Title	Microbial transformation of (+)- and (-)-dehydrogriseofulvin by streptomyces species analyzed by ² H nuclear magnetic resonance spectroscopy
Sub Title	
Author	佐藤, 良博(Sato, Yoshihiro) 小田, 泰子(Oda, Taiko)
	斎藤, 肇(Saito, Hajime)
Publisher	共立薬科大学
Publication year	1981
Jtitle	共立薬科大学研究年報 (The annual report of the Kyoritsu College of Pharmacy). No.26 (1981.) ,p.79- 81
JaLC DOI	
Abstract	
Notes	抄録
Genre	Technical Report
URL	https://koara.lib.keio.ac.jp/xoonips/modules/xoonips/detail.php?koara_id=AN00062898-00000026- 0079

慶應義塾大学学術情報リポジトリ(KOARA)に掲載されているコンテンツの著作権は、それぞれの著作者、学会または出版社/発行者に帰属し、その権利は著作権法によって 保護されています。引用にあたっては、著作権法を遵守してご利用ください。

The copyrights of content available on the KeiO Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.

Microbial Transformation of (+)- and (-)-Dehydrogriseofulvin by Streptomyces Species Analyzed by ²H Nuclear Magnetic Resonance Spectroscopy*

YOSHIHIRO SATO, TAIKO ODA, and HAZIME SAITÔ

佐藤良博,小田泰子,斎藤 肇**

The microbial transformation of (-)-dehydrogriseofulvin (DGF) (1a) to (+)-griseofulvin (GF) (2a) was initially investigated by Andres and his co-workers using *Streptomyces cinereocrocatus* NRRL 3443. Previously, we deduced by means of ²H NMR spectroscopy the stereochemical course of the microbial hydrogenation of natural (-)-[5'-²H]DGF (1b) into natural (+)-[5' α -2H]GF (2d) by the same microorganism. This paper describes the results of incubations of (-)- and (+)-DGF with eight *streptomyces* species.

Firstly, (+)-DGF (4a) was administered to a shaken culture of S. cinereocrocatus on the 4th day of the fermentation as described previously. After 3 days, GF (2b) was obtained in 35-45% yields from the broth, and DGF (4b) was recovered in 10-15%yields. The structure of 2b, mp 228–229°C, $[\alpha]_{\rm p}^{21}$ +336.9°, which was inferred from ¹H NMR and mass spectral data together with gas liquid chromatography (GLC) and thinlayer chromatography (TLC) data, was confirmed to be (+)-GF by comparison of its CD spectrum with those of natural (+)-GF and (-)-GF (5). The recovered 4b, on the other hand, was pure (+)-DGF without any contamination by (-)-DGF in spite of the fermentation conditions under which (+)-GF was formed. When the incubation period was shortened by one day, on the other hand, GF (2b) and DGF (4b) were obtained in 12 and 40% yields, respectively. To elucidate the stereochemical course of the microbial transformation of (+)-DGF by Streptomyces species, (+)- $[5'-^{2}H]$ DGF (4c) which was obtained by dehydrogenation of (+)- $[5'\alpha, 5'\beta^{-2}H]$ epigriseofulvin, was subjected to microbial transformation by S. cinereocrocatus under the same conditions as described above for the undeuterated substrate (4a). After an additional 3 days, the cultures were harvested and deuterium-labeled GF was extracted, followed by column chromatographic separation to give 14 mg of deuterated GF, mp 229-230°C (²H₀ 57.4, ²H₁ 42.6%) (2e). The ²H NMR spectrum of 2e was compared with that of (+)- $[5'\alpha, 5'\beta^{-2}H]GF$ (2f) as described previously, and the configuration of the deuterium was unequivocally ascribed as $5'\alpha$, establishing the structure of **2e** as (+)- $[5'\alpha^{-2}H]$ GF (Fig. 1). The results suggest that during the microbial transformation, (+)-DGF (4a) is converted first to its enantiomer, natural (-)-DGF (1a), followed by hydrogenation of the 5'-6' double bond to yield natural (+)-GF (2b).

The above results prompted us to investigate the microbial transformation of DGF's

^{*} 本報告は Chem. Pharm. Bull., 29, 2313 (1981) に発表。

^{**} 国立がんセンター研究所

No. 26 (1981)

by other Streptomyces species. When (-)-DGF and (+)-DGF were incubated with Streptomyces species (S. cinereocrocatus, S. roseochromogenus, S. bikiniensis, S. griseinus, S. durhamensis, S. californicus. S. fimbriatus, and S. cinereoruber), mutual interconversion (reaction 1 in Chart 1) occurred, although in the fermentation of (+)-DGF with S. cinereocro-

catus and S. roseochromogenus (+)-DGF was recovered without any contamination by (-)-DGF. The results presented here led us to propose a scheme for the transformation of (-)- and (+)-DGF by Streptomyces species (Chart 1). The processes comprise isomerization between (-)- and (+)-DGF and hydrogenation to the corresponding (+)- and (-)-GF, respectively. Except for S. cinereoruber which shows almost the same hydrogenation activities in both $1\rightarrow 2$ (reaction 2) and $4\rightarrow 5$ (reaction 3) processes, other Streptomyces species showed very much higher activities in reaction 2 than in reaction 3. During the course of the screening test, Streptomyces species described above. When (-)-DGF was incubated with S. cinereoruber, GF ($[\alpha]_{p}^{10}$ +254.5°) was obtained, corresponding to a mixture consisting of 88% (+)-GF and 12% (-)-GF (5) on the basis of optical activities. When (+)-DGF was incubated under the same conditions, an enantiomer mixture of GF consisting of 87% (-)-enantiomer and 13% (+)-enantiomer was produced.

Chemical isomerization of DGF has been reported by MacMillan. The results indicate that the microbial transformation of (-)- and (+)-DGF by *Streptomyces* species is a new type of isomerization to afford the corresponding enantiomer. Using some microbial systems it is possible to obtain natural (+)-GF both directly and stereospecifically from (\pm) -DGF, which is an important intermediate in the total synthesis of (\pm) -GF.