
Title Chapter 4 : Functions, arguments, and semantic types : Introduction
to semantics for non-native speakers of English

Sub Title
Author Tancredi, Christopher

Publisher 慶應義塾大学言語文化研究所
Publication

year
2024

Jtitle 慶應義塾大学言語文化研究所紀要 (Reports of the Keio Institute of
Cultural and Linguistic Studies). No.55 (2024. 3) ,p.261- 275

JaLC DOI 10.14991/005.00000055-0261
Abstract
Notes 研究ノート
Genre Departmental Bulletin Paper
URL https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara

_id=AN00069467-00000055-0261

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会また
は出版社/発行者に帰属し、その権利は著作権法によって保護されています。引用にあたっては、著作権法を遵守し
てご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to
the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese
Copyright Act. When quoting the content, please follow the Japanese copyright act.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

― 261 ―

Chapter 4
Functions, Arguments, and Semantic Types
Introduction to Semantics for Non-native Speakers of English

Christopher Tancredi

4.1 Introduction
In this textbook we are analyzing English expressions in two steps. First, we translate
them into expressions of logic and then we assign a denotation to the logical
expressions. In Chapter 2 we introduced a simplified logic, propositional logic, that
took its basic expressions to be propositions. This made it possible to analyze and, or,
if and not as operators over propositions. In Chapter 3 we added an analysis of
sentences made of predicates and their arguments. To do so, we expanded our logic
to include formulas made up of an n-place predicate combined with n terms. We gave
set theoretic denotations for expressions of the logic, and we made a rule that gave us
the truth-value of a formula based on the denotations of a predicate and its arguments.
We then made some decisions about what the logical translations of English sentences
should look like. However, we did not show how to derive those translations. In this
chapter we fill in that missing piece. That is, we look into the box below.

	 English	 ⇒	 Logical	 ⇒	 Set theoretic
	 expression	 (translates as)	 expression	 (denotes)	 value

	 John smiles		 SMILE (john)		 True if j ∈ SMILEʹ
					 False otherwise

	 John sees Mary		 SEE (john, mary)		 True if <j,m> ∈ SEEʹ
					 False otherwise

4.2 Compositional Translation
Until now we have been translating English sentences as predicate logic formulas in

Reports of the Keio Institute of Cultural and Linguistic Studies 55 (2024), 261-275

― 262 ―

one step. We looked at the sentences and gave logical formulas that give us their truth
conditions. If our only goal is to give truth conditions for sentences, this approach
works well. However, sentences are not the only expressions that have meanings.
Words like John and sees as well as phrases like sees Mary and in the park have
meanings as well. Simply translating sentences into complete formulas does not tell
us what these meanings are.

Our goal in semantics is to give meanings to all expressions of a language. However,
we want to give those meanings in a special way. We want to define the meanings
only of individual words. The meanings of complex expressions we want to build up,
or derive, from the meanings of the words they are composed of. This is the basic
idea behind compositionality.

We take the translation of a name like John to be very simple. An English name
translates as a logical name: John translates as john. For a predicate like smiles,
however, the translation is more complex. We cannot translate smiles as SMILE.
Translating John as john and smiles as SMILE does not tell you how to put SMILE
and john together in the logic. We said in Chapter 3 that a predicate like smiles acts
like instructions for making a picture. It takes an individual and gives back a picture
of that individual smiling. Translating smiles as SMILE misses these instructions.

These instructions we formalize, or analyze, as a function. The logical translation of
smiles is a function that takes an individual as an argument and gives back a formula.
This idea of a function is the same one that is used in math. Just like “+ 3” can be
expressed as the function f below, the meaning of smiles can be expressed as the
function g:

	 f(x) = x+3		 f(7) = 7+3
	 g(x) = SMILE (x)	 g(john) = SMILE (john)

The normal way we describe functions in semantics, however, is different. We use
lambda calculus. The lambda calculus versions of f and g are given below:

	 f	 ⇒	 λx [x+3]	 λx [x + 3] (7) = 7+3
	 g	 ⇒	 λx [SMILE (x)]	 λx [SMILE (x)] (john) = SMILE (john)

― 263 ―

In lambda calculus, a function is made up of λ, a variable (here x), and a bracketed
expression […] that contains occurrences, or instances, of the variable. You can
think of λx as instructions to find something that can substitute for the occurrences of
x inside the brackets. That something is the argument of the function. It is found in
the parentheses (…) following the lambda function. In the math example, the
argument of the function λx[x+3] is the number 7. In the linguistic example, the
argument of the function λx[SMILE (x)] is the logical name john. In both cases, the
argument substitutes for the occurrence of x inside the square brackets to give the
result: 7+3 for the math example, and SMILE (john) for the linguistic example. This
process of substituting the argument for the variable is called lambda conversion.
This process also eliminates the occurrence of λx and the square brackets.

