<table>
<thead>
<tr>
<th>Title</th>
<th>N, N-Dimethyl-N’-(4-phenyl-2-thiazolyl) thioureaの誘導体について</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Title</td>
<td>On the derivatives of N, N-Dimethyl-N’-(4-phenyl-2-thiazolyl) thiourea</td>
</tr>
<tr>
<td>Author</td>
<td>与田, 玲子(Yoda, Reiko)</td>
</tr>
<tr>
<td></td>
<td>山本, 有一(Yamamoto, Yuichi)</td>
</tr>
<tr>
<td></td>
<td>村上, 悠紀雄(Murakami, Yukio)</td>
</tr>
<tr>
<td>Publisher</td>
<td>共立薬科大学</td>
</tr>
<tr>
<td>Publication year</td>
<td>1980</td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>原報</td>
</tr>
<tr>
<td>Genre</td>
<td>Technical Report</td>
</tr>
</tbody>
</table>

The copyrights of content available on the Keio Associated Repository of Academic resources (KOARA) belong to the respective authors, academic societies, or publishers/issuers, and these rights are protected by the Japanese Copyright Act. When quoting the content, please follow the Japanese copyright act.
N,N-Dimethyl-N'- (4-phenyl-2-thiazolyl) thiourea の誘導体について

与田 玲子，山本 有一，村上悠紀雄

On the Derivatives of N,N-Dimethyl-N'- (4-phenyl-2-thiazolyl) thiourea

Reiko YODA, Yuichi YAMAMOTO and Yukio MURAKAMI

(Received October 1, 1980)

The authors have long been synthesizing various ureido- and thioureido-thiazole derivatives to study systematically on the relationship between the biological activities and their chemical structures, and also studying on the chelate formation of these compounds with metal ions such as Cu, Co, Ni, Pd, etc. Authors have previously reported complex formation between palladium ion and various thioureidothiazole derivatives. Among them, N-methyl-N'- (4-methyl-2-thiazolyl) thiourea 1, N,N-dimethyl-N'- (4-phenyl-2-thiazolyl) thiourea 4a have previously been reported for its excellent properties as an organic reagent for spectrophotometric determination of palladium. The structures of the Pd-chelate of compound 1 and also of compound 2 have been identified by mass spectrometry, nuclear magnetic resonance and far infrared spectroscopy. The Pd-chelate complexes of these reagents, however, have certain disadvantages, e.g., only 10–24 nm difference in the maximum absorptions from those of the respective reagents. Thus the excess reagent must be removed prior to photometry. Therefore the author’s efforts have been directed towards a new sensitive reagent, the maximum absorption of which appears at sufficiently different wavelength from that reagent itself. First attempts were made to introduce electron-donating groups such as CH₃, Cl and Br or electron-withdrawing e.g., NO₂ in para-position of the phenyl ring of compound 4a. Following four new compounds 4b–4e, N,N-dimethyl-N'- (4-phenyl-2-thiazolyl) thiourea 4b, N,N-dimethyl-N'- (4- p-chloro) phenyl-2-thiazolyl) thiourea 4c, N,N-dimethyl-N'- (4- p-bromo) phenyl-2-thiazolyl) thiourea 4d, N,N-dimethyl-N'- (4- p-nitro) phenyl-2-thiazolyl) thiourea 4e were synthesized, which are new compounds according to the author’s literature survey. We wish to report synthesis method and spectral data for these compounds.

緒 言

著者らはチオ尿素が Fe(III) などと溶存錯体をつくり、他の重金属イオンとの分離に古くから用いられていることから金属イオンと反応し発色するような優れた有機試薬を見出す目的で研究を行なっている。合成された数多くの誘導体のうち既に N-methyl-N'- (4-methyl-2-thiazolyl) thiourea 12, N,N-dimethyl-N'- (4-phenyl-2-thiazolyl) thiourea 4a3 はパラジウムの吸光度変定法の有機試薬として優れているので報告した。また化合物 1 および N,N-dimethyl-N'- (4-methyl-2-thiazolyl) thiourea 2 のパラジウム錯体を合成し4, 質量分析 (Mass), nuclear mag-

