sensation, the current input, to
the information in working memory. It is as
sumed that memory of the previous sensory
experiences is imprecise—the remembered sen

sation is distorted by Gaussian noise—small dis
tortions are frequent, large distortions rare. Af
ter a record has been retrieved, and is being held
in working memory, the sensation represented
on that record fluctuates rapidly over time, mo
mentary values falling into a Gaussian distribu

tion whose mean represents the value retrieved

from the LTM. Each of the four distributions

shown in Fig. 3 represent a record of a remem

bered sensation. In this illustration three of the

records show that R2 was rewarded and one

shows that Rl was rewarded.

The response the subject selects is the one
that the retrieved information indicates is most

likely to earn a reward. To find this response
the subject gets the sum of the probability den
sities for each response at the current input, and
selects the response for which the sum of the

densities is the greatest. The process amounts to
summing the heights of the R2 curves above the
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Fig. 3. A sample of four records retrieved

from LTM. The choice of response is

based on the probability densities at

the point labeled current input.

R2R2 R2

point representing the current input, doing the
same for the Rl curves, and making the re
sponse for which the sum is highest. Errors will

occur—not only is the memory of the sensation
imprecise, the decision is based on a small num

ber of remembered events. Nonetheless, given

these limitations, this decision rule optimizes
the probability that the decision made is cor
rect.

If the probability density at the current input
is below some very small threshold value, a new

sample is drawn. This rarely happens when the
stimuli vary along a single dimension. How
ever, in the case of more complex stimuli, such

as the pattern of stimulation produced when a

picture is viewed, all records in the sample may

be very different from the current one. After
having retrieved a sample, the subject retrieves
another sample if, and only if, the sample in

hand provides no information about the conse

quences of past behavior in the presence of
sensations reasonably similar to the one cur
rently experienced. Our estimates suggest that,

if approximately ten attempts to retrieve useful
information have failed, the subject simply
chooses the response associated with the largest
expected value of reward. Using this simple
notion we have been able to account for the

marked improvement in identification of stimu
li as they increase in complexity (Chase & Hei

nemann, 1989).

Our model provides the following explanation
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for the generalization data shown in Fig. 2:
After training, the LTM is filled with records
showing that Rl was rewarded in the presence

of a sensation that was induced by training-
stimulus SI, and R2 was rewarded in the pres
ence of a sensation induced by training-
stimulus S2. On the average, sensations in

duced by S2 will be remembered as more in

tense than sensations induced by SI, but the
distributions of remembered intensities overlap.
Because random samples retrieved from LTM
reflect the distribution of records in LTM, it will

be true of the sample also that the records show

ing remembered Rls will be associated with

remembered sensations that are less intense

than those associated with remembered R2s.

As illustrated in Fig. 3, the decision rule

specifies that the response made is the one for
which the probability density at the current

input is greatest. Probability densities for Rl
and R2 tend towards identity at the category
boundary, the point bisecting the distance be

tween the two training stimuli. As the distance
from the category boundary increases, the ex

pected difference in the summed probability
densities for the two alternatives increases, re

sulting in curves which are monotonic with

lower and upper and lower asymptotes of 0 and
1.0. Deviations from these asymptotes are at
tributed to "guessing." Guessing occurs when

repeated sampling has failed to produce useful
stimulus information (i.e. a sample yielding an
above-threshold probability density at the cur
rent input.)

Applications of the Heinemann-Chase Model

to Patterned Stimuli

In situations in which spatial information is
irrelevant, as is true for diffuse stimuli such as

sound intensities, we treat sensory information
as though it arrived over a single "sensory chan
nel," the channel that the presolution period has
shown to be relevant. In extending our model to

visual pattern recognition we assume that at

any moment in time the continuum of sensa
tions induced by a pattern of stimulation may
be represented by a sample of evenly spaced
"sensory channels." Patterns, such as the dot

matrix figures produced by illuminating pixels
on a computer screen, are represented simply by

Fig. 4. Remembered group of points repre

senting the letter A as shown on a

single record retrieved from LTM.

The concentric circles represent con
tours of constant probability density
on the bivariate distributions for the

spatial coordinates of each point.
The x's represent points on the cur

rent input.

the location of the pixels (the X and Y coordi
nates) defining the pattern. It is assumed that

while a record of a visual pattern resides in
LTM, the values of the X and Y coordinates of

each point vary randomly and independently
over time, the distributions of momentary val
ues being Gaussian. A record of this type is
illustrated in Figure 4. The concentric circles
represent the bivariate density functions repre
senting the remembered letter A. The x's repre
sent the current input points produced by the
dot matrix letter A.