The last piece we need to formalize translation from English to logic is a translation
function. We use ||…|| as our translation function, and we read || E || as the logical
translation of E.

	 ||English expression|| = logical expression

For simple expressions, their logical translation is listed in the lexicon. This includes
the translations of John and of smiles below:

	 ||John||	 = john
	 ||smiles||	 = λx [SMILE (x)]

For complex expressions, their translation is given by function application, defined as
follows:

	 Function Application
	 For an expression E of the form [E A B] or [E B A],
	 ||E|| = ||A|| (||B||)
	 or
	 ||E|| = ||B|| (||A||)

The choice depends on what kinds of expressions A and B are. If the translation of A

― 264 ―

is a function that can apply to the translation of B, then the first option is chosen. In
the opposite case, the second option is chosen.

We can now see how to translate complex expressions like the sentence John smiled
into logic. Its translation goes like this:

	 ||John smiles|| 	= ||smiles|| (||John||)		 [by function application]
			 = λx [SMILE (x)] (john)		 [by lexical translation]
			 = SMILE (john)			 [by lambda conversion]

In the first line, the translation of the sentence is broken into the translations of the two
pieces that make it up, smiles and John. Since the translation of smiles is a function
that can apply to the translation of John, we choose the second option from the rule of
Function Application. The next line replaces ||smiles|| with the logical translation of
smiles, namely λx[SMILE (x)], and it replaces ||John|| with the logical translation of
John, namely john. In the third line, the argument john has been substituted for the
occurrence of x inside the square brackets.

In the sentence John smiled, the two parts that combine into the sentence are both
words. This is not always the case for other sentences, though. Consider the sentence
John sees Mary. Syntax tells us that this sentence can be broken into two parts as
well: John, and sees Mary. We can get the translation of John from the lexicon, as
before. However, we cannot get the translation of sees Mary that way. Rather, we
have to analyze this expression using Function Application. That is, we have to apply
the translation of sees to the translation of Mary to get the translation of sees Mary.

What is the translation of sees? We can answer this question starting with the
following five assumptions:

	 ||John||		 = john
	 ||Mary||		 = mary
	 ||John sees Mary||	 = SEE (john, mary)
	 John sees Mary is structured as [John [sees Mary]]
	 The translation is given by Function Application

― 265 ―

To combine two things by Function Application, one of them must be a function and
the other its argument. The translation of John, namely john, is not a function. In
order to combine john with the translation of sees Mary, it follows that sees Mary
must be a function. This gives us the following:

	 ||[John [sees Mary]]||	 = ||[sees Mary]|| (||John||)
				 = λx […] (john)

We also know that the result of applying the function λx […] to john must be SEE
(john, mary). Applying λx […] to john results in john replacing any occurrences of x
in […]. From this, we can guess what […] must be. There are two possibilities.
Either […] contains a single occurrence of x that gets substituted by john, or it contains
no occurrences of x.

	 ||[sees Mary]| (||John||)| = λx […] (john) = SEE (john, mary)
	 ⇒	 λx […] = λx [SEE (x, mary)]
		 OR
		 λx […] = λx [SEE(john, mary)]

Of these two options, the first is clearly a better option for the translation of sees Mary.
The expression sees Mary intuitively does not contain any information about John, so
its translation should not either.

	 ⇒	 ||[sees Mary]|| = λx [SEE (x, mary)]

We can use the same process to determine the translation of sees. The translation of
sees Mary combines the translation of sees with the translation of Mary by Function
Application. The translation of Mary is mary, which is not a function. This means
that the translation of sees must be a function. Also, we just determined that the
translation of sees Mary is λx [SEE (x, mary)]. This has to be the result of applying
the translation of sees to the translation of Mary. This gives us the following:

	 ||[sees Mary]|| 	= λx [SEE (x, mary)]
			 = ||sees|| (||Mary||)
			 = λy […] (mary)

― 266 ―

	 λx [SEE (x, mary)] results from substituting mary for y in …
	 ⇒ λy […] 	 = λy [λx [SEE (x, y)]]
	 ⇒ ||sees|| 	 = λy [λx [SEE (x, y)]]

We can show that this translation of sees works by giving a full derivation of John
sees Mary. The derivation can be done from the bottom up or from the top down.
Both are shown below.