1) 山本, 場内, 与田, 久保, 村上: 共立薬科大学年報, 18 (1973) 64–79.
4) 山本, 与田, 場内, 大阪, 村上: 共立薬科大学年報, 22 (1977) 29–42.
netic resonance (NMR)、遠赤外などによってその構造を明らかにした。既に報告した試薬はその試薬自身の極大吸収の波長とパラジウム錯体の極大吸収の波長との差が少ない。従って、試薬の過剰分を除く必要のない波長の差のある試薬の合成をめざしている。今回 4a のフェニル基のパラ位に共役効果の期待出来る電子供与基 CH₃, Cl, Br および電子吸収基 NO₂ などの導入を試み、次の四種の化合物を得た。文献調査の結果はそれぞれ新化合物である。合成法、スペクトルデータ並びに 4b のパラジウムキレートについて報告する。

N,N-dimethyl-N’-(4-(p-methyl)phenyl-2-thiazolyl)thiourea 4b,
N,N-dimethyl-N’-(4-(p-chloro)phenyl-2-thiazolyl)thiourea 4c,
N,N-dimethyl-N’-(4-(p-bromo)phenyl-2-thiazolyl)thiourea 4d,
N,N-dimethyl-N’-(4-(p-nitro)phenyl-2-thiazolyl)thiourea 4e.

実験結果による考察

i) 合成：
化合物 4a は、N,N-dimethylthiocarbamoyl chloride と 2-amino-4-phenylthiazole との反応において後の塩基性が強いため得られず、N,N-dimethyl-2,4-dithiobiuret（以下 DMBT と略記）と phenacyl bromide a との総合反応によって得られることが報告報告32。化合物 4a の合成

\[
\begin{align*}
\text{DMBT} & \quad \text{R=H} : \text{a} \\
& \quad \text{R=CH₃} : \text{b} \\
& \quad \text{R=Cl} : \text{c} \\
& \quad \text{R=Br} : \text{d} \\
& \quad \text{R=NO₂} : \text{e}
\end{align*}
\]

と同様に上記の Scheme に示すように、等モル量の DMBT とパラ位置換の phenacyl bromide を（クロロホルムあるいはジオキサン-水溶媒）、室温で反応させ thioureido 誘導体 4b-4e を得た。Table 1 に示すように化合物の元素分析の結果はそれぞれの理論値に一致した。

一方、上記の反応で反応条件（mol、溶媒）によって thioureido 誘導体 4a または bithiazole 誘導体 5a が主生成物として得られることが既に報告したが32, 4c の合成の際にも bithiazole 5c が生成されることを元素分析値、NMR より同定、確認した。

ii) 紫外線吸収スペクトルについて:
化合物 4a のクロロホルム溶液中の極大吸収は 267 nm（モル吸光係数 ε=22,200）であり、合成
Table 1. Physical data for (CH₃)₄NCNH₄–S–R

<table>
<thead>
<tr>
<th>R</th>
<th>Compound No.</th>
<th>mp Recrys. solvent</th>
<th>Appearance</th>
<th>Rf value*</th>
<th>Formula and MW</th>
<th>Elemental Analysis Calcd. (%) (found %)</th>
<th>UV λmax solv. nm(ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃</td>
<td>4b</td>
<td>187~9°C EtOH white needles</td>
<td>0.62</td>
<td>C₁₂H₁₄N₃S₂</td>
<td>277.412</td>
<td>56.29 5.45 15.15</td>
<td>268(24,900) 238(23,000)</td>
</tr>
<tr>
<td>Cl</td>
<td>4c</td>
<td>180 yellow MeOH needles</td>
<td>0.62</td>
<td>C₁₂H₁₄N₃Cl₂S₂</td>
<td>297.830</td>
<td>48.39 4.06 14.11</td>
<td>270(23,500) 241(21,600)</td>
</tr>
<tr>
<td>Br</td>
<td>4d</td>
<td>175~7 white EtOH needles</td>
<td>0.62</td>
<td>C₁₂H₁₄N₃Br₂S₂</td>
<td>342.281</td>
<td>42.11 3.53 12.28</td>
<td>271(28,900) 242.5(24,700)</td>
</tr>
<tr>
<td>NO₂</td>
<td>4e</td>
<td>223~6 orange DMSO–H₂O powder</td>
<td>0.61</td>
<td>C₁₂H₁₄N₅O₃S₂</td>
<td>308.382</td>
<td>46.74 3.92 18.17</td>
<td>268(18,740) 232(20,470)</td>
</tr>
</tbody>
</table>