According to our model, a subject trained to
recognize a number of different dot-matrix let

ters when shown a particular letter for identifi
cation, retrieves a few records from LTM and

compares the current input pattern to each of
the patterns represented on the retrieved re

cords in order to find the best match. We as

sume that response selection is based on a deci
sion quantity D, computed as follows: At each
point on the current input calculate the mean
probability density contributed by each point
on the memory record. (A mean density that
falls below the threshold is assigned a value of
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zero.) This will yield as many means as there
are current-input points. The decision quantity,
D, is equal to the product of these means. If two

or more records in the sample represent the

same response, the value of D associated with

that response is the sum of the individual D

values. The decision rule is: make the response

associated with the largest value of D. If no
record is associated with a value of D that is

greater than zero, draw a new sample. Finally,
if successive samples fail to yield a non-zero
value of D for any record, then choose the re
sponse associated with the greatest probability

of reward in the past. This rather complicated-
sounding procedure is simply an extension of
the decision rule described earlier for the treat

ment of unidimensional stimuli. It is a type of
"fuzzy template" matching scheme in which the
current input (a pattern) is compared to remem
bered patterns as illustrated in Figures 3 and 4).
This model is described in more detail in Heine

mann and Chase (1990).

Through computer simulation we have been

able to demonstrate the power of our model as a
predictor of pigeons' performance on recogni
tion of dot matrix figures. We used the model to
simulate choice behavior in a pattern recogni
tion experiment involving the 26 letters of the
alphabet. The confusion matrix generated show

ed that certain errors, e.g. confusions between E
and F will occur frequently while others, e.g. A
and T rarely occur. The simulated matrix com

pared quite well with one published by D. Blo

ugh (1985) for confusions made by pigeons and

with confusion matrices for human observers

obtained by Podgorny and Garner (1979) using
either reaction times or similarity ratings. Simu

lation of some of Cerella's (1990) work on rota

tional invariance is reported in Heinemann's pa

per for this symposium. Contextual effects in
pattern recognition have been examined in pa

pers by Donis and Heinemann (1993) and Donis.

et al., (1994). The simulations which come clos

est to providing evidence for transfer of a "con

cept" followed the procedures used by Van
Hamme. et al., (1992) in an experiment that was
designed to test the recognition-by-components
(RGB) theory of Biederman (1987). In their ex

periment pigeons identified four outline draw
ings—a pigeon, a turtle, a rolling pin and a lamp
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—with partially deleted contours. When the

original contours were replaced by the deleted

segments there were decrements in perform
ance, decrements that closely matched those

generated by our computer simulation but were
not compatible with RGB theory. Our model
also generates confusion matrices showing the
probabilities with which various incorrect re
sponses will be made when an error occurs.
Comparison of such matrices to pigeon gener
ated ones could lead to a stronger test of our

theory but, unfortunately, pigeon-generated
confusion matrices were not available for the

experiment we analyzed.

The colored photographs used in most con
cept formation experiments are far different
from the small dot matrix patterns that we have
used in our simulations. Does the animal sub

ject remember every detail of the entire photo
graph? How large an area of the retinal image is
processed? Data such as those obtained by
Yamashita (1991) suggest that only a small part

of the retinal image is processed —a few degrees
of visual angle—if the discriminative stimuli are

imaged on a fixed retinal region. However, the
region is much larger if the discrimination re
quires attention to a larger region. Yamashita's
data show that pigeons can process stimuli over
a range of about 30 degree of visual angle hori

zontally to the left and right of a fixation point.
Some of Yamashita's data are shown in Heine

mann's paper for this symposium.

Conclusions

1. Use of photographs depicting complex
scenes as discriminative stimuli, introduced by
Herrnstein and Loveland in 1964, has raised

new and important questions regarding the pro
cessing of information by non-verbal animals.
For example, is all the information available in
the pictures processed and, if not, what deter

mines which aspects are? Are the pictures seen
as representing the three-dimensional, con
stantly changing, world or are they meaningless
to the subjects? To what extent does perform
ance on these categorization tasks reflect past
experience of the subject or the species?

2. The term "concept" is too vague and ill

defined to serve as an explanatory construct.
What is needed now is careful experimentation
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designed to uncover the mechanisms responsi
ble for the behavior attributed to the formation

of a concept.
3. The Heinemann-Chase model of pattern

recognition gives a satisfactory account of
many of the known facts of stimulus categoriza
tion by animals but, thus far, is unable to deal
with misclassifications that seem to reflect the

perceptual organization of the extended visual
stimulus.
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