Title	Substrate specificity of A thymidine phosphorylase in human liver tumor
Sub Title	
Author	河野, 彬(Kono, Akira) 原, 泰寛(Hara, Yasuhiro) 菅田, 節朗(Sugata, Setsuro) 松島, 美一(Matsushima, Yoshikazu) 上田, 亨(Ueda, Toru)
Publisher	共立薬科大学
Publication year	1984
Jtitle	共立薬科大学研究年報 (The annual report of the Kyoritsu College of Pharmacy). No.29 (1984.) ,p.60- 60
JaLC DOI	
Abstract	
Notes	抄録
Genre	Technical Report
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AN00062898-00000029- 0060

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Substrate Specificity of A Thymidine Phosphorylase in Human Liver Tumor*

Akira Kono**, Yasuhiro Hara**, Setsuro Sugata, Yoshikazu Matsushima and Tohru Ueda***

河野 彬**, 原 泰寬**, 菅田節朗, 松島美一, 上田 亨***

We have found that thymidine phosphorylase activity is greatly enhanced in human tumors as compared with normal tissues and is responsible for the conversion of 5'-deoxy-5-fluorouridine (5'-DFUR) and 1-(tetrahydro-2-furanyl)-5-fluorouracil (Tegafur) to 5-fluorouracil (5-FU), an activated form. The activation of 5'-DFUR is catalyzed by uridine phosphorylases in experimental tumors of animals.

Thymidine phosphorylase (TP) catalyzes the reversible conversion of thymidine (dThd) and phosphate to thymine and 2-deoxyribose 1-phosphate. Uridine phosphorylase (UP) catalyzes the reversible conversion of uridine (Urd) and phosphate to uracil and ribose 1-phosphate. UP acts primarily on Urd and also cleaves dThd and 2'-deoxyuridine. Thus, its substrate specificity seems to be broad. On the other hand, TP is reported to be highly specific for 5-substituted 2'-deoxyuridines.

The findings that 5'-DFUR and Tegafur are phosphorolyzed by TP in human tumors suggest that the specificity of the human enzyme is somewhat different from those of the enzymes from other sources.

A thymidine phosphorylase preparation was partially purified from human liver tumor tissues (poorly differentiated adenocarcinoma). The substrate specificity of the enzyme was investigated with eleven pyrimidine nucleosides. dThd and 2'-deoxyuridine were good substrates, while Urd, 3'-deoxyuridine, 5'-deoxyuridine, and 2',3'-dioxy-3'hydroxymethyluridine were not. Uridines substituted at the 5-position by a cyano, bromo, or chloro group were also phosphorolyzed by the enzyme, but the activity for 5-fluorouridine was much lower. 5'-Deoxy-5-fluorouridine was also cleaved. Either a 5-substituent or a 2'-deoxy structure seems to be essential for a good substrate.

^{*} 本報告は Chem. Pharm. Bull., 32, 1919-1921 (1984) に発表

^{**} 九州がんセンター

^{***} 北海道大学薬学部