Abbreviation: sh; shoulder

Table 2. 1H-NMR chemical shifts of 4b–4e (in DMSO-d_6 solvent)

<table>
<thead>
<tr>
<th>Compd. No.</th>
<th>(CH$_3$)$_2$N</th>
<th>3H</th>
<th>3-R</th>
<th>NH</th>
<th>5-CH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b</td>
<td>3.27</td>
<td>7.05</td>
<td>7.15–7.79</td>
<td>11.80</td>
<td>2.27</td>
</tr>
<tr>
<td>s 6H</td>
<td>1H</td>
<td>7.33</td>
<td>7.44–7.88</td>
<td>b 1H</td>
<td>s 3H</td>
</tr>
<tr>
<td>4c</td>
<td>6.95</td>
<td>8.01–8.26</td>
<td>11.50</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>s 6H</td>
<td>1H</td>
<td>3.37</td>
<td>7.40–7.70</td>
<td>not</td>
<td>b 1H</td>
</tr>
<tr>
<td>4d</td>
<td>3.34</td>
<td>7.63</td>
<td>8.26</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>s 6H</td>
<td>1H</td>
<td>3.34</td>
<td>7.70</td>
<td>not</td>
<td>appear</td>
</tr>
</tbody>
</table>

Abbreviation: s: singlet, m: multiplet, b: broad.

物4b–4eのそれはTable 1に示すように268～271nmに極大吸収をもつが位置換による著しい変化はみられない。

iii) 1H-NMRについて:

DMSO-d_6溶液中の化学シフトをTable 2に示す。化合物4b–4eの(CH$_3$)$_2$Nの化学シフトはδ3.27–3.37(singlet)に面積強度比6Hを示している。bithiazole, 5aの(CH$_3$)$_2$Nに相当するそれはδ3.13(singlet, 6H)にありthioueido誘導体4b–4eの方がわずかに低磁場シフトしていることがわかる。

iv) Massについて:

Table 3に示すMassデータ()内は相対強度を示す)をみると化合物4a–4eはそれぞれの分子量に相当する分子イオンビーグを示している。そのうちハロゲン誘導体4c, 4dは同位元素の存在から2つの主ビーグを示す分子イオンビーグを与えている。次にthioueido誘導体に特徴的な分子イオンビーグからチオール基の脱離に相当する([M+SH]⁺ビーグが4a(相対強度17.9%)そして4b–4eでは4~8%が出現している。また、分子イオンビーグからジメチルアミノ基の脱離([M+(CH$_3$)$_2$N]⁺)に相当する相対強度の強いジメチルアミノ誘導体に特有なベースビーグが化合物4a–4eにそれぞれみられる。

今回の化合物4a–4eでチアゾール環4位にフェニル基およびパラ位置換フェニル基を導入したことが特徴的であるがこれらの化合物に特有の\sum−S=C=Sが4eを除いて非常に強いビーグとして出現している。それらの中、ハロゲン化合物4cではm/e170(21.9), m/e168(56.9)に2つのフラグメントビーグがみられる。クロムの安定同位体の存在35Cl 100%, 37Cl 32.5%がプロモのそれは75Br 100%, 81Br 98.0%と言われている。著者らの化合物4eのフラグメントビーグm/e168の相対強度を100とし m/e170のそれと比較して38となりほぼ前記のクロムの同位体存在比32.5%と誤差範囲内で一致すると考えられる。一方プロモ体4dのフラグメントビーグはm/e214(45), m/e212(45)であり、その同位体の存在値はm/e214, 212と同一量であり、上記のプロモ同位体存在値が一致していることがわかる。m/e88は(CH$_3$)$_2$N=CHSのビーグ

5) 有機化合物のスペクトルによる同定法: 荒木, 益子訳 (東京化学同人) 9 page.
Table 3. Mass spectral data for 4a—4e [m/e, (Relative intensity, %)].