Shared assumptions:
	 ||John||	 = john
	 ||Mary||	 = mary
	 ||sees||	 = λy [λx [SEE (x, y)]]

Bottom up:
	 ||[sees Mary]||	 = ||sees|| (||Mary||)
		 = λy [λx [SEE (x, y)]] (mary)
		 = λx [SEE (x, mary)]

	 ||[John [sees Mary]]||	 = ||[sees Mary]|| (||John||)
		 = λx [SEE (x, mary)] (john)
		 = SEE (john, mary)

Top down:
	 ||[John [sees Mary]]||	 = ||[sees Mary]|| (||John||)
		 = ||sees|| (||Mary||) (||John||)
		 = λy [λx [SEE (x, y)]] (mary) (john)
		 = λx [SEE (x, mary)] (john)
		 = SEE (john, mary)

4.3 Syntax
To calculate the meaning of John sees Mary, we assumed that sees Mary is an
expression having sees and Mary as parts. Because of this structure, we combined the
translation of sees with the translation of Mary. We did not combine the translation of
sees directly with the translation of John because John sees is not an expression. This
shows an important property of our semantics: it depends on structure. In particular,

― 267 ―

the translation of an English expression into logic depends on the structure of the
English expression.

Until now we have only used very simple structures. In the study of syntax, however,
more complex structures are used. Consider the sentence John smiles. We have been
assuming a structure like the following:

		 S

	 John		 smiles

This works for our purposes here. However, for many syntacticians, this is not a
realistic structure. Syntacticians have made many more complex proposals for the
structure of John smiles, including the following. The sentences are represented using
trees and using labeled brackets. The two representations are equivalent: they each
represent the exact same structural information.

		 S			 S

	 NP		 VP	 NP		 AuxP

	 N		 V	 N

	 John		 smiles	 John	 Aux		 VP

 [S [NP [N John]] [VP [V smiles]]]		 PRES		 V

							 smiles
� [S [NP [N John]] [AuxP [Aux PRES] [VP [V smiles]]]]

― 268 ―

		 TP

	 NPi		 Tʹ

	 N

	 John	 T		 VP

		 PRES

			 ti		 Vʹ

					 V

					 smiles

[TP [NPi [N John]] [Tʹ [T PRES] [VP ti [Vʹ [V smiles]]]]]

It is not the job of semantics to decide which of these structures is correct. It is the job
of semantics to interpret the structures it gets, though. Our semantics does not yet
have the tools it needs to interpret all of these structures. Two things are missing.
First, we do not have any rules for translating structures like the following into
predicate logic:

	 X		 [X Y]
	
	 Y

To translate these structures, we use the following rule:

	 Translation of Non-branching Structures
	� If a node X dominates a single daughter node Y, then the logical translation of X

is equal to the logical translation of Y:
	 || [X Y] || = ||Y||
	 OR
	 || X	|| | | | |
	 || 	 || = ||Y||
	 || Y	||

Second, we do not have any rules for interpreting movement structures. In the last of
the representations above, NPi starts in the position where ti is and moves to the

― 269 ―

position it is seen in. This movement leaves ti behind as a trace. We will not give
rules for interpreting movement structures in this book. That is a topic for a more
advanced course. Because of this, we only use structures that do not involve
movement.

Even without movement, we have many structures to choose from. Do we analyze the
tense in John smiles as something separate from the verb, for example? In general, we
will only use complex structures when we are ready to interpret them. In the case of
tense, we will not interpret tense until Chapter 10, so we will not include tense as a
separate expression until then.

4.4 Types
Different expressions typically have different denotations. However, we can group
expressions together based on the kinds of denotation they have. Expressions that
have the same kind of denotation are of the same semantic type. For example, the
expressions Mary, John, Bill and Sue are all of the same semantic type. Each denotes
an individual. The sentences John smiled and John didn’t smile are also of the same
semantic type. Each denotes a truth value. The predicates smile and sit are of the
same semantic type as well. Each denotes a function from individuals to truth-values.

We define two basic semantic types: type e, for entities (objects, individuals), and
type t for truth values. Names like John, Tokyo, etc. are of type e: they denote entities
of some sort, a person in the case of John and a city in the case of Tokyo. Sentences
like John smiles are of type t: they denote a truth value, True if the sentence is true
and False if the sentence is false.