<table>
<thead>
<tr>
<th>Compd.No. (R)</th>
<th>M⁺</th>
<th>M⁺-SH</th>
<th>M⁺-(CH₃)₂NH</th>
<th>R⁻</th>
<th>(CH₃)₂NCS⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a (H)</td>
<td>263</td>
<td>230</td>
<td>218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(73.6)</td>
<td></td>
<td>(17.9)</td>
<td>(base)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b (CH₃)</td>
<td>277</td>
<td>244</td>
<td>232</td>
<td>148</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>44</td>
</tr>
<tr>
<td>4c (Cl)</td>
<td>299</td>
<td>297</td>
<td>264</td>
<td>254</td>
<td>252</td>
</tr>
<tr>
<td>(11.9)</td>
<td></td>
<td>(26.9)</td>
<td>(7.2)</td>
<td>(55.8)</td>
<td>(base)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4d (Br)</td>
<td>343</td>
<td>341</td>
<td>310</td>
<td>298</td>
<td>296</td>
</tr>
<tr>
<td>(10.4)</td>
<td></td>
<td>(9)</td>
<td>(base)</td>
<td>(92.2)</td>
<td></td>
</tr>
<tr>
<td>4e (NO₂)</td>
<td>308</td>
<td>275</td>
<td>263</td>
<td>179</td>
<td>88</td>
</tr>
<tr>
<td>(15.3)</td>
<td></td>
<td>(5.4)</td>
<td>(base)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Absorption maxima and molar absorption coefficient of palladium chelates of reagents proposed by authors.

<table>
<thead>
<tr>
<th>Reagents (No.)</th>
<th>Absorp. Maxi. (nm)</th>
<th>Molar Absorption Coefficient $\varepsilon (\times 10^4)$</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-methyl-N’-(4-methyl-2-thiazolyl)thiourea 1</td>
<td>280, 320</td>
<td>2.4, 1.76</td>
<td>(1975)</td>
</tr>
<tr>
<td>N,N-dimethyl-N’-(4-methyl-2-thiazolyl)-thiourea 2</td>
<td>286, 326</td>
<td>2.36, 1.76</td>
<td>(1977)</td>
</tr>
<tr>
<td>N,N-dimethyl-N’-(4,5-dimethyl-2-thiazolyl)-thiourea 3</td>
<td>286, 331</td>
<td>2.42, 1.94</td>
<td>(1973)</td>
</tr>
<tr>
<td>N,N-dimethyl-N’-(4-phenyl-2-thiazolyl)thiourea 4a</td>
<td>290, 334</td>
<td>3.97, 1.97</td>
<td>(1979)</td>
</tr>
<tr>
<td>N,N-dimethyl-N’-(4-p-chloro-2-thiazolyl)thiourea 4b</td>
<td>284, 336</td>
<td>3.8, 1.71</td>
<td>*</td>
</tr>
<tr>
<td>N,N-dimethyl-N’-(4-p-bromo-2-thiazolyl)thiourea 4c</td>
<td>291, 331</td>
<td>3.76, 1.8</td>
<td>*</td>
</tr>
<tr>
<td>N,N-dimethyl-N’-(4-(p-nitro)-(phenyl-2-thiazolyl)thiourea 4e</td>
<td>290, 329</td>
<td>4.3, 1.93</td>
<td>*</td>
</tr>
</tbody>
</table>

Remarks; sh: shoulder of the curve, *: this work

4a のパラジウム吸光光度定量法と同様な条件（pH 2, 室温, クロロホルム抽出）下で新化合物 4b–4e もパラジウムキレートを生成した。その極大吸収波長にみかけのモル吸光係数を Table 4 に示した。チアゾール環 4 位のメチル基を、共役系をもつフェニル基に置換することによって吸収极大が 286 nm から 290 nm へ 4 nm ほど長波長シフトしごモル吸光係数は 68% 増大することがわかった。更に共役基を加えるためにフェニル基のパラ位に置換基導入を試みた。まず、電子供与性のメチル基を導入した 4b は 4a に比してパラジウムキレート極大吸収が 6nm ほど短波長側に移動している。同様にアミログ基導入の 4c, 4b は 4a の極大吸収波長とほぼ同一であり、モル吸光係数はプロモ誘導体がわずかに増大している。一方電子吸引基として代表的な＝トロ基を導入した場合もほぼ 4a のそれと同一である。いずれの化合物のパラジウムキレートも 4a のそれと比較して著しい変化がみられず置換基導入効果は特に認められなかった。

置换基導入に関連して L.I. Mas’ko らは下記に示すフラン環をもつ furfural, furilpentadienal のthiosemicarbazones とパラジウムとの反応で、分子中のメチレン鎖の長さを n=0 もしくは 2 としたとき、共役系の長さに応じ、生成した誘導体 s_{max}（モル吸光係数）の増大、およびフラン環 5 位を CH₃, Cl, Br などに置換した場合モル吸光係数の増大がみられ、逆に＝トロ基導入の場合は極端なモル吸光係数の減少がみられ、CH₃, Cl, Br 基は共役系の長さを増大し、＝トロ基は

$$X \quad O_{\alpha=1}(CH=CH)_{n} CH=N-NHCNH_{2}$$

s_{max} で X=H, CH₃, Cl, Br, NO₃

それを短くしていることに相当すると報告している。

一方著者らは 4b のパラジウムキレートを単離した。橙色の結晶でその融点（分解点）は 261～265°C を示し Fig. 1 に示すように極大吸収 288 nm (ε = 31,900), 341 nm (ε = 15,000) を示している。重クロロホルム中での NMR は Fig. 2 に示すように singlet の δ 3.30 はジメチルアミノ基, δ 2.32 はフェニル環のメチル基, δ 6.17 はチアゾール環 5 位プロトン, また, δ 6.99, 7.07, 7.77, 7.85 はフェニル環のオルト, メタ位のプロトンに相当している。低質量分析では MW 659 近辺に分子イオンピークを示し, 更に (M⁺−(CH₃)₃N) に相当するピークが m/e 615 にわずかながらみられる。明確にカウント出来る m/e 383 は分子イオンから 276（試薬分子からプロトン脱離）脱離したピーカに相当すると考えられる。更に, パラジウム脱離で m/e 276 の強いピークを示していることがこれを裏付ける。その後の分裂パターンは試薬 4b の開裂パターンに一致し, (CH₃)₃N⁺=C=S が基準ピークとされている。元素分析値は理論値の C₂₆H₂₆N₆S₄Pd に一致し, パラジウムと試薬 4b は 1:2 の結合である。また Fig. 3 に試薬とパラジウムキレート (4a, 4a-Pd-キレート, 4b, 4b-Pd-キレート) の赤外スペクトルの吸収を示した。試薬 4a の 1545 cm⁻¹, 4b の 1535 cm⁻¹ は δ NH に相当し, パラジウムキレート形成によって消失し, C-N の二重結合に相当する 1478 cm⁻¹ (4a), 1485 cm⁻¹ (4b) の吸収がそれぞれ強く出現するものと考えられる。以上のデータからパラジウムと試薬とは 1:2 の組成比を持つことが確認され, パラジウムキレートは下記の構造式と考えられる。

![Fig. 1. UV absorption spectra of 4b and 4b-Pd-chelate in CHCl₃.](image)

終わりにそのぞみ, 元素分析を担当された三共株式会社中央研究所の方々および研究の協力を得て頂いた小口敬子, 岡田智子, 大村昌子学士らに深謝する。
Fig. 2. 1H-NMR spectrum of 4b-Pd-chelate. (in CDCl$_3$ solvent, TMS as internal standard).

Fig. 3. IR absorption spectra for 4a, 4a-Pd-chelate and 4b, 4b-Pd-chelate.
実験

機器による測定は、IR：日立赤外分光度計 EPI-G 3 型、KBr ディスク、UV：島津ダブルビーム 分光光度計 UV-200s、Mass：日本電子 TMS-OSG (70 eV)、NMR：日本電子JNM-NH100[100 MHz]を使用、内部標準 TMS、化学シフト：δ(ppm)、カップリング定数(J)は Hz で示した。なお、キレート生成のための機器、装置として東亜電波製 HM-5A 型 pH メーター、イオン交換モデル V-S、KM-シェーバーを使用した。