In addition to the basic types, there are also complex types. These have the form
⟨σ,τ⟩, where both σ (sigma) and τ (tau) are types. Something of type ⟨σ,τ⟩ is a function
from σ-type things to τ-type things. A one-place predicate like smile is of type ⟨e,t⟩,
with e playing the role of σ and t playing the role of τ. It is a function from e-type
things (entities) to t-type things (truth values). We have more complex types as well.
The two-place predicate see that we analyzed above is of type ⟨e,⟨e,t⟩⟩. It is a function
from e-type things to ⟨e,t⟩-type things.

We define types recursively as follows:

― 270 ―

	 Type	 Denotation
	 e is a type.	 entity (object, individual)
	 t is a type.	 truth-value
	 If σ and τ are types, ⟨σ,τ⟩ is a type.	� function from σ-type denotations to τ-type

denotations

This definition gives us an infinite number of types. This comes from the recursive
step at the end that defines new types based on other types. In addition to the types we
have already seen, this definition also gives us the following:

	 ⟨e, ⟨e, ⟨e, t⟩⟩⟩	 [show]
	 ⟨⟨e, t⟩, e⟩	 [the]
	 ⟨⟨e, t⟩, ⟨e, t⟩⟩	 [very]
	 ⟨⟨e, t⟩, t⟩	 [everyone]
	 ⟨t, e⟩	 ?
	 ⟨e, ⟨t, e⟩⟩	 ?
	 ⟨⟨e, t⟩, ⟨⟨⟨t, ⟨e, t⟩⟩, e⟩, ⟨e, e⟩⟩⟩	 ?

Only a very small number of types are used in semantics. This includes the top four
types shown above, which are the types of the words show, the, very and everyone.
Most types are not used in semantics, however. As far as I know, for example, the
bottom three types are never used in semantics.

Types can help you to see whether two expressions can combine into one. The rule
of Function Application tells you to combine the translations of two expressions A and
B by applying ||A|| to ||B|| or by applying ||B|| to ||A||. The choice depends on what
kinds of expressions A and B are. With semantic types, we can make it clear what this
means. If, for some values of σ and τ, A is of type ⟨σ,τ⟩ and B is of type σ, then we
have to choose the first option: ||[A B]|| = ||A|| (||B||). If, for some types σ and τ, A is
of type σ and B is of type ⟨σ,τ⟩, then we have to choose the second option: ||[A B]|| =
||B|| (||A||). If neither case holds, the two expressions cannot combine by Function
Application.

We can indicate types directly in the syntax as follows:

― 271 ―

		 S: t

	 NP: e		 VP: ⟨e,t⟩

	 N: e		 V: ⟨e,t⟩

	 John: e		 smiles: ⟨e,t⟩

A two-place predicate like see combines with two noun phrases to produce a sentence
that can be true or false. If we assume that branching is binary, that is that a node in
a syntactic tree will never have more than 2 daughter nodes, see has to combine with
one noun phrase first and then another. Knowing that the two expressions it combines
with can be names, we can calculate the predicate’s type as follows. We start with the
information we know: The sentence is of type t since it can be true or false, and the
two arguments John and Mary are type e since they denote individuals. This gives us
the following types:

		 S: t

	 NP1: e		 VP: ?

	 N1: e

	 John1: e	 V: ?		 NP2: e

		 sees: ?		 N2: e

				 Mary2: e

If we assume that VP and NP1 combine by Function Application, we can determine
the type for VP. It must be a function that combines with an e-type expression to
produce a t-type expression. That is, its type must be ⟨e,t⟩. We can use this same
process to determine the type of V. V combines with NP2 to produce the VP. NP2 does
not denote a function. Its type is e. Therefore, V’s type must be a function that
combines with the type of NP2 to produce a meaning of the type of the VP. That is, V
must denote a function that combines with an e-type expression to produce an ⟨e,t⟩-
type expression. From this we can see that the type of V must be ⟨e,⟨e,t⟩⟩.

― 272 ―

		 S: t

	 NP1: e		 VP: ⟨e,t⟩

	 N1: e

	 John1: e	 V: ⟨e,⟨e,t⟩⟩	 NP2: e

		 sees: ⟨e,⟨e,t⟩⟩	 N2: e

				 Mary2: e

This process of determining types is similar to the process we went through earlier to
determine the meaning of sees. It is simpler, however, since we only have to look at
one property of the meaning at each step.

One thing that semantics has to do is to assign meanings to all lexical items. In many
cases, the meaning of an expression is not intuitively clear. We have a clear intuition
about what cat means. However, very few people have a clear intuition about what
the means. To assign a meaning to the word the, it can be helpful to first determine its
type.