4b : N, N-dimethyl-N-'(4-(p-methyl)phenyl-2-thiazolyl)thiourea

N, N-dimethyl-2, 4-dithiobisuret(DMBT) 4.08 g をクロロホルム 80 mlに溶かした溶液に p-methylphenacyl bromide b 5.325 g をクロロホルム 50 mlに溶かした溶液を摂拌下滴下する。反応温度は 25℃から 28℃にわずかながら上昇する。そのまま 16 hr 摂拌する。析出した少量の結晶*を沈過する。溶液を溶媒留去すると Cu イオンによるキレート呈色反応グリーン色、Beilstein 反応陽性の粗生成物 7.4 gを得る。この粗結晶に 14%アンモニア水を加え Beilstein 反応陰性になるまで摂拌する。吸引洗浄、水洗乾燥後、シリカゲルカラムクロマト（溶媒液：クロロホルム）にて精製する。mp 187～9℃の白色結晶を得た。元素分析値、Mass, NMR 測定により 4b と確認した。

* ジオキサン-水より再結晶 mp 116℃、キレート呈色反応陰性であり bithiazole 誘導体 5b と考えられる。

4c : N, N-dimethyl-N'-(4-(p-chloro)phenyl-2-thiazolyl)thiourea

[A法] DMBT 4.08 g をクロロホルム 80 mlに溶かした溶液に p-chlorophenacyl bromide c 5.84 g をクロロホルム 50 mlに溶かした溶液を室温下 20 分間で滴下する。そのまま 3 hr 摂拌後析出した結晶を吸引洗浄する。エタノールで洗浄後キレート呈色反応陽性の粗生成物 3.82 gを得る。20%アンモニア水を加え、一夜摂拌、吸引洗浄後エタノールから再結晶すると mp 179～181℃の結晶を得る。この結晶は下記の [B法] によって得られた Cu イオンによるキレート呈色反応グリーン色の生成物 4c と mp, Rf 値が一致する。

[B法] DMBT 4.08 g をジオキサン 80 mlと水 20 mlに溶かした溶液に、p-chlorophenacyl bromide c 5.84 g をジオキサン 27 mlと水 3 mlに溶かした溶液を加える。次第に黄白色する。そのまま 2hr 摂拌後、析出物を吸引洗浄する。粗生成物 3.5 g をシリカゲルクロマトにより精製する。始めキレート呈色反応陰性質物（bithiazole 誘導体 5c）、次にキレート呈色反応陽性物質（thioureido 誘導体 4c）が溶離される。それぞれ溶媒留去する。後者は脱色炭処理後エタノールから再結晶すると mp 180℃の黄色結晶が得られる。元素分析値、Mass および NMR 測定の結果 4c であることが確認された。次に最初に溶離されたキレート呈色反応陰性質物をエタノールから再結晶すると mp 185～9℃の細状黄色結晶を得る。元素分析値、NMR 測定の結果から 4-(p-chlorophenyl)-2-dimethylamino-5-(4'-[(p-chlorophenyl)-2'-yl)thiazole 5c であることが確認された。Rf 値（アセトン：クロロホルム＝1：2）: 0.74,

Anal. Calcd. for C20H15N6S3Cl2,

found(%) ; C : 55.50, H : 3.45, N : 9.78.
calcd. % ; C : 55.56, H : 3.50, N : 9.72.
No. 20 (1980)

NMR (DMSO-d₆ 溶媒, 難溶)

\[
\begin{align*}
\text{CH₃} & \quad \text{N} \\
\text{N} & \quad \text{Cl} \\
\text{S} & \quad \text{H} \\
\text{Cl} & \quad \text{N} \\
\end{align*}
\]

\[\delta 7.43 \sim 7.92 \text{ (m, 8 H)} \]

\[\delta 3.14 \text{ (s, 6 H)} \]

\[\delta 7.40 \text{ (s, 1 H)} \]

(CDCℓ₃ 溶媒)

\[
\begin{align*}
\text{CH₃} & \quad \text{N} \\
\text{N} & \quad \text{Cl} \\
\text{S} & \quad \text{H} \\
\text{Cl} & \quad \text{N} \\
\end{align*}
\]

\[\delta 7.24 \sim 7.84 \text{ (m, 8 H)} \]

\[\delta 3.16 \text{ (s, 6 H)} \]

\[\delta 7.09 \text{ (s, 1 H)} \]