The word cat essentially divides the world into two groups: those that are cats and
those that are not. In this way, cat acts as a one-place predicate. If we take all one-
place predicates to have the same semantic type, then cat is of type ⟨e,t⟩, just like sits
and happy. What, then, is the type of the in the expression the cat? Notice that the cat
can occur anywhere that a name can occur. This suggests that the semantic type of the
cat is the same as the semantic type of a name, namely type e. If we accept these
assumptions, then the must be a function from things of type ⟨e,t⟩ to things of type e.
That is, its type must be ⟨⟨e,t⟩,e⟩:

		 NP: e

	 D: ⟨⟨e,t⟩,e⟩		 N: ⟨e,t⟩

	 the: ⟨⟨e,t⟩,e⟩		 cat: ⟨e,t⟩

― 273 ―

This does not tell us yet what the full meaning of the is. However, it does tell us what
kind of meaning the should have if our assumptions are correct.

The conclusion we just came to about the semantic type of the depends on two
assumptions. One assumption was that the semantic type of cat is the same as the
semantic type of sits and happy. This is a questionable assumption. Each of these
expressions can be used to divide the individuals of the world into two groups. The
expression is true of the individuals in one of the groups and false of the individuals
in the other. This is the reason for assuming that all three expressions are of the same
semantic type. However, there are clear differences between the three expressions as
well.

If the expressions have the same semantic type, we might expect that they should all
be able to occur in the same places. As seen in the following examples, however, they
cannot.

	 Every cat sleeps.	 Felix is very happy.	 It seems Felix sits.
	 *Every sits sleeps.	 *Felix is very sits.	 *It seems Felix cat.
	 *Every happy sleeps.	 *Felix is very cat.	 *It seems Felix happy.

Here we have 3 sets of sentences. The top sentences are all acceptable. The results of
substituting sits or happy for cat in the first column, though, are unacceptable, and
similar substitutions are unacceptable in the second and third columns as well. Does
this show that sits, happy and cat are of different semantic types? The answer is not
clear.

We want our grammar as a whole to predict that the sentences on the top line are
acceptable and that those on the second and third lines are not. There are many
grammars that can do this. Cat is a noun, happy is an adjective, and sits is a verb. A
grammar can account for the acceptability of the sentences above by restricting where
nouns, adjectives and verbs can occur in the syntax. If *Every sits sleeps breaks the
rules of syntax, for example, there is no need to also explain why it is bad in the
semantics. This approach would allow us to analyze nouns, adjectives and verbs as
all having the same semantic type, as we have done.

― 274 ―

A grammar could also account for the differences semantically by assigning different
semantic types to nouns, adjectives and verbs. In such a grammar, the syntax could
produce all 9 of the sentences above. However, the semantics would only be able to
interpret the sentences in the top row. Such a grammar would give up the assumption
that nouns, adjectives and verbs can all be of type ⟨e,t⟩. There are good reasons to
adopt this kind of a grammar. However, showing those reasons is a topic for a more
advanced course. In this textbook we analyze all three as being of type ⟨e,t⟩.

A second assumption we made in determining the type of the was that the semantic
type of the cat is type e. This is a reasonable assumption. It is not, however, a
necessary assumption. Consider the sentence The cat sleeps. Assume that sleeps is of
type ⟨e,t⟩ and that the sentence as a whole is of type t. Does it follow that the cat is of
type e? No. There is another solution that works as well: the cat could be of type
⟨⟨e,t⟩,t⟩. If this is the semantic type of the cat, then the cat acts as a function taking
sleeps as its argument. This reverses the function-argument relation that results if the
cat is of type e.

Generalizing, suppose we have an expression [X Y Z] with the semantic types of X and
Y as indicated below.

		 X: τ

	 Y: ⟨σ,τ⟩		 Z: ?

Then there are in principle two possible semantic types that Z could have. Z could be
of type σ, or it could be of type ⟨⟨σ,τ⟩,τ⟩.

		 X: τ			 X: τ

	 Y: ⟨σ,τ⟩ 		 Z: σ	 Y: ⟨σ,τ⟩ 		 Z: ⟨⟨σ,τ⟩,τ⟩
	 function		 argument	 argument		 function

We will see in Chapter 6 that both solutions are used in semantics.

The assumptions we made in determining the semantic types of the, cat, and the cat
are reasonable. Like all assumptions, however, they are possibly wrong. In doing

― 275 ―

science, this possibility must always be kept in mind. In many cases, the details might
not matter. In order to understand the word very, for example, it probably does not
matter whether the cat denotes an individual (of type e) or a function (of type ⟨⟨e,t⟩,t⟩).
For understanding the interpretation of the word the, in contrast, those same details
will be all important.