4d : N, N-dimethyl-N'-(4- (p-bromo) phenyl-2-thiazoly) thiourea

[A 法] DMBT 4.08 g をクロロホルム 80 ml に溶かした溶液に p-bromophenacyl bromide d 6.95 g をクロロホルム 50 ml に溶かした溶液を室温下、少しずつ滴下する。析出した結晶を吸引濾取し水洗する。その粗結晶にアンモニア水 150 ml を加え、一夜摂拌する。粗結晶を 水洗し、 エタノール水から、再結晶すると mp 179℃の結晶が得られた。

[B 法] DMBT 4.08 g をジオキサン 80 ml に溶かした溶液に、d 6.95 g をジオキサン 37 ml と水 3 ml に溶かした溶液を少しずつ加える。そのまま 2 hr 摂拌する。析出した結晶を 吸引濾取しジオキサンで洗浄する。粗生成物 4 g をエタノール水から再結晶すると mp 175〜7℃ の細い白色針状結晶を得る。元素分析値、Mass, NMR 測定の結果から 4d であることを確認した。A 法と B 法から得られた結晶の IR 吸収曲線は一致した。

NMR (CDCl₃ 溶媒) ③ 3.34 (s, 6H, (CH₃)₂N), ⑦ 7.27 (s, 1H, Br), ② 7.40〜7.90 (m, 4H, (O)Br)

4e : N, N-dimethyl-N'-(4- (p-nitro) phenyl-2-thiazoly) thiourea

DMBT 4.08 g をクロロホルム 80 ml に溶かした溶液に、p-nitrophenacyl bromide e 6.1 g をクロロホルム 50 ml に溶かした溶液を少しずつ加え、そのまま 2 hr 摂拌する。析出した結晶を 吸引濾取する。水で洗浄後、粗結晶 7.9 g に 20% アンモニア水を 60 ml を加え、摂拌する。粗生成物を DMSO-H₂O から再結晶すると mp 218〜224℃の黄色結晶 4e を得る。

パラジウム標準溶液：

和光純薬原子吸光用パラジウム標準溶液 (PdCl₂, 1 N HCl 溶液: 1000 μg Pd/1 ml) を使用の際一定量をとりこれに過塩素酸数滴を加えて白煙が出なくなるまで加熱し、乾固の少し前でやめる。これを一定容の水に溶かして用いる（通常、pH1 である）。この溶液は時間と共に溶存状態に変化があり、定量値が低くなる（エージング効果）ので毎回新しく調製して用いた。

その他の試薬：

有機溶媒は ドータイトスペクトロソール（和光純薬）クロロホルム また UV 吸収 スペクトロ

7) C. Engler and O. Zielke : Berichte ; 22 (1889) 204
用（関東化学）メタノールをそのまま使用、その他の試薬は市販特級品を使用する。
パラジウムのキレート生成：
パラジウム 16.5 μg に相当する水溶液 10 ml に試薬のメタノール溶液（1×10⁻⁴ mole/ml）0.5 ml を加え、室温で 5 分間放置する。これにクロロホルム 10 ml を加え、シェーカーで 5 分間振盪する。二層の分離後クロロホルム層を取り、1N NaOH 10 ml を加え 2 分間振盪する。クロロホルム層を分取し、全容を 10 ml に調整し 250 nm～600 nm まで吸収スペクトルを測定した。
4b のパラジウムキレートの合成：
2 個の 1l 分液ロートに下記の① と ② の溶液をそれぞれ半量ずつ加え 1 hr 振盪する。① 過塩素酸処理したパラジウム 53.2 mg に水 500 ml を加えて溶かした溶液、② 4b の 0.1 mmole をクロロホルム 500 ml に溶かした溶液。2 個の分液ロート中のクロロホルム層を各々分取し、1N NaOH 500 ml 次に水 800 ml（×2）で洗浄する。2 個の分液ロート中のクロロホルム層を合し、無水硫酸マグネシウムを加え一夜乾燥する。乾燥剤を除去し、クロロホルムを溶媒留去する。粗収量 290 mg、溶出液にクロロホルムを用いシリカゲルカラムクロマトグラフィーにて精製、4b のパラジウムキレートを単離した。

Anal. Calcd. for C₂₆H₂₅N₆S₂Pd
 found (%) ; C : 47.53, H : 4.35, N : 12.58, S : 18.98.
 calcd.(%) ; C : 47.37, H : 4.28, N : 12.75, S : 19.46